SlideShare uma empresa Scribd logo
1 de 22
Procesos industriales área
manufactura.
Eventos aleatorios, espacio
muestral y técnicas de conteo
Leonardo García Lamas .
Ejemplo de Bernoulli.
1) Al lanzar un dado, ver si se obtiene un 5 (éxito) o cualquier otro
valor (fracaso).

Lo primero que se hace en este experimento es identificar el fracaso o
el éxito, ya que en este de bernoulli solo se pude obtener dos
resultados

1)Se considera éxito sacar un 5, a la probabilidad según el teorema
de Laplace (casos favorables dividido entre casos posibles) será 1/5.
                                  p = 1/5
2) Se considera fracaso no sacar un 6, por tanto, se considera fracaso
sacar cualquier otro resultado, entonces a la probabilidad se le
restará 1.
                  q= 1 –p        p= 1- 1/5        p=4/5
3) La variable aleatoria X medirá "número de veces que sale un 5", y
solo existen dos valores posibles, 0 (que no salga 5) y 1 (que salga un
5). Por lo que el parámetro es (X= Be(1/5)
                                  p=1/5
La probabilidad de que obtengamos un 5 viene definida como la
probabilidad de que X sea igual a 1. Entonces ahora los datos
que obtuvimos se sustituyen en la fórmula.
                        P(x=1) = (1/5) 1 * (4/5) 0 = 1/5 = 0.2

La probabilidad de que NO obtengamos un 6 viene definida
como la probabilidad de que X sea igual a 0.
                        P(x=0) = (1/5)0 * (4/5)1 = 4/5 = 0.8

Este experimento nos dice que hay 0.2 de probabilidad de que
salga el numero 5 en el dado, y de que no salga ese numero
existe la probabilidad del 0.8.
Ejemplo binomial
   Se lanza una moneda cuatro veces.
  Calcular la probabilidad de que salgan más
  caras que cruces.
 B(4, 0.5) p = 0.5q = 0.5
explicación
 En el ejemplo anterior se calculan las
  probabilidades de que al tirar una moneda
  salgan mas caras que cruces y para eso
  La moneda es lanzada 4 veces de esos 4
  tiros solo 1 cae cara y los otros 3 tiros
  cae cruz pero el resultado va a variar
 probabilidades:
1cara-3 cruces      2 caras- 2 cruces
3 caras- 1 cruz      2 cruces- 2 caras
Ejemplos de Poisson
          Si un banco recibe en promedio 6 cheques sin fondo
Ejemplo 1.-
por día, ¿ Cuales son las probabilidades reciba,
b)Cuatro cheque sin fondo en un día dado,
c)B)reciba 10 cheques sin fondo en cualquiera de dos días
consecutivos

Variable discreta= cantidad de personas
Intervalo continuo= una hora
Formula
 P(x): Probabilidad de que ocurran x
  éxitos
    : Número medio de sucesos esperados
  por unidad de tiempo.
 e: es la base de logaritmo natural cuyo
  valor es 2.718
 X: es la variable que nos denota el
  número de éxitos que se desea que
  ocurran
 A) x= Variable que nos define el número de
  cheques sin fondo que llega al banco en un día
  cualquiera;
 El primer paso es extraer los datos
 Tenemos que         o el promedio es igual a 6
  cheques sin fondo por día
 e= 2.718
 x= 4 por que se pide la probabilidad de que lleguen
  cuatro cheques al día
Reemplazar valores en las formulas
           =6
   e= 2.718
   X= 4
    P(x=4,   = 6) =(6)^4(2.718)^-6
                          4!

                           =(1296)(0,00248)
                                   24
                               =o,13192
        Es la probabilidad que representa de que lleguen cuatro
                         cheques sin fondo al día
   B)
 X= es la variable que nos define el número de cheques sin fondo que llegan en dos
  días consecutivos
        =6x2= 12 Cheques sin fondo en promedio que llegan al banco en dos días
  consecutivos

                                                          Lambda por t comprende
                                              al promedio del cheque a los dos días


 DATOS
     = 12 Cheques sin fondo por día

 e= 2.718
 X=10
 P(x=10,        =12 )= (129^10(2.718)^-12
                              10!
   =(6,191736*10^10)(0,000006151)
             3628800
   =0,104953 es la es la probalidad de que lleguen 10 cheques sin fondo en dos
    días consecutivos
Ejemplo de distribución normal


Una variable aleatoria continua, X, sigue
  una distribución normal de media μ y desviación
  típica σ, y se designa por N(μ , σ ), si se cumplen
  las siguientes condiciones:
1. La variable puede tomar cualquier valor: (-∞, +∞)
2. La función de densidad, es la expresión en
  términos de ecuación matemática de la curva de
  Gauss:
   Curva de la distribución normal




   El campo de existencia es cualquier valor real, es decir, (-∞, +∞).
   Es simétrica respecto a la media µ.
   Tiene un máximo en la media µ.
   Crece hasta la media µ y decrece a partir de ella.
   En los puntos µ − σ y µ + σ presenta puntos de inflexión.
   El eje de abscisas es una asíntota de la curva.
El área del recinto determinado por la función y el eje de
  abscisas es igual a la unidad.
Al ser simétrica respecto al eje que pasa por x = µ, deja
  un área igual a 0.5 a la izquierda y otra igual a 0.5 a
  la derecha.
La probabilidad equivale al área encerrada bajo la
  curva.
p(μ - σ < X ≤ μ + σ) = 0.6826 = 68.26 %
p(μ - 2σ < X ≤ μ + 2σ) = 0.954 = 95.4 %
p(μ - 3σ < X ≤ μ + 3σ) = 0.997 = 99.7 %
Ejemplo de distribución gamma




                                            Parámetros




A continuación se sustituye la formula en
          base alas 8 horas.
Formula
Probabilidad
Ejemplo de distribución t-student

 Un fabricante de focos afirma que su producto durará
 un promedio de 500 horas de trabajo. Para conservar
 este promedio esta persona verifica 25 focos cada mes.
 Si el valor y calculado cae entre –t 0.05 y t 0.05, él se
 encuentra satisfecho con esta afirmación. ¿Qué
 conclusión deberá él sacar de una muestra de 25 focos
 cuya duración fue?:
AQUÍ SE ENCUENTRAN LAS MUESTRAS QUE SE
       TOMARON PARA RESOLLVER EL PROBLEMA.




520       521   511    513    510   µ=500 h

513       522   500    521    495    n=25

496       488   500    502    512   Nc=90%

510       510   475    505    521   X=505.36

506       503   487    493    500   S=12.07
SOLUCION

   Para poder resolver el problema lo que se tendrá
    que hacer será lo siguiente se aplicara una formula
    la cual tendremos que desarrollar con los datos
    con los que contamos.
   Tendremos que sustituir los datos

  t= x -μ
 SI n                       α = 1- Nc = 10%
 v = n-1 = 24
 t = 2.22
Procedimiento: se demostrara la forma en que
              se sustituirán los datos.
   VALOR DE LOS DATOS..     APLICACION DE LA FORMULA




   µ=500 h                  t=505.36-500         t=
    2.22
   n=25                        12.07      25

 Nc=90%                   v = 25 -1 = 24
 X=505.36                      α = 1- 90% = 10%
 S=12.07
Enseguida se muestra la distribución del problema
              según el grafico sig.
 Soel_leos@hotmail.es
 http://leyna-estadistica.bligoo.com.mx/


 Gracias   por su atención

Mais conteúdo relacionado

Mais procurados

Distribuciones muestrales
Distribuciones muestralesDistribuciones muestrales
Distribuciones muestralesMynor Garcia
 
Ejercicios yproblemasprobabilidad
Ejercicios yproblemasprobabilidadEjercicios yproblemasprobabilidad
Ejercicios yproblemasprobabilidadmagangue1230
 
Muestreo y distrib muestrales de una media
Muestreo y distrib muestrales de una mediaMuestreo y distrib muestrales de una media
Muestreo y distrib muestrales de una mediaJuanito Vithore
 
PROGRAMACION LINEAL - METODO SIMPLEX
PROGRAMACION LINEAL - METODO SIMPLEXPROGRAMACION LINEAL - METODO SIMPLEX
PROGRAMACION LINEAL - METODO SIMPLEXjjsch01
 
Oferta y demanda introducción matemática para aplicaciones
Oferta y demanda introducción matemática para aplicacionesOferta y demanda introducción matemática para aplicaciones
Oferta y demanda introducción matemática para aplicacionesGunther_vb
 
Problema del Transporte
Problema del TransporteProblema del Transporte
Problema del TransporteJose
 
7 permutaciones combinaciones
7 permutaciones combinaciones7 permutaciones combinaciones
7 permutaciones combinacionesArbey Gutierrez
 
Ejercicios de distribuciones de probabilidad
Ejercicios de distribuciones de probabilidadEjercicios de distribuciones de probabilidad
Ejercicios de distribuciones de probabilidadrossee2012
 
ejercicios-resueltos-programacion-lineal
 ejercicios-resueltos-programacion-lineal ejercicios-resueltos-programacion-lineal
ejercicios-resueltos-programacion-linealAndres Sanchez
 
Tarea 13 de probabilidad y estadística con respuesta
Tarea 13 de probabilidad y estadística con respuestaTarea 13 de probabilidad y estadística con respuesta
Tarea 13 de probabilidad y estadística con respuestaIPN
 
Metodo simplexdual
Metodo simplexdualMetodo simplexdual
Metodo simplexdualAndres Mena
 
Experimentos
ExperimentosExperimentos
ExperimentosSanty D
 

Mais procurados (20)

Distribuciones muestrales
Distribuciones muestralesDistribuciones muestrales
Distribuciones muestrales
 
Guiasimplex
GuiasimplexGuiasimplex
Guiasimplex
 
Io 3ra modelo de transporte
Io 3ra modelo de transporteIo 3ra modelo de transporte
Io 3ra modelo de transporte
 
Prueba de hipotesis para proporciones Est ind clase02
Prueba de hipotesis para proporciones Est ind clase02Prueba de hipotesis para proporciones Est ind clase02
Prueba de hipotesis para proporciones Est ind clase02
 
espacios vectoriales
espacios vectorialesespacios vectoriales
espacios vectoriales
 
Ejercicios yproblemasprobabilidad
Ejercicios yproblemasprobabilidadEjercicios yproblemasprobabilidad
Ejercicios yproblemasprobabilidad
 
2012 3 distribucion-f_(fisher)
2012 3 distribucion-f_(fisher)2012 3 distribucion-f_(fisher)
2012 3 distribucion-f_(fisher)
 
Muestreo y distrib muestrales de una media
Muestreo y distrib muestrales de una mediaMuestreo y distrib muestrales de una media
Muestreo y distrib muestrales de una media
 
PROGRAMACION LINEAL - METODO SIMPLEX
PROGRAMACION LINEAL - METODO SIMPLEXPROGRAMACION LINEAL - METODO SIMPLEX
PROGRAMACION LINEAL - METODO SIMPLEX
 
Oferta y demanda introducción matemática para aplicaciones
Oferta y demanda introducción matemática para aplicacionesOferta y demanda introducción matemática para aplicaciones
Oferta y demanda introducción matemática para aplicaciones
 
Problema del Transporte
Problema del TransporteProblema del Transporte
Problema del Transporte
 
Resueltos estimacion
Resueltos estimacionResueltos estimacion
Resueltos estimacion
 
Prueba de hipotesis para dos poblaciones
Prueba de hipotesis para dos poblacionesPrueba de hipotesis para dos poblaciones
Prueba de hipotesis para dos poblaciones
 
7 permutaciones combinaciones
7 permutaciones combinaciones7 permutaciones combinaciones
7 permutaciones combinaciones
 
Ejercicios de distribuciones de probabilidad
Ejercicios de distribuciones de probabilidadEjercicios de distribuciones de probabilidad
Ejercicios de distribuciones de probabilidad
 
ejercicios-resueltos-programacion-lineal
 ejercicios-resueltos-programacion-lineal ejercicios-resueltos-programacion-lineal
ejercicios-resueltos-programacion-lineal
 
Tarea 13 de probabilidad y estadística con respuesta
Tarea 13 de probabilidad y estadística con respuestaTarea 13 de probabilidad y estadística con respuesta
Tarea 13 de probabilidad y estadística con respuesta
 
Metodo simplexdual
Metodo simplexdualMetodo simplexdual
Metodo simplexdual
 
Ejercicio 2
Ejercicio 2Ejercicio 2
Ejercicio 2
 
Experimentos
ExperimentosExperimentos
Experimentos
 

Semelhante a Un ejemplo explicado de las distribuciones de probabilidad.

Semelhante a Un ejemplo explicado de las distribuciones de probabilidad. (20)

Un ejemplo explicado de las distribuciones de probabilidad.
Un ejemplo explicado de las distribuciones de probabilidad.Un ejemplo explicado de las distribuciones de probabilidad.
Un ejemplo explicado de las distribuciones de probabilidad.
 
Bernoulli explicado,poisson, distribución normal,
Bernoulli  explicado,poisson, distribución normal, Bernoulli  explicado,poisson, distribución normal,
Bernoulli explicado,poisson, distribución normal,
 
Ejemplos tipos de probabilidad
Ejemplos tipos de probabilidadEjemplos tipos de probabilidad
Ejemplos tipos de probabilidad
 
Segunda present.
Segunda present.Segunda present.
Segunda present.
 
Ejemplos lm2
Ejemplos lm2Ejemplos lm2
Ejemplos lm2
 
Bernoulli ejemplo explicado nancy
Bernoulli ejemplo explicado nancyBernoulli ejemplo explicado nancy
Bernoulli ejemplo explicado nancy
 
Ejemplos explicados
Ejemplos explicadosEjemplos explicados
Ejemplos explicados
 
Ejemplos explicados
Ejemplos explicadosEjemplos explicados
Ejemplos explicados
 
Ejemplos explicados
Ejemplos explicadosEjemplos explicados
Ejemplos explicados
 
ejemplos explicados
ejemplos explicadosejemplos explicados
ejemplos explicados
 
Finalizaciony explicando 1 ejemplo
Finalizaciony explicando 1 ejemploFinalizaciony explicando 1 ejemplo
Finalizaciony explicando 1 ejemplo
 
Ejemplos
EjemplosEjemplos
Ejemplos
 
Lizejemplos2a
Lizejemplos2aLizejemplos2a
Lizejemplos2a
 
Alinaa 1
Alinaa 1Alinaa 1
Alinaa 1
 
Alinaa 1
Alinaa 1Alinaa 1
Alinaa 1
 
Distribuciones
DistribucionesDistribuciones
Distribuciones
 
Distribuciones
DistribucionesDistribuciones
Distribuciones
 
Ejemplos de distribuciones 4
Ejemplos de distribuciones 4Ejemplos de distribuciones 4
Ejemplos de distribuciones 4
 
Ejemplos sencillos
Ejemplos sencillosEjemplos sencillos
Ejemplos sencillos
 
Ejemplos Explicados
Ejemplos Explicados Ejemplos Explicados
Ejemplos Explicados
 

Mais de leonardo19940511

El inaceptable costo de los malos jefes
El inaceptable costo de los malos jefesEl inaceptable costo de los malos jefes
El inaceptable costo de los malos jefesleonardo19940511
 
Estratificación de histograma
Estratificación de histogramaEstratificación de histograma
Estratificación de histogramaleonardo19940511
 
Histograma, diagrama de dispersión y hojas de verificación
Histograma, diagrama de dispersión y hojas de verificaciónHistograma, diagrama de dispersión y hojas de verificación
Histograma, diagrama de dispersión y hojas de verificaciónleonardo19940511
 
Prueba de hipótesis y intervalos de confianza
Prueba de hipótesis y intervalos de confianzaPrueba de hipótesis y intervalos de confianza
Prueba de hipótesis y intervalos de confianzaleonardo19940511
 
Cinco ejemplos de aplicación de las distribuciones de probabilidad.
Cinco ejemplos de aplicación de las distribuciones de probabilidad.Cinco ejemplos de aplicación de las distribuciones de probabilidad.
Cinco ejemplos de aplicación de las distribuciones de probabilidad.leonardo19940511
 
Distribuciones de probabilidad
Distribuciones de probabilidadDistribuciones de probabilidad
Distribuciones de probabilidadleonardo19940511
 
Eventos aleatorios, espacio muestral y técnicas de conteo.
Eventos aleatorios, espacio muestral y técnicas de conteo.Eventos aleatorios, espacio muestral y técnicas de conteo.
Eventos aleatorios, espacio muestral y técnicas de conteo.leonardo19940511
 

Mais de leonardo19940511 (20)

Diagrama de ishikawa
Diagrama de ishikawaDiagrama de ishikawa
Diagrama de ishikawa
 
El inaceptable costo de los malos jefes
El inaceptable costo de los malos jefesEl inaceptable costo de los malos jefes
El inaceptable costo de los malos jefes
 
Capacidad y
Capacidad yCapacidad y
Capacidad y
 
Estratificación de histograma
Estratificación de histogramaEstratificación de histograma
Estratificación de histograma
 
Histograma, diagrama de dispersión y hojas de verificación
Histograma, diagrama de dispersión y hojas de verificaciónHistograma, diagrama de dispersión y hojas de verificación
Histograma, diagrama de dispersión y hojas de verificación
 
Tipos de hojas de control
Tipos de hojas de controlTipos de hojas de control
Tipos de hojas de control
 
De barbaros a burócratas
De barbaros a burócratasDe barbaros a burócratas
De barbaros a burócratas
 
Es estadísticas duro
Es estadísticas duroEs estadísticas duro
Es estadísticas duro
 
Prueba de hipótesis y intervalos de confianza
Prueba de hipótesis y intervalos de confianzaPrueba de hipótesis y intervalos de confianza
Prueba de hipótesis y intervalos de confianza
 
Cinco ejemplos de aplicación de las distribuciones de probabilidad.
Cinco ejemplos de aplicación de las distribuciones de probabilidad.Cinco ejemplos de aplicación de las distribuciones de probabilidad.
Cinco ejemplos de aplicación de las distribuciones de probabilidad.
 
Distribuciones de probabilidad
Distribuciones de probabilidadDistribuciones de probabilidad
Distribuciones de probabilidad
 
Eventos aleatorios, espacio muestral y técnicas de conteo.
Eventos aleatorios, espacio muestral y técnicas de conteo.Eventos aleatorios, espacio muestral y técnicas de conteo.
Eventos aleatorios, espacio muestral y técnicas de conteo.
 
histograma
histogramahistograma
histograma
 
Mapa mental
Mapa mentalMapa mental
Mapa mental
 
métodos de conteo
métodos de conteométodos de conteo
métodos de conteo
 
métodos de conteo
métodos de conteométodos de conteo
métodos de conteo
 
métodos de conteo
métodos de conteométodos de conteo
métodos de conteo
 
Intervalos reales
Intervalos realesIntervalos reales
Intervalos reales
 
Intervalos reales
Intervalos realesIntervalos reales
Intervalos reales
 
Intervalos aparentes
Intervalos aparentesIntervalos aparentes
Intervalos aparentes
 

Último

Fichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfFichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfssuser50d1252
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdfOswaldoGonzalezCruz
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfcoloncopias5
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfAlfredoRamirez953210
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDUgustavorojas179704
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfvictorbeltuce
 
EDUCACION FISICA 1° PROGRAMACIÓN ANUAL 2023.docx
EDUCACION FISICA 1°  PROGRAMACIÓN ANUAL 2023.docxEDUCACION FISICA 1°  PROGRAMACIÓN ANUAL 2023.docx
EDUCACION FISICA 1° PROGRAMACIÓN ANUAL 2023.docxLuisAndersonPachasto
 
periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas123yudy
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOweislaco
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Angélica Soledad Vega Ramírez
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfssuser50d1252
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxNataliaGonzalez619348
 
Los Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadLos Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadJonathanCovena1
 
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdfFichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdfssuser50d1252
 
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptxMonitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptxJUANCARLOSAPARCANARE
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfManuel Molina
 

Último (20)

Fichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdfFichas de Matemática TERCERO DE SECUNDARIA.pdf
Fichas de Matemática TERCERO DE SECUNDARIA.pdf
 
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
5° SEM29 CRONOGRAMA PLANEACIÓN DOCENTE DARUKEL 23-24.pdf
 
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdfFisiologia.Articular. 3 Kapandji.6a.Ed.pdf
Fisiologia.Articular. 3 Kapandji.6a.Ed.pdf
 
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdfEstrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
Estrategias de enseñanza - aprendizaje. Seminario de Tecnologia..pptx.pdf
 
La luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luzLa luz brilla en la oscuridad. Necesitamos luz
La luz brilla en la oscuridad. Necesitamos luz
 
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDUFICHA DE MONITOREO Y ACOMPAÑAMIENTO  2024 MINEDU
FICHA DE MONITOREO Y ACOMPAÑAMIENTO 2024 MINEDU
 
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdfMapa Mental de estrategias de articulación de las areas curriculares.pdf
Mapa Mental de estrategias de articulación de las areas curriculares.pdf
 
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdfTema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
Tema 7.- E-COMMERCE SISTEMAS DE INFORMACION.pdf
 
EDUCACION FISICA 1° PROGRAMACIÓN ANUAL 2023.docx
EDUCACION FISICA 1°  PROGRAMACIÓN ANUAL 2023.docxEDUCACION FISICA 1°  PROGRAMACIÓN ANUAL 2023.docx
EDUCACION FISICA 1° PROGRAMACIÓN ANUAL 2023.docx
 
periodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicasperiodico mural y sus partes y caracteristicas
periodico mural y sus partes y caracteristicas
 
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJOTUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
TUTORIA II - CIRCULO DORADO UNIVERSIDAD CESAR VALLEJO
 
Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...Contextualización y aproximación al objeto de estudio de investigación cualit...
Contextualización y aproximación al objeto de estudio de investigación cualit...
 
recursos naturales america cuarto basico
recursos naturales america cuarto basicorecursos naturales america cuarto basico
recursos naturales america cuarto basico
 
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdfFichas de matemática DE PRIMERO DE SECUNDARIA.pdf
Fichas de matemática DE PRIMERO DE SECUNDARIA.pdf
 
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docxSecuencia didáctica.DOÑA CLEMENTINA.2024.docx
Secuencia didáctica.DOÑA CLEMENTINA.2024.docx
 
TL/CNL – 2.ª FASE .
TL/CNL – 2.ª FASE                       .TL/CNL – 2.ª FASE                       .
TL/CNL – 2.ª FASE .
 
Los Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la SostenibilidadLos Nueve Principios del Desempeño de la Sostenibilidad
Los Nueve Principios del Desempeño de la Sostenibilidad
 
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdfFichas de MatemáticA QUINTO DE SECUNDARIA).pdf
Fichas de MatemáticA QUINTO DE SECUNDARIA).pdf
 
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptxMonitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
Monitoreo a los coordinadores de las IIEE JEC_28.02.2024.vf.pptx
 
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdfTarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
Tarea 5_ Foro _Selección de herramientas digitales_Manuel.pdf
 

Un ejemplo explicado de las distribuciones de probabilidad.

  • 1. Procesos industriales área manufactura. Eventos aleatorios, espacio muestral y técnicas de conteo Leonardo García Lamas .
  • 2. Ejemplo de Bernoulli. 1) Al lanzar un dado, ver si se obtiene un 5 (éxito) o cualquier otro valor (fracaso). Lo primero que se hace en este experimento es identificar el fracaso o el éxito, ya que en este de bernoulli solo se pude obtener dos resultados 1)Se considera éxito sacar un 5, a la probabilidad según el teorema de Laplace (casos favorables dividido entre casos posibles) será 1/5. p = 1/5 2) Se considera fracaso no sacar un 6, por tanto, se considera fracaso sacar cualquier otro resultado, entonces a la probabilidad se le restará 1. q= 1 –p p= 1- 1/5 p=4/5 3) La variable aleatoria X medirá "número de veces que sale un 5", y solo existen dos valores posibles, 0 (que no salga 5) y 1 (que salga un 5). Por lo que el parámetro es (X= Be(1/5) p=1/5
  • 3. La probabilidad de que obtengamos un 5 viene definida como la probabilidad de que X sea igual a 1. Entonces ahora los datos que obtuvimos se sustituyen en la fórmula. P(x=1) = (1/5) 1 * (4/5) 0 = 1/5 = 0.2 La probabilidad de que NO obtengamos un 6 viene definida como la probabilidad de que X sea igual a 0. P(x=0) = (1/5)0 * (4/5)1 = 4/5 = 0.8 Este experimento nos dice que hay 0.2 de probabilidad de que salga el numero 5 en el dado, y de que no salga ese numero existe la probabilidad del 0.8.
  • 4. Ejemplo binomial  Se lanza una moneda cuatro veces. Calcular la probabilidad de que salgan más caras que cruces.  B(4, 0.5) p = 0.5q = 0.5
  • 5. explicación  En el ejemplo anterior se calculan las probabilidades de que al tirar una moneda salgan mas caras que cruces y para eso La moneda es lanzada 4 veces de esos 4 tiros solo 1 cae cara y los otros 3 tiros cae cruz pero el resultado va a variar probabilidades: 1cara-3 cruces 2 caras- 2 cruces 3 caras- 1 cruz 2 cruces- 2 caras
  • 6. Ejemplos de Poisson Si un banco recibe en promedio 6 cheques sin fondo Ejemplo 1.- por día, ¿ Cuales son las probabilidades reciba, b)Cuatro cheque sin fondo en un día dado, c)B)reciba 10 cheques sin fondo en cualquiera de dos días consecutivos Variable discreta= cantidad de personas Intervalo continuo= una hora Formula
  • 7.  P(x): Probabilidad de que ocurran x éxitos  : Número medio de sucesos esperados por unidad de tiempo.  e: es la base de logaritmo natural cuyo valor es 2.718  X: es la variable que nos denota el número de éxitos que se desea que ocurran
  • 8.  A) x= Variable que nos define el número de cheques sin fondo que llega al banco en un día cualquiera;  El primer paso es extraer los datos  Tenemos que o el promedio es igual a 6 cheques sin fondo por día  e= 2.718  x= 4 por que se pide la probabilidad de que lleguen cuatro cheques al día
  • 9. Reemplazar valores en las formulas  =6  e= 2.718  X= 4  P(x=4, = 6) =(6)^4(2.718)^-6  4!  =(1296)(0,00248)  24  =o,13192  Es la probabilidad que representa de que lleguen cuatro cheques sin fondo al día
  • 10. B)  X= es la variable que nos define el número de cheques sin fondo que llegan en dos días consecutivos  =6x2= 12 Cheques sin fondo en promedio que llegan al banco en dos días consecutivos  Lambda por t comprende  al promedio del cheque a los dos días  DATOS  = 12 Cheques sin fondo por día  e= 2.718  X=10  P(x=10, =12 )= (129^10(2.718)^-12  10!  =(6,191736*10^10)(0,000006151)  3628800  =0,104953 es la es la probalidad de que lleguen 10 cheques sin fondo en dos días consecutivos
  • 11. Ejemplo de distribución normal Una variable aleatoria continua, X, sigue una distribución normal de media μ y desviación típica σ, y se designa por N(μ , σ ), si se cumplen las siguientes condiciones: 1. La variable puede tomar cualquier valor: (-∞, +∞) 2. La función de densidad, es la expresión en términos de ecuación matemática de la curva de Gauss:
  • 12. Curva de la distribución normal  El campo de existencia es cualquier valor real, es decir, (-∞, +∞).  Es simétrica respecto a la media µ.  Tiene un máximo en la media µ.  Crece hasta la media µ y decrece a partir de ella.  En los puntos µ − σ y µ + σ presenta puntos de inflexión.  El eje de abscisas es una asíntota de la curva.
  • 13. El área del recinto determinado por la función y el eje de abscisas es igual a la unidad. Al ser simétrica respecto al eje que pasa por x = µ, deja un área igual a 0.5 a la izquierda y otra igual a 0.5 a la derecha. La probabilidad equivale al área encerrada bajo la curva. p(μ - σ < X ≤ μ + σ) = 0.6826 = 68.26 % p(μ - 2σ < X ≤ μ + 2σ) = 0.954 = 95.4 % p(μ - 3σ < X ≤ μ + 3σ) = 0.997 = 99.7 %
  • 14. Ejemplo de distribución gamma Parámetros A continuación se sustituye la formula en base alas 8 horas.
  • 17. Ejemplo de distribución t-student Un fabricante de focos afirma que su producto durará un promedio de 500 horas de trabajo. Para conservar este promedio esta persona verifica 25 focos cada mes. Si el valor y calculado cae entre –t 0.05 y t 0.05, él se encuentra satisfecho con esta afirmación. ¿Qué conclusión deberá él sacar de una muestra de 25 focos cuya duración fue?:
  • 18. AQUÍ SE ENCUENTRAN LAS MUESTRAS QUE SE TOMARON PARA RESOLLVER EL PROBLEMA. 520 521 511 513 510 µ=500 h 513 522 500 521 495 n=25 496 488 500 502 512 Nc=90% 510 510 475 505 521 X=505.36 506 503 487 493 500 S=12.07
  • 19. SOLUCION  Para poder resolver el problema lo que se tendrá que hacer será lo siguiente se aplicara una formula la cual tendremos que desarrollar con los datos con los que contamos.  Tendremos que sustituir los datos  t= x -μ  SI n α = 1- Nc = 10%  v = n-1 = 24  t = 2.22
  • 20. Procedimiento: se demostrara la forma en que se sustituirán los datos.  VALOR DE LOS DATOS.. APLICACION DE LA FORMULA  µ=500 h t=505.36-500 t= 2.22  n=25 12.07 25  Nc=90% v = 25 -1 = 24  X=505.36 α = 1- 90% = 10%  S=12.07
  • 21. Enseguida se muestra la distribución del problema según el grafico sig.