SlideShare uma empresa Scribd logo
1 de 35
Baixar para ler offline
Section 5.2
                  The Definite Integral

                           Math 1a


                      December 7, 2007


Announcements
   my next office hours: Monday 1–2, Tuesday 3–4 (SC 323)
   MT II is graded. You’ll get it back today
   Final seview sessions: Wed 1/9 and Thu 1/10 in Hall D, Sun
   1/13 in Hall C, all 7–8:30pm
   Final tentatively scheduled for January 17
Outline



   The definite integral as a limit


   Estimating the Definite Integral


   Properties of the integral


   Comparison Properties of the Integral
The definite integral as a limit




   Definition
   If f is a function defined on [a, b], the definite integral of f from
   a to b is the number
                                               n
                         b
                             f (x) dx = lim         f (ci ) ∆x
                                       ∆x→0
                     a                        i=1
Notation/Terminology


                           b
                               f (x) dx
                       a
Notation/Terminology


                               b
                                   f (x) dx
                           a


        — integral sign (swoopy S)
Notation/Terminology


                               b
                                   f (x) dx
                           a


        — integral sign (swoopy S)
      f (x) — integrand
Notation/Terminology


                                 b
                                     f (x) dx
                             a


         — integral sign (swoopy S)
      f (x) — integrand
      a and b — limits of integration (a is the lower limit and b
      the upper limit)
Notation/Terminology


                                 b
                                     f (x) dx
                             a


         — integral sign (swoopy S)
      f (x) — integrand
      a and b — limits of integration (a is the lower limit and b
      the upper limit)
      dx — ??? (a parenthesis? an infinitesimal? a variable?)
Notation/Terminology


                                  b
                                      f (x) dx
                              a


         — integral sign (swoopy S)
      f (x) — integrand
      a and b — limits of integration (a is the lower limit and b
      the upper limit)
      dx — ??? (a parenthesis? an infinitesimal? a variable?)
      The process of computing an integral is called integration
The limit can be simplified

   Theorem
   If f is continuous on [a, b] or if f has only finitely many jump
   discontinuities, then f is integrable on [a, b]; that is, the definite
                  b
   integral           f (x) dx exists.
              a
The limit can be simplified

   Theorem
   If f is continuous on [a, b] or if f has only finitely many jump
   discontinuities, then f is integrable on [a, b]; that is, the definite
                  b
   integral           f (x) dx exists.
              a

   Theorem
   If f is integrable on [a, b] then
                                                       n
                                 b
                                     f (x) dx = lim         f (xi )∆x,
                                               n→∞
                             a                        i=1

   where
                                 b−a
                       ∆x =                   and          xi = a + i ∆x
                                  n
Outline



   The definite integral as a limit


   Estimating the Definite Integral


   Properties of the integral


   Comparison Properties of the Integral
Estimating the Definite Integral




   Given a partition of [a, b] into n pieces, let xi be the midpoint of
                                                  ¯
   [xi−1 , xi ]. Define
                                   n
                           Mn =         f (¯i ) ∆x.
                                           x
                                  i=1
Example
               1
                     4
Estimate                  dx using the midpoint rule and four divisions.
                   1 + x2
           0
Example
               1
                     4
Estimate                  dx using the midpoint rule and four divisions.
                   1 + x2
           0

Solution
                          1  1 3
The partition is 0 <        < < < 1, so the estimate is
                          4  2 4
       1        4            4            4            4
M4 =                  +            +            +
                    2            2            2   1 + (7/8)2
       4   1 + (1/8)    1 + (3/8)    1 + (5/8)
Example
               1
                     4
Estimate                  dx using the midpoint rule and four divisions.
                   1 + x2
           0

Solution
                          1  1 3
The partition is 0 <        < < < 1, so the estimate is
                          4  2 4
      1         4            4            4            4
M4 =                  +            +            +
                    2            2            2   1 + (7/8)2
      4    1 + (1/8)    1 + (3/8)    1 + (5/8)
      1      4        4        4        4
    =             +       +        +
      4    65/64 73/64 89/64 113/64
Example
               1
                     4
Estimate                  dx using the midpoint rule and four divisions.
                   1 + x2
           0

Solution
                          1  1 3
The partition is 0 <        < < < 1, so the estimate is
                          4  2 4
      1        4             4            4            4
M4 =                  +            +            +
                    2            2            2   1 + (7/8)2
      4 1 + (1/8)       1 + (3/8)    1 + (5/8)
      1     4         4        4        4
    =            +        +        +
      4 65/64 73/64 89/64 113/64
      150, 166, 784
                    ≈ 3.1468
    =
      47, 720, 465
Outline



   The definite integral as a limit


   Estimating the Definite Integral


   Properties of the integral


   Comparison Properties of the Integral
Properties of the integral


   Theorem (Additive Properties of the Integral)
   Let f and g be integrable functions on [a, b] and c a constant.
   Then
             b
                 c dx = c(b − a)
    1.
         a
Properties of the integral


   Theorem (Additive Properties of the Integral)
   Let f and g be integrable functions on [a, b] and c a constant.
   Then
             b
                 c dx = c(b − a)
    1.
         a
             b                              b                    b
    2.           [f (x) + g (x)] dx =           f (x) dx +           g (x) dx.
         a                              a                    a
Properties of the integral


   Theorem (Additive Properties of the Integral)
   Let f and g be integrable functions on [a, b] and c a constant.
   Then
             b
                 c dx = c(b − a)
    1.
         a
             b                                   b                    b
    2.           [f (x) + g (x)] dx =                f (x) dx +           g (x) dx.
         a                                   a                    a
             b                       b
    3.           cf (x) dx = c           f (x) dx.
         a                       a
Properties of the integral


   Theorem (Additive Properties of the Integral)
   Let f and g be integrable functions on [a, b] and c a constant.
   Then
             b
                 c dx = c(b − a)
    1.
         a
             b                                   b                    b
    2.           [f (x) + g (x)] dx =                f (x) dx +           g (x) dx.
         a                                   a                    a
             b                       b
    3.           cf (x) dx = c           f (x) dx.
         a                       a
             b                                   b                    b
                 [f (x) − g (x)] dx =                f (x) dx −
    4.                                                                    g (x) dx.
         a                                   a                    a
More Properties of the Integral



   Conventions:
                       a                      b
                           f (x) dx = −           f (x) dx
                   b                      a
More Properties of the Integral



   Conventions:
                       a                          b
                           f (x) dx = −               f (x) dx
                   b                          a
                                  a
                                      f (x) dx = 0
                              a
More Properties of the Integral



   Conventions:
                                  a                                b
                                      f (x) dx = −                     f (x) dx
                              b                                a
                                              a
                                                  f (x) dx = 0
                                          a
   This allows us to have
             c                    b                        c
    5.           f (x) dx =           f (x) dx +               f (x) dx for all a, b, and c.
         a                    a                        b
Example
Suppose f and g are functions with
           4
               f (x) dx = 4
       0
           5
               f (x) dx = 7
       0
           5
               g (x) dx = 3.
       0
Find
           5
               [2f (x) − g (x)] dx
(a)
       0
           5
(b)            f (x) dx.
       4
Solution
We have
(a)
               5                                 5                    5
                   [2f (x) − g (x)] dx = 2           f (x) dx −           g (x) dx
           0                                 0                    0
                                      = 2 · 7 − 3 = 11
Solution
We have
(a)
               5                                          5                       5
                   [2f (x) − g (x)] dx = 2                    f (x) dx −              g (x) dx
           0                                          0                       0
                                           = 2 · 7 − 3 = 11

(b)
                          5                    5                       4
                                                   f (x) dx −
                              f (x) dx =                                   f (x) dx
                      4                    0                       0
                                      =7−4=3
Outline



   The definite integral as a limit


   Estimating the Definite Integral


   Properties of the integral


   Comparison Properties of the Integral
Comparison Properties of the Integral
   Theorem
   Let f and g be integrable functions on [a, b].
Comparison Properties of the Integral
   Theorem
   Let f and g be integrable functions on [a, b].
    6. If f (x) ≥ 0 for all x in [a, b], then
                                      b
                                          f (x) dx ≥ 0
                                  a
Comparison Properties of the Integral
   Theorem
   Let f and g be integrable functions on [a, b].
    6. If f (x) ≥ 0 for all x in [a, b], then
                                           b
                                               f (x) dx ≥ 0
                                       a

    7. If f (x) ≥ g (x) for all x in [a, b], then
                                 b                       b
                                     f (x) dx ≥              g (x) dx
                             a                       a
Comparison Properties of the Integral
   Theorem
   Let f and g be integrable functions on [a, b].
    6. If f (x) ≥ 0 for all x in [a, b], then
                                           b
                                               f (x) dx ≥ 0
                                       a

    7. If f (x) ≥ g (x) for all x in [a, b], then
                                 b                         b
                                     f (x) dx ≥                g (x) dx
                             a                         a

    8. If m ≤ f (x) ≤ M for all x in [a, b], then
                                               b
                     m(b − a) ≤                    f (x) dx ≤ M(b − a)
                                           a
Example
               2
                   1
Estimate             dx using the comparison properties.
                   x
           1
Example
               2
                   1
Estimate             dx using the comparison properties.
                   x
           1

Solution
Since
                                 1      1
                                   ≤x ≤
                                 2      1
for all x in [1, 2], we have
                                       2
                           1               1
                             ·1≤             dx ≤ 1 · 1
                           2               x
                                   1

Mais conteúdo relacionado

Mais procurados

limits and continuity
limits and continuity limits and continuity
limits and continuity imran khan
 
Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3Ron Eick
 
Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Mohd. Noor Abdul Hamid
 
Tangent and normal
Tangent and normalTangent and normal
Tangent and normalRameshMakar
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbersitutor
 
Quadratic Equation
Quadratic EquationQuadratic Equation
Quadratic Equationitutor
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a functionbtmathematics
 
Integration by partial fraction
Integration by partial fractionIntegration by partial fraction
Integration by partial fractionAyesha Ch
 
Vector calculus
Vector calculusVector calculus
Vector calculusraghu ram
 
Continuity and Discontinuity of Functions
Continuity and Discontinuity of FunctionsContinuity and Discontinuity of Functions
Continuity and Discontinuity of FunctionsPhil Saraspe
 
3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functions3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functionssmiller5
 
Numerical differentiation
Numerical differentiationNumerical differentiation
Numerical differentiationandrushow
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And DerivativeAshams kurian
 
Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)Osama Zahid
 
Integration and its basic rules and function.
Integration and its basic rules and function.Integration and its basic rules and function.
Integration and its basic rules and function.Kartikey Rohila
 
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)Matthew Leingang
 
Application of derivatives
Application of derivatives Application of derivatives
Application of derivatives Seyid Kadher
 
The Application of Derivatives
The Application of DerivativesThe Application of Derivatives
The Application of Derivativesdivaprincess09
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrationsitutor
 

Mais procurados (20)

limits and continuity
limits and continuity limits and continuity
limits and continuity
 
Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3
 
Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor Introduction to Function, Domain and Range - Mohd Noor
Introduction to Function, Domain and Range - Mohd Noor
 
Tangent and normal
Tangent and normalTangent and normal
Tangent and normal
 
Complex Numbers
Complex NumbersComplex Numbers
Complex Numbers
 
Quadratic Equation
Quadratic EquationQuadratic Equation
Quadratic Equation
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a function
 
Integration by partial fraction
Integration by partial fractionIntegration by partial fraction
Integration by partial fraction
 
Vector calculus
Vector calculusVector calculus
Vector calculus
 
Continuity and Discontinuity of Functions
Continuity and Discontinuity of FunctionsContinuity and Discontinuity of Functions
Continuity and Discontinuity of Functions
 
3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functions3.3 Zeros of Polynomial Functions
3.3 Zeros of Polynomial Functions
 
DIFFERENTIATION
DIFFERENTIATIONDIFFERENTIATION
DIFFERENTIATION
 
Numerical differentiation
Numerical differentiationNumerical differentiation
Numerical differentiation
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And Derivative
 
Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)Math lecture 10 (Introduction to Integration)
Math lecture 10 (Introduction to Integration)
 
Integration and its basic rules and function.
Integration and its basic rules and function.Integration and its basic rules and function.
Integration and its basic rules and function.
 
Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)Lesson 21: Antiderivatives (slides)
Lesson 21: Antiderivatives (slides)
 
Application of derivatives
Application of derivatives Application of derivatives
Application of derivatives
 
The Application of Derivatives
The Application of DerivativesThe Application of Derivatives
The Application of Derivatives
 
Applications of Integrations
Applications of IntegrationsApplications of Integrations
Applications of Integrations
 

Destaque

Lesson 26: The Definite Integral
Lesson 26: The Definite IntegralLesson 26: The Definite Integral
Lesson 26: The Definite IntegralMatthew Leingang
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsMatthew Leingang
 
4.3 The Definite Integral
4.3 The Definite Integral4.3 The Definite Integral
4.3 The Definite IntegralSharon Henry
 
Lesson 24: Area and Distances
Lesson 24: Area and DistancesLesson 24: Area and Distances
Lesson 24: Area and DistancesMatthew Leingang
 
Lesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingLesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingMatthew Leingang
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization IMatthew Leingang
 
Lesson24 Implicit Differentiation Slides
Lesson24    Implicit  Differentiation SlidesLesson24    Implicit  Differentiation Slides
Lesson24 Implicit Differentiation SlidesMatthew Leingang
 
Lesson20 Tangent Planes Slides+Notes
Lesson20   Tangent Planes Slides+NotesLesson20   Tangent Planes Slides+Notes
Lesson20 Tangent Planes Slides+NotesMatthew Leingang
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers IIMatthew Leingang
 
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleLesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleMatthew Leingang
 
Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusMatthew Leingang
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic FormsMatthew Leingang
 

Destaque (20)

Lesson 26: The Definite Integral
Lesson 26: The Definite IntegralLesson 26: The Definite Integral
Lesson 26: The Definite Integral
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Lesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite IntegralsLesson 26: Evaluating Definite Integrals
Lesson 26: Evaluating Definite Integrals
 
Larson 4.1
Larson 4.1Larson 4.1
Larson 4.1
 
Integral Rules
Integral RulesIntegral Rules
Integral Rules
 
4.3 The Definite Integral
4.3 The Definite Integral4.3 The Definite Integral
4.3 The Definite Integral
 
Lesson 24: Area and Distances
Lesson 24: Area and DistancesLesson 24: Area and Distances
Lesson 24: Area and Distances
 
İntegral 04
İntegral 04İntegral 04
İntegral 04
 
Lesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data FittingLesson 26: Optimization II: Data Fitting
Lesson 26: Optimization II: Data Fitting
 
Lesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization ILesson 25: Unconstrained Optimization I
Lesson 25: Unconstrained Optimization I
 
Lesson24 Implicit Differentiation Slides
Lesson24    Implicit  Differentiation SlidesLesson24    Implicit  Differentiation Slides
Lesson24 Implicit Differentiation Slides
 
Midterm II Review
Midterm II ReviewMidterm II Review
Midterm II Review
 
Lesson20 Tangent Planes Slides+Notes
Lesson20   Tangent Planes Slides+NotesLesson20   Tangent Planes Slides+Notes
Lesson20 Tangent Planes Slides+Notes
 
Lesson 29: Areas
Lesson 29: AreasLesson 29: Areas
Lesson 29: Areas
 
Lesson 28: Lagrange Multipliers II
Lesson 28: Lagrange  Multipliers IILesson 28: Lagrange  Multipliers II
Lesson 28: Lagrange Multipliers II
 
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's RuleLesson 25: Indeterminate Forms and L'Hôpital's Rule
Lesson 25: Indeterminate Forms and L'Hôpital's Rule
 
Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of Calculus
 
Lesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite IntegralsLesson 31: Evaluating Definite Integrals
Lesson 31: Evaluating Definite Integrals
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic Forms
 
Lesson 23: The Chain Rule
Lesson 23: The Chain RuleLesson 23: The Chain Rule
Lesson 23: The Chain Rule
 

Semelhante a Lesson 30: The Definite Integral

Lesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slidesLesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slidesMel Anthony Pepito
 
Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Matthew Leingang
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Matthew Leingang
 
Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+NotesMatthew Leingang
 
Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+NotesMatthew Leingang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Matthew Leingang
 
Approximate Integration
Approximate IntegrationApproximate Integration
Approximate IntegrationSilvius
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Mel Anthony Pepito
 

Semelhante a Lesson 30: The Definite Integral (20)

Lesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slidesLesson 25: Evaluating Definite Integrals (slides
Lesson 25: Evaluating Definite Integrals (slides
 
Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Evaluating definite integrals
Evaluating definite integralsEvaluating definite integrals
Evaluating definite integrals
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)
 
Business math
Business mathBusiness math
Business math
 
gfg
gfggfg
gfg
 
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 10 version)
 
Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+Notes
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson05 Continuity Slides+Notes
Lesson05    Continuity Slides+NotesLesson05    Continuity Slides+Notes
Lesson05 Continuity Slides+Notes
 
Lesson 3: Continuity
Lesson 3: ContinuityLesson 3: Continuity
Lesson 3: Continuity
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
Lesson 26: The Fundamental Theorem of Calculus (Section 4 version)
 
Approximate Integration
Approximate IntegrationApproximate Integration
Approximate Integration
 
Lesson 5: Continuity
Lesson 5: ContinuityLesson 5: Continuity
Lesson 5: Continuity
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 

Mais de Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Matthew Leingang
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Matthew Leingang
 

Mais de Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
 

Último

Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesKari Kakkonen
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxfnnc6jmgwh
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesBernd Ruecker
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...itnewsafrica
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observabilityitnewsafrica
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsRavi Sanghani
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxLoriGlavin3
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality AssuranceInflectra
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...Wes McKinney
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI AgeCprime
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfNeo4j
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfpanagenda
 
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentEmixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentPim van der Noll
 

Último (20)

Testing tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examplesTesting tools and AI - ideas what to try with some tool examples
Testing tools and AI - ideas what to try with some tool examples
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptxGenerative AI - Gitex v1Generative AI - Gitex v1.pptx
Generative AI - Gitex v1Generative AI - Gitex v1.pptx
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
QCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architecturesQCon London: Mastering long-running processes in modern architectures
QCon London: Mastering long-running processes in modern architectures
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...Abdul Kader Baba- Managing Cybersecurity Risks  and Compliance Requirements i...
Abdul Kader Baba- Managing Cybersecurity Risks and Compliance Requirements i...
 
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security ObservabilityGlenn Lazarus- Why Your Observability Strategy Needs Security Observability
Glenn Lazarus- Why Your Observability Strategy Needs Security Observability
 
Potential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and InsightsPotential of AI (Generative AI) in Business: Learnings and Insights
Potential of AI (Generative AI) in Business: Learnings and Insights
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptxThe Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
The Role of FIDO in a Cyber Secure Netherlands: FIDO Paris Seminar.pptx
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance[Webinar] SpiraTest - Setting New Standards in Quality Assurance
[Webinar] SpiraTest - Setting New Standards in Quality Assurance
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
The Future Roadmap for the Composable Data Stack - Wes McKinney - Data Counci...
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
A Framework for Development in the AI Age
A Framework for Development in the AI AgeA Framework for Development in the AI Age
A Framework for Development in the AI Age
 
Connecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdfConnecting the Dots for Information Discovery.pdf
Connecting the Dots for Information Discovery.pdf
 
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdfSo einfach geht modernes Roaming fuer Notes und Nomad.pdf
So einfach geht modernes Roaming fuer Notes und Nomad.pdf
 
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native developmentEmixa Mendix Meetup 11 April 2024 about Mendix Native development
Emixa Mendix Meetup 11 April 2024 about Mendix Native development
 

Lesson 30: The Definite Integral

  • 1. Section 5.2 The Definite Integral Math 1a December 7, 2007 Announcements my next office hours: Monday 1–2, Tuesday 3–4 (SC 323) MT II is graded. You’ll get it back today Final seview sessions: Wed 1/9 and Thu 1/10 in Hall D, Sun 1/13 in Hall C, all 7–8:30pm Final tentatively scheduled for January 17
  • 2. Outline The definite integral as a limit Estimating the Definite Integral Properties of the integral Comparison Properties of the Integral
  • 3. The definite integral as a limit Definition If f is a function defined on [a, b], the definite integral of f from a to b is the number n b f (x) dx = lim f (ci ) ∆x ∆x→0 a i=1
  • 4. Notation/Terminology b f (x) dx a
  • 5. Notation/Terminology b f (x) dx a — integral sign (swoopy S)
  • 6. Notation/Terminology b f (x) dx a — integral sign (swoopy S) f (x) — integrand
  • 7. Notation/Terminology b f (x) dx a — integral sign (swoopy S) f (x) — integrand a and b — limits of integration (a is the lower limit and b the upper limit)
  • 8. Notation/Terminology b f (x) dx a — integral sign (swoopy S) f (x) — integrand a and b — limits of integration (a is the lower limit and b the upper limit) dx — ??? (a parenthesis? an infinitesimal? a variable?)
  • 9. Notation/Terminology b f (x) dx a — integral sign (swoopy S) f (x) — integrand a and b — limits of integration (a is the lower limit and b the upper limit) dx — ??? (a parenthesis? an infinitesimal? a variable?) The process of computing an integral is called integration
  • 10. The limit can be simplified Theorem If f is continuous on [a, b] or if f has only finitely many jump discontinuities, then f is integrable on [a, b]; that is, the definite b integral f (x) dx exists. a
  • 11. The limit can be simplified Theorem If f is continuous on [a, b] or if f has only finitely many jump discontinuities, then f is integrable on [a, b]; that is, the definite b integral f (x) dx exists. a Theorem If f is integrable on [a, b] then n b f (x) dx = lim f (xi )∆x, n→∞ a i=1 where b−a ∆x = and xi = a + i ∆x n
  • 12. Outline The definite integral as a limit Estimating the Definite Integral Properties of the integral Comparison Properties of the Integral
  • 13. Estimating the Definite Integral Given a partition of [a, b] into n pieces, let xi be the midpoint of ¯ [xi−1 , xi ]. Define n Mn = f (¯i ) ∆x. x i=1
  • 14. Example 1 4 Estimate dx using the midpoint rule and four divisions. 1 + x2 0
  • 15. Example 1 4 Estimate dx using the midpoint rule and four divisions. 1 + x2 0 Solution 1 1 3 The partition is 0 < < < < 1, so the estimate is 4 2 4 1 4 4 4 4 M4 = + + + 2 2 2 1 + (7/8)2 4 1 + (1/8) 1 + (3/8) 1 + (5/8)
  • 16. Example 1 4 Estimate dx using the midpoint rule and four divisions. 1 + x2 0 Solution 1 1 3 The partition is 0 < < < < 1, so the estimate is 4 2 4 1 4 4 4 4 M4 = + + + 2 2 2 1 + (7/8)2 4 1 + (1/8) 1 + (3/8) 1 + (5/8) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64
  • 17. Example 1 4 Estimate dx using the midpoint rule and four divisions. 1 + x2 0 Solution 1 1 3 The partition is 0 < < < < 1, so the estimate is 4 2 4 1 4 4 4 4 M4 = + + + 2 2 2 1 + (7/8)2 4 1 + (1/8) 1 + (3/8) 1 + (5/8) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64 150, 166, 784 ≈ 3.1468 = 47, 720, 465
  • 18. Outline The definite integral as a limit Estimating the Definite Integral Properties of the integral Comparison Properties of the Integral
  • 19. Properties of the integral Theorem (Additive Properties of the Integral) Let f and g be integrable functions on [a, b] and c a constant. Then b c dx = c(b − a) 1. a
  • 20. Properties of the integral Theorem (Additive Properties of the Integral) Let f and g be integrable functions on [a, b] and c a constant. Then b c dx = c(b − a) 1. a b b b 2. [f (x) + g (x)] dx = f (x) dx + g (x) dx. a a a
  • 21. Properties of the integral Theorem (Additive Properties of the Integral) Let f and g be integrable functions on [a, b] and c a constant. Then b c dx = c(b − a) 1. a b b b 2. [f (x) + g (x)] dx = f (x) dx + g (x) dx. a a a b b 3. cf (x) dx = c f (x) dx. a a
  • 22. Properties of the integral Theorem (Additive Properties of the Integral) Let f and g be integrable functions on [a, b] and c a constant. Then b c dx = c(b − a) 1. a b b b 2. [f (x) + g (x)] dx = f (x) dx + g (x) dx. a a a b b 3. cf (x) dx = c f (x) dx. a a b b b [f (x) − g (x)] dx = f (x) dx − 4. g (x) dx. a a a
  • 23. More Properties of the Integral Conventions: a b f (x) dx = − f (x) dx b a
  • 24. More Properties of the Integral Conventions: a b f (x) dx = − f (x) dx b a a f (x) dx = 0 a
  • 25. More Properties of the Integral Conventions: a b f (x) dx = − f (x) dx b a a f (x) dx = 0 a This allows us to have c b c 5. f (x) dx = f (x) dx + f (x) dx for all a, b, and c. a a b
  • 26. Example Suppose f and g are functions with 4 f (x) dx = 4 0 5 f (x) dx = 7 0 5 g (x) dx = 3. 0 Find 5 [2f (x) − g (x)] dx (a) 0 5 (b) f (x) dx. 4
  • 27. Solution We have (a) 5 5 5 [2f (x) − g (x)] dx = 2 f (x) dx − g (x) dx 0 0 0 = 2 · 7 − 3 = 11
  • 28. Solution We have (a) 5 5 5 [2f (x) − g (x)] dx = 2 f (x) dx − g (x) dx 0 0 0 = 2 · 7 − 3 = 11 (b) 5 5 4 f (x) dx − f (x) dx = f (x) dx 4 0 0 =7−4=3
  • 29. Outline The definite integral as a limit Estimating the Definite Integral Properties of the integral Comparison Properties of the Integral
  • 30. Comparison Properties of the Integral Theorem Let f and g be integrable functions on [a, b].
  • 31. Comparison Properties of the Integral Theorem Let f and g be integrable functions on [a, b]. 6. If f (x) ≥ 0 for all x in [a, b], then b f (x) dx ≥ 0 a
  • 32. Comparison Properties of the Integral Theorem Let f and g be integrable functions on [a, b]. 6. If f (x) ≥ 0 for all x in [a, b], then b f (x) dx ≥ 0 a 7. If f (x) ≥ g (x) for all x in [a, b], then b b f (x) dx ≥ g (x) dx a a
  • 33. Comparison Properties of the Integral Theorem Let f and g be integrable functions on [a, b]. 6. If f (x) ≥ 0 for all x in [a, b], then b f (x) dx ≥ 0 a 7. If f (x) ≥ g (x) for all x in [a, b], then b b f (x) dx ≥ g (x) dx a a 8. If m ≤ f (x) ≤ M for all x in [a, b], then b m(b − a) ≤ f (x) dx ≤ M(b − a) a
  • 34. Example 2 1 Estimate dx using the comparison properties. x 1
  • 35. Example 2 1 Estimate dx using the comparison properties. x 1 Solution Since 1 1 ≤x ≤ 2 1 for all x in [1, 2], we have 2 1 1 ·1≤ dx ≤ 1 · 1 2 x 1