SlideShare uma empresa Scribd logo
1 de 102
Baixar para ler offline
Sec on 5.3
    Evalua ng Definite Integrals
           V63.0121.011: Calculus I
         Professor Ma hew Leingang
                New York University


               April 27, 2011


.
Announcements
   Today: 5.3
   Thursday/Friday: Quiz on
   4.1–4.4
   Monday 5/2: 5.4
   Wednesday 5/4: 5.5
   Monday 5/9: Review and
   Movie Day!
   Thursday 5/12: Final
   Exam, 2:00–3:50pm
Objectives
   Use the Evalua on
   Theorem to evaluate
   definite integrals.
   Write an deriva ves as
   indefinite integrals.
   Interpret definite
   integrals as “net change”
   of a func on over an
   interval.
Outline
 Last me: The Definite Integral
     The definite integral as a limit
     Proper es of the integral
 Evalua ng Definite Integrals
    Examples
 The Integral as Net Change
 Indefinite Integrals
    My first table of integrals
 Compu ng Area with integrals
The definite integral as a limit
 Defini on
 If f is a func on defined on [a, b], the definite integral of f from a to
 b is the number
                      ∫ b                ∑n
                          f(x) dx = lim     f(ci ) ∆x
                        a            n→∞
                                           i=1

                 b−a
 where ∆x =          , and for each i, xi = a + i∆x, and ci is a point in
                  n
 [xi−1 , xi ].
The definite integral as a limit

 Theorem
 If f is con nuous on [a, b] or if f has only finitely many jump
 discon nui es, then f is integrable on [a, b]; that is, the definite
            ∫ b
 integral       f(x) dx exists and is the same for any choice of ci .
           a
Notation/Terminology
                            ∫    b
                                     f(x) dx
                             a
   ∫
       — integral sign (swoopy S)
   f(x) — integrand
   a and b — limits of integra on (a is the lower limit and b the
   upper limit)
   dx — ??? (a parenthesis? an infinitesimal? a variable?)
   The process of compu ng an integral is called integra on
Example
          ∫   1
                    4
Es mate                  dx using M4 .
          0       1 + x2
Example
          ∫   1
                    4
Es mate                  dx using M4 .
          0       1 + x2

Solu on
                    1      1      3
We have x0 = 0, x1 = , x2 = , x3 = , x4 = 1.
                    4      2      4
       1       3      5      7
So c1 = , c2 = , c3 = , c4 = .
       8       8      8      8
Example
          ∫   1
                    4
Es mate                  dx using M4 .
          0       1 + x2

Solu on
          (                                                       )
      1            4            4            4            4
 M4 =                  2
                         +          2
                                      +          2
                                                   +
      4       1 + (1/8)    1 + (3/8)    1 + (5/8)    1 + (7/8)2
Example
          ∫   1
                    4
Es mate                  dx using M4 .
          0       1 + x2

Solu on
        (                                           )
      1      4          4          4          4
 M4 =             +          +          +
      4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2
        (                            )
      1   4       4       4      4
    =          +     +       +
      4 65/64 73/64 89/64 113/64
Example
          ∫   1
                    4
Es mate                  dx using M4 .
          0       1 + x2

Solu on
        (                                           )
      1      4          4          4          4
 M4 =             +          +          +
      4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2
        (                            )
      1    4      4       4      4
    =          +      +       +
      4 65/64 73/64 89/64 113/64
      64 64 64      64
    =    +   +    +    ≈ 3.1468
      65 73 89 113
Properties of the integral
 Theorem (Addi ve Proper es of the Integral)
 Let f and g be integrable func ons on [a, b] and c a constant. Then
       ∫ b
   1.       c dx = c(b − a)
        a
       ∫ b                      ∫ b           ∫ b
   2.       [f(x) + g(x)] dx =      f(x) dx +     g(x) dx.
        a                         a            a
       ∫ b               ∫ b
   3.       cf(x) dx = c     f(x) dx.
       ∫a b               a
                                ∫ b           ∫ b
   4.       [f(x) − g(x)] dx =      f(x) dx −     g(x) dx.
       a                      a            a
More Properties of the Integral
 Conven ons:            ∫                                  ∫
                                a                               b
                                    f(x) dx = −                     f(x) dx
                            b                               a
                                     ∫     a
                                               f(x) dx = 0
                                       a
 This allows us to have
 Theorem
     ∫ c           ∫    b                      ∫     c
  5.     f(x) dx =          f(x) dx +                    f(x) dx for all a, b, and c.
       a            a                            b
Illustrating Property 5
 Theorem
     ∫ c           ∫     b               ∫   c
  5.     f(x) dx =           f(x) dx +           f(x) dx for all a, b, and c.
       a             a                   b


             y




                 .
                         a                                        c   x
                                                 b
Illustrating Property 5
 Theorem
     ∫ c           ∫     b                  ∫     c
  5.     f(x) dx =           f(x) dx +                f(x) dx for all a, b, and c.
       a             a                        b


             y
                              ∫     b
                                        f(x) dx
                                a

                 .
                         a                                             c   x
                                                      b
Illustrating Property 5
 Theorem
     ∫ c           ∫     b                  ∫     c
  5.     f(x) dx =           f(x) dx +                f(x) dx for all a, b, and c.
       a             a                        b


             y
                              ∫     b                     ∫    c
                                        f(x) dx                    f(x) dx
                                a                          b

                 .
                         a                                                   c   x
                                                      b
Illustrating Property 5
 Theorem
     ∫ c           ∫     b                  ∫     c
  5.     f(x) dx =           f(x) dx +                f(x) dx for all a, b, and c.
       a             a                        b


             y
                              ∫     b       ∫ c     ∫ c
                                        f(x) dx f(x) dx f(x) dx
                                a            a             b

                 .
                         a                                             c   x
                                                      b
Illustrating Property 5
 Theorem
     ∫ c           ∫      b               ∫   c
  5.     f(x) dx =            f(x) dx +           f(x) dx for all a, b, and c.
       a              a                   b


             y




                  .
                 a                  c                                  x
                                                                   b
Illustrating Property 5
 Theorem
     ∫ c           ∫      b                 ∫     c
  5.     f(x) dx =            f(x) dx +               f(x) dx for all a, b, and c.
       a              a                       b


             y
                                   ∫    b
                                            f(x) dx
                                    a

                  .
                 a                  c                                      x
                                                                       b
Illustrating Property 5
 Theorem
     ∫ c           ∫      b               ∫   c
  5.     f(x) dx =            f(x) dx +           f(x) dx for all a, b, and c.
       a              a                   b


             y
                                                  ∫   c
                                                     f(x) dx =
                                                   b∫
                                                      b
                                                  −     f(x) dx
                  .                                       c
                 a                  c                                  x
                                                                   b
Illustrating Property 5
 Theorem
     ∫ c           ∫          b               ∫   c
  5.     f(x) dx =                f(x) dx +           f(x) dx for all a, b, and c.
       a                  a                   b


             y
                      ∫                               ∫   c
                          c
                              f(x) dx                    f(x) dx =
                                                       b∫
                      a                                   b
                                                      −     f(x) dx
                  .                                           c
                 a                      c                                  x
                                                                       b
Definite Integrals We Know So Far
  If the integral computes an area
  and we know the area, we can
  use that. For instance,
          ∫ 1√                       y
                            π
                1 − x2 dx =
           0                4
  By brute force we computed             .
   ∫ 1             ∫ 1                       x
        2      1               1
       x dx =          x3 dx =
     0         3     0         4
Comparison Properties of the Integral
 Theorem
 Let f and g be integrable func ons on [a, b].
Comparison Properties of the Integral
 Theorem
 Let f and g be integrable func ons on [a, b].
                                            ∫ b
   6. If f(x) ≥ 0 for all x in [a, b], then     f(x) dx ≥ 0
                                           a
Comparison Properties of the Integral
 Theorem
 Let f and g be integrable func ons on [a, b].
                                            ∫ b
   6. If f(x) ≥ 0 for all x in [a, b], then     f(x) dx ≥ 0
                                             a
                                               ∫ b           ∫   b
   7. If f(x) ≥ g(x) for all x in [a, b], then     f(x) dx ≥         g(x) dx
                                              a              a
Comparison Properties of the Integral
 Theorem
 Let f and g be integrable func ons on [a, b].
                                            ∫ b
   6. If f(x) ≥ 0 for all x in [a, b], then     f(x) dx ≥ 0
                                             a
                                               ∫ b           ∫   b
   7. If f(x) ≥ g(x) for all x in [a, b], then     f(x) dx ≥         g(x) dx
                                              a              a

  8. If m ≤ f(x) ≤ M for all x in [a, b], then
                                 ∫ b
                  m(b − a) ≤          f(x) dx ≤ M(b − a)
                                     a
Integral of a nonnegative function is nonnegative
  Proof.
  If f(x) ≥ 0 for all x in [a, b], then for
  any number of divisions n and choice
  of sample points {ci }:

          ∑
          n                   ∑
                              n
   Sn =         f(ci ) ∆x ≥         0 · ∆x = 0
          i=1   ≥0            i=1
                                                     .             x
  Since Sn ≥ 0 for all n, the limit of {Sn } is nonnega ve, too:
                        ∫ b
                            f(x) dx = lim Sn ≥ 0
                          a                n→∞
                                                 ≥0
The integral is “increasing”
  Proof.
  Let h(x) = f(x) − g(x). If f(x) ≥ g(x)
  for all x in [a, b], then h(x) ≥ 0 for all                                        f(x)
  x in [a, b]. So by the previous                                        h(x)       g(x)
  property
                ∫ b
                    h(x) dx ≥ 0                               .                       x
                a
  This means that
   ∫ b           ∫      b               ∫   b                        ∫   b
       f(x) dx −            g(x) dx =           (f(x) − g(x)) dx =           h(x) dx ≥ 0
     a              a                   a                            a
Bounding the integral
  Proof.
 If m ≤ f(x) ≤ M on for all x in [a, b], then by
                                                   y
 the previous property
      ∫ b        ∫ b             ∫ b               M
          m dx ≤     f(x) dx ≤        M dx
       a            a             a                                f(x)
 By Property 8, the integral of a constant
 func on is the product of the constant and        m
 the width of the interval. So:
                  ∫ b                                  .             x
     m(b − a) ≤       f(x) dx ≤ M(b − a)                   a   b
                    a
Example
          ∫   2
                  1
Es mate             dx using the comparison proper es.
          1       x
Example
          ∫    2
                   1
Es mate              dx using the comparison proper es.
           1       x

Solu on
Since
                                 1 1 1
                                   ≤ ≤
                                 2  x  1
for all x in [1, 2], we have
                                   ∫    2
                           1                1
                             ·1≤              dx ≤ 1 · 1
                           2        1       x
Ques on
        ∫   2
          1
Es mate     dx with L2 and R2 . Are your es mates overes mates?
        1 x
Underes mates? Impossible to tell?
Ques on
        ∫   2
          1
Es mate     dx with L2 and R2 . Are your es mates overes mates?
        1 x
Underes mates? Impossible to tell?

Answer
Since the integrand is decreasing,
                               ∫ 2
                                   1
                         Rn <        dx < Ln
                                1 x
                   ∫ 2
               7       1      5
for all n. So    <       dx < .
              12    1 x       6
Outline
 Last me: The Definite Integral
     The definite integral as a limit
     Proper es of the integral
 Evalua ng Definite Integrals
    Examples
 The Integral as Net Change
 Indefinite Integrals
    My first table of integrals
 Compu ng Area with integrals
Socratic proof
  The definite integral of velocity
  measures displacement (net
  distance)
  The deriva ve of displacement
  is velocity
  So we can compute
  displacement with the definite
  integral or the an deriva ve of
  velocity
  But any func on can be a
  velocity func on, so . . .
Theorem of the Day
 Theorem (The Second Fundamental Theorem of Calculus)
 Suppose f is integrable on [a, b] and f = F′ for another func on F,
 then                  ∫    b
                                f(x) dx = F(b) − F(a).
                        a
Theorem of the Day
 Theorem (The Second Fundamental Theorem of Calculus)
 Suppose f is integrable on [a, b] and f = F′ for another func on F,
 then                  ∫    b
                                f(x) dx = F(b) − F(a).
                        a


 Note
 In Sec on 5.3, this theorem is called “The Evalua on Theorem”.
 Nobody else in the world calls it that.
Proving the Second FTC
 Proof.
                                                          b−a
     Divide up [a, b] into n pieces of equal width ∆x =       as
                                                           n
     usual.
Proving the Second FTC
 Proof.
                                                               b−a
     Divide up [a, b] into n pieces of equal width ∆x =            as
                                                                n
     usual.
     For each i, F is con nuous on [xi−1 , xi ] and differen able on
     (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with

                      F(xi ) − F(xi−1 )
                                        = F′ (ci ) = f(ci )
                         xi − xi−1
Proving the Second FTC
 Proof.
                                                               b−a
     Divide up [a, b] into n pieces of equal width ∆x =            as
                                                                n
     usual.
     For each i, F is con nuous on [xi−1 , xi ] and differen able on
     (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with

                      F(xi ) − F(xi−1 )
                                        = F′ (ci ) = f(ci )
                         xi − xi−1
                        =⇒ f(ci )∆x = F(xi ) − F(xi−1 )
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
Proving the Second FTC
 Proof.

     Form the Riemann Sum:
             ∑
             n                  ∑
                                n
      Sn =         f(ci )∆x =         (F(xi ) − F(xi−1 ))
             i=1                i=1
          = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · ·
              · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
          = F(xn ) − F(x0 ) = F(b) − F(a)
Proving the Second FTC
 Proof.

     We have shown for each n,

                          Sn = F(b) − F(a)

     Which does not depend on n.
Proving the Second FTC
 Proof.

     We have shown for each n,

                           Sn = F(b) − F(a)

     Which does not depend on n.
     So in the limit
         ∫ b
             f(x) dx = lim Sn = lim (F(b) − F(a)) = F(b) − F(a)
          a          n→∞         n→∞
Computing area with the 2nd FTC
 Example
 Find the area between y = x3 and the x-axis, between x = 0 and
 x = 1.




                                               .
Computing area with the 2nd FTC
 Example
 Find the area between y = x3 and the x-axis, between x = 0 and
 x = 1.

 Solu on

        ∫    1               1
                 3      x4           1
   A=            x dx =          =
         0              4    0       4         .
Computing area with the 2nd FTC
 Example
 Find the area between y = x3 and the x-axis, between x = 0 and
 x = 1.

 Solu on

        ∫    1               1
                 3      x4           1
   A=            x dx =          =
         0              4    0       4         .

 Here we use the nota on F(x)|b or [F(x)]b to mean F(b) − F(a).
                              a          a
Computing area with the 2nd FTC
 Example
 Find the area enclosed by the parabola y = x2 and the line y = 1.
Computing area with the 2nd FTC
 Example
 Find the area enclosed by the parabola y = x2 and the line y = 1.




                                                      1

                                                          .
                                              −1                     1
Computing area with the 2nd FTC
 Example
 Find the area enclosed by the parabola y = x2 and the line y = 1.

 Solu on
            ∫   1     [ 3 ]1
                       x
   A=2−    x dx = 2 −
                    2
                                                      1
                       3 −1
        [−1 ( )]
         1      1      4
    =2−    − −       =                                    .
         3      3      3
                                              −1                     1
Computing an integral we
estimated before
 Example
                         ∫   1
                                   4
 Evaluate the integral                  dx.
                         0       1 + x2
Example
          ∫   1
                    4
Es mate                  dx using M4 .
          0       1 + x2

Solu on
        (                                           )
      1      4          4          4          4
 M4 =             +          +          +
      4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2
        (                            )
      1    4      4       4      4
    =          +      +       +
      4 65/64 73/64 89/64 113/64
      64 64 64      64
    =    +   +    +    ≈ 3.1468
      65 73 89 113
Computing an integral we
estimated before
 Example
                          ∫    1
                                     4
 Evaluate the integral                    dx.
                           0       1 + x2

 Solu on
     ∫     1                   ∫   1
                 4                       1
                      dx = 4                  dx
       0       1 + x2          0       1 + x2
Computing an integral we
estimated before
 Example
                          ∫    1
                                     4
 Evaluate the integral                    dx.
                           0       1 + x2

 Solu on
     ∫     1                   ∫   1
                 4                       1
                      dx = 4                  dx = 4 arctan(x)|1
                                                               0
       0       1 + x2          0       1 + x2
Computing an integral we
estimated before
 Example
                          ∫    1
                                     4
 Evaluate the integral                    dx.
                           0       1 + x2

 Solu on
     ∫     1                   ∫   1
                 4                       1
                      dx = 4                  dx = 4 arctan(x)|1
                                                               0
       0       1 + x2          0       1 + x2
                        = 4 (arctan 1 − arctan 0)
Computing an integral we
estimated before
 Example
                          ∫    1
                                     4
 Evaluate the integral                    dx.
                           0       1 + x2

 Solu on
     ∫     1                   ∫   1
                 4                1
                      dx = 4            dx = 4 arctan(x)|1
                                                         0
               1 + x2        0 1+x
                                      2
       0                                               (π    )
                        = 4 (arctan 1 − arctan 0) = 4      −0
                                                         4
Computing an integral we
estimated before
 Example
                          ∫    1
                                     4
 Evaluate the integral                    dx.
                           0       1 + x2

 Solu on
     ∫     1                   ∫   1
                 4                1
                      dx = 4            dx = 4 arctan(x)|1
                                                         0
               1 + x2        0 1+x
                                      2
       0                                               (π    )
                        = 4 (arctan 1 − arctan 0) = 4      −0 =π
                                                         4
Computing an integral we
estimated before
 Example
            ∫   2
                    1
 Evaluate             dx.
            1       x
Example
          ∫    2
                   1
Es mate              dx using the comparison proper es.
           1       x

Solu on
Since
                                 1 1 1
                                   ≤ ≤
                                 2  x  1
for all x in [1, 2], we have
                                   ∫    2
                           1                1
                             ·1≤              dx ≤ 1 · 1
                           2        1       x
Computing an integral we
estimated before
 Example
            ∫   2
                    1
 Evaluate             dx.
            1       x

 Solu on
                      ∫     2
                                1
                                  dx
                       1        x
Computing an integral we
estimated before
 Example
            ∫   2
                    1
 Evaluate             dx.
            1       x

 Solu on
                      ∫     2
                                1
                                  dx = ln x|2
                                            1
                       1        x
Computing an integral we
estimated before
 Example
            ∫   2
                    1
 Evaluate             dx.
            1       x

 Solu on
                      ∫     2
                                1
                                  dx = ln x|2 = ln 2 − ln 1
                                            1
                       1        x
Computing an integral we
estimated before
 Example
            ∫   2
                    1
 Evaluate             dx.
            1       x

 Solu on
                      ∫     2
                                1
                                  dx = ln x|2 = ln 2 − ln 1 = ln 2
                                            1
                       1        x
Outline
 Last me: The Definite Integral
     The definite integral as a limit
     Proper es of the integral
 Evalua ng Definite Integrals
    Examples
 The Integral as Net Change
 Indefinite Integrals
    My first table of integrals
 Compu ng Area with integrals
The Integral as Net Change

 Another way to state this theorem is:
                     ∫ b
                         F′ (x) dx = F(b) − F(a),
                       a

 or the integral of a deriva ve along an interval is the net change
 over that interval. This has many interpreta ons.
The Integral as Net Change
The Integral as Net Change


 Corollary
 If v(t) represents the velocity of a par cle moving rec linearly, then
                       ∫ t1
                            v(t) dt = s(t1 ) − s(t0 ).
                        t0
The Integral as Net Change


 Corollary
 If MC(x) represents the marginal cost of making x units of a product,
 then                              ∫ x
                     C(x) = C(0) +     MC(q) dq.
                                     0
The Integral as Net Change


 Corollary
 If ρ(x) represents the density of a thin rod at a distance of x from its
 end, then the mass of the rod up to x is
                                    ∫ x
                          m(x) =        ρ(s) ds.
                                     0
Outline
 Last me: The Definite Integral
     The definite integral as a limit
     Proper es of the integral
 Evalua ng Definite Integrals
    Examples
 The Integral as Net Change
 Indefinite Integrals
    My first table of integrals
 Compu ng Area with integrals
A new notation for antiderivatives
 To emphasize the rela onship between an differen a on and
 integra on, we use the indefinite integral nota on
                             ∫
                                f(x) dx

 for any func on whose deriva ve is f(x).
A new notation for antiderivatives
 To emphasize the rela onship between an differen a on and
 integra on, we use the indefinite integral nota on
                             ∫
                                f(x) dx

 for any func on whose deriva ve is f(x). Thus
                        ∫
                           x2 dx = 1 x3 + C.
                                   3
My first table of integrals
 .
  ∫                        ∫           ∫
      [f(x) + g(x)] dx = f(x) dx + g(x) dx
      ∫                                    ∫                 ∫
                    xn+1
         xn dx =         + C (n ̸= −1)         cf(x) dx = c f(x) dx
              ∫ n+1                           ∫
                                                  1
                 ex dx = ex + C                     dx = ln |x| + C
          ∫                                   ∫ x
                                                            ax
             sin x dx = − cos x + C               ax dx =       +C
                                           ∫               ln a
           ∫
               cos x dx = sin x + C           csc2 x dx = − cot x + C
          ∫                              ∫
              sec2 x dx = tan x + C         csc x cot x dx = − csc x + C
        ∫                                ∫
                                                1
           sec x tan x dx = sec x + C       √          dx = arcsin x + C
        ∫                                     1 − x2
               1
                    dx = arctan x + C
            1 + x2
Outline
 Last me: The Definite Integral
     The definite integral as a limit
     Proper es of the integral
 Evalua ng Definite Integrals
    Examples
 The Integral as Net Change
 Indefinite Integrals
    My first table of integrals
 Compu ng Area with integrals
Computing Area with integrals
 Example
 Find the area of the region bounded by the lines x = 1, x = 4, the
 x-axis, and the curve y = ex .
Computing Area with integrals
 Example
 Find the area of the region bounded by the lines x = 1, x = 4, the
 x-axis, and the curve y = ex .

 Solu on
 The answer is        ∫    4
                               ex dx = ex |4 = e4 − e.
                                           1
                       1
Computing Area with integrals
 Example
 Find the area of the region bounded by the curve y = arcsin x, the
 x-axis, and the line x = 1.
Computing Area with integrals
 Example
 Find the area of the region bounded by the curve y = arcsin x, the
 x-axis, and the line x = 1.

 Solu on
                                                     y
                     ∫   1
     The answer is           arcsin x dx, but     π/2
                     0
     we do not know an an deriva ve
     for arcsin.
                                                         .
                                                                  x
                                                              1
Computing Area with integrals
 Example
 Find the area of the region bounded by the curve y = arcsin x, the
 x-axis, and the line x = 1.

 Solu on
                                                     y
     Instead compute the area as                  π/2
         ∫ π/2
     π
       −       sin y dy
     2 0
                                                         .
                                                                  x
                                                              1
Computing Area with integrals
 Example
 Find the area of the region bounded by the curve y = arcsin x, the
 x-axis, and the line x = 1.

 Solu on
                                                     y
     Instead compute the area as                  π/2
         ∫ π/2
     π                   π          π/2
       −       sin y dy = −[− cos x]0
     2 0                 2
                                                         .
                                                                  x
                                                              1
Computing Area with integrals
 Example
 Find the area of the region bounded by the curve y = arcsin x, the
 x-axis, and the line x = 1.

 Solu on
                                                     y
     Instead compute the area as                  π/2
         ∫ π/2
     π                   π          π/2 π
       −       sin y dy = −[− cos x]0 = −1
     2 0                 2              2
                                                         .
                                                                  x
                                                              1
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.

Solu on
 No ce the func on
 y = (x − 1)(x − 2) is posi ve on [0, 1)      y
 and (2, 3], and nega ve on (1, 2).


                                               .                 x
                                                   1    2    3
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.

Solu on
      ∫ 1
  A=      (x2 − 3x + 2) dx                    y
       0
          ∫ 2
       −      (x2 − 3x + 2) dx
           1
                ∫ 3                            .                 x
             +      (x2 − 3x + 2) dx               1    2    3
                 2
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.

Solu on
      ∫ 1
  A=      (x − 1)(x − 2) dx                   y
       0
          ∫ 2
       −      (x − 1)(x − 2) dx
           1
               ∫ 3                             .                 x
             +     (x − 1)(x − 2) dx               1    2    3
                2
Example
Find the area between the graph of y = (x − 1)(x − 2), the x-axis,
and the ver cal lines x = 0 and x = 3.

Solu on

       [1               ]1                    y
  A=    3 x − 3 x2 + 2x 0
            3
                2
            [1 3 3 2           ]2
          − 3x − 2x +        2x 1
            [                  ]3
          + 1 x3 − 3 x2 +
              3     2        2x 2              .                 x
                                      11           1    2    3
                                    =
                                       6
Interpretation of “negative area”
in motion

 There is an analog in rectlinear mo on:
     ∫ t1
           v(t) dt is net distance traveled.
       t0
     ∫ t1
           |v(t)| dt is total distance traveled.
       t0
What about the constant?
   It seems we forgot about the +C when we say for instance
                   ∫ 1            1
                               x4    1       1
                        3
                       x dx =       = −0=
                    0          4 0 4         4
   But no ce
        [ 4   ]1 (      )
         x         1                1          1
            +C =     + C − (0 + C) = + C − C =
          4    0   4                4          4
   no ma er what C is.
   So in an differen a on for definite integrals, the constant is
   immaterial.
Summary
  The second Fundamental Theorem of Calculus:
                   ∫ b
                       f(x) dx = F(b) − F(a)
                      a

  where F′ = f.
  Definite integrals represent net change of a func on over an
  interval.                                      ∫
  We write an deriva ves as indefinite integrals f(x) dx

Mais conteúdo relacionado

Mais procurados

Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite IntegralJelaiAujero
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiationmath265
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite IntegralMatthew Leingang
 
First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equationNofal Umair
 
4.3 The Definite Integral
4.3 The Definite Integral4.3 The Definite Integral
4.3 The Definite IntegralSharon Henry
 
Higher order derivatives
Higher order derivativesHigher order derivatives
Higher order derivativesPadme Amidala
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functionsNjabulo Nkabinde
 
Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3Ron Eick
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivativesmath265
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Matthew Leingang
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Matthew Leingang
 
The chain rule
The chain ruleThe chain rule
The chain ruleJ M
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a functionbtmathematics
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesJuan Miguel Palero
 
Lecture 4 the limit of a function
Lecture 4   the limit of a functionLecture 4   the limit of a function
Lecture 4 the limit of a functionnjit-ronbrown
 
Lesson 8 the definite integrals
Lesson 8 the definite integralsLesson 8 the definite integrals
Lesson 8 the definite integralsLawrence De Vera
 

Mais procurados (20)

Rules of derivative
Rules of derivativeRules of derivative
Rules of derivative
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Indefinite Integral
Indefinite IntegralIndefinite Integral
Indefinite Integral
 
3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation3.2 implicit equations and implicit differentiation
3.2 implicit equations and implicit differentiation
 
Lesson 30: The Definite Integral
Lesson 30: The  Definite  IntegralLesson 30: The  Definite  Integral
Lesson 30: The Definite Integral
 
First order linear differential equation
First order linear differential equationFirst order linear differential equation
First order linear differential equation
 
4.3 The Definite Integral
4.3 The Definite Integral4.3 The Definite Integral
4.3 The Definite Integral
 
Higher order derivatives
Higher order derivativesHigher order derivatives
Higher order derivatives
 
Exponential and logarithmic functions
Exponential and logarithmic functionsExponential and logarithmic functions
Exponential and logarithmic functions
 
Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3Increasing and decreasing functions ap calc sec 3.3
Increasing and decreasing functions ap calc sec 3.3
 
5.1 anti derivatives
5.1 anti derivatives5.1 anti derivatives
5.1 anti derivatives
 
Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)Lesson 27: Integration by Substitution (slides)
Lesson 27: Integration by Substitution (slides)
 
Limits
LimitsLimits
Limits
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
 
The chain rule
The chain ruleThe chain rule
The chain rule
 
3.1 derivative of a function
3.1 derivative of a function3.1 derivative of a function
3.1 derivative of a function
 
Basic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation RulesBasic Calculus 11 - Derivatives and Differentiation Rules
Basic Calculus 11 - Derivatives and Differentiation Rules
 
Lecture 4 the limit of a function
Lecture 4   the limit of a functionLecture 4   the limit of a function
Lecture 4 the limit of a function
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
Lesson 8 the definite integrals
Lesson 8 the definite integralsLesson 8 the definite integrals
Lesson 8 the definite integrals
 

Destaque

Definite Integral Review
Definite Integral ReviewDefinite Integral Review
Definite Integral ReviewSharon Henry
 
Lesson 9 transcendental functions
Lesson 9 transcendental functionsLesson 9 transcendental functions
Lesson 9 transcendental functionsLawrence De Vera
 
Lesson 10 techniques of integration
Lesson 10 techniques of integrationLesson 10 techniques of integration
Lesson 10 techniques of integrationLawrence De Vera
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Matthew Leingang
 
Lesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesLesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesMatthew Leingang
 
Lesson 5: Limits Involving Infinity
Lesson 5: Limits Involving InfinityLesson 5: Limits Involving Infinity
Lesson 5: Limits Involving InfinityMatthew Leingang
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesMatthew Leingang
 
Lesson 7: The Derivative as a Function
Lesson 7: The Derivative as a FunctionLesson 7: The Derivative as a Function
Lesson 7: The Derivative as a FunctionMatthew Leingang
 
Lesson 2: The Concept of Limit
Lesson 2: The Concept of LimitLesson 2: The Concept of Limit
Lesson 2: The Concept of LimitMatthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Matthew Leingang
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear ApproximationMatthew Leingang
 
Lesson 21: Curve Sketching
Lesson 21: Curve SketchingLesson 21: Curve Sketching
Lesson 21: Curve SketchingMatthew Leingang
 
Lesson22 -optimization_problems_slides
Lesson22  -optimization_problems_slidesLesson22  -optimization_problems_slides
Lesson22 -optimization_problems_slidesMatthew Leingang
 

Destaque (20)

Definite Integral Review
Definite Integral ReviewDefinite Integral Review
Definite Integral Review
 
Lesson 9 transcendental functions
Lesson 9 transcendental functionsLesson 9 transcendental functions
Lesson 9 transcendental functions
 
Lesson 10 techniques of integration
Lesson 10 techniques of integrationLesson 10 techniques of integration
Lesson 10 techniques of integration
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)Lesson 22: Optimization Problems (slides)
Lesson 22: Optimization Problems (slides)
 
Introduction
IntroductionIntroduction
Introduction
 
Lesson 6: The Derivative
Lesson 6: The DerivativeLesson 6: The Derivative
Lesson 6: The Derivative
 
Lesson 10: The Chain Rule
Lesson 10: The Chain RuleLesson 10: The Chain Rule
Lesson 10: The Chain Rule
 
Lesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient RulesLesson 9: The Product and Quotient Rules
Lesson 9: The Product and Quotient Rules
 
Lesson 4: Continuity
Lesson 4: ContinuityLesson 4: Continuity
Lesson 4: Continuity
 
Lesson 5: Limits Involving Infinity
Lesson 5: Limits Involving InfinityLesson 5: Limits Involving Infinity
Lesson 5: Limits Involving Infinity
 
Lesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation RulesLesson 8: Basic Differentiation Rules
Lesson 8: Basic Differentiation Rules
 
Lesson 7: The Derivative as a Function
Lesson 7: The Derivative as a FunctionLesson 7: The Derivative as a Function
Lesson 7: The Derivative as a Function
 
Lesson 2: The Concept of Limit
Lesson 2: The Concept of LimitLesson 2: The Concept of Limit
Lesson 2: The Concept of Limit
 
Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)Lesson 24: Areas and Distances, The Definite Integral (slides)
Lesson 24: Areas and Distances, The Definite Integral (slides)
 
Lesson 12: Linear Approximation
Lesson 12: Linear ApproximationLesson 12: Linear Approximation
Lesson 12: Linear Approximation
 
Lesson 21: Curve Sketching
Lesson 21: Curve SketchingLesson 21: Curve Sketching
Lesson 21: Curve Sketching
 
Lesson 1: Functions
Lesson 1: FunctionsLesson 1: Functions
Lesson 1: Functions
 
Lesson22 -optimization_problems_slides
Lesson22  -optimization_problems_slidesLesson22  -optimization_problems_slides
Lesson22 -optimization_problems_slides
 
Lesson 3: Limit Laws
Lesson 3: Limit LawsLesson 3: Limit Laws
Lesson 3: Limit Laws
 

Semelhante a Lesson 25: Evaluating Definite Integrals (slides)

Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)Matthew Leingang
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsMatthew Leingang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusMatthew Leingang
 
Algebra 2 Unit 5 Lesson 7
Algebra 2 Unit 5 Lesson 7Algebra 2 Unit 5 Lesson 7
Algebra 2 Unit 5 Lesson 7Kate Nowak
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Mel Anthony Pepito
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculusgoldenratio618
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Matthew Leingang
 
Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusMatthew Leingang
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Matthew Leingang
 
Math refresher
Math refresherMath refresher
Math refresherdelilahnan
 
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxlesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxJohnReyManzano2
 
Approximate Integration
Approximate IntegrationApproximate Integration
Approximate IntegrationSilvius
 
8.further calculus Further Mathematics Zimbabwe Zimsec Cambridge
8.further calculus   Further Mathematics Zimbabwe Zimsec Cambridge8.further calculus   Further Mathematics Zimbabwe Zimsec Cambridge
8.further calculus Further Mathematics Zimbabwe Zimsec Cambridgealproelearning
 

Semelhante a Lesson 25: Evaluating Definite Integrals (slides) (20)

Final Exam Review (Integration)
Final Exam Review (Integration)Final Exam Review (Integration)
Final Exam Review (Integration)
 
gfg
gfggfg
gfg
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Evaluating definite integrals
Evaluating definite integralsEvaluating definite integrals
Evaluating definite integrals
 
Lesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite IntegralsLesson 27: Evaluating Definite Integrals
Lesson 27: Evaluating Definite Integrals
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Lesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of CalculusLesson 28: The Fundamental Theorem of Calculus
Lesson 28: The Fundamental Theorem of Calculus
 
Algebra 2 Unit 5 Lesson 7
Algebra 2 Unit 5 Lesson 7Algebra 2 Unit 5 Lesson 7
Algebra 2 Unit 5 Lesson 7
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)Lesson 26: The Fundamental Theorem of Calculus (slides)
Lesson 26: The Fundamental Theorem of Calculus (slides)
 
125 7.7
125 7.7125 7.7
125 7.7
 
584 fundamental theorem of calculus
584 fundamental theorem of calculus584 fundamental theorem of calculus
584 fundamental theorem of calculus
 
Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)Lesson 25: Evaluating Definite Integrals (Section 4 version)
Lesson 25: Evaluating Definite Integrals (Section 4 version)
 
Lesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of CalculusLesson 32: The Fundamental Theorem Of Calculus
Lesson 32: The Fundamental Theorem Of Calculus
 
Business math
Business mathBusiness math
Business math
 
Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)Lesson 25: Evaluating Definite Integrals (Section 10 version)
Lesson 25: Evaluating Definite Integrals (Section 10 version)
 
Math refresher
Math refresherMath refresher
Math refresher
 
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptxlesson10-thechainrule034slides-091006133832-phpapp01.pptx
lesson10-thechainrule034slides-091006133832-phpapp01.pptx
 
Approximate Integration
Approximate IntegrationApproximate Integration
Approximate Integration
 
8.further calculus Further Mathematics Zimbabwe Zimsec Cambridge
8.further calculus   Further Mathematics Zimbabwe Zimsec Cambridge8.further calculus   Further Mathematics Zimbabwe Zimsec Cambridge
8.further calculus Further Mathematics Zimbabwe Zimsec Cambridge
 

Mais de Matthew Leingang

Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceMatthew Leingang
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsMatthew Leingang
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Matthew Leingang
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Matthew Leingang
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Matthew Leingang
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Matthew Leingang
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Matthew Leingang
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Matthew Leingang
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Matthew Leingang
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Matthew Leingang
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Matthew Leingang
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Matthew Leingang
 
Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Matthew Leingang
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)Matthew Leingang
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Matthew Leingang
 
Lesson 16: Inverse Trigonometric Functions (handout)
Lesson 16: Inverse Trigonometric Functions (handout)Lesson 16: Inverse Trigonometric Functions (handout)
Lesson 16: Inverse Trigonometric Functions (handout)Matthew Leingang
 

Mais de Matthew Leingang (20)

Making Lesson Plans
Making Lesson PlansMaking Lesson Plans
Making Lesson Plans
 
Streamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choiceStreamlining assessment, feedback, and archival with auto-multiple-choice
Streamlining assessment, feedback, and archival with auto-multiple-choice
 
Electronic Grading of Paper Assessments
Electronic Grading of Paper AssessmentsElectronic Grading of Paper Assessments
Electronic Grading of Paper Assessments
 
Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)Lesson 27: Integration by Substitution (handout)
Lesson 27: Integration by Substitution (handout)
 
Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)Lesson 26: The Fundamental Theorem of Calculus (handout)
Lesson 26: The Fundamental Theorem of Calculus (handout)
 
Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)Lesson 25: Evaluating Definite Integrals (handout)
Lesson 25: Evaluating Definite Integrals (handout)
 
Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)Lesson 24: Areas and Distances, The Definite Integral (handout)
Lesson 24: Areas and Distances, The Definite Integral (handout)
 
Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)Lesson 23: Antiderivatives (slides)
Lesson 23: Antiderivatives (slides)
 
Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)Lesson 22: Optimization Problems (handout)
Lesson 22: Optimization Problems (handout)
 
Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)Lesson 21: Curve Sketching (slides)
Lesson 21: Curve Sketching (slides)
 
Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)Lesson 21: Curve Sketching (handout)
Lesson 21: Curve Sketching (handout)
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)Lesson 20: Derivatives and the Shapes of Curves (handout)
Lesson 20: Derivatives and the Shapes of Curves (handout)
 
Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)Lesson 19: The Mean Value Theorem (slides)
Lesson 19: The Mean Value Theorem (slides)
 
Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)Lesson 18: Maximum and Minimum Values (slides)
Lesson 18: Maximum and Minimum Values (slides)
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (slides)
 
Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)Lesson 18: Maximum and Minimum Values (handout)
Lesson 18: Maximum and Minimum Values (handout)
 
Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)
Lesson 17: Indeterminate forms and l'Hôpital's Rule (handout)
 
Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)Lesson 16: Inverse Trigonometric Functions (slides)
Lesson 16: Inverse Trigonometric Functions (slides)
 
Lesson 16: Inverse Trigonometric Functions (handout)
Lesson 16: Inverse Trigonometric Functions (handout)Lesson 16: Inverse Trigonometric Functions (handout)
Lesson 16: Inverse Trigonometric Functions (handout)
 

Último

Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptxHampshireHUG
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAndikSusilo4
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...shyamraj55
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksSoftradix Technologies
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptxLBM Solutions
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticscarlostorres15106
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 

Último (20)

Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Pigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food ManufacturingPigging Solutions in Pet Food Manufacturing
Pigging Solutions in Pet Food Manufacturing
 
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
04-2024-HHUG-Sales-and-Marketing-Alignment.pptx
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
Azure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & ApplicationAzure Monitor & Application Insight to monitor Infrastructure & Application
Azure Monitor & Application Insight to monitor Infrastructure & Application
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
Automating Business Process via MuleSoft Composer | Bangalore MuleSoft Meetup...
 
AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
Benefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other FrameworksBenefits Of Flutter Compared To Other Frameworks
Benefits Of Flutter Compared To Other Frameworks
 
Key Features Of Token Development (1).pptx
Key  Features Of Token  Development (1).pptxKey  Features Of Token  Development (1).pptx
Key Features Of Token Development (1).pptx
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmaticsKotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
Kotlin Multiplatform & Compose Multiplatform - Starter kit for pragmatics
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 

Lesson 25: Evaluating Definite Integrals (slides)

  • 1. Sec on 5.3 Evalua ng Definite Integrals V63.0121.011: Calculus I Professor Ma hew Leingang New York University April 27, 2011 .
  • 2. Announcements Today: 5.3 Thursday/Friday: Quiz on 4.1–4.4 Monday 5/2: 5.4 Wednesday 5/4: 5.5 Monday 5/9: Review and Movie Day! Thursday 5/12: Final Exam, 2:00–3:50pm
  • 3. Objectives Use the Evalua on Theorem to evaluate definite integrals. Write an deriva ves as indefinite integrals. Interpret definite integrals as “net change” of a func on over an interval.
  • 4. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 5. The definite integral as a limit Defini on If f is a func on defined on [a, b], the definite integral of f from a to b is the number ∫ b ∑n f(x) dx = lim f(ci ) ∆x a n→∞ i=1 b−a where ∆x = , and for each i, xi = a + i∆x, and ci is a point in n [xi−1 , xi ].
  • 6. The definite integral as a limit Theorem If f is con nuous on [a, b] or if f has only finitely many jump discon nui es, then f is integrable on [a, b]; that is, the definite ∫ b integral f(x) dx exists and is the same for any choice of ci . a
  • 7. Notation/Terminology ∫ b f(x) dx a ∫ — integral sign (swoopy S) f(x) — integrand a and b — limits of integra on (a is the lower limit and b the upper limit) dx — ??? (a parenthesis? an infinitesimal? a variable?) The process of compu ng an integral is called integra on
  • 8. Example ∫ 1 4 Es mate dx using M4 . 0 1 + x2
  • 9. Example ∫ 1 4 Es mate dx using M4 . 0 1 + x2 Solu on 1 1 3 We have x0 = 0, x1 = , x2 = , x3 = , x4 = 1. 4 2 4 1 3 5 7 So c1 = , c2 = , c3 = , c4 = . 8 8 8 8
  • 10. Example ∫ 1 4 Es mate dx using M4 . 0 1 + x2 Solu on ( ) 1 4 4 4 4 M4 = 2 + 2 + 2 + 4 1 + (1/8) 1 + (3/8) 1 + (5/8) 1 + (7/8)2
  • 11. Example ∫ 1 4 Es mate dx using M4 . 0 1 + x2 Solu on ( ) 1 4 4 4 4 M4 = + + + 4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2 ( ) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64
  • 12. Example ∫ 1 4 Es mate dx using M4 . 0 1 + x2 Solu on ( ) 1 4 4 4 4 M4 = + + + 4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2 ( ) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64 64 64 64 64 = + + + ≈ 3.1468 65 73 89 113
  • 13. Properties of the integral Theorem (Addi ve Proper es of the Integral) Let f and g be integrable func ons on [a, b] and c a constant. Then ∫ b 1. c dx = c(b − a) a ∫ b ∫ b ∫ b 2. [f(x) + g(x)] dx = f(x) dx + g(x) dx. a a a ∫ b ∫ b 3. cf(x) dx = c f(x) dx. ∫a b a ∫ b ∫ b 4. [f(x) − g(x)] dx = f(x) dx − g(x) dx. a a a
  • 14. More Properties of the Integral Conven ons: ∫ ∫ a b f(x) dx = − f(x) dx b a ∫ a f(x) dx = 0 a This allows us to have Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b
  • 15. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y . a c x b
  • 16. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b f(x) dx a . a c x b
  • 17. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b ∫ c f(x) dx f(x) dx a b . a c x b
  • 18. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b ∫ c ∫ c f(x) dx f(x) dx f(x) dx a a b . a c x b
  • 19. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y . a c x b
  • 20. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ b f(x) dx a . a c x b
  • 21. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ c f(x) dx = b∫ b − f(x) dx . c a c x b
  • 22. Illustrating Property 5 Theorem ∫ c ∫ b ∫ c 5. f(x) dx = f(x) dx + f(x) dx for all a, b, and c. a a b y ∫ ∫ c c f(x) dx f(x) dx = b∫ a b − f(x) dx . c a c x b
  • 23. Definite Integrals We Know So Far If the integral computes an area and we know the area, we can use that. For instance, ∫ 1√ y π 1 − x2 dx = 0 4 By brute force we computed . ∫ 1 ∫ 1 x 2 1 1 x dx = x3 dx = 0 3 0 4
  • 24. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b].
  • 25. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b]. ∫ b 6. If f(x) ≥ 0 for all x in [a, b], then f(x) dx ≥ 0 a
  • 26. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b]. ∫ b 6. If f(x) ≥ 0 for all x in [a, b], then f(x) dx ≥ 0 a ∫ b ∫ b 7. If f(x) ≥ g(x) for all x in [a, b], then f(x) dx ≥ g(x) dx a a
  • 27. Comparison Properties of the Integral Theorem Let f and g be integrable func ons on [a, b]. ∫ b 6. If f(x) ≥ 0 for all x in [a, b], then f(x) dx ≥ 0 a ∫ b ∫ b 7. If f(x) ≥ g(x) for all x in [a, b], then f(x) dx ≥ g(x) dx a a 8. If m ≤ f(x) ≤ M for all x in [a, b], then ∫ b m(b − a) ≤ f(x) dx ≤ M(b − a) a
  • 28. Integral of a nonnegative function is nonnegative Proof. If f(x) ≥ 0 for all x in [a, b], then for any number of divisions n and choice of sample points {ci }: ∑ n ∑ n Sn = f(ci ) ∆x ≥ 0 · ∆x = 0 i=1 ≥0 i=1 . x Since Sn ≥ 0 for all n, the limit of {Sn } is nonnega ve, too: ∫ b f(x) dx = lim Sn ≥ 0 a n→∞ ≥0
  • 29. The integral is “increasing” Proof. Let h(x) = f(x) − g(x). If f(x) ≥ g(x) for all x in [a, b], then h(x) ≥ 0 for all f(x) x in [a, b]. So by the previous h(x) g(x) property ∫ b h(x) dx ≥ 0 . x a This means that ∫ b ∫ b ∫ b ∫ b f(x) dx − g(x) dx = (f(x) − g(x)) dx = h(x) dx ≥ 0 a a a a
  • 30. Bounding the integral Proof. If m ≤ f(x) ≤ M on for all x in [a, b], then by y the previous property ∫ b ∫ b ∫ b M m dx ≤ f(x) dx ≤ M dx a a a f(x) By Property 8, the integral of a constant func on is the product of the constant and m the width of the interval. So: ∫ b . x m(b − a) ≤ f(x) dx ≤ M(b − a) a b a
  • 31. Example ∫ 2 1 Es mate dx using the comparison proper es. 1 x
  • 32. Example ∫ 2 1 Es mate dx using the comparison proper es. 1 x Solu on Since 1 1 1 ≤ ≤ 2 x 1 for all x in [1, 2], we have ∫ 2 1 1 ·1≤ dx ≤ 1 · 1 2 1 x
  • 33. Ques on ∫ 2 1 Es mate dx with L2 and R2 . Are your es mates overes mates? 1 x Underes mates? Impossible to tell?
  • 34. Ques on ∫ 2 1 Es mate dx with L2 and R2 . Are your es mates overes mates? 1 x Underes mates? Impossible to tell? Answer Since the integrand is decreasing, ∫ 2 1 Rn < dx < Ln 1 x ∫ 2 7 1 5 for all n. So < dx < . 12 1 x 6
  • 35. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 36. Socratic proof The definite integral of velocity measures displacement (net distance) The deriva ve of displacement is velocity So we can compute displacement with the definite integral or the an deriva ve of velocity But any func on can be a velocity func on, so . . .
  • 37. Theorem of the Day Theorem (The Second Fundamental Theorem of Calculus) Suppose f is integrable on [a, b] and f = F′ for another func on F, then ∫ b f(x) dx = F(b) − F(a). a
  • 38. Theorem of the Day Theorem (The Second Fundamental Theorem of Calculus) Suppose f is integrable on [a, b] and f = F′ for another func on F, then ∫ b f(x) dx = F(b) − F(a). a Note In Sec on 5.3, this theorem is called “The Evalua on Theorem”. Nobody else in the world calls it that.
  • 39. Proving the Second FTC Proof. b−a Divide up [a, b] into n pieces of equal width ∆x = as n usual.
  • 40. Proving the Second FTC Proof. b−a Divide up [a, b] into n pieces of equal width ∆x = as n usual. For each i, F is con nuous on [xi−1 , xi ] and differen able on (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with F(xi ) − F(xi−1 ) = F′ (ci ) = f(ci ) xi − xi−1
  • 41. Proving the Second FTC Proof. b−a Divide up [a, b] into n pieces of equal width ∆x = as n usual. For each i, F is con nuous on [xi−1 , xi ] and differen able on (xi−1 , xi ). So there is a point ci in (xi−1 , xi ) with F(xi ) − F(xi−1 ) = F′ (ci ) = f(ci ) xi − xi−1 =⇒ f(ci )∆x = F(xi ) − F(xi−1 )
  • 42. Proving the Second FTC Proof. Form the Riemann Sum:
  • 43. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1
  • 44. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 45. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 46. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 47. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 48. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 49. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 50. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 51. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 52. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 53. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 54. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 ))
  • 55. Proving the Second FTC Proof. Form the Riemann Sum: ∑ n ∑ n Sn = f(ci )∆x = (F(xi ) − F(xi−1 )) i=1 i=1 = (F(x1 ) − F(x0 )) + (F(x2 ) − F(x1 )) + (F(x3 ) − F(x2 )) + · · · · · · + (F(xn−1 ) − F(xn−2 )) + (F(xn ) − F(xn−1 )) = F(xn ) − F(x0 ) = F(b) − F(a)
  • 56. Proving the Second FTC Proof. We have shown for each n, Sn = F(b) − F(a) Which does not depend on n.
  • 57. Proving the Second FTC Proof. We have shown for each n, Sn = F(b) − F(a) Which does not depend on n. So in the limit ∫ b f(x) dx = lim Sn = lim (F(b) − F(a)) = F(b) − F(a) a n→∞ n→∞
  • 58. Computing area with the 2nd FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. .
  • 59. Computing area with the 2nd FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. Solu on ∫ 1 1 3 x4 1 A= x dx = = 0 4 0 4 .
  • 60. Computing area with the 2nd FTC Example Find the area between y = x3 and the x-axis, between x = 0 and x = 1. Solu on ∫ 1 1 3 x4 1 A= x dx = = 0 4 0 4 . Here we use the nota on F(x)|b or [F(x)]b to mean F(b) − F(a). a a
  • 61. Computing area with the 2nd FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1.
  • 62. Computing area with the 2nd FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1. 1 . −1 1
  • 63. Computing area with the 2nd FTC Example Find the area enclosed by the parabola y = x2 and the line y = 1. Solu on ∫ 1 [ 3 ]1 x A=2− x dx = 2 − 2 1 3 −1 [−1 ( )] 1 1 4 =2− − − = . 3 3 3 −1 1
  • 64. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2
  • 65. Example ∫ 1 4 Es mate dx using M4 . 0 1 + x2 Solu on ( ) 1 4 4 4 4 M4 = + + + 4 1 + (1/8)2 1 + (3/8)2 1 + (5/8)2 1 + (7/8)2 ( ) 1 4 4 4 4 = + + + 4 65/64 73/64 89/64 113/64 64 64 64 64 = + + + ≈ 3.1468 65 73 89 113
  • 66. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solu on ∫ 1 ∫ 1 4 1 dx = 4 dx 0 1 + x2 0 1 + x2
  • 67. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solu on ∫ 1 ∫ 1 4 1 dx = 4 dx = 4 arctan(x)|1 0 0 1 + x2 0 1 + x2
  • 68. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solu on ∫ 1 ∫ 1 4 1 dx = 4 dx = 4 arctan(x)|1 0 0 1 + x2 0 1 + x2 = 4 (arctan 1 − arctan 0)
  • 69. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solu on ∫ 1 ∫ 1 4 1 dx = 4 dx = 4 arctan(x)|1 0 1 + x2 0 1+x 2 0 (π ) = 4 (arctan 1 − arctan 0) = 4 −0 4
  • 70. Computing an integral we estimated before Example ∫ 1 4 Evaluate the integral dx. 0 1 + x2 Solu on ∫ 1 ∫ 1 4 1 dx = 4 dx = 4 arctan(x)|1 0 1 + x2 0 1+x 2 0 (π ) = 4 (arctan 1 − arctan 0) = 4 −0 =π 4
  • 71. Computing an integral we estimated before Example ∫ 2 1 Evaluate dx. 1 x
  • 72. Example ∫ 2 1 Es mate dx using the comparison proper es. 1 x Solu on Since 1 1 1 ≤ ≤ 2 x 1 for all x in [1, 2], we have ∫ 2 1 1 ·1≤ dx ≤ 1 · 1 2 1 x
  • 73. Computing an integral we estimated before Example ∫ 2 1 Evaluate dx. 1 x Solu on ∫ 2 1 dx 1 x
  • 74. Computing an integral we estimated before Example ∫ 2 1 Evaluate dx. 1 x Solu on ∫ 2 1 dx = ln x|2 1 1 x
  • 75. Computing an integral we estimated before Example ∫ 2 1 Evaluate dx. 1 x Solu on ∫ 2 1 dx = ln x|2 = ln 2 − ln 1 1 1 x
  • 76. Computing an integral we estimated before Example ∫ 2 1 Evaluate dx. 1 x Solu on ∫ 2 1 dx = ln x|2 = ln 2 − ln 1 = ln 2 1 1 x
  • 77. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 78. The Integral as Net Change Another way to state this theorem is: ∫ b F′ (x) dx = F(b) − F(a), a or the integral of a deriva ve along an interval is the net change over that interval. This has many interpreta ons.
  • 79. The Integral as Net Change
  • 80. The Integral as Net Change Corollary If v(t) represents the velocity of a par cle moving rec linearly, then ∫ t1 v(t) dt = s(t1 ) − s(t0 ). t0
  • 81. The Integral as Net Change Corollary If MC(x) represents the marginal cost of making x units of a product, then ∫ x C(x) = C(0) + MC(q) dq. 0
  • 82. The Integral as Net Change Corollary If ρ(x) represents the density of a thin rod at a distance of x from its end, then the mass of the rod up to x is ∫ x m(x) = ρ(s) ds. 0
  • 83. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 84. A new notation for antiderivatives To emphasize the rela onship between an differen a on and integra on, we use the indefinite integral nota on ∫ f(x) dx for any func on whose deriva ve is f(x).
  • 85. A new notation for antiderivatives To emphasize the rela onship between an differen a on and integra on, we use the indefinite integral nota on ∫ f(x) dx for any func on whose deriva ve is f(x). Thus ∫ x2 dx = 1 x3 + C. 3
  • 86. My first table of integrals . ∫ ∫ ∫ [f(x) + g(x)] dx = f(x) dx + g(x) dx ∫ ∫ ∫ xn+1 xn dx = + C (n ̸= −1) cf(x) dx = c f(x) dx ∫ n+1 ∫ 1 ex dx = ex + C dx = ln |x| + C ∫ ∫ x ax sin x dx = − cos x + C ax dx = +C ∫ ln a ∫ cos x dx = sin x + C csc2 x dx = − cot x + C ∫ ∫ sec2 x dx = tan x + C csc x cot x dx = − csc x + C ∫ ∫ 1 sec x tan x dx = sec x + C √ dx = arcsin x + C ∫ 1 − x2 1 dx = arctan x + C 1 + x2
  • 87. Outline Last me: The Definite Integral The definite integral as a limit Proper es of the integral Evalua ng Definite Integrals Examples The Integral as Net Change Indefinite Integrals My first table of integrals Compu ng Area with integrals
  • 88. Computing Area with integrals Example Find the area of the region bounded by the lines x = 1, x = 4, the x-axis, and the curve y = ex .
  • 89. Computing Area with integrals Example Find the area of the region bounded by the lines x = 1, x = 4, the x-axis, and the curve y = ex . Solu on The answer is ∫ 4 ex dx = ex |4 = e4 − e. 1 1
  • 90. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1.
  • 91. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on y ∫ 1 The answer is arcsin x dx, but π/2 0 we do not know an an deriva ve for arcsin. . x 1
  • 92. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on y Instead compute the area as π/2 ∫ π/2 π − sin y dy 2 0 . x 1
  • 93. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on y Instead compute the area as π/2 ∫ π/2 π π π/2 − sin y dy = −[− cos x]0 2 0 2 . x 1
  • 94. Computing Area with integrals Example Find the area of the region bounded by the curve y = arcsin x, the x-axis, and the line x = 1. Solu on y Instead compute the area as π/2 ∫ π/2 π π π/2 π − sin y dy = −[− cos x]0 = −1 2 0 2 2 . x 1
  • 95. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3.
  • 96. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on No ce the func on y = (x − 1)(x − 2) is posi ve on [0, 1) y and (2, 3], and nega ve on (1, 2). . x 1 2 3
  • 97. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on ∫ 1 A= (x2 − 3x + 2) dx y 0 ∫ 2 − (x2 − 3x + 2) dx 1 ∫ 3 . x + (x2 − 3x + 2) dx 1 2 3 2
  • 98. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on ∫ 1 A= (x − 1)(x − 2) dx y 0 ∫ 2 − (x − 1)(x − 2) dx 1 ∫ 3 . x + (x − 1)(x − 2) dx 1 2 3 2
  • 99. Example Find the area between the graph of y = (x − 1)(x − 2), the x-axis, and the ver cal lines x = 0 and x = 3. Solu on [1 ]1 y A= 3 x − 3 x2 + 2x 0 3 2 [1 3 3 2 ]2 − 3x − 2x + 2x 1 [ ]3 + 1 x3 − 3 x2 + 3 2 2x 2 . x 11 1 2 3 = 6
  • 100. Interpretation of “negative area” in motion There is an analog in rectlinear mo on: ∫ t1 v(t) dt is net distance traveled. t0 ∫ t1 |v(t)| dt is total distance traveled. t0
  • 101. What about the constant? It seems we forgot about the +C when we say for instance ∫ 1 1 x4 1 1 3 x dx = = −0= 0 4 0 4 4 But no ce [ 4 ]1 ( ) x 1 1 1 +C = + C − (0 + C) = + C − C = 4 0 4 4 4 no ma er what C is. So in an differen a on for definite integrals, the constant is immaterial.
  • 102. Summary The second Fundamental Theorem of Calculus: ∫ b f(x) dx = F(b) − F(a) a where F′ = f. Definite integrals represent net change of a func on over an interval. ∫ We write an deriva ves as indefinite integrals f(x) dx