SlideShare uma empresa Scribd logo
1 de 20
VELAGAPUDI RAMAKRISHNA SIDDHARTHA
ENGINEERING COLLEGE

HIGH-SPEED LOW-POWER VITERBI DECODER DESIGN FOR
TCM DECODERS

PRESENTTED BY
G.LALITHA
OBJECTIVE
 The main aim of the this viterbi decoder is to reduce the power consumption
without degrading the performance.
 For the purpose of the low power consumption, We propose a precomputation architecture incorporated with T-algorithm for VD, which can
effectively reduce the power consumption without degrading the decoding
speed much.
INTRODUCTION
 General solutions for Power reduction in VDs could be achieved by reducing
the number of states (for example, reduced-state sequence decoding (RSSD)

M-algorithm and T-algorithm ) or by over-scaling the supply voltage.
 RSSD is in general not as efficient as the M-algorithm and T -algorithm is
more commonly used than M-algorithm in practical applications, because the
M-algorithm requires a sorting process in a feedback loop while T -algorithm
only searches for the optimal path metric (PM), that is, the minimum value or
the maximum value of all PMs.
Cont’d
 T -algorithm has been shown to be very efficient in reducing the
power consumption. However, searching for the optimal PM in the
feedback loop still reduces the decoding speed.


To overcome this drawback, two variations of the T -algorithm have
been proposed: the relaxed adaptive VD , which suggests using an

estimated optimal PM, instead of finding the real one each cycle and
the limited-search parallel state VD based on scarce state transition
(SST).
VITERBI DECODER

Functional diagram of a viterbi decoder.
Functionality:
 BMU: branch metrics (BMs) are calculated in the BM unit (BMU) the
received symbols. In a TCM decoder this module is replaced by transition
metrics unit (TMU), which is more complex than the BMU.
 ACSU:BMs are fed into the ACSU that recursively computes the path
metrics (PMs) and outputs decision bits for each possible state transition.

 SMU: The decision bits are stored in and retrieved from the survivor-path
memory unit (SMU) in order to decode the source bits along the final
survivor path.
 PMU: The PMs of the current iteration are stored in the PM unit (PMU).
T-algorithm requires extra computation in the ACSU loop for calculating
the optimal PM
PRECOMPUTATION ARCHITECTURE

A topology of pre-computation pipelining.
OPERATION:
REVIEW OF PREVIOUS WORK ON LOW-POWER
VITERBI DECODER DESIGN

 I review three most relevant works for low-power Viterbi decoder
designs. Seki, Kubota, Mizoguchi and Kato suggested a scarce state
transition (SST) scheme to reduce the switching activity of a Viterbi
decoder. The input is pre-decoded by a simple and hence, a power
efficient decoder. The pre-decoded sequence, which is not optimal
under a noisy channel, is reprocessed by a Viterbi decoder to improve
performance. The authors showed that the pre-decoded sequence
reduces the switching activity of the Viterbi decoder thereby reducing
power dissipation.
(cont’d)



Kang and Wilson suggested application of existing low-power design
methodologies at different levels. At the architectural level, they suggested
partition of major blocks and memory modules to reduce the power dissipation.
They considered Grey coding for memory addressing, which incurs less switching
compared to binary coding.

 Garrett and Stan suggested a low-power architecture of the soft- output Viterbi

decoder for turbo codes. They proposed an orthogonal access memory structure,
which enables parallel access of sequentially received data. Use of such a memory
structure reduces the switching activity for read and write of survivor path
information.

 All the above works aim to reduce the switching activities of Viterbi decoders,
which is an effective scheme for power reduction.
VITERBI DECODER DESIGN

VD with 2-step pre-computation T-algorithm.
Cont’d
 The minimum value of each BM group (BMG) can be calculated
in BMU or TMU and then passed to the “Threshold Generator”
unit (TGU) to calculate (PMopt + T). (PMopt + T) and the new
PMs are then compared in the “Purge Unit” (PU).
 The “MIN 16” unit for finding the minimum value in each cluster
is constructed with 2 stages of 4-input comparators. This
architecture has been optimized to meet the iteration bound.
 Compared with the conventional T-algorithm, the computational
overhead of this architecture is 12 addition operations and a
comparison.
Architecture of TGU:
IMPLEMENTATION
 The full-trellis VD, the VD with the 2-step pre-computation architecture and one
with the conventional T-algorithm are modeled with Verilog HDL code.

 This is because the former decoder has a much longer critical path and the
synthesis tool took extra measures to improve the clock speed (e.g., using many
standard cells with larger driving strength, duplicating logic and registers to
reduce fan-out and load capacitance, etc.).
 It is clear that the conventional T-algorithm is not suitable for high-speed
applications. If the target throughput is moderately high, the proposed architecture
can operate at a lower supply voltage, which will lead to quadratic power
reduction compared to the conventional scheme (due to much shorter critical
path). Thus i next focus on the power comparison between the full trellis VD and
the proposed scheme.
Advantages:


The usage of this Viterbi algorithm is found to be advantageous due to its cost
effectiveness in modulated minimize at the same time the functional
performance in some situation would modulate in maintaining the original cost.
Emerging linear functioning of linear pulse distance is due to convenient
source sequence.
CONCLUSION


The pre-computation architecture that incorporates T-algorithm efficiently
reduces the power consumption of VDs without reducing the decoding
speed appreciably. I have also analyzed the pre-computation algorithm.

 Algorithm is suitable for TCM systems which always employ high-rate

convolutional codes. Finally, I presented a design case. Both the ACSU and
SMU are modified to correctly decode the signal. ASIC synthesis and
power estimation results
REFERENCES
1.

J. He, Z. Wang and H. Liu, “An efficient 4-D 8PSK TCM decoder
architecture”, IEEE Trans. VLSI Syst., vol. 18, no. 5, pp. 808-817, May 2010.

2. J. He, H. Liu, Z. Wang, "A fast ACSU architecture for Viterbi decoder using Talgorithm," in Proc. 43rd IEEE Asilomar Conf. on Signals, Systems and
Computers, pp. 231-235, Nov. 2009.
3. R. A. Abdallah, and N. R. Shanbhag, “Error-resilient low-power Viterbi decoder
architectures,” IEEE Trans. Sig. Proc., vol. 57, No. 12, pp. 4906-4917, Dec. 2009.
4. J. Jin, and C.-Y. Tsui, “Low-power limited-search parallel state Viterbi decoder
implementation based on scarece state transition,” IEEE Trans. VLSI Syst., vol.
15, no. 10, pp.1172-1176, Oct. 2007.

5. F. Sun and T. Zhang, “Low power state-parallel relaxed adaptive Viterbi decoder
design and implementation,” in Proc. IEEE ISCAS, pp. 4811-4814, May, 2006.
Cont’d
6. “Bandwidth-Efficient Modulations”, CCSDS 401(3.3.6) Green Book, April 2003.
7. Francois Chan and David Haccoun, “Adaptive Viterbi decoding of convolutional codes
over memoryless channels,” IEEE Trans. Commun., vol. 45, no. 11, pp. 1389-1400, Nov.

1997.
8. J. B. Anderson and E. Offer, “Reduced-state sequence detection with convolutional
codes,” IEEE Trans. Inf. Theory, vol. 40, no. 3, pp. 965-972, May 1994.
9. S. J. Simmons, “Breadth-first trellis decoding with adaptive Effort,” IEEE
Trans.Commun., vol. 38, no. 1, pp. 3-12, Jan. 1990.
10. Jinjin He, Huaping Liu, Zhonhfeng Wang, Xinming Huang, and Kai Zhang, “HIGHSPEED LOW POWER VITERBI DECODERNDESIGN FOR TCM DECODERS,”IEEE
Transaction on VLSI,vol.20,NO 4,APRIL 2012.
HIGH-SPEED LOW-POWER VITERBI DECODER DESIGN FOR  TCM DECODERS
HIGH-SPEED LOW-POWER VITERBI DECODER DESIGN FOR  TCM DECODERS

Mais conteúdo relacionado

Mais procurados

RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)
RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)
RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)
Piero Belforte
 
Implementation of 1 bit full adder using gate diffusion input (gdi) technique
Implementation of 1 bit full adder using gate diffusion input (gdi) techniqueImplementation of 1 bit full adder using gate diffusion input (gdi) technique
Implementation of 1 bit full adder using gate diffusion input (gdi) technique
Grace Abraham
 

Mais procurados (20)

RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)
RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)
RTB: BIDIRECTIONAL TRANSCEIVER (ESSCIRC85)
 
E1 To Stm
E1 To Stm E1 To Stm
E1 To Stm
 
Fundamentals of sdh
Fundamentals of sdhFundamentals of sdh
Fundamentals of sdh
 
design of high speed performance 64bit mac unit
design of high speed performance 64bit mac unitdesign of high speed performance 64bit mac unit
design of high speed performance 64bit mac unit
 
Design and Implementation of Area Optimized, Low Complexity CMOS 32nm Technol...
Design and Implementation of Area Optimized, Low Complexity CMOS 32nm Technol...Design and Implementation of Area Optimized, Low Complexity CMOS 32nm Technol...
Design and Implementation of Area Optimized, Low Complexity CMOS 32nm Technol...
 
05725150
0572515005725150
05725150
 
Implementation of Viterbi Decoder on FPGA to Improve Design
Implementation of Viterbi Decoder on FPGA to Improve DesignImplementation of Viterbi Decoder on FPGA to Improve Design
Implementation of Viterbi Decoder on FPGA to Improve Design
 
Efficient FPGA implementation of high speed digital delay for wideband beamfor...
Efficient FPGA implementation of high speed digital delay for wideband beamfor...Efficient FPGA implementation of high speed digital delay for wideband beamfor...
Efficient FPGA implementation of high speed digital delay for wideband beamfor...
 
CSLA and WTM using GDI Technique
CSLA and WTM using GDI TechniqueCSLA and WTM using GDI Technique
CSLA and WTM using GDI Technique
 
Area, Delay and Power Comparison of Adder Topologies
Area, Delay and Power Comparison of Adder TopologiesArea, Delay and Power Comparison of Adder Topologies
Area, Delay and Power Comparison of Adder Topologies
 
Data Communication & Computer Networks: Multi level, multi transition & block...
Data Communication & Computer Networks: Multi level, multi transition & block...Data Communication & Computer Networks: Multi level, multi transition & block...
Data Communication & Computer Networks: Multi level, multi transition & block...
 
IRJET- Simulation and Performance Estimation of BPSK in Rayleigh Channel ...
IRJET-  	  Simulation and Performance Estimation of BPSK in Rayleigh Channel ...IRJET-  	  Simulation and Performance Estimation of BPSK in Rayleigh Channel ...
IRJET- Simulation and Performance Estimation of BPSK in Rayleigh Channel ...
 
Capsulization of Existing Space Time Techniques
Capsulization of Existing Space Time TechniquesCapsulization of Existing Space Time Techniques
Capsulization of Existing Space Time Techniques
 
SDH Frame Structure
SDH Frame StructureSDH Frame Structure
SDH Frame Structure
 
Area Versus Speed Trade-off Analysis of a WiMAX Deinterleaver Circuit Design
Area Versus Speed Trade-off Analysis of a WiMAX Deinterleaver Circuit DesignArea Versus Speed Trade-off Analysis of a WiMAX Deinterleaver Circuit Design
Area Versus Speed Trade-off Analysis of a WiMAX Deinterleaver Circuit Design
 
Implementation of 1 bit full adder using gate diffusion input (gdi) technique
Implementation of 1 bit full adder using gate diffusion input (gdi) techniqueImplementation of 1 bit full adder using gate diffusion input (gdi) technique
Implementation of 1 bit full adder using gate diffusion input (gdi) technique
 
IRJET - High Speed Inexact Speculative Adder using Carry Look Ahead Adder...
IRJET -  	  High Speed Inexact Speculative Adder using Carry Look Ahead Adder...IRJET -  	  High Speed Inexact Speculative Adder using Carry Look Ahead Adder...
IRJET - High Speed Inexact Speculative Adder using Carry Look Ahead Adder...
 
Flexible dsp accelerator architecture exploiting carry save arithmetic
Flexible dsp accelerator architecture exploiting carry save arithmeticFlexible dsp accelerator architecture exploiting carry save arithmetic
Flexible dsp accelerator architecture exploiting carry save arithmetic
 
IRJET- Low Power Adder and Multiplier Circuits Design Optimization in VLSI
IRJET- Low Power Adder and Multiplier Circuits Design Optimization in VLSIIRJET- Low Power Adder and Multiplier Circuits Design Optimization in VLSI
IRJET- Low Power Adder and Multiplier Circuits Design Optimization in VLSI
 
Realisation of awgn channel emulation modules under siso and simo environment...
Realisation of awgn channel emulation modules under siso and simo environment...Realisation of awgn channel emulation modules under siso and simo environment...
Realisation of awgn channel emulation modules under siso and simo environment...
 

Semelhante a HIGH-SPEED LOW-POWER VITERBI DECODER DESIGN FOR TCM DECODERS

Vlsi 2015 2016 ieee project list-(v)_with abstract
Vlsi 2015 2016 ieee project list-(v)_with abstractVlsi 2015 2016 ieee project list-(v)_with abstract
Vlsi 2015 2016 ieee project list-(v)_with abstract
S3 Infotech IEEE Projects
 
Design and Implementation of Low Power DSP Core with Programmable Truncated V...
Design and Implementation of Low Power DSP Core with Programmable Truncated V...Design and Implementation of Low Power DSP Core with Programmable Truncated V...
Design and Implementation of Low Power DSP Core with Programmable Truncated V...
ijsrd.com
 
Implementation of Area Effective Carry Select Adders
Implementation of Area Effective Carry Select AddersImplementation of Area Effective Carry Select Adders
Implementation of Area Effective Carry Select Adders
Kumar Goud
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
ijceronline
 
Design and Implementation of a Programmable Truncated Multiplier
Design and Implementation of a Programmable Truncated MultiplierDesign and Implementation of a Programmable Truncated Multiplier
Design and Implementation of a Programmable Truncated Multiplier
ijsrd.com
 

Semelhante a HIGH-SPEED LOW-POWER VITERBI DECODER DESIGN FOR TCM DECODERS (20)

Ad4103173176
Ad4103173176Ad4103173176
Ad4103173176
 
Vlsi 2015 2016 ieee project list-(v)_with abstract
Vlsi 2015 2016 ieee project list-(v)_with abstractVlsi 2015 2016 ieee project list-(v)_with abstract
Vlsi 2015 2016 ieee project list-(v)_with abstract
 
Design and Implementation of Low Power DSP Core with Programmable Truncated V...
Design and Implementation of Low Power DSP Core with Programmable Truncated V...Design and Implementation of Low Power DSP Core with Programmable Truncated V...
Design and Implementation of Low Power DSP Core with Programmable Truncated V...
 
Introduction
IntroductionIntroduction
Introduction
 
Adiabatic technique based low power synchronous counter design
Adiabatic technique based low power synchronous counter  designAdiabatic technique based low power synchronous counter  design
Adiabatic technique based low power synchronous counter design
 
Cg34503507
Cg34503507Cg34503507
Cg34503507
 
VLSI projects 2014
VLSI projects 2014VLSI projects 2014
VLSI projects 2014
 
Efficient implementation of 2 bit magnitude comparator using pt
Efficient implementation of 2 bit magnitude comparator using ptEfficient implementation of 2 bit magnitude comparator using pt
Efficient implementation of 2 bit magnitude comparator using pt
 
2017 18 ieee vlsi titles,IEEE 2017-18 BULK NS2 PROJECTS TITLES,IEEE 2017-18...
2017 18 ieee vlsi titles,IEEE 2017-18  BULK  NS2 PROJECTS TITLES,IEEE 2017-18...2017 18 ieee vlsi titles,IEEE 2017-18  BULK  NS2 PROJECTS TITLES,IEEE 2017-18...
2017 18 ieee vlsi titles,IEEE 2017-18 BULK NS2 PROJECTS TITLES,IEEE 2017-18...
 
Ix3416271631
Ix3416271631Ix3416271631
Ix3416271631
 
IRJET- A Implementation of High Speed On-Chip Monitoring Circuit by using SAR...
IRJET- A Implementation of High Speed On-Chip Monitoring Circuit by using SAR...IRJET- A Implementation of High Speed On-Chip Monitoring Circuit by using SAR...
IRJET- A Implementation of High Speed On-Chip Monitoring Circuit by using SAR...
 
Implementation of Area Effective Carry Select Adders
Implementation of Area Effective Carry Select AddersImplementation of Area Effective Carry Select Adders
Implementation of Area Effective Carry Select Adders
 
A verilog based simulation methodology for estimating statistical test for th...
A verilog based simulation methodology for estimating statistical test for th...A verilog based simulation methodology for estimating statistical test for th...
A verilog based simulation methodology for estimating statistical test for th...
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...IJCER (www.ijceronline.com) International Journal of computational Engineerin...
IJCER (www.ijceronline.com) International Journal of computational Engineerin...
 
Design and Implementation of a Programmable Truncated Multiplier
Design and Implementation of a Programmable Truncated MultiplierDesign and Implementation of a Programmable Truncated Multiplier
Design and Implementation of a Programmable Truncated Multiplier
 
Ju3417721777
Ju3417721777Ju3417721777
Ju3417721777
 
Designing of Asynchronous Viterbi Decoder for Low Power Consumption using Han...
Designing of Asynchronous Viterbi Decoder for Low Power Consumption using Han...Designing of Asynchronous Viterbi Decoder for Low Power Consumption using Han...
Designing of Asynchronous Viterbi Decoder for Low Power Consumption using Han...
 
Design and Analysis of Low Power High Speed Hybrid logic 8-T Full Adder Circuit
Design and Analysis of Low Power High Speed Hybrid logic 8-T Full Adder CircuitDesign and Analysis of Low Power High Speed Hybrid logic 8-T Full Adder Circuit
Design and Analysis of Low Power High Speed Hybrid logic 8-T Full Adder Circuit
 
Analysis Of Optimization Techniques For Low Power VLSI Design
Analysis Of Optimization Techniques For Low Power VLSI DesignAnalysis Of Optimization Techniques For Low Power VLSI Design
Analysis Of Optimization Techniques For Low Power VLSI Design
 

Último

Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
negromaestrong
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
heathfieldcps1
 

Último (20)

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
 
Asian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptxAsian American Pacific Islander Month DDSD 2024.pptx
Asian American Pacific Islander Month DDSD 2024.pptx
 

HIGH-SPEED LOW-POWER VITERBI DECODER DESIGN FOR TCM DECODERS

  • 1. VELAGAPUDI RAMAKRISHNA SIDDHARTHA ENGINEERING COLLEGE HIGH-SPEED LOW-POWER VITERBI DECODER DESIGN FOR TCM DECODERS PRESENTTED BY G.LALITHA
  • 2. OBJECTIVE  The main aim of the this viterbi decoder is to reduce the power consumption without degrading the performance.  For the purpose of the low power consumption, We propose a precomputation architecture incorporated with T-algorithm for VD, which can effectively reduce the power consumption without degrading the decoding speed much.
  • 3. INTRODUCTION  General solutions for Power reduction in VDs could be achieved by reducing the number of states (for example, reduced-state sequence decoding (RSSD) M-algorithm and T-algorithm ) or by over-scaling the supply voltage.  RSSD is in general not as efficient as the M-algorithm and T -algorithm is more commonly used than M-algorithm in practical applications, because the M-algorithm requires a sorting process in a feedback loop while T -algorithm only searches for the optimal path metric (PM), that is, the minimum value or the maximum value of all PMs.
  • 4. Cont’d  T -algorithm has been shown to be very efficient in reducing the power consumption. However, searching for the optimal PM in the feedback loop still reduces the decoding speed.  To overcome this drawback, two variations of the T -algorithm have been proposed: the relaxed adaptive VD , which suggests using an estimated optimal PM, instead of finding the real one each cycle and the limited-search parallel state VD based on scarce state transition (SST).
  • 5. VITERBI DECODER Functional diagram of a viterbi decoder.
  • 6. Functionality:  BMU: branch metrics (BMs) are calculated in the BM unit (BMU) the received symbols. In a TCM decoder this module is replaced by transition metrics unit (TMU), which is more complex than the BMU.  ACSU:BMs are fed into the ACSU that recursively computes the path metrics (PMs) and outputs decision bits for each possible state transition.  SMU: The decision bits are stored in and retrieved from the survivor-path memory unit (SMU) in order to decode the source bits along the final survivor path.  PMU: The PMs of the current iteration are stored in the PM unit (PMU). T-algorithm requires extra computation in the ACSU loop for calculating the optimal PM
  • 7. PRECOMPUTATION ARCHITECTURE A topology of pre-computation pipelining.
  • 9. REVIEW OF PREVIOUS WORK ON LOW-POWER VITERBI DECODER DESIGN  I review three most relevant works for low-power Viterbi decoder designs. Seki, Kubota, Mizoguchi and Kato suggested a scarce state transition (SST) scheme to reduce the switching activity of a Viterbi decoder. The input is pre-decoded by a simple and hence, a power efficient decoder. The pre-decoded sequence, which is not optimal under a noisy channel, is reprocessed by a Viterbi decoder to improve performance. The authors showed that the pre-decoded sequence reduces the switching activity of the Viterbi decoder thereby reducing power dissipation.
  • 10. (cont’d)  Kang and Wilson suggested application of existing low-power design methodologies at different levels. At the architectural level, they suggested partition of major blocks and memory modules to reduce the power dissipation. They considered Grey coding for memory addressing, which incurs less switching compared to binary coding.  Garrett and Stan suggested a low-power architecture of the soft- output Viterbi decoder for turbo codes. They proposed an orthogonal access memory structure, which enables parallel access of sequentially received data. Use of such a memory structure reduces the switching activity for read and write of survivor path information.  All the above works aim to reduce the switching activities of Viterbi decoders, which is an effective scheme for power reduction.
  • 11. VITERBI DECODER DESIGN VD with 2-step pre-computation T-algorithm.
  • 12. Cont’d  The minimum value of each BM group (BMG) can be calculated in BMU or TMU and then passed to the “Threshold Generator” unit (TGU) to calculate (PMopt + T). (PMopt + T) and the new PMs are then compared in the “Purge Unit” (PU).  The “MIN 16” unit for finding the minimum value in each cluster is constructed with 2 stages of 4-input comparators. This architecture has been optimized to meet the iteration bound.  Compared with the conventional T-algorithm, the computational overhead of this architecture is 12 addition operations and a comparison.
  • 14. IMPLEMENTATION  The full-trellis VD, the VD with the 2-step pre-computation architecture and one with the conventional T-algorithm are modeled with Verilog HDL code.  This is because the former decoder has a much longer critical path and the synthesis tool took extra measures to improve the clock speed (e.g., using many standard cells with larger driving strength, duplicating logic and registers to reduce fan-out and load capacitance, etc.).  It is clear that the conventional T-algorithm is not suitable for high-speed applications. If the target throughput is moderately high, the proposed architecture can operate at a lower supply voltage, which will lead to quadratic power reduction compared to the conventional scheme (due to much shorter critical path). Thus i next focus on the power comparison between the full trellis VD and the proposed scheme.
  • 15. Advantages:  The usage of this Viterbi algorithm is found to be advantageous due to its cost effectiveness in modulated minimize at the same time the functional performance in some situation would modulate in maintaining the original cost. Emerging linear functioning of linear pulse distance is due to convenient source sequence.
  • 16. CONCLUSION  The pre-computation architecture that incorporates T-algorithm efficiently reduces the power consumption of VDs without reducing the decoding speed appreciably. I have also analyzed the pre-computation algorithm.  Algorithm is suitable for TCM systems which always employ high-rate convolutional codes. Finally, I presented a design case. Both the ACSU and SMU are modified to correctly decode the signal. ASIC synthesis and power estimation results
  • 17. REFERENCES 1. J. He, Z. Wang and H. Liu, “An efficient 4-D 8PSK TCM decoder architecture”, IEEE Trans. VLSI Syst., vol. 18, no. 5, pp. 808-817, May 2010. 2. J. He, H. Liu, Z. Wang, "A fast ACSU architecture for Viterbi decoder using Talgorithm," in Proc. 43rd IEEE Asilomar Conf. on Signals, Systems and Computers, pp. 231-235, Nov. 2009. 3. R. A. Abdallah, and N. R. Shanbhag, “Error-resilient low-power Viterbi decoder architectures,” IEEE Trans. Sig. Proc., vol. 57, No. 12, pp. 4906-4917, Dec. 2009. 4. J. Jin, and C.-Y. Tsui, “Low-power limited-search parallel state Viterbi decoder implementation based on scarece state transition,” IEEE Trans. VLSI Syst., vol. 15, no. 10, pp.1172-1176, Oct. 2007. 5. F. Sun and T. Zhang, “Low power state-parallel relaxed adaptive Viterbi decoder design and implementation,” in Proc. IEEE ISCAS, pp. 4811-4814, May, 2006.
  • 18. Cont’d 6. “Bandwidth-Efficient Modulations”, CCSDS 401(3.3.6) Green Book, April 2003. 7. Francois Chan and David Haccoun, “Adaptive Viterbi decoding of convolutional codes over memoryless channels,” IEEE Trans. Commun., vol. 45, no. 11, pp. 1389-1400, Nov. 1997. 8. J. B. Anderson and E. Offer, “Reduced-state sequence detection with convolutional codes,” IEEE Trans. Inf. Theory, vol. 40, no. 3, pp. 965-972, May 1994. 9. S. J. Simmons, “Breadth-first trellis decoding with adaptive Effort,” IEEE Trans.Commun., vol. 38, no. 1, pp. 3-12, Jan. 1990. 10. Jinjin He, Huaping Liu, Zhonhfeng Wang, Xinming Huang, and Kai Zhang, “HIGHSPEED LOW POWER VITERBI DECODERNDESIGN FOR TCM DECODERS,”IEEE Transaction on VLSI,vol.20,NO 4,APRIL 2012.