SlideShare uma empresa Scribd logo
1 de 32
Sybex CCNA 640-802
Chapter 7: EIGRP and OSPF
Instructor & Todd Lammle
Chapter 7 Objectives
• Enhanced IGRP
– EIGRP tables
– Configuring EIGRP
– Verifying EIGRP
• Open Shortest Path First
– Configuring OSPF
– Verifying OSPF
– Configuring OSPF with wildcards
2
What Is Enhanced IGRP
(EIGRP)?
• Enhanced IGRP supports:
– Rapid convergence
– Reduced bandwidth usage
– Multiple network-layer support
– Uses Diffused Update Algorithm (DUAL) to select
loop-free routes and enable fast convergence
– Up to six unequal paths to a remote network (4 by
default)
Enhanced
IGRP
IPX Routing
Protocols
AppleTalk
Routing Protocol
IP Routing
Protocols
IPX Routin
Protocols
AppleTalk
Routing Protocol
IP Routing
Protocols
Comparing EIGRP and IGRP
–Similar metric
–Same load balancing
–Improved convergence time
–Reduced network overhead
–Maximum hop count of 255 (100
default)
–EIGRP can differentiate
between internal and external
routes
EIGRP for IP
• No updates. Route updates sent only
when a change occurs – multicast on
224.0.0.10
• Hello messages sent to neighbors every
5 seconds (60 seconds in most WANs)
Enhanced IGRP
EIGRP EIGRP
hello
EIGRP Terminology
Neighbor Table—IP
Next Hop Interface
Router
Topology Table—IP
Destination 1 Successor
Destination 1 Feasible Successor
Routing Table—IP
Destination 1 Successor
Note: A feasible successor is a backup route and stored in the
Topology table
EIGRP Tables
• The neighbor table and topology table are
held in ram and are maintained through
the use of hello and update packets.
Enhanced IGRP
EIGRP EIGRP
hello
To see all feasible successor routes known to a router, use the show
ip eigrp topology command
Successor routes
• Successor route is used by EIGRP to
forward traffic to a destination
• A successor routes may be backed up
by a feasible successor route
• Successor routes are stored in both the
topology table and the routing table
Routing Table—IP
Destination 1 Successor
Topology Table—IP
Destination 1 Successor
Destination 1 Feasible Successor
Choosing Routes
• EIGRP uses a composite metric to pick the
best path: bandwidth and delay of the line
• EIGRP can load balance across six
unequal cost paths to a remote network (4
by default)
IPX
19.2
T1
T1 T1
IPX
AppleTalk
IP
AppleTalk
IP
A B
DC
Configuring EIGRP for IP
172.16.10.010.110.1.0
192.168.0.0
Token
Ring
AS=10
Router(config)#router eigrp 10
Router(config-router)#network 10.0.0.0
Router(config-router)#network 172.16.0.0
192.168.0.0
A C
B
Enable EIGRP
Assign networks
If you use the same AS number for EIGRP as IGRP,
EIGRP will automatically redistribute IGRP into
EIGRP
Redistribution
Redistribution is translating one type
of routing protocol into another.
Router D
Router B
Router A
Router C
EIGRP IGRP
IGRP and EIGRP translate automatically, as long as they are both
using the same AS number
Route Path
Assuming all default parameters,
which route will RIP (v1 and v2)
take, and which route will EIGRP
take?
T1 T1
100BaseT
100BaseT
10BaseT
56K
Verifying Enhanced IGRP
Operation
show ip protocolsRouter#
show ip route eigrpRouter#
show ip eigrp trafficRouter#
show ip eigrp neighborsRouter#
show ip eigrp topologyRouter#
• Displays the neighbors discovered by
IP Enhanced IGRP
• Displays the IP Enhanced IGRP
topology table
• Displays current Enhanced IGRP
entries in the routing table
• Displays the parameters and current
state of the active routing protocol
process
• Displays the number of IP Enhanced
IGRP packets sent and received
Show IP Route
-D is for “Dual”
-[90/2172] is the administrative distance and cost of
the route. The cost of the route is a composite metric
comprised from the bandwidth and delay of the line
P1R1#sh ip route
[output cut]
Gateway of last resort is not set
D 192.168.30.0/24 [90/2172] via 192.168.20.2,00:04:36,
Serial0/0
C 192.168.10.0/24 is directly connected, FastEthernet0/0
D 192.168.40.0/24 [90/2681] via 192.168.20.2,00:04:36,
Serial0/0
C 192.168.20.0/24 is directly connected, Serial0/0
D 192.168.50.0/24 [90/2707] via 192.168.20.2,00:04:35,
Serial0/0
P1R1#
•Open standard
•Shortest path first (SPF) algorithm
•Link-state routing protocol (vs. distance vector)
•Can be used to route between AS’s
Introducing OSPF
OSPF Hierarchical Routing
• Consists of areas and autonomous
systems
• Minimizes routing update traffic
• Supports VLSM
• Unlimited hop count
Link State Vs. Distance Vector
Link State:
• Provides common view of entire topology
• Calculates shortest path
• Utilizes event-triggered updates
• Can be used to route between AS’s
Distance Vector:
•Exchanges routing tables with neighbors
•Utilizes frequent periodic updates
Types of OSPF Routers
Internal
Routers
Area 1 Area 2
ASBR and
Backbone
Router
Backbone/
Internal
Routers
ABR and
Backbone
Router
Backbone Area 0
ABR and
Backbone
Router
Internal
Routers
•External
AS
Router(config-router)#network address mask area area-id
Assigns networks to a specific OSPF area
Router(config)#router ospf process-id
Defines OSPF as the IP routing protocol
Note: The process ID is locally significant and is needed
to identify a unique instance of an OSPF database
Configuring Single Area OSPF
OSPF Example
hostname R3
router ospf 10
network 10.1.2.3 0.0.0.0 area 0
network 10.1.3.1 0.0.0.0 area 0
hostname R2
router ospf 20
network 10.0.0.0 0.255.255.255
area 0
hostname R1
router ospf 30
network 10.1.0.0 0.0.255.255
area 0
network 10.5.5.1 0.0.0.0 area 0
R3
R2
R1
10.1.2.0 10.1.1.0
10.5.5.0
Area 0
10.1.3.0
Router#show ip ospf interface
Verifying the OSPF
Configuration
Displays area-ID and adjacency information
Router#show ip protocols
Verifies that OSPF is configured
Router#show ip route
Displays all the routes learned by the router
Router#show ip ospf neighbor
Displays OSPF-neighbor information on a per-interface basis
OSFP Neighbors
• OSPF uses hello packets to create
adjacencies and maintain connectivity
with neighbor routers
• OSPF uses the multicast address
224.0.0.5
Hello?
224.0.0.5
•Hello packets provides dynamic neighbor discovery
•Hello Packets maintains neighbor relationships
•Hello packets and LSA’s from other routers help build and maintain the
topological database
OSPF Terminology
• Neighbor
• Adjacency Neighbors
Cost=6
ABR
BDR
DR
Non-DR
Adjacencies
Router ID (RID)
Each router in OSPF needs to be uniquely
identified to properly arrange them in the
Neighbor tables.
Electing the DR and BDR
• OSPF sends Hellos which elect DRs and BDRs
• Router form adjacencies with DRs and BDRs in a multi-
access environment
Multicast Hellos are sent and compared
Router with Highest Priority is Elected as DR
Router with 2nd
Highest Priority is Elected as BDR
Configuring Loopback Interfaces
Router ID (RID):
– Number by which the router is known to OSPF
– Default: The highest IP address on an active
interface at the moment of OSPF process startup
– Can be overridden by a loopback interface: Highest
IP address of any active loopback interface – also
called a logical interface
Interface Priorities
What is the default OSPF interface priority?
Router# show ip ospf interface ethernet0/0
Ethernet0 is up, line protocol is up
Internet Address 192.168.1.137/29, Area 4
Process ID 19, Router ID 192.168.1.137, Network Type BROADCAST,
Cost: 10 Transmit Delay is 1 sec, State DR, Priority 1
Designated Router (ID) 192.168.1.137, Interface address 192.168.1.137
No backup designated router on this network
Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5
Hello due in 00:00:06
Index 2/2, flood queue length 0
Next 0x0(0)/0x0(0)
Last flood scan length is 0, maximum is 0
Last flood scan time is 0 msec, maximum is 0 msec
Neighbor Count is 0, Adjacent neighbor count is 0
Suppress hello for 0 neighbor(s)
Ensuring your DR
What options can you configure that will
ensure that R2 will be the DR of the LAN
segment?
Configuring Wildcards
If you want to advertise a partial
octet (subnet), you need to use
wildcards.
– 0.0.0.0 means all octets match
exactly
– 0.0.0.255 means that the first
three match exactly, but the last
octet can be any value
After that, you must remember
your block sizes….
Wildcard
The wildcard address is always one less
than the block size….
– 192.168.10.8/30 = 0.0.0.3
– 192.168.10.48/28 = 0.0.0.15
– 192.168.10.96/27 = 0.0.0.31
– 192.168.10.128/26 = 0.0.0.63
Wildcard Configuration of the
Lab_B Router
• Lab_A
• E0: 192.168.30.1/24
• S0: 172.16.10.5/30
• Lab_B
• E0: 192.168.40.1/24
• S0: 192.168.10.10/30
• S1: 192.168.10.6/30
• Lab_C
• E0: 192.168.50.1/24
• S1: 172.16.10.9/30
Summary
• Go through all the written and review
questions
• Go over the answers with the class
32

Mais conteúdo relacionado

Mais procurados

Migrating from OSPF to IS-IS by Philip Smith
Migrating from OSPF to IS-IS by Philip SmithMigrating from OSPF to IS-IS by Philip Smith
Migrating from OSPF to IS-IS by Philip SmithMyNOG
 
IGRP and EIGRP
IGRP and EIGRPIGRP and EIGRP
IGRP and EIGRPIT Tech
 
HSRP (hot standby router protocol)
HSRP (hot standby router protocol)HSRP (hot standby router protocol)
HSRP (hot standby router protocol)Netwax Lab
 
VRRP (virtual router redundancy protocol)
VRRP (virtual router redundancy protocol)VRRP (virtual router redundancy protocol)
VRRP (virtual router redundancy protocol)Netwax Lab
 
Day 3 ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)
Day 3 ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)Day 3 ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)
Day 3 ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)anilinvns
 
OSPF- Multi area
OSPF- Multi area OSPF- Multi area
OSPF- Multi area Ahmed Ali
 
First Hop Redundancy Protocols in IPv6 HSRP + GLBP
First Hop Redundancy Protocols in IPv6 HSRP + GLBPFirst Hop Redundancy Protocols in IPv6 HSRP + GLBP
First Hop Redundancy Protocols in IPv6 HSRP + GLBPIT Tech
 
Dynamic routing OSPF 1
Dynamic routing OSPF 1Dynamic routing OSPF 1
Dynamic routing OSPF 1Kishore Kumar
 
CCNA ppt Day 5
CCNA ppt Day 5CCNA ppt Day 5
CCNA ppt Day 5VISHNU N
 
Cisco hsrp configuration
Cisco hsrp configurationCisco hsrp configuration
Cisco hsrp configurationWahyu Nasution
 

Mais procurados (20)

Migrating from OSPF to IS-IS by Philip Smith
Migrating from OSPF to IS-IS by Philip SmithMigrating from OSPF to IS-IS by Philip Smith
Migrating from OSPF to IS-IS by Philip Smith
 
IGRP and EIGRP
IGRP and EIGRPIGRP and EIGRP
IGRP and EIGRP
 
Day 12 enabling ospf
Day 12 enabling ospfDay 12 enabling ospf
Day 12 enabling ospf
 
Igrp
IgrpIgrp
Igrp
 
HSRP (hot standby router protocol)
HSRP (hot standby router protocol)HSRP (hot standby router protocol)
HSRP (hot standby router protocol)
 
Allwyn ospf ppt
Allwyn ospf pptAllwyn ospf ppt
Allwyn ospf ppt
 
OSPF Authentication
OSPF AuthenticationOSPF Authentication
OSPF Authentication
 
VRRP (virtual router redundancy protocol)
VRRP (virtual router redundancy protocol)VRRP (virtual router redundancy protocol)
VRRP (virtual router redundancy protocol)
 
EIGRP Route Summarization
EIGRP Route SummarizationEIGRP Route Summarization
EIGRP Route Summarization
 
EIGRP Default Route
EIGRP Default Route EIGRP Default Route
EIGRP Default Route
 
Chapter7ccna
Chapter7ccnaChapter7ccna
Chapter7ccna
 
Day 3 ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)
Day 3 ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)Day 3 ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)
Day 3 ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)
 
OSPF- Multi area
OSPF- Multi area OSPF- Multi area
OSPF- Multi area
 
First Hop Redundancy Protocols in IPv6 HSRP + GLBP
First Hop Redundancy Protocols in IPv6 HSRP + GLBPFirst Hop Redundancy Protocols in IPv6 HSRP + GLBP
First Hop Redundancy Protocols in IPv6 HSRP + GLBP
 
Dynamic routing OSPF 1
Dynamic routing OSPF 1Dynamic routing OSPF 1
Dynamic routing OSPF 1
 
Layer 3 redundancy hsrp
Layer 3 redundancy   hsrpLayer 3 redundancy   hsrp
Layer 3 redundancy hsrp
 
13. eigrp and ospf
13. eigrp and ospf13. eigrp and ospf
13. eigrp and ospf
 
CCNA ppt Day 5
CCNA ppt Day 5CCNA ppt Day 5
CCNA ppt Day 5
 
Eigrp new
Eigrp newEigrp new
Eigrp new
 
Cisco hsrp configuration
Cisco hsrp configurationCisco hsrp configuration
Cisco hsrp configuration
 

Destaque (18)

Chapter6ccna
Chapter6ccnaChapter6ccna
Chapter6ccna
 
Konsep periopertif
Konsep periopertifKonsep periopertif
Konsep periopertif
 
synonyms and antonyms
synonyms and antonymssynonyms and antonyms
synonyms and antonyms
 
Center for Action and Responsibility In Education Bucharest, Romania
Center for Action and  Responsibility In Education Bucharest, RomaniaCenter for Action and  Responsibility In Education Bucharest, Romania
Center for Action and Responsibility In Education Bucharest, Romania
 
Chapter4ccna
Chapter4ccnaChapter4ccna
Chapter4ccna
 
Chapter8ccna
Chapter8ccnaChapter8ccna
Chapter8ccna
 
Ceyccna3
Ceyccna3Ceyccna3
Ceyccna3
 
Chapter6ccna
Chapter6ccnaChapter6ccna
Chapter6ccna
 
Chapter12ccna
Chapter12ccnaChapter12ccna
Chapter12ccna
 
Chapter11ccna
Chapter11ccnaChapter11ccna
Chapter11ccna
 
Chapter13ccna
Chapter13ccnaChapter13ccna
Chapter13ccna
 
Chapter5ccna
Chapter5ccnaChapter5ccna
Chapter5ccna
 
Citizenship - Shoosmiths Perspective
Citizenship - Shoosmiths PerspectiveCitizenship - Shoosmiths Perspective
Citizenship - Shoosmiths Perspective
 
Chapter10ccna
Chapter10ccnaChapter10ccna
Chapter10ccna
 
Askep anak-malnutrisi
Askep anak-malnutrisiAskep anak-malnutrisi
Askep anak-malnutrisi
 
Chapter14ccna
Chapter14ccnaChapter14ccna
Chapter14ccna
 
Persamaan diferensial
Persamaan diferensialPersamaan diferensial
Persamaan diferensial
 
pang-abay by majo
pang-abay by majopang-abay by majo
pang-abay by majo
 

Semelhante a Chapter7ccna

ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)
ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)
ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)anilinvns
 
Routing and OSPF
Routing and OSPFRouting and OSPF
Routing and OSPFarpit
 
ENSA_Module_2.pptx
ENSA_Module_2.pptxENSA_Module_2.pptx
ENSA_Module_2.pptxserieux1
 
ENSA_Module_2 Packet Tracer - Single-Area OSPFv2 Configuration
ENSA_Module_2 Packet Tracer - Single-Area OSPFv2 ConfigurationENSA_Module_2 Packet Tracer - Single-Area OSPFv2 Configuration
ENSA_Module_2 Packet Tracer - Single-Area OSPFv2 Configurationkecatem465
 
EIGRP (enhanced interior gateway routing protocol)
EIGRP (enhanced interior gateway routing protocol)EIGRP (enhanced interior gateway routing protocol)
EIGRP (enhanced interior gateway routing protocol)Netwax Lab
 
Ospf and eigrp concepts and configuration
Ospf and eigrp concepts and configurationOspf and eigrp concepts and configuration
Ospf and eigrp concepts and configurationIT Tech
 
Dynamic Routing All Algorithms, Working And Basics
Dynamic Routing All Algorithms, Working And BasicsDynamic Routing All Algorithms, Working And Basics
Dynamic Routing All Algorithms, Working And BasicsHarsh Mehta
 
Router configuration
Router configurationRouter configuration
Router configuration97148881557
 
CCNA Routing and Switching Lessons 08-09 - Routing Protocols - Eric Vanderburg
CCNA Routing and Switching Lessons 08-09 - Routing Protocols - Eric VanderburgCCNA Routing and Switching Lessons 08-09 - Routing Protocols - Eric Vanderburg
CCNA Routing and Switching Lessons 08-09 - Routing Protocols - Eric VanderburgEric Vanderburg
 

Semelhante a Chapter7ccna (20)

ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)
ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)
ENHANCED IGRP (EIGRP) AND OPEN SHORTEST PATH FIRST (OSPF)
 
Routing and OSPF
Routing and OSPFRouting and OSPF
Routing and OSPF
 
Labs ospf
Labs ospfLabs ospf
Labs ospf
 
ENSA_Module_2.pptx
ENSA_Module_2.pptxENSA_Module_2.pptx
ENSA_Module_2.pptx
 
ENSA_Module_2.pptx
ENSA_Module_2.pptxENSA_Module_2.pptx
ENSA_Module_2.pptx
 
ENSA_Module_2 Packet Tracer - Single-Area OSPFv2 Configuration
ENSA_Module_2 Packet Tracer - Single-Area OSPFv2 ConfigurationENSA_Module_2 Packet Tracer - Single-Area OSPFv2 Configuration
ENSA_Module_2 Packet Tracer - Single-Area OSPFv2 Configuration
 
OSPFv2 on IOS XR
OSPFv2 on IOS XROSPFv2 on IOS XR
OSPFv2 on IOS XR
 
Ospf
 Ospf Ospf
Ospf
 
EIGRP (enhanced interior gateway routing protocol)
EIGRP (enhanced interior gateway routing protocol)EIGRP (enhanced interior gateway routing protocol)
EIGRP (enhanced interior gateway routing protocol)
 
Ospf and eigrp concepts and configuration
Ospf and eigrp concepts and configurationOspf and eigrp concepts and configuration
Ospf and eigrp concepts and configuration
 
Dynamic Routing All Algorithms, Working And Basics
Dynamic Routing All Algorithms, Working And BasicsDynamic Routing All Algorithms, Working And Basics
Dynamic Routing All Algorithms, Working And Basics
 
Ospf hassan jamal.ppt
Ospf hassan jamal.pptOspf hassan jamal.ppt
Ospf hassan jamal.ppt
 
OSPF_multi.pdf
OSPF_multi.pdfOSPF_multi.pdf
OSPF_multi.pdf
 
Ccnav5.org ccna 3-v50_final_exam_2014
Ccnav5.org ccna 3-v50_final_exam_2014Ccnav5.org ccna 3-v50_final_exam_2014
Ccnav5.org ccna 3-v50_final_exam_2014
 
Router configuration
Router configurationRouter configuration
Router configuration
 
06 tk 1073 network layer
06   tk 1073 network layer06   tk 1073 network layer
06 tk 1073 network layer
 
CCNA Routing and Switching Lessons 08-09 - Routing Protocols - Eric Vanderburg
CCNA Routing and Switching Lessons 08-09 - Routing Protocols - Eric VanderburgCCNA Routing and Switching Lessons 08-09 - Routing Protocols - Eric Vanderburg
CCNA Routing and Switching Lessons 08-09 - Routing Protocols - Eric Vanderburg
 
ospf-config.pdf
ospf-config.pdfospf-config.pdf
ospf-config.pdf
 
1cospf
1cospf1cospf
1cospf
 
1cospf
1cospf1cospf
1cospf
 

Último

The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...gurkirankumar98700
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationMichael W. Hawkins
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerThousandEyes
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Servicegiselly40
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationSafe Software
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slidespraypatel2
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Alan Dix
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 

Último (20)

The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
Kalyanpur ) Call Girls in Lucknow Finest Escorts Service 🍸 8923113531 🎰 Avail...
 
GenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day PresentationGenCyber Cyber Security Day Presentation
GenCyber Cyber Security Day Presentation
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
Transcript: #StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
CNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of ServiceCNv6 Instructor Chapter 6 Quality of Service
CNv6 Instructor Chapter 6 Quality of Service
 
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time AutomationFrom Event to Action: Accelerate Your Decision Making with Real-Time Automation
From Event to Action: Accelerate Your Decision Making with Real-Time Automation
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Slack Application Development 101 Slides
Slack Application Development 101 SlidesSlack Application Development 101 Slides
Slack Application Development 101 Slides
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...Swan(sea) Song – personal research during my six years at Swansea ... and bey...
Swan(sea) Song – personal research during my six years at Swansea ... and bey...
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 

Chapter7ccna

  • 1. Sybex CCNA 640-802 Chapter 7: EIGRP and OSPF Instructor & Todd Lammle
  • 2. Chapter 7 Objectives • Enhanced IGRP – EIGRP tables – Configuring EIGRP – Verifying EIGRP • Open Shortest Path First – Configuring OSPF – Verifying OSPF – Configuring OSPF with wildcards 2
  • 3. What Is Enhanced IGRP (EIGRP)? • Enhanced IGRP supports: – Rapid convergence – Reduced bandwidth usage – Multiple network-layer support – Uses Diffused Update Algorithm (DUAL) to select loop-free routes and enable fast convergence – Up to six unequal paths to a remote network (4 by default) Enhanced IGRP IPX Routing Protocols AppleTalk Routing Protocol IP Routing Protocols IPX Routin Protocols AppleTalk Routing Protocol IP Routing Protocols
  • 4. Comparing EIGRP and IGRP –Similar metric –Same load balancing –Improved convergence time –Reduced network overhead –Maximum hop count of 255 (100 default) –EIGRP can differentiate between internal and external routes
  • 5. EIGRP for IP • No updates. Route updates sent only when a change occurs – multicast on 224.0.0.10 • Hello messages sent to neighbors every 5 seconds (60 seconds in most WANs) Enhanced IGRP EIGRP EIGRP hello
  • 6. EIGRP Terminology Neighbor Table—IP Next Hop Interface Router Topology Table—IP Destination 1 Successor Destination 1 Feasible Successor Routing Table—IP Destination 1 Successor Note: A feasible successor is a backup route and stored in the Topology table
  • 7. EIGRP Tables • The neighbor table and topology table are held in ram and are maintained through the use of hello and update packets. Enhanced IGRP EIGRP EIGRP hello To see all feasible successor routes known to a router, use the show ip eigrp topology command
  • 8. Successor routes • Successor route is used by EIGRP to forward traffic to a destination • A successor routes may be backed up by a feasible successor route • Successor routes are stored in both the topology table and the routing table Routing Table—IP Destination 1 Successor Topology Table—IP Destination 1 Successor Destination 1 Feasible Successor
  • 9. Choosing Routes • EIGRP uses a composite metric to pick the best path: bandwidth and delay of the line • EIGRP can load balance across six unequal cost paths to a remote network (4 by default) IPX 19.2 T1 T1 T1 IPX AppleTalk IP AppleTalk IP A B DC
  • 10. Configuring EIGRP for IP 172.16.10.010.110.1.0 192.168.0.0 Token Ring AS=10 Router(config)#router eigrp 10 Router(config-router)#network 10.0.0.0 Router(config-router)#network 172.16.0.0 192.168.0.0 A C B Enable EIGRP Assign networks If you use the same AS number for EIGRP as IGRP, EIGRP will automatically redistribute IGRP into EIGRP
  • 11. Redistribution Redistribution is translating one type of routing protocol into another. Router D Router B Router A Router C EIGRP IGRP IGRP and EIGRP translate automatically, as long as they are both using the same AS number
  • 12. Route Path Assuming all default parameters, which route will RIP (v1 and v2) take, and which route will EIGRP take? T1 T1 100BaseT 100BaseT 10BaseT 56K
  • 13. Verifying Enhanced IGRP Operation show ip protocolsRouter# show ip route eigrpRouter# show ip eigrp trafficRouter# show ip eigrp neighborsRouter# show ip eigrp topologyRouter# • Displays the neighbors discovered by IP Enhanced IGRP • Displays the IP Enhanced IGRP topology table • Displays current Enhanced IGRP entries in the routing table • Displays the parameters and current state of the active routing protocol process • Displays the number of IP Enhanced IGRP packets sent and received
  • 14. Show IP Route -D is for “Dual” -[90/2172] is the administrative distance and cost of the route. The cost of the route is a composite metric comprised from the bandwidth and delay of the line P1R1#sh ip route [output cut] Gateway of last resort is not set D 192.168.30.0/24 [90/2172] via 192.168.20.2,00:04:36, Serial0/0 C 192.168.10.0/24 is directly connected, FastEthernet0/0 D 192.168.40.0/24 [90/2681] via 192.168.20.2,00:04:36, Serial0/0 C 192.168.20.0/24 is directly connected, Serial0/0 D 192.168.50.0/24 [90/2707] via 192.168.20.2,00:04:35, Serial0/0 P1R1#
  • 15. •Open standard •Shortest path first (SPF) algorithm •Link-state routing protocol (vs. distance vector) •Can be used to route between AS’s Introducing OSPF
  • 16. OSPF Hierarchical Routing • Consists of areas and autonomous systems • Minimizes routing update traffic • Supports VLSM • Unlimited hop count
  • 17. Link State Vs. Distance Vector Link State: • Provides common view of entire topology • Calculates shortest path • Utilizes event-triggered updates • Can be used to route between AS’s Distance Vector: •Exchanges routing tables with neighbors •Utilizes frequent periodic updates
  • 18. Types of OSPF Routers Internal Routers Area 1 Area 2 ASBR and Backbone Router Backbone/ Internal Routers ABR and Backbone Router Backbone Area 0 ABR and Backbone Router Internal Routers •External AS
  • 19. Router(config-router)#network address mask area area-id Assigns networks to a specific OSPF area Router(config)#router ospf process-id Defines OSPF as the IP routing protocol Note: The process ID is locally significant and is needed to identify a unique instance of an OSPF database Configuring Single Area OSPF
  • 20. OSPF Example hostname R3 router ospf 10 network 10.1.2.3 0.0.0.0 area 0 network 10.1.3.1 0.0.0.0 area 0 hostname R2 router ospf 20 network 10.0.0.0 0.255.255.255 area 0 hostname R1 router ospf 30 network 10.1.0.0 0.0.255.255 area 0 network 10.5.5.1 0.0.0.0 area 0 R3 R2 R1 10.1.2.0 10.1.1.0 10.5.5.0 Area 0 10.1.3.0
  • 21. Router#show ip ospf interface Verifying the OSPF Configuration Displays area-ID and adjacency information Router#show ip protocols Verifies that OSPF is configured Router#show ip route Displays all the routes learned by the router Router#show ip ospf neighbor Displays OSPF-neighbor information on a per-interface basis
  • 22. OSFP Neighbors • OSPF uses hello packets to create adjacencies and maintain connectivity with neighbor routers • OSPF uses the multicast address 224.0.0.5 Hello? 224.0.0.5 •Hello packets provides dynamic neighbor discovery •Hello Packets maintains neighbor relationships •Hello packets and LSA’s from other routers help build and maintain the topological database
  • 23. OSPF Terminology • Neighbor • Adjacency Neighbors Cost=6 ABR BDR DR Non-DR Adjacencies
  • 24. Router ID (RID) Each router in OSPF needs to be uniquely identified to properly arrange them in the Neighbor tables.
  • 25. Electing the DR and BDR • OSPF sends Hellos which elect DRs and BDRs • Router form adjacencies with DRs and BDRs in a multi- access environment Multicast Hellos are sent and compared Router with Highest Priority is Elected as DR Router with 2nd Highest Priority is Elected as BDR
  • 26. Configuring Loopback Interfaces Router ID (RID): – Number by which the router is known to OSPF – Default: The highest IP address on an active interface at the moment of OSPF process startup – Can be overridden by a loopback interface: Highest IP address of any active loopback interface – also called a logical interface
  • 27. Interface Priorities What is the default OSPF interface priority? Router# show ip ospf interface ethernet0/0 Ethernet0 is up, line protocol is up Internet Address 192.168.1.137/29, Area 4 Process ID 19, Router ID 192.168.1.137, Network Type BROADCAST, Cost: 10 Transmit Delay is 1 sec, State DR, Priority 1 Designated Router (ID) 192.168.1.137, Interface address 192.168.1.137 No backup designated router on this network Timer intervals configured, Hello 10, Dead 40, Wait 40, Retransmit 5 Hello due in 00:00:06 Index 2/2, flood queue length 0 Next 0x0(0)/0x0(0) Last flood scan length is 0, maximum is 0 Last flood scan time is 0 msec, maximum is 0 msec Neighbor Count is 0, Adjacent neighbor count is 0 Suppress hello for 0 neighbor(s)
  • 28. Ensuring your DR What options can you configure that will ensure that R2 will be the DR of the LAN segment?
  • 29. Configuring Wildcards If you want to advertise a partial octet (subnet), you need to use wildcards. – 0.0.0.0 means all octets match exactly – 0.0.0.255 means that the first three match exactly, but the last octet can be any value After that, you must remember your block sizes….
  • 30. Wildcard The wildcard address is always one less than the block size…. – 192.168.10.8/30 = 0.0.0.3 – 192.168.10.48/28 = 0.0.0.15 – 192.168.10.96/27 = 0.0.0.31 – 192.168.10.128/26 = 0.0.0.63
  • 31. Wildcard Configuration of the Lab_B Router • Lab_A • E0: 192.168.30.1/24 • S0: 172.16.10.5/30 • Lab_B • E0: 192.168.40.1/24 • S0: 192.168.10.10/30 • S1: 192.168.10.6/30 • Lab_C • E0: 192.168.50.1/24 • S1: 172.16.10.9/30
  • 32. Summary • Go through all the written and review questions • Go over the answers with the class 32

Notas do Editor

  1. Enhanced Interior Gateway Routing Protocol (EIGRP) is a proprietary Cisco protocol that runs on Cisco routers and internal route processors found in the Cisco Distribution and Core layer switches. In this section, you’ll see the many features of EIGRP and describe how it works, with particular focus on the unique way it discovers, selects, and advertises routes. There are a number of powerful features that make EIGRP a real stand out from IGRP and other protocols. The main ones are listed here: Support for IP, IPX, and AppleTalk via protocol-dependent modules Efficient neighbor discovery Communication via Reliable Transport Protocol (RTP) Best path selection via Diffusing update algorithm (DUAL)
  2. Enhanced IGRP (EIGRP) is a classless, enhanced distance-vector protocol that gives us a real edge over another Cisco proprietary protocol, Interior Gateway Routing Protocol (IGRP). That’s basically why it’s called Enhanced IGRP. Like IGRP, EIGRP uses the concept of an autonomous system to describe the set of contiguous routers that run the same routing protocol and share routing information. But unlike IGRP, EIGRP includes the subnet mask in its route updates. And as you now know, the advertisement of subnet information allows us to use VLSM and summarization when designing our networks!
  3. EIGRP doesn’t send link-state packets as OSPF does; instead, it sends traditional distance-vector updates containing information about networks plus the cost of reaching them from the perspective of the advertising router. And EIGRP has link-state characteristics as well—it synchronizes routing tables between neighbors at startup, and then sends specific updates only when topology changes occur.
  4. The neighborship table (usually referred to as the neighbor table) records information about routers with whom neighborship relationships have been formed. The topology table stores the route advertisements about every route in the internetwork received from each neighbor. The route table stores the routes that are currently used to make routing decision. There would be separate copies of each of these tables for each protocol that is actively being supported by EIGRP, whether it’s IP, IPX, or AppleTalk.
  5. The neighbor table and topology table are held in ram and are maintained through the use of hello and update packets.
  6. Successor route is used by EIGRP to forward traffic to a destination A successor routes may be backed up by a feasible successor route Successor routes are stored in both the topology table and the routing table
  7. Like IGRP, EIGRP uses only bandwidth and delay of the line to determine the best path to a remote network by default. Cisco sometimes likes to call these path bandwidth value and cumulative line delay—go figure.
  8. To start an EIGRP session on a router, use the router eigrp command followed by the autonomous system number of your network. You then enter the network numbers connected to the router using the network command followed by the network number.
  9. Redistribution is important, because if you want to use EIGRP and don’t have all Cisco router, you need to configure redistribution commands. If you are using IGRP and want to migrate to EIGRP (yes, you should do this), configure EIGRP with the same AS number and EIGRP automatically redistributed IGRP into EIGRP routes. These routes show up as external routes with an AS of 170.
  10. RIPv1 and RIPv2 use the same metric (hop count) and would find the 56K link the best path to the remote network. EIGRP and IGRP use the same metric as well (bandwidth and delay of the line) and would use the path through the LAN interfaces, not the serial T1’s.
  11. Show ip route: Shows the entire routing table show ip route eigrp: Shows only EIGRP entries in the routing table show ip eigrp neighbors: Shows all EIGRP neighbors. show ip eigrp topology: Shows entries in the EIGRP topology table. Which EIGRP show command will provide you with the IP addresses of the devices with which the router has established an adjacency, as well as the transmit and queue counts for the adjacent routers? Which command will display all the EIGRP feasible successor routes known to a router?
  12. The show ip route command, or the show ip route eigrp command, will show you the routing table the routes found by DUAL. -D is for “Dual” -[90/2172] is the administrative distance and cost of the route. The cost of the route is a composite metric comprised from the bandwidth and delay of the line
  13. Open Shortest Path First (OSPF) is an open standards routing protocol that’s been implemented by a wide variety of network vendors, including Cisco. If you have multiple routers, and not all of them are Cisco (what!) then you can’t use EIGRP now can you? So your remaining options are basically RIP, RIPv2 or OSPF. If it’s a large network, then really, your only options are OSPF, or something called route redistribution—a translation service between routing protocols. OSPF converges quickly, although perhaps not as quickly as EIGRP, and it supports multiple, equal-cost routes to the same destination. But unlike EIGRP, it only supports IP routing.
  14. OSPF is supposed to be designed in a hierarchical fashion, which basically means that you can separate the larger internetwork into smaller Internetworks called areas.
  15. This slides represents some important Link State characteristics, compared to distance vector.
  16. Notice how each router connects to the backbone—called area 0, or the backbone area. OSPF must have an area 0, and all routers should connect to this area if at all possible, but routers that connect other areas within an AS together are called Area Boundary Routers (ABRs). Still, at least one interface must be in area 0. OSPF runs inside an autonomous system, but can also connect multiple autonomous systems together. The router that connects these AS’s together is called an Autonomous System Boundary Router (ASBR). Area 0 is called the backbone area Hierarchical OSPF networks do not require multiple areas You must have an area 0 Multiple OSPF areas must connect to area 0
  17. Configuring basic OSPF isn’t as simple as RIP, IGRP and EIGRP, and it can get can really complex once the many options that are allowed within OSPF are factored in. These two elements are the basic elements of OSPF configuration: -Enabling OSPF -Configuring OSPF areas The easiest, and also least scalable way to configure OSPF is to just use a single area. Doing this requires a minimum of two commands as shown in the next slide. The command you use to activate the OSPF routing process is: Lab_A(config)# router ospf ? <1-65535> A value in the range 1– 65535 identifies the OSPF Process ID. Process ID’s can be assigned any number from 0 to 65535 Area’s can be any number up to 2.4 billion
  18. There are various ways to configure OSPF. The configuration of R3 shows how the 0.0.0.0 wildcard is used to place each interface individually into area 0 R2 show how two interface can be configured into area 0 with one wildcard network statement of 0.255.255.255 R3 shows the wildcards of 0.0.255.255 and 0.0.0.0 It doesn’t matter how you configure the network statements, the results are the same. Remember, the process ID is irrelevant and can be the same on each router, or different on each router, as they are in this example.
  19. There are several ways to verify proper OSPF configuration and operation, and this slides shows some basic verification commands that you will use in the next hands-on labs.
  20. Neighbors Neighbors are two or more routers that have an interface on a common network, such as two routers connected on a point-to-point serial link. Adjacency An adjacency is a relationship between two OSPF routers that permits the direct exchange of route updates. OSPF is really picky about sharing routing information, unlike EIGRP that directly shares routes with all of its neighbors. Instead, OSPF directly shares routes only with neighbors that have also established adjacencies. Link State Advertisement A Link State Advertisement (LSA) is an OSPF data packet containing link-state and routing information that’s shared among OSPF routers.
  21. Neighbor Two routers that have an interface on a common network Usually discovered by hello’s but can also be configured administratively Adjacency Relationship formed between selected neighbors in which routing information is exchanged. Not all neighbors are adjacent Only Broadcast and Non-Broadcast network types have Designated and Backup Designated Routers!!!
  22. Each router that is participating in OSPF needs to be uniquely identified. The method of identification that OSPF uses is Router IDs (RID). 32 bits that uniquely identifies an OSPF router Highest IP address in router is RouterID Overridden by Loopback interface if present Even if Loopback address has lower value Recommended to use loopback interface Easier to manipulate this number Always up Interface loopback 0 Ip address 10.1.1.1 255.255.255.0 You can also Statically assign the Router ID in the OSPF router configuration mode: (config)# router ospf 1 (config-router)# router-id Do NOT use same loopback address on different routers
  23. The following outlines the process OSPF takes and rules that are followed when electing a Designated Router: Routers elect a DR and BDR per network All routers set by default to priority 1 (0-255) Priority of zero (0) means router can not be elected as a DR Router with highest priority wins BDR (1 – 255), if no other router has a higher priority the BDR will then become the DR RouterID breaks tie, Router ID is either the Highest Loopback or Highest Configured IP address on any given active interface If DR fails, BDR promoted to DR and a new BDR is elected Existing DR will not be overthrown if “better” router is turned on after initial election DRs and BDRs listen to multicast traffic on both multicast address 224.0.0.5 and 224.0.0.6 224.0.0.6 is exclusively listed to by DRs
  24. Configuring loopback interfaces when using the OSPF routing protocol is important and Cisco suggests using them whenever you configure OSPF on a router. Loopback interfaces are logical interfaces, which means they are not real router interfaces. They can be used for diagnostic purposes as well as OSPF configuration. The reason you want to configure a loopback interface on a router is because if you don’t, the highest IP address on a router will become that routers Router ID (RID). The RID is used to advertise the routes as well as elect the designated router (DR) and backup designated router (BDR).
  25. Sometimes it is desirable for a router to be configured so that it is not eligible to become the DR or BDR. You can do this by setting the OSPF priority to zero with the ip ospf priority priority# interface subcommand. Router(config-if)# ip ospf priority {0 – 255} Change the priority of a router on an interface 0 means to not participate in election 1 is default, 255 is highest priority
  26. First, what is the RID of each router? Which router is the default DR for the 172.16.1.0 LAN? There are three options that will ensure that R2 will be the DR for the LAN segment 172.16.1.0/24: Configure the priority value of the Fa0/0 interface of the R2 router to a higher value than any other interface on the Ethernet network Configure a loopback interface on the R2 with an IP address higher than any IP address on the other routers Change the priority value of the Fa0/0 interface of R1 and R3 to zero
  27. This slides introduces the wildcards used in OSPF. These wildcards will also be used in access-list configurations. A 0 octet in the wildcard mask indicates that the corresponding octet in the network must match exactly. On the other hand, a 255 indicates that you don’t care what the corresponding octet is in the network number. A network and wildcard mask combination of 1.1.1.1 0.0.0.0 would match 1.1.1.1 only, and nothing else. This is really useful if you want to activate OSPF on a specific interface in a very clear and simple way. If you insist on matching a range of networks, the network and wildcard mask combination of 1.1.0.0 0.0.255.255 would match anything in the range 1.1.0.0–1.1.255.255. Because of this, it’s simpler and safer to stick to using wildcard masks of 0.0.0.0 and identify each OSPF interface individually.
  28. This slides shows how to find a wildcard that can be used to configure a subnet in an octet.
  29. You need to understand wildcard configuration. Configure the Lab_B router using wildcards: Router ospf 1 Network 192.168.40.1 0.0.0.0 area 0 Network 192.168.10.8 0.0.0.3 area 0 Network 192.168.10.4 0.0.0.3 area 0 NOTE: to remove a bad entry, use the following example: Router(config)#router ospf 1 Router(config-router)#no network 192.168.10.4 0.0.0.4 area 0 Router(config-router)#network 192.168.10.4 0.0.0.3 area 0