SlideShare a Scribd company logo
1 of 995
Download to read offline
Marc Pansu
Jacques Gautheyrou
Handbook of Soil Analysis
Mineralogical, Organic and Inorganic Methods
Marc Pansu
Jacques Gautheyrou


Handbook
of Soil Analysis
Mineralogical, Organic
and Inorganic Methods
with 183 Figures and 84 Tables
Dr Marc Pansu
Centre IRD BP 64501
Avenue Agropolis 911
34394 Montpellier Cedex 5
France

E-mail : pansu@mpl.ird.fr


Jacques Gautheyrou
Avenue de Marinville 6
94100 St. Maur des Fossés
France


Updated English version, corrected by Daphne Goodfellow. The original French book
"L'analyse du sol, minéralogique et minérale" by Marc Pansu and Jacques Gautheyrou,
was published in 2003 by Springer-Verlag , Berlin Heidelberg New York.


Library of Congress Control Number: 2005938390

ISBN-10 3-540-31210-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-31210-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication
of this publication or parts thereof is permitted only under the provisions of the German Copyright
Law of September 9, 1965, in its current version, and permission for use must always be obtained from
Springer-Verlag. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springer.com
© Springer-Verlag Berlin Heidelberg 2006
Printed in The Netherlands

The use of general descriptive names, registered names, trademarks, etc. in this publication does not
imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

Cover design: E. Kirchner, Heidelberg
Production: Almas Schimmel
Typesetting: SPI Publisher Services
Printing: Krips bv, Meppel
Binding: Stürtz AG, Würzburg

Printed on acid-free paper 30/3141/as 5 4 3 2 1 0
FOREWORD
This new book by Marc Pansu and Jacques Gautheyrou provides a
synopsis of the analytical procedures for the physicochemical analysis of
soils. It is written to conform to analytical standards and quality control.
It focuses on mineralogical, organic and inorganic analyses, but also
describes physical methods when these are a precondition for analysis. It
will help a range of different users to choose the most appropriate method
for the type of material and the particular problems they have to face. The
compiled work is the product of the experience gained by the authors in
the laboratories of the Institute of Research for Development (IRD) in
France and in tropical countries, and includes an extensive review of the
literature. The reference section at the end of each chapter lists source
data from pioneer studies right up to current works, such as, proposals for
structural models of humic molecules, and itself represents a valuable
source of information.
          IRD soil scientists collected data on Mediterranean and tropical
soils in the field from West and North Africa, Madagascar, Latin
America, and South East Asia. Soil materials from these regions are often
different from those found in temperate zones. As their analysis brought
new problems to light, it was essential to develop powerful and specific
physicochemical methods. Physicists, chemists and biologists joined
forces with IRD soil scientists to contribute knowledge from their own
disciplines thereby widening its scope considerably. This work is the fruit
of these experiments as applied to complex systems, involving soils and
the environment.
          The methodological range is particularly wide and each chapter
presents both simple analyses and analyses that may require sophisticated
equipment, as well as specific skills. It is aimed both at teams involved in
practical field work and at researchers involved in fundamental and
applied research. It describes the principles, the physical and chemical
basis of each method, the corresponding analytical procedures, and the
constraints and limits of each. The descriptions are practical, easy to
understand and implement. Summary tables enable a rapid overview of
the data. Complex techniques are explained under the heading ‘Principle’
and concrete examples of methods include: spectra (near and far IR, UV-
visible, 1H-NMR, 13C-NMR, ESR, ICP-AES, ICP-MS, X-ray
fluorescence, EDX or WDX microprobe, neutron activation analysis),
diffractograms (XRD, electron microdiffraction), thermograms (DTA,
DTG, TGA), chromatograms (GPC, HPLC, ionic chromatography,
exclusion chromatography), electrophoregrams, ion exchange methods,
electrochemistry, biology, different physical separation techniques,
selective dissolutions, and imagery.
VI                                                                    Foreword


The book will be valuable not only for researchers, engineers, technicians
and students in soil science, but also for agronomists and ecologists and
others in related disciplines, such as, analytical physical chemistry,
geology, climatology, civil engineering and industries associated with
soil. It is a basic work whose goal is to contribute to the scientific
analysis of the environment. The methodologies it describes apply to a
wide range of bioclimatic zones: temperate, arid, subtropical and tropical.
As with the previous books by the same authors (Pansu, Gautheyrou and
Loyer, 1998, Masson, Paris, Milan, Barcelona; Pansu, Gautheyrou and
Loyer, 2001, Balkema, Lisse, Abington, Exton, Tokyo), this new book
represents a reference work for our laboratories. We are confident its
originality and ease of use will ensure its success.

      Alain Aventurier, Director of Analytical Laboratories of CIRAD1
      Christian Feller, Director of Research at IRD 2
      Pierre Bottner, Director of Research at CNRS 3




1
     CIRAD, Centre International pour la Recherche Agronomique et le
       Développement (France).
2
     IRD, Institut de Recherche pour le Développement (ex ORSTOM, France).
3
     CNRS, Centre National de la Recherche Scientifique (France).
CONTENTS
PART 1 - MINERALOGICAL ANALYSIS

CHAPTER 1 Water Content and Loss on Ignition
1.1 Introduction ..................................................................................................3
1.2 Water Content at 105°C (H2O−) ....................................................................6
    1.2.1 Principle .................................................................................................6
    1.2.2 Materials ................................................................................................6
    1.2.3 Sample...................................................................................................6
    1.2.4 Procedure ..............................................................................................7
    1.2.5 Remarks ................................................................................................7
                                                    +
1.3 Loss on Ignition at 1,000°C (H2O ) ..............................................................8
    1.3.1 Introduction ............................................................................................8
    1.3.2 Principle ...............................................................................................11
    1.3.3 Equipment............................................................................................11
    1.3.4 Procedure ............................................................................................11
    1.3.5 Calculations .........................................................................................12
    1.3.6 Remarks ..............................................................................................12
Bibliography .....................................................................................................12

CHAPTER 2 Particle Size Analysis
2.1 Introduction ................................................................................................15
    2.1.1 Particle Size in Soil Science ................................................................15
    2.1.2 Principle ...............................................................................................17
    2.1.3 Law of Sedimentation ..........................................................................18
    2.1.4 Conditions for Application of Stokes Law.............................................24
2.2 Standard Methods ......................................................................................26
    2.2.1 Pretreatment of the Sample .................................................................26
    2.2.2 Particle Suspension and Dispersion ....................................................31
    2.2.3 Pipette Method after Robinson-Köhn or Andreasen ............................35
    2.2.4 Density Method with Variable Depth ....................................................42
    2.2.5 Density Method with Constant Depth...................................................47
    2.2.6 Particle Size Analysis of Sands Only ...................................................48
2.3 Automated Equipment ...............................................................................50
    2.3.1 Introduction ..........................................................................................50
    2.3.2 Method Using Sedimentation by Simple Gravity..................................51
    2.3.3 Methods Using Accelerated Sedimentation .........................................53
    2.3.4 Methods Using Laser Scattering and Diffraction..................................54
    2.3.5 Methods Using Optical and Electric Properties....................................55
    2.3.6 Methods Allowing Direct Observations of the Particles........................55
    2.3.7 Methods Using Conductivity ................................................................56
References ........................................................................................................56
Bibliography .....................................................................................................58
    Generality .....................................................................................................58
VIII                                                                                                       Contents


       Pre-treatment................................................................................................58
       Pipette Method..............................................................................................61
       Hydrometer Method ......................................................................................62
       Instrumental Methods ...................................................................................62

CHAPTER 3 Fractionation of the Colloidal Systems
3.1 Introduction ................................................................................................ 65
3.2 Fractionation by Continuous Centrifugation........................................... 66
    3.2.1 Principle............................................................................................... 66
    3.2.2 Theory ................................................................................................. 69
    3.2.3 Equipment and reagents ..................................................................... 73
    3.2.4 Procedure............................................................................................ 75
3.3 Pretreatment of the Extracted Phases ..................................................... 79
References........................................................................................................ 81
Bibliography ..................................................................................................... 81
CHAPTER 4 Mineralogical Characterisations by X-Ray Diffractometry
4.1 Introduction ................................................................................................ 83
    4.1.1 X-Ray Diffraction and Mineralogy ........................................................ 83
    4.1.2 Principle............................................................................................... 86
    4.1.3 XRD Instrumentation ........................................................................... 87
4.2 Qualitative Diffractometry.......................................................................... 90
    4.2.1 Overview of Preparation of the Samples ............................................. 90
    4.2.2 Preparation for Powder Diagrams ....................................................... 90
    4.2.3 Preparation for Oriented Diagrams...................................................... 94
    4.2.4 Pretreatment of Clays.......................................................................... 99
    4.2.5 Qualitative Diffractometry ..................................................................113
4.3 Quantitative Mineralogical Analysis .......................................................118
    4.3.1 Interest ..............................................................................................118
    4.3.2 Quantitative Mineralogical Analysis by XRD......................................118
    4.3.3 Multi-Instrumental Quantitative Mineralogical Analysis......................124
References......................................................................................................126
Bibliography ...................................................................................................127
    General.......................................................................................................127
    Preparation of Oriented Aggregates on Porous Ceramic Plate ..................128
    Saturation of Clays by Cations ...................................................................129
    Saturation, Solvation, Intercalation Complex, Dissolution ..........................129
    Preparation of Iron Oxides..........................................................................130
    Quantitative XRD........................................................................................130
CHAPTER 5 Mineralogical Analysis by Infra-Red Spectrometry
5.1 Introduction ..............................................................................................133
    5.1.1 Principle.............................................................................................133
    5.1.2 IR Instrumentation .............................................................................135
5.2 IR Spectrometry in Mineralogy................................................................138
    5.2.1 Equipment and Products ...................................................................138
    5.2.2 Preparation of the Samples ...............................................................139
    5.2.3 Brief Guide to Interpretation of the Spectra....................................... 146
    5.2.4 Quantitative Analysis .........................................................................152
Contents                                                                                                          IX


5.3 Other IR Techniques ................................................................................156
    5.3.1 Near-infrared Spectrometry (NIRS)................................................... 156
    5.3.2 Coupling Thermal Measurements and FTIR Spectrometry of Volatile
          Products ............................................................................................158
    5.3.3 Infrared Microscopy ...........................................................................159
    5.3.4 Raman Scattering Spectroscopy ...................................................... 159
References......................................................................................................161
Chronobibliography.......................................................................................162

CHAPTER 6 Mineralogical Separation by Selective Dissolution
6.1 Introduction ............................................................................................. 167
    6.1.1 Crystallinity of Clay Minerals............................................................. 167
    6.1.2 Instrumental and Chemical Methods ................................................ 169
    6.1.3 Selective Dissolution Methods .......................................................... 172
    6.1.4 Reagents and Synthetic Standards .................................................. 174
6.2 Main Selective Dissolution Methods...................................................... 180
    6.2.1 Acid Oxalate Method Under Darkness (AOD)................................... 180
    6.2.2 Dithionite-Citrate-Bicarbonate Method (DCB) ................................... 187
    6.2.3 EDTA Method ................................................................................... 192
    6.2.4 Pyrophosphate Method..................................................................... 196
    6.2.5 Extraction in Strongly Alkaline Mediums ........................................... 201
6.3 Other Methods, Improvements and Choices ........................................ 206
    6.3.1 Differential Sequential Methods ........................................................ 206
    6.3.2 Selective Methods for Amorphous Products ..................................... 210
    6.3.3 Brief Overview to the Use of the Differential Methods ...................... 214
References ..................................................................................................... 215

CHAPTER 7 Thermal Analysis
7.1 Introduction ............................................................................................. 221
    7.1.1 Definition........................................................................................... 221
    7.1.2 Interest.............................................................................................. 223
7.2 Classical Methods ................................................................................... 226
    7.2.1 Thermogravimetric Analysis.............................................................. 226
    7.2.2 Differential Thermal Analysis and Differential Scanning Calorimetry 235
7.3 Multi-component Apparatuses for Thermal Analysis........................... 246
    7.3.1 Concepts........................................................................................... 246
    7.3.2 Coupling Thermal Analysis and Evolved Gas Analysis..................... 247
References ..................................................................................................... 249
Chronobibliography ...................................................................................... 250

CHAPTER 8 Microscopic Analysis
8.1 Introduction ............................................................................................. 253
8.2 Preparation of the Samples .................................................................... 254
    8.2.1 Interest.............................................................................................. 254
    8.2.2 Coating and Impregnation, Thin Sections ......................................... 255
    8.2.3 Grids and Replicas for Transmission Electron Microscopy ............... 261
    8.2.4 Mounting the Samples for Scanning Electron Microscopy ................ 263
    8.2.5 Surface Treatment (Shadowing, Flash-carbon, Metallization) .......... 265
X                                                                                                        Contents


8.3 Microscope Studies................................................................................. 267
    8.3.1 Optical Microscopy ........................................................................... 267
    8.3.2 Electron Microscopy, General Information ........................................ 270
    8.3.3 Transmission Electron Microscopy, Micro-diffraction ........................ 271
    8.3.4 Scanning Electron Microscopy.......................................................... 279
    8.3.5 Ultimate Micro-analysis by X-Ray Spectrometry............................... 282
References ..................................................................................................... 283
Chronobibliography ...................................................................................... 284

PART 2 - ORGANIC ANALYSIS

CHAPTER 9 Physical Fractionation of Organic Matter
9.1 Principle and Limitations ........................................................................289
    9.1.1 Forms of Organic Matter in Soil .........................................................289
    9.1.2 Principle.............................................................................................289
    9.1.3 Difficulties ..........................................................................................291
9.2 Methods ....................................................................................................293
    9.2.1 Classification .....................................................................................293
    9.2.2 Extraction of Plant Roots ...................................................................293
    9.2.3 Dispersion of the Particles.................................................................296
    9.2.4 Separation by Density. ......................................................................309
    9.2.5 Particle Size Fractionations ...............................................................314
    9.2.6 Precision of the Fractionation Methods .............................................320
9.3 Conclusion and Outlook..........................................................................321
References......................................................................................................322

CHAPTER 10 Organic and Total C, N (H, O, S) Analysis
10.1 Introduction ............................................................................................327
   10.1.1 Soil Organic Matter..........................................................................327
   10.1.2 Sampling, Preparation of the Samples, Analytical Significance.......330
10.2 Wet Methods...........................................................................................333
   10.2.1 Total Carbon: General Information ..................................................333
   10.2.2 Organic Carbon by Wet Oxidation at the Temperature
          of Reaction ......................................................................................335
   10.2.3 Organic Carbon by Wet Oxidation at Controlled Temperature ........340
   10.2.4 Organic Carbon by Wet Oxidation and Spectrocolorimetry..............342
   10.2.5 Total Nitrogen by Wet Method: Introduction ........ ............................342
   10.2.6 Total Nitrogen by Kjeldahl Method and Titrimetry ...........................344
   10.2.7 Kjeldahl N, Titration by Spectrocolorimetry......................................349
   10.2.8 Kjeldahl N, Titration by Selective Electrode . ....... ............................351
   10.2.9 Mechanization and Automation of the Kjeldahl Method...................353
   10.2.10 Modified Procedures for NO3–, NO2– and Fixed N .........................354
10.3 Dry Methods ...........................................................................................355
   10.3.1 Total Carbon by Simple Volatilization ..............................................355
   10.3.2 Simultaneous Instrumental Analysis by Dry Combustion: CHN(OS)356
   10.3.3 CHNOS by Thermal Analysis ..........................................................362
Contents                                                                                                          XI


   10.3.4 C and N Non-Destructive Instrumental Analysis..............................363
   10.3.5 Simultaneous Analysis of the Different C and N Isotopes ...............364
References......................................................................................................365
Bibliography ...................................................................................................367

CHAPTER 11 Quantification of Humic Compounds
11.1 Humus in Soils .......................................................................................371
   11.1.1 Definitions........................................................................................371
   11.1.2 Role in the Soil and Environment ....................................................373
   11.1.3 Extractions.......................................................................................374
11.2 Main Techniques ....................................................................................375
   11.2.1 Extraction ........................................................................................375
   11.2.2 Quantification of the Extracts...........................................................379
   11.2.3 Precision and Correspondence of the Extraction Methods ............. 383
   11.2.4 Purification of Humic Materials ....................................................... 389
11.3 Further Alternatives and Complements Methods............................... 392
   11.3.1 Alternative Method of Extraction ..................................................... 392
   11.3.2 Fractionation of the Humin Residue................................................ 392
References ..................................................................................................... 395
   Humic Materials ......................................................................................... 395
   Extraction, Titration, Purification and Fractionation of Humic Materials ..... 396

CHAPTER 12 Characterization of Humic Compounds
12.1 Introduction ........................................................................................... 399
   12.1.1 Mechanisms of Formation............................................................... 399
   12.1.2 Molecular Structure......................................................................... 400
12.2. Classical Techniques ........................................................................... 401
   12.2.1 Fractionation of Humic Compounds................................................ 401
   12.2.2 Titration of the Main Functional Groups .......................................... 408
   12.2.3 UV–Visible Spectrometry ................................................................ 410
   12.2.4 Infra-Red Spectrography................................................................. 413
12.3 Complementary Techniques ................................................................ 415
   12.3.1 Improvements in Fractionation Technologies ................................. 415
   12.3.2 Titration of Functional Groups......................................................... 418
   12.3.3 Characterization by Fragmentation ................................................. 419
   12.3.4 Nuclear Magnetic Resonance (NMR) ............................................. 424
   12.3.5 Fluorescence Spectroscopy............................................................ 433
   12.3.6 Electron Spin Resonance (ESR) Spectroscopy .............................. 435
   12.3.7 Measurement of Molecular Weight and Molecular Size ................. 437
   12.3.8 Microscopic Observations............................................................... 440
   12.3.9 Other Techniques ........................................................................... 441
References ..................................................................................................... 442
   Molecular Models....................................................................................... 442
   Fractionation, Determination of Molecular Weights and Molecular Sizes .. 443
   Functional Group of Humic Compounds .................................................... 445
   Spectrometric Characterizations................................................................ 446
   UV–Visible, IR, Fluorescence, ESR Spectrometries .................................. 446
   Nuclear Magnetic Resonance.................................................................... 447
XII                                                                                                       Contents


      Methods of Characterization by Fragmentation ......................................... 449
      Other Methods (Microscopy, X-ray, Electrochemistry, etc.) ...................... 451

CHAPTER 13 Measurement of Non-Humic Molecules
13.1 Introduction ........................................................................................... 453
   13.1.1 Non-Humic Molecules..................................................................... 453
   13.1.2 Soil Carbohydrates ......................................................................... 453
   13.1.3 Soil Lipids ....................................................................................... 456
   13.1.4 Pesticides and Pollutants................................................................ 457
13.2 Classical Techniques ............................................................................ 458
   13.2.1 Acid Hydrolysis of Polysaccharides ................................................ 458
   13.2.2 Purification of Acid Hydrolysates .................................................... 462
   13.2.3 Colorimetric Titration of Sugars ...................................................... 464
   13.2.4 Titration of Sugars by Gas Chromatography................................... 467
   13.2.5 Quantification of Total Lipids........................................................... 472
   13.2.6 Quantification of the Water-Soluble Organics ................................. 474
13.3 Complementary Techniques .................................................................475
   13.3.1 Carbohydrates by Gas Chromatography..........................................475
   13.3.2 Carbohydrates by Liquid Chromatography ......................................475
   13.3.3 Fractionation and Study of the Soil Lipid Fraction ...........................478
   13.3.4 Measurement of Pesticide Residues and Pollutants .......................483
References......................................................................................................492
   Soil Carbohydrates..................................................................................... 492
   Soil Lipids .................................................................................................. 494
   Aqueous Extract ........................................................................................ 495
   Pesticides and Pollutants........................................................................... 495

CHAPTER 14 Organic Forms of Nitrogen, Mineralizable Nitrogen
           (and Carbon)
14.1 Introduction ............................................................................................497
   14.1.1 The Nitrogen Cycle..........................................................................497
   14.1.2 Types of Methods ............................................................................499
14.2 Classical Methods..................................................................................500
   14.2.1 Forms of Organic Nitrogen Released by Acid Hydrolysis ................500
   14.2.2 Organic Forms of Nitrogen: Simplified Method ................................509
   14.2.3 Urea Titration ...................................................................................511
   14.2.4 Potentially Available Nitrogen: Biological Methods ..........................513
   14.2.5 Potentially Mineralizable Nitrogen: Chemical Methods....................521
   14.2.6 Kinetics of Mineralization.................................................................526
14.3 Complementary Methods ......................................................................531
   14.3.1 Alternative Procedures for Acid Hydrolysis......................................531
   14.3.2 Determination of Amino Acids .........................................................532
   14.3.3 Determination of Amino Sugars .......................................................535
   14.3.4 Proteins and Glycoproteins (glomalin).............................................538
   14.3.5 Potentially Mineralizable Nitrogen by EUF ......................................538
Contents                                                                                                         XIII


References ......................................................................................................540
   Organic Nitrogen Forms: General Articles ..................................................540
   Nitrogen Forms by Acid Hydrolysis and Distillation ....................................541
   Improvement of Acid Hydrolysis .................................................................541
   Determination of Amino Acids ....................................................................541
   Determination of Amino Sugars..................................................................542
   Glomalin .....................................................................................................542
   Urea Titration..............................................................................................543
   Potentially Mineralizable Nitrogen: General Papers ...................................543
   Potentially Mineralizable Nitrogen: Biological Methods ..............................544
   Potentially Mineralizable Nitrogen: Chemical Methods...............................545
   Potentially Mineralizable Nitrogen by EUF .................................................545
   Mineralization Kinetics ...............................................................................546

PART 3 - INORGANIC ANALYSIS – Exchangeable and Total Elements
CHAPTER 15 pH Measurement
15.1 Introduction ........................................................................................... 551
   15.1.1 Soil pH ............................................................................................ 551
   15.1.2 Difficulties ....................................................................................... 553
   15.1.3 Theoretical Aspects ........................................................................ 554
15.2 Classical Measurements....................................................................... 556
   15.2.1 Methods .......................................................................................... 556
   15.2.2 Colorimetric Method........................................................................ 557
   15.2.3 Electrometric Method ...................................................................... 560
   15.2.4 Electrometric Checking and Calibration .......................................... 564
   15.2.5 Measurement on Aqueous Soil Suspensions ................................. 565
   15.2.6 Determination of the pH-K and pH-Ca ............................................ 567
   15.2.7 Measurement on Saturated Pastes ................................................ 567
   15.2.8 Measurement on the Saturation Extract.......................................... 568
   15.2.9 Measurement of the pH-NaF .......................................................... 569
15.3 In Situ Measurements ........................................................................... 570
   15.3.1 Equipment....................................................................................... 570
   15.3.2 Installation in the Field .................................................................... 570
   15.3.3 Measurement on Soil Monoliths...................................................... 572
References ..................................................................................................... 574
Bibliography .................................................................................................. 575
Appendix ........................................................................................................ 576
   Appendix 1: Table of Electrode Potentials ................................................. 576
   Appendix 2: Constants of Dissociation of Certain Equilibriums.................. 577
   Appendix 3: Buffer Solutions...................................................................... 577
   Appendix 4: Coloured Indicators................................................................ 579

CHAPTER 16 Redox Potential
16.1 Definitions and Principle ...................................................................... 581
16.2 Equipment and Reagents ..................................................................... 583
   16.2.1 Electrodes....................................................................................... 583
   16.2.2 Salt Bridge for Connection .............................................................. 584
   16.2.3 System of Measurement ................................................................. 584
   16.2.4 Calibration Solutions ....................................................................... 585
XIV                                                                                                       Contents


16.3 Procedure............................................................................................... 585
   16.3.1 Pretreatment of the Electrode ......................................................... 585
   16.3.2 Measurement on Soil Sample......................................................... 586
   16.3.3 Measurement on Soil Monolith ....................................................... 586
    16.3.4 In Situ Measurements..................................................................... 587
    16.3.5 Measurement of Oxygen Diffusion Rate ......................................... 588
    16.3.6 Colorimetric Test of Eh ................................................................... 589
References ..................................................................................................... 589
Bibliography .................................................................................................. 590

CHAPTER 17 Carbonates
17.1 Introduction ........................................................................................... 593
17.2 Measurement of Total Carbonates....................................................... 595
   17.2.1 Introduction ..................................................................................... 595
   17.2.2 Volumetric Measurement by Calcimetry ..........................................596
   17.2.3 Acidimetry........................................................................................599
17.3 Titration of Active Carbonate ................................................................601
   17.3.1 Principle...........................................................................................601
   17.3.2 Implementation ................................................................................601
   17.3.3 Index of Chlorosis Potential.............................................................603
References......................................................................................................604

CHAPTER 18 Soluble Salts
18.1 Introduction ............................................................................................605
18.2 Extraction ...............................................................................................606
   18.2.1 Soil/solution Ratio............................................................................606
   18.2.2 Extraction of Saturated Paste..........................................................607
   18.2.3 Diluted Extracts ...............................................................................608
   18.2.4 In Situ Sampling of the Soil Water ...................................................609
   18.2.5 Extracts with Hot Water ...................................................................610
18.3 Measurement and Titration ...................................................................610
   18.3.1 Electrical Conductivity of Extracts....................................................610
   18.3.2 In Situ Conductivity..........................................................................613
   18.3.3 Total Dissolved Solid Material .........................................................614
   18.3.4 Soluble Cations ...............................................................................615
   18.3.5 Extractable Carbonate and Bicarbonate (Alkalinity) ........................616
   18.3.6 Extractable Chloride ........................................................................618
   18.3.7 Extractable Sulphate, Nitrate and Phosphate ..................................620
   18.3.7 Extractable Boron ............................................................................620
   18.3.8 Titration of Extractable Anions by Ionic Chromatography................622
   18.3.9 Expression of the Results................................................................625
References......................................................................................................626

CHAPTER 19 Exchange Complex
19.1 Introduction ............................................................................................629
19.2 Origin of Charges...................................................................................630
   19.2.1 Ionic Exchange ................................................................................630
Contents                                                                                                         XV


   19.2.2 Exchange Complex .........................................................................631
   19.2.3 Theory .............................................................................................633
References......................................................................................................636
Chronobibliography.......................................................................................637

CHAPTER 20 Isoelectric and Zero Charge Points
20.1 Introduction ............................................................................................645
   20.1.1 Charges of Colloids .........................................................................645
   20.1.2 Definitions........................................................................................647
   20.1.3 Conditions for the Measurement of Charge.....................................649
20.2 Main Methods .........................................................................................651
   20.2.1 Measurement of pH0 (PZSE), Long Equilibrium Time .....................651
   20.2.2 Point of Zero Salt Effect (PZSE), Short Equilibrium Time ................652
References......................................................................................................655
CHAPTER 21 Permanent and Variable Charges
21.1 Introduction ........................................................................................... 657
21.2 Main Methods......................................................................................... 661
   21.2.1 Measurement of Variable Charges ................................................. 661
   21.2.2 Determination of Permanent Charges............................................. 662
References ..................................................................................................... 664
Bibliography .................................................................................................. 665

CHAPTER 22 Exchangeable Cations
22.1 Introduction ........................................................................................... 667
   22.1.1 Exchangeable Cations of Soil ......................................................... 667
   22.1.2 Extracting Reagents........................................................................ 668
   22.1.3 Equipment....................................................................................... 669
22.2 Ammonium Acetate Method at pH 7 .................................................... 671
   22.2.1 Principle .......................................................................................... 671
   22.2.2 Procedure ....................................................................................... 671
22.3 Automated Continuous Extraction ...................................................... 674
References ..................................................................................................... 674
Bibliography .................................................................................................. 676

CHAPTER 23 Exchangeable Acidity
23.1 Introduction ........................................................................................... 677
   23.1.1 Origin of Acidity............................................................................... 677
   23.1.2 Aims of the Analysis........................................................................ 678
23.2 Method.................................................................................................... 680
   23.2.1 Principle .......................................................................................... 680
   23.2.2 Reagents ........................................................................................ 680
   23.2.3 Procedure ....................................................................................... 681
23.3 Other Methods ....................................................................................... 683
References ..................................................................................................... 684
Chronobibliography ...................................................................................... 685
XVI                                                                                                       Contents


CHAPTER 24 Lime Requirement
24.1 Introduction ........................................................................................... 687
   24.1.1 Correction of Soil Acidity................................................................. 687
   24.1.2 Calculation of Correction................................................................. 688
24.2 SMP Buffer Method ............................................................................... 690
   24.2.1 Principle .......................................................................................... 690
   24.2.2 Reagents ........................................................................................ 691
   24.2.3 Procedure ....................................................................................... 691
   24.2.4 Remarks ......................................................................................... 692
References ..................................................................................................... 693
Chronobibliography ...................................................................................... 693

CHAPTER 25 Exchange Selectivity, Cation Exchange Isotherm
25.1 Introduction ........................................................................................... 697
25.2 Determination of the Exchange Isotherm............................................ 702
   25.2.1 Principle .......................................................................................... 702
   25.2.2 Reagents ........................................................................................ 702
   25.2.3 Procedure........................................................................................703
   25.2.4 Remarks ..........................................................................................704
References......................................................................................................705
Chronobibliography.......................................................................................706

CHAPTER 26 Cation Exchange Capacity
26.1 Introduction ............................................................................................709
   26.1.1 Theoretical Aspects .........................................................................709
   26.1.2 Variables that Influence the Determination of CEC..........................711
26.2 Determination of Effective CEC by Summation (ECEC) .....................718
   26.2.1 Principle...........................................................................................718
   26.2.2 Alternative Methods.........................................................................718
26.3 CEC Measurement at Soil pH in Not-Buffered Medium .....................719
   26.3.1 Principle...........................................................................................719
   26.3.2 Methods Using Not-Buffered Metallic Salts .....................................719
   26.3.3 Procedure Using Not-Buffered Organo Metallic Cations .................722
   26.3.4 Not-Buffered Methods Using Organic Cations ................................ 728
26.4 CEC Measurement in Buffered Medium ...............................................730
   26.4.1 Buffered Methods — General Information .......................................730
   26.4.2 Ammonium Acetate Method at pH 7.0.............................................732
   26.4.3 Buffered Methods at pH 8.0–8.6......................................................738
   26.4.4 Buffered Methods at Different pH ....................................................743
References......................................................................................................745
Bibliography ...................................................................................................750
   CEC General Theory ..................................................................................750
   Barium Method at soil pH ...........................................................................751
   Buffered Method at pH 7.0 .........................................................................751
   Cobaltihexamine CEC ................................................................................752
   Silver-Thiourea ...........................................................................................753
   CEC with Organic Cations (Coloured Reagents) ....................................... 753
   Buffered Methods at pH 8.0–8.6.................................................................753
   Barium Chloride-Triethanolamine at pH 8.1 ............................................... 753
Contents                                                                                                       XVII


CHAPTER 27 Anion Exchange Capacity
27.1 Theory .....................................................................................................755
27.2 Measurement ..........................................................................................758
   27.2.1 Principle...........................................................................................758
   27.2.2 Method ............................................................................................760
27.3 Simultaneous Measurement of AEC, EC, CEC and net CEC ..............760
   27.3.1 Aim ..................................................................................................760
   27.3.2 Description ......................................................................................761
References......................................................................................................763

CHAPTER 28 Inorganic Forms of Nitrogen
28.1 Introduction ............................................................................................767
   28.1.1 Ammonium, Nitrate and Nitrite ........................................................767
   28.1.3 Sampling Problems .........................................................................768
   28.1.4 Analytical Problems .........................................................................768
28.2 Usual Methods .......................................................................................769
   28.2.1 Extraction of Exchangeable Forms..................................................769
   28.2.2 Separation by Micro-Diffusion......................................................... 770
   28.2.3 Colorimetric Titration of Ammonium................................................ 773
   28.2.4 Colorimetric Titration of Nitrites....................................................... 775
   28.2.5 Colorimetric Titration of Nitrates ..................................................... 778
   28.2.6 Extracted Organic Nitrogen............................................................. 779
28.3 Other Methods ....................................................................................... 780
   28.3.1 Nitrate and Nitrite by Photometric UV Absorption ........................... 780
   28.3.2 Ammonium Titration Using a Selective Electrode ........................... 782
   28.3.3 Measurement of Nitrates with an Ion-Selective Electrode............... 785
   28.3.4 In situ Measurement ....................................................................... 788
   28.3.5 Non-Exchangeable Ammonium ...................................................... 790
References ..................................................................................................... 791
Bibliography .................................................................................................. 792

CHAPTER 29 Phosphorus
29.1 Introduction ........................................................................................... 793
29.2 Total Soil Phosphorus .......................................................................... 794
   29.2.1 Introduction ..................................................................................... 794
   29.2.2 Wet Mineralization for Total Analyses............................................. 795
   29.2.3 Dry Mineralization ........................................................................... 798
29.3 Fractionation of Different Forms of Phosphorus................................ 799
   29.3.1 Introduction ..................................................................................... 799
   29.3.2 Sequential Methods ........................................................................ 800
   29.3.3 Selective Extractions – Availability Indices ..................................... 804
   29.3.4 Isotopic Dilution Methods................................................................ 813
   29.3.5 Determination of Organic Phosphorus ............................................ 814
29.4 Retention of Phosphorus...................................................................... 818
   29.4.1 Introduction ..................................................................................... 818
   29.4.2 Determination of P Retention.......................................................... 819
XVIII                                                                                                    Contents


29.5 Titration of P in the Extracts................................................................. 821
   29.5.1 Introduction ..................................................................................... 821
   29.5.2 Titration of Ortho-phosphoric P by Spectrocolorimetry ................... 823
   29.5.3 P Titration by Atomic Spectrometry . ............................................... 828
                                                               31
   29.5.4 Titration of Different Forms of P by P NMR .................................. 828
   29.5.5 Separation of P Compounds by Liquid Chromatography ................ 829
29.6 Direct Speciation of P in situ, or on Extracted Particles .................... 830
References ..................................................................................................... 830
Chronobibliography ...................................................................................... 833

CHAPTER 30 Sulphur
30.1 Introduction ........................................................................................... 835
   30.1.1 Sulphur Compounds ....................................................................... 835
   30.1.2 Mineralogical Studies...................................................................... 838
30.2 Total Sulphur and Sulphur Compounds .............................................. 839
   30.2.1 Characteristics of Fluviomarine Soils .............................................. 839
   30.2.2 Soil Sampling and Sample Preparation .......................................... 840
   30.2.3 Testing for Soluble Sulphur Forms ................................................. 841
   30.2.4 Titration of Total Sulphur................................................................. 842
   30.2.5 Total S Solubilisation by Alkaline Oxidizing Fusion......................... 843
   30.2.6 Total Solubilisation by Sodium Hypobromite in Alkaline Medium.... 844
   30.2.7 S titration with Methylen Blue Colorimetry ...................................... 845
   30.2.8 Sulphate Titration by Colorimetry with Methyl Thymol Blue............. 850
   30.2.9 Total Sulphur by Automated Dry CHN(OS) Ultimate Analysis ......... 853
                                          2–
   30.2.10 Titration of Total SO4 -S by Ionic Chromatography ...................... 855
   30.2.11 Total S Titration by Plasma Emission Spectrometry...................... 857
   30.2.12 Titration by X-ray Fluorescence..................................................... 857
   30.2.13 Titration by Atomic Absorption Spectrometry ................................ 857
   30.2.14 Analytical Fractionation of Sulphur Compounds ............................ 858
   30.2.15 Titration of Organic S bound to C .................................................. 859
   30.2.16 Titration of Organic S not bound to C ............................................ 861
   30.2.17 Extraction and Titration of Soluble Sulphides ................................ 863
   30.2.18 Titration of Sulphur in Pyrites ........................................................ 865
   30.2.19 Titration of Elementary Sulphur ..................................................... 867
   30.2.20 Titration of Water Soluble Sulphates ............................................. 869
   30.2.21 Titration of Na3-EDTA Extractable Sulphates ................................ 871
   30.2.22 Titration of Jarosite ........................................................................ 873
   30.2.23 Sequential Analysis of S Forms..................................................... 876
30.3 Sulphur of Gypseous Soils ................................................................... 878
   30.3.1 Gypseous Soils ............................................................................... 878
   30.3.2 Preliminary Tests............................................................................. 879
   30.3.3 Extraction and Titration from Multiple Extracts ................................ 881
   30.3.4 Gypsum Determination by Acetone Precipitation ............................ 882
30.4 Sulphur and Gypsum Requirement of Soil .......................................... 883
   30.4.1 Introduction...................................................................................... 883
   30.4.2 Plant Sulphur Requirement ............................................................. 884
   30.4.3 Gypsum Requirement...................................................................... 886
References...................................................................................................... 888
Chronobibliography....................................................................................... 890
Contents                                                                                                       XIX


CHAPTER 31 Analysis of Extractable and Total Elements
31.1 Elements of Soils ...................................................................................895
   31.1.1 Major Elements ...............................................................................895
   31.1.2 Trace Elements and Pollutants........................................................897
   31.1.3 Biogenic and Toxic Elements ..........................................................899
   31.1.4 Analysis of Total Elements ..............................................................900
   31.1.5 Extractable Elements.......................................................................901
31.2 Methods using Solubilization................................................................901
   31.2.1 Total Solubilization Methods............................................................901
   31.2.2 Mean Reagents for Complete Dissolutions .....................................903
   31.2.3 Acid Attack in Open Vessel .............................................................906
   31.2.4 Acid Attack in Closed Vessel...........................................................911
   31.2.5 Microwave Mineralization ................................................................913
   31.2.6 Alkaline Fusion ................................................................................915
   31.2.7 Selective Extractions .......................................................................920
   31.2.8 Measurement Methods....................................................................925
   31.2.9 Spectrocolorimetric Analysis ............................................................927
   31.2.10 Analysis by Flame Atomic Emission Spectrometry........................931
   31.2.11 Analysis by Flame Atomic Absorption Spectrometry .....................932
   31.2.12 Analysis of Trace Elements by Hydride and Cold Vapour AAS .....937
   31.2.13 Analysis of Trace Elements by Electrothermal AAS ......................940
   31.2.14 Analysis by Inductively Coupled Plasma-AES ..............................941
   31.2.15 Analysis by Inductively Coupled Plasma-Mass Spectrometry .......946
31.3 Analysis on Solid Medium ....................................................................952
   31.3.1 Method ............................................................................................952
   31.3.2 X-ray Fluorescence Analysis ........................................................... 954
   31.3.3 Neutron Activation Analysis ............................................................962
References .....................................................................................................969

INDEX ...................………………………………………………………………….975

PERIODIC TABLE OF THE ELEMENTS ....................................................... 993
Part 1




Mineralogical
Analysis
1


Water Content and Loss on Ignition




1.1 Introduction

Schematically, a soil is made up of a solid, mineral and organic phase, a
liquid phase and a gas phase. The physical and chemical characteristics of
the solid phase result in both marked variability of water contents and a
varying degree of resistance to the elimination of moisture.
   For all soil analytical studies, the analyst must know the exact quantity
of the solid phase in order to transcribe his results in a stable and
reproducible form. The liquid phase must be separate, and this operation
must not modify the solid matrix significantly (structural water is related
to the crystal lattice).
   Many definitions exist for the terms “moisture” and “dry soil”. The
water that is eliminated by moderate heating, or extracted using solvents,
represents only one part of total moisture, known as hygroscopic water,
which is composed of (1) the water of adsorption retained on the surface
of solids by physical absorption (forces of van der Waals), or by
chemisorption, (2) the water of capillarity and swelling and (3) the
hygrometrical water of the gas fraction of the soil (ratio of the effective
pressure of the water vapour to maximum pressure). The limits between
these different types of water are not strict.
   “Air-dried” soil, which is used as the reference for soil preparation in
the laboratory, contains varying amounts of water which depend in
particular on the nature of secondary minerals, but also on external forces
(temperature, the relative humidity of the air). Some andisols or histosols
that are air dried for a period of 6 months can still contain 60% of water
in comparison with soils dried at 105°C, and this can lead to unacceptable
errors if the analytical results are not compared with a more realistic
4                                                           Mineralogical Analysis

reference for moisture.1 Saline soils can also cause problems because of
the presence of hygroscopic salts.
It is possible to determine remarkable water contents involving fields of
force of retention that are sufficiently reproducible and representative
(Table 1.1). These values can be represented in the form of capillary
potential (pF), the decimal logarithm of the pressure in millibars needed
to bring a sample to a given water content (Table 1.1). It should be noted
that because of the forces of van der Waals, there can be differences in
state, but not in form, between water likely to evaporate at 20°C and
water that does not freeze at –78°C. The analyst defines remarkable
points for example:
– The water holding capacity, water content where the pressure
  component of the total potential becomes more significant than the
  gravitating component; this depends on the texture and the nature of the
  mineral and approaches field capacity which, after suitable drainage,
  corresponds to a null gravitating flow.
– The capillary frangible point, a state of moisture where the continuous
  water film becomes monomolecular and breaks.
– The points of temporary and permanent wilting where the pellicular
  water retained by the bonding strength balances with osmotic pressure;
  in this case, except for some halophilous plants, the majority of plants
  can no longer absorb the water that may still be present in the soil.
– The hygroscopic water which cannot be easily eliminated in the natural
  environment as this requires considerable energy, hygroscopic water
  evaporates at temperatures above 100°C and does not freeze at –78°C.
– The water of constitution and hydration of the mineral molecules can
  only be eliminated at very high pressures or at high temperatures, with
  irreversible modification or destruction of the crystal lattice.
   These types of water are estimated using different types of
measurements to study the water dynamics and the mechanisms related to
the mechanical properties of soils in agronomy and agricultural
engineering, for example:
– usable reserves (UR), easily usable reserves (EUR), or reserves that are
  easily available in soil–water–plant relations.
– thresholds of plasticity, adhesiveness, liquidity (limits of Atterberg,
  etc.).




1   It should be noted that for these types of soil, errors are still amplified by the
      ponderal expression (because of an apparent density that is able to reach 0.3)
      this is likely to make the analytical results unsuitable for agronomic studies.
Table 1.1 -
  Approximate
  correspondence
  moistures –
  pressure –
  diameter of the
                         Water Content and Loss on Ignition




  pores – types of
  water and critical
  points in soils with
  respect to plant
  requirements
                         5
6                                                     Mineralogical Analysis

   This brief summary gives an indication of the complexity of the
concept of soil moisture and the difficulty for the analyst to find a
scientifically defined basis for dry soil where the balance of the solid,
liquid and gas phases is constant.


1.2 Water Content at 105°C (H2 O −)



1.2.1 Principle

By convention, the term “moisture” is considered to be unequivocal.
Measurement is carried out by gravimetry after drying at a maximum
temperature of 105°C. This increase in temperature maintained for a
controlled period of time, is sufficiently high to eliminate “free” forms of
water and sufficiently low not to cause a significant loss of organic matter
and unstable salts by volatilization. Repeatability and reproducibility are
satisfactory in the majority of soils if procedures are rigorously respected.


1.2.2 Materials

– 50 × 30 mm borosilicate glass low form weighing bottle with ground
  flat top cap.
– Vacuum type Ø 200 mm desiccator made of borosilicate glass with
  removable porcelain floor, filled with anhydrous magnesium
  perchlorate [Mg(ClO4)2].
– Thermostatically controlled drying oven with constant speed blower for
  air circulation and exhausting through a vent in the top of oven –
  temperature uniformity ± 0.5–1°C.
– Analytical balance: precision 0.1 mg, range 100 g.


1.2.3 Sample

It is essential to measure water content on the same batch of samples
prepared at the same time (fine earth with 2 mm particles or ground soil)
for subsequent analyses. It should be noted that the moisture content of
the prepared soil may change during storage (fluctuations in air moisture
and temperature, oxidation of organic matter, loss or fixing of volatile
substances, etc.).
Water Content and Loss on Ignition                                           7

  This method can be considered “destructive” for certain types of soils
and analyses, as the physical and chemical properties can be transformed.
Samples dried at 105°C should generally not be used for other
measurements.


1.2.4 Procedure

– Dry tared weighing bottles for 2 h at 105°C, let them cool in the
  desiccator and weigh the tare with the lid placed underneath:       m0
– Place about 5 g of air-dried soil (fine earth sieved through a 2 mm
  mesh) in the tare box and note the new weight:                      m1
– Place the weighing bottles with their flat caps placed underneath in a
  ventilated drying oven for 4 h at 105°C (the air exit must be open and
  the drying oven should not be overloaded)
– Cool in the desiccator and weigh (all the lids of the series contained in
  the desiccator should be closed to avoid moisture input):           m2
– Again place the opened weighing bottles in the drying oven for 1 h at
  105°C and weigh under the same conditions; the weight should be
  constant; if not, continue drying the weighing bottles until their weight
  is constant
                                                       m1 − m2
              % water content at 105°C = 100 ×                 .
                                                       m1 − m0


1.2.5 Remarks

The results can also be expressed in pedological terms of water holding
capacity (HC) by the soil: HC = 100 × m1 − m2 .
                                             m 2 − m0
   The point of measurement at 105°C with constant mass is empirical
(Fig. 1.1). A temperature of 130°C makes it possible to release almost all
“interstitial water”, but this occurs to the detriment of the stability of
organic matter. The speed of drying should be a function of the
temperature, the surface of diffusion, the division of the solid, ventilation,
pressure (vacuum), etc.
   Respecting the procedure is thus essential:
– For andisols and histosols, the initial weighing should be systematically
  carried out after 6 h.
– For saline soils with large quantities of dissolved salts, the sample can
  be dried directly, soluble salts then being integrated into the “dry soil”
  or eliminated beforehand by treatment with water.
8                                                      Mineralogical Analysis




Fig. 1.1 - Theoretical
        diagrammatic curve
        showing water moved at
        a given temperature as a
        function of time (180°C =
        end of H2O losses in
        allophanes)




1.3 Loss on Ignition at 1,000°C (H2O +)

1.3.1 Introduction

As we have just seen, the reference temperature (105°C) selected for the
determination of the moisture content of a “dry soil” represents only _    a
totally hypothetical state of the water that is normally referred to as H2O .
   When a sample undergoes controlled heating and the uninterrupted
ponderal variations are measured, curves of “dehydration” are obtained
whose inflections characterize losses in mass at certain critical
temperatures (TGA).1 If one observes the temperature curve compared to
a thermically inert substance (Fig. 1.2), it is possible to determine
changes in energy between the sample studied and the reference
substance, this results in a change in the temperature which can be
measured (DTA–DSC).2
– If the temperature decreases compared to the reference, an endothermic    _
  peak appears that characterizes loss of H2O (dehydration), of OH
  (dehydroxylation), sublimation, or evaporation, or decomposition of
  certain substances, etc.
– If the temperature increases compared to the reference, an exothermic
  peak appears that characterizes transformations of crystalline structures,
  oxidations (Fe2+ → Fe3+), etc.



2   TGA thermogravimetric analysis; DTA differential thermal analysis; DSA
    differential scanning calorimetry (cf. Chap. 7).
Water Content and Loss on Ignition                                          9




Fig. 1.2 - Schematized
        example of thermal
        analysis curves
        TGA (solid line) and
        DTA (dashed line)




   The simultaneous analysis of the gases or vapours that are emitted and
X-ray diffraction (cf. Chap. 4) of the modifications in structure make it
possible to validate the inflections of the curves or the different endo- and
exothermic peaks.
   As can be seen in the highly simplified Table 1.2, the most commonly
observed clays are completely dehydroxyled at 1,000°C, oxides at 400°C
or 500°C, carbonates, halogens, sulphates, sulphides are broken down or
dehydrated between 300°C and 1,000°C, and free or bound organic
matter between 300°C and 500°C. The temperature of 1,000°C can thus
be retained as a stable reference temperature for loss on ignition, the
thermal spectra then being practically flat up to the peaks of fusion which
generally only appear at temperatures higher than 1,500°C or even
2,500°C.

1.3.2 Principle

The sample should be gradually heated in oxidizing medium to 1,000°C
and maintained at this temperature for 4 h.
10                                                     Mineralogical Analysis

Table 1.2 Dehydration and dehydroxylation of some clays, oxides and
      salts as a function of temperature in °C


 type              name                     dehydrationa   dehydroxylationb
 clays 1:1         Kaolinite–halloysite         350             1,000
 clays 2:1         smectites –                  370             1,000
                   montmorillonite
 clays 2:1         Illite – micas            350–370            1,000
 clays 2:1         vermiculite                 700              1,000
 clays 2:1:1       chlorite                    600               800
 fibrous clays     Sepiolite–                  300             800–900
                   palygorskite                200            900–1,000
                   allophane
iron oxides        Hematite α Fe2O3             (flat           1,000
                                             spectrum)
                   goethite α FeO–OH            100              370
                   magnetite Fe2O3              375              650
 Al oxides         gibbsite γ-Al(OH)3           100              350
 Ca carbonate      Calcite–aragonite             –            950–1,000
                   CaCO3
Mg carbonate       magnesite MgCO3               –               710
Ca–Mg              dolomie                       –             800–940
carbonate          CaMg(CO3)2
halogenous         sodium chloride               –           800 (fusion)
compounds          NaCl
sulphate           gypsum CaSO4,                 –               300
                   2H2O
sulphide           pyrite FeS2                   –               615
organic            free or linked organic        –             300–500
compounds          matter
 a   Dehydration: loss of water adsorbed on outer or inner surfaces, with
     or without reversible change in the lattice depending on the types of
     clay, water organized in monomolecular film on surface oxygen
     atoms or around exchangeable cations.
 b   dehydroxylation (+ decarbonatation and desulphurization reactions),
     loss of water linked to lattice (OH−), irreversible reaction or
     destruction of the structure, water present in the cavities, O forming
     the base of the tetrahedrons.
Water Content and Loss on Ignition                                        11

   Loss on ignition is determined by gravimetry. It includes combined
water linked to the crystal lattice plus a little residual non-structural
adsorbed water, organic matter, possibly volatile soluble salts (F−, S2−)
and carbonates (CO32−, CO2). The use of an oxidizing atmosphere is
essential to ensure combustion of the organic matter and in particular
oxidation of reduced forms of iron, this being accompanied by an
increase in mass of the soils with minerals rich in Fe2+. A complete
analysis generally includes successive measurements of H2O− and H2O+
on the same sample.


1.3.3 Equipment

– Platinum or Inconel (Ni–Cr–Fe) crucible with cover, diameter 46 mm.
– Analytical balances (id. H2O−)
– Desiccator (id. H2O−)
– Muffle electric furnace (range 100–1,100°C) with proportional
  electronic regulation allowing modulation of the impulses with
  oscillation of about 1°C around the point of instruction; built-in
  ventilation system for evacuation of smoke and vapour
– Thermal protective gloves
– 300 mm crucible tong


1.3.4 Procedure

– Tare a crucible, heat it to 1,000°C and cool it in the desiccator with its
  lid on:                                                         m0
– Introduce 2–3 g of air-dried soil crushed to 0.1 mm:            m1
– Dry in the drying oven at 105°C for 4 h
– Cool in the desiccator and weigh:                               m2
– Adjust the lid of the crucible so it covers approximately 2/3 of the
  crucible and put it in the electric furnace
– Programme a heating gradient of approximately 6°C per minute with a
  20-min stage at 300°C, then a fast rise at full power up to 1,000°C with
  a 4-h graduation step (the door of the furnace should only be closed
  after complete combustion of the organic matter)
– Cool the crucible in the desiccator and weigh:                  m3


1.3.5 Calculations

m1 – m0 =       weight of air-dried soil
m1 – m2 =       moisture at 105°C
12                                                       Mineralogical Analysis

m2 – m0 =        weight of soil dried at 105°C
m2 – m3 =        loss on ignition
                    m1 − m2
H 2O – % = 100 ×
                    m1 − m0        related to air-dried soil
      +             m2 − m3
H 2O % = 100 ×
                    m2 − m0        related to soil dried at 105°C


1.3.6 Remarks

Knowing the moisture of the air-dried soil, it is possible to calculate the
weight of air-dried soil required to work with a standard weight soil dried
at 105°C, thus simplifying calculations during analyses of the samples.
   To obtain the equivalent of 1 g of soil dried at 105°C, it is necessary to
weigh:
       100
              with wc = % water content of air dried soil.
     100 − wc
   Platinum crucibles are very expensive and are somewhat volatile at
1,000°C, which means they have to be tared before each operation,
particularly when operating in reducing conditions.
   Combustion of organic matter with insufficient oxygen can lead to the
formation of carbide of Pt, sulphides combine with Pt, chlorine attacks Pt,
etc.


Bibliography

Campbell GS, Anderson RY (1998) Evaluation of simple transmission line
      oscillators for soil moisture measurement. Comput. and Electron. Agric.,
      20, 31–44
Chin Huat Lim, Jackson ML (1982) Dissolution for total elemental analysis. In
      Methods of Soil Analysis, Part 2, Page A.L., Miller R.H., Kenny D.R. ed.
      Am. Soc. Agronomy, pp. 1–11
Dixon JB (1977) Minerals in soil environments. Soil Sci. Soc. Am.
Dubois J, Paindavoine JM (1982) Humidité dans les solides, liquides et gaz.
      Techniques de l’ingénieur., (P 3760)
Gardner WH (1986) Water content. In Methods of Soil Analysis, Part 1, Klute
      ed. Am. Soc. Agronomy, Soil Sci. Soc. Am., pp. 493–544
Henin S (1977) Cours de physique du sol: l'eau et le sol tome II., Editest, Paris:
      1–164
Lane PNJ, Mackenzie DH, Nadler AD (2002) Note of clarification about: Field
      and laboratory calibration and test of TDR and capacitance techniques for
      indirect measurement of soil water content. Aust. J. Soil Res., 40,
      555–1386
Water Content and Loss on Ignition                                        13

Lane PNJ, Mackenzie DH (2001) Field and laboratory calibration and test of
      TDR and capacitance techniques for indirect measurement of soil. Aust.
      J. Soil Res., 39, 1371–1386
NF ISO 11465 (X31-102) (1994) Détermination de la teneur pondérale en
      matière sèche et en eau. In Qualité des sols, AFNOR, 1996, 517–524
Rankin LK, Smajstrla AG (1997) Evaluation of the carbide method for soil
      moisture measurement in sandy soils. Soil and Crop Science Society of
      Florida, 56, pp. 136–139
Skierucha W (2000) Accuracy of soil moisture measurement by TDR technique.
      Int. Agrophys., 14, 417–426
Slaughter DC, Pelletier MG, Upadhyaya SK (2001) Sensing soil moisture using
      NIR spectroscopy. Appl. Eng. Agric., 17, 241–247
Walker JP, Houser PR (2002) Evaluation of the Ohm Mapper instrument for soil
      moisture measurement. Soil Sci. Soc. Am. J., 66, 728–734
X31-505 (1992) Méthode de détermination du volume, apparent, et du contenu
      en eau des mottes. In Qualité des sols, AFNOR, 1996, 373–384
Yu C, Warrick AW, Conklin MH (1999) Derived functions of time domain
      reflectometry for soil moisture measurement. Water Resour. Res., 35,
      1789–1796
2


Particle Size Analysis




2.1 Introduction



2.1.1 Particle Size in Soil Science

Determination of grain-size distribution of a sample of soil is an important
analysis for various topics in pedology, agronomy, sedimentology, and other
fields such as road geotechnics.
   Soil texture has an extremely significant influence on the physical and
mechanical behaviours of the soil, and on all the properties related to
water content and the movement of water, (compactness, plasticity, thrust
force, slaking, holding capacity, moisture at different potentials, per-
meability, capillary movements, etc.).
   Particle size analysis of a sample of soil, sometimes called “mechanical
analysis”, is a concept that has been the subject of much discussion
(Hénin 1976). Soil is an organized medium including an assemblage of
mineral and organic particles belonging to a continuous dimensional
series. The first difficulty is to express the proportion of these different
particles according to a standard classification, which is consequently
somewhat artificial.
   One classification scale was proposed by Atterberg (1912). Today this
scale is recognized at different national and international levels and
includes two main fractions: fine earth (clay, silts and sands with a grain
diameter <2 mm) and coarse elements (gravels, stones with a grain
diameter >2 mm). The particle size series (Fig. 2.1) for fine earth is
generally expressed after analysis in three size fractions (clay fraction
less than 0.002 mm, silt fraction from 0.002 to 0.02 mm, and sand
fraction from 0.02 to 2 mm). In some countries, or for the purpose of a
particular type of pedological interpretation, a more detailed scale of
classes is sometimes used, for example five fractions: fine clays, silts,
coarse silts or very fine sands, fine sands, and coarse sands (Fig. 2.1).
16                                                     Mineralogical Analysis




Fig. 2.1. Ranges of particle size used for soils (NC number of classes; FSi fine
          silts, CSi coarse silts; FS, VFS, CS fine, very fine and coarse sands,
          respectively; FC fine clays; FG, CG fine gravels and coarse gravels),
          from top to bottom: (CSSC) Canadian Soil Survey Committee (1978): 10
          particle size ranges < 2 mm; France (before 1987): 8 ranges; USDA
          United States Department of Agriculture (1975): 7 ranges; AFNOR
          Association Française de Normalisation (1987): 5 ranges; ISSS
          = International Soil Science Society (1966): 4 ranges; ASTM = American
          Society for Testing Materials (1985): 3 ranges

   However, it should be noted that the terminology used does not provide
much information about the real nature of the classes; thus clay defined as
having a diameter equal to or less than 0.002 mm does not contain only
clay corresponding to this mineralogical definition but can also contain
sesquioxides, very fine silts, organic matter, carbonates, or compounds
without colloidal properties. In the same way, sands, which generally result
from fragmentation of the parent rock, can also include pseudo-sands, small
ferruginous concretions, small limestone or cemented nodules that are
resistant to dispersion treatments. The presence of these pseudo-sands can
render the conclusions of particle size analysis illusory.
   Another difficulty appears with the fractionation of elementary
particles by dissociating them from their original assembly. Here too
analytical standards exist, but it should be recognized that in certain cases
the rupture of all the forces of cohesion is not complete (the case in
hardened cemented soils), or on the contrary the forces are too energetic.
   Lastly, particle size analysis accounts for the size but not for the shape
of the particles, or their nature. If necessary, these are the subject of
Particle Size Analysis                                                    17

specific morphoscopic and mineralogical analyses. The result of particle
size analysis is expressed in classes of which the relative proportions can
be summed up in the form of a triangular diagram enabling the texture of
a sample, a horizon, or a soil to be defined. Depending on the school,
there are several different types of triangles that represent textures:
GEPPA (Groupe d’Etude des Problèmes de Pédologie Appliquée, AFES,
Grignon, France) includes 17 textural classes; the USDA’s (United States
Department of Agriculture) includes 12 classes (Gras 1988); others are
simplified to a greater or lesser extent depending on the pedological or
agronomic purpose of the study. Starting from these results, different
interpretations are usually made in terms of pedogenesis (comparison of
the vertical sand percents to check the homogeneity of a given material in
a given soil profile, calculation of different indices of leaching, clay
transport, etc.); others are more practical (definition of the relation of
texture to hydric characteristics for the initial calculation of the amounts
and frequencies of irrigation, or for the choice of machinery for
cultivation.


2.1.2 Principle

Particle size analysis is a laboratory process, which initially causes
dissociation of the material into elementary particles; this implies the
destruction of the aggregates by eliminating the action of cements. But
this action should not be too violent to avoid the creation of particles that
would not naturally exist; the procedure of dispersion must thus be
sufficiently effective to break down the aggregates into individual
components, but not strong enough to create neo-particles.
   Measurements (Table 2.1, Fig. 2.2) then will link the size of the
particles to physical characteristics of the suspension of soil after
dispersion (cf. Sect. 2.1.3). These measurements may be distorted by the
presence of some compounds in the soil: organic matter, soluble salts,
sesquioxides, carbonates, or gypsum. The latter compound can be
particularly awkward because it can result in two opposing actions
(Vieillefon 1979): flocculation due to soluble calcium ions (relative
reduction in clay content), and low density of gypsum compared to other
minerals (increase in clay content). Particle size analysis thus generally
starts with a pre-treatment of the sample that varies with the type of soil;
the characteristics of different soils are given in Table 2.3.
18                                                                            Mineralogical Analysis



                                  –
                              –
                 –
                 –
                 –
                      –
                     –
                     –
                                  –
                                  –
     –
                     –
                          –
                                          –
                 –
                          –
         –
     –
                                              –    –
         –
         –
                          –           –
             –
                 –
                     –




Fig. 2.2. Particle size ranges of some automated particle-measurement instruments




2.1.3 Law of Sedimentation

After possible pretreatment (cf. Sect. 2.2.1), the sample is suspended in
aqueous medium in the presence of a dispersant (cf. Sect. 2.2.2). During
sedimentation, the particles are then subjected to two essential forces: a
force of gravity that attracts them to the bottom, and a force of viscous
resistance of the medium in the opposite direction to their displacement.
By comparing the particles to spheres of radius r, the force of gravity Fg
(dynes) is expressed by:

                                                  Fg =
                                                         4
                                                         3
                                                                 (        )
                                                             p r 3 ρs − ρ f g

  r = equivalent radius of the spherical particle in cm;
  g = gravity constant, 981 cm s–2;
  ρs = density of the particles in g cm–3 (between 2.4 and 2.8 for soils);
  ρf = density of the liquid of dispersion in g cm–3;
  The force of resistance of the medium Fr (dynes) is expressed by:
Particle Size Analysis                                                              19

                                 Fr = 6 p r η V ,

   V = falling speed in cm s–1;
   η = viscosity of the medium in Poises (g cm–1 s–1), at temperature
θ °C (Table 2.2).
   When the particles reach equilibrium, the forces Fr and Fr are equal,
from which their drop speed can be estimated according to the law
originally established by Stokes (1851):
                                     2 (ρs −ρf ) g r
                                                       2
                                V=                         .                     (2.1)
                                              9η
   For calculations, the average density of the solid particles in
dispersions of soils is often selected with ρ S = 2.65 or 2.60 g cm–3.
Empirical relationships have been established for the calculation of ρF
and η in aqueous solutions of hexametaphosphate generally used for
particle-size distribution of soils (Gee and Bauder 1986):

                           ρt = ρ 0 (1 + 0.630 CHMP),                            (2.2)

                           η = η0 (1 + 4.25 CHMP),                               (2.2’)
  ρ0 = density of water (g cm–3 at the working temperature (Table 2.2);
  η0 = viscosity of water (poise) at the working temperature (Table 2.2);
  CHMP = hexametaphosphate concentration in g cm–3.
  The constant of Stokes for the medium can thus be defined by:

                            C = 2 (ρs – ρf ) g/9 η.

   Equation (2.1) shows that the falling speed is proportional to the
square of the particle radius and remains constant throughout
sedimentation if certain conditions are strictly respected (cf. Sect. 2.1.4).
The speed can also be defined by V = h/t where T is the time (s) spent by
the particle of radius r(cm) to fall a height H(cm). Either the depth of its
sedimentation over a given period, or the time needed for sedimentation
to a given depth is determined by:
                                     9 h η                     −1       −2
                     t =                               = h C
                            (             )
                                                                    r        .   (2.3)
                                                   2
                           2 ρs − ρ f g r
20
Table 2.1. Systems of particulate characterization for particle size distribution of soils
                    – destruction of organic matter (H2O2, Na hypochlorite), hypobromite...
individualization
                    – destruction of cements (Al, Fe, Si):     –         acid or basic media
of particles
                                                               –         reducer or complexing media
                    – in water
                                                                                           2+
                                                         desaturation (elimination cations )
                                            chemical                    acid medium (some andosols)
                                                         choice of pH              basic medium: NaOH, NH4OH, pyrophosphate, hexametaphosphate
                    – preliminary treatments             various surfactants
suspension
                                                         ultrasounds
(dispersion)
                                            physical
                                                         mechanical agitation (disintegration: 40 reversals/min)
                                            limiting concentrations
                    – choice of concentration
                                            wall-attachment effects
                    separation – techniques used –   size     phase                                                                        1990
                                                                                principle           advantages           drawbacks
                    measurements                     range    recovery                                                                     firms
                                                                         measurement by
                                                                                                                    fragility of sieves,
                                                                         separation on sieve
                                                                                                                    mesh defects,
                                                     2 mm                with vibration with or
measurement of                         dry                                                                          mesh obtrusions,
                                                     –                   without ultrasonic
                    1. sieving                                                                                      etc.                   Saulas
                                                     0.050    yes        waves                   simple
particles                              wet                                                                          when dry, fine         Tamisor, etc
                                                     (5 µm)              weighing of the
                                                                                                                    powders stick to
                                                                         fractions
                                                                                                                    coarse ones
                                                                         (discontinuous)
                                                                         measurement of
                                                                         weight of a molecular
                                                                         film (nitrogen,
                                                                         EGME...) retained at
                    2. surface measurement (for                                                  internal and
                                                     ≤ 2 µm no           the surface of the                         difficult to measure   micromeritics
                    memorandum)                                                                  external surface
                                                                         particles
                                                                         (preliminary separation
                                                                         of phases)
                                                                                                                                                           Mineralogical Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis
Handbook Of Soil Analysis

More Related Content

Similar to Handbook Of Soil Analysis

Grsg abstract book v5 Advances in Geological Remote Sensing
Grsg abstract book v5 Advances in Geological Remote Sensing Grsg abstract book v5 Advances in Geological Remote Sensing
Grsg abstract book v5 Advances in Geological Remote Sensing Remote Sensing GEOIMAGE
 
Análisis económico de algunos impactos del cambio climático en Europa: un enf...
Análisis económico de algunos impactos del cambio climático en Europa: un enf...Análisis económico de algunos impactos del cambio climático en Europa: un enf...
Análisis económico de algunos impactos del cambio climático en Europa: un enf...EOI Escuela de Organización Industrial
 
Climate Change Impacts In Europe
Climate Change Impacts In EuropeClimate Change Impacts In Europe
Climate Change Impacts In Europercysostenibilidad
 
IRJET- Study on various Bio-Medical Waste using FTIR Analysis
IRJET- Study on various Bio-Medical Waste using FTIR AnalysisIRJET- Study on various Bio-Medical Waste using FTIR Analysis
IRJET- Study on various Bio-Medical Waste using FTIR AnalysisIRJET Journal
 
Short-rotation Willow Biomass Plantations Irrigated and Fertilised with Waste...
Short-rotation Willow Biomass Plantations Irrigated and Fertilised with Waste...Short-rotation Willow Biomass Plantations Irrigated and Fertilised with Waste...
Short-rotation Willow Biomass Plantations Irrigated and Fertilised with Waste...Arne Backlund
 
Dr Pascal Jean-Lopez, National Museum of Natural History - France : Fundamet...
 Dr Pascal Jean-Lopez, National Museum of Natural History - France : Fundamet... Dr Pascal Jean-Lopez, National Museum of Natural History - France : Fundamet...
Dr Pascal Jean-Lopez, National Museum of Natural History - France : Fundamet...Région Guadeloupe
 
Chemical Analysis Facility
Chemical Analysis FacilityChemical Analysis Facility
Chemical Analysis Facilitychristinejcardin
 
Nanotechnologies
NanotechnologiesNanotechnologies
NanotechnologiesGreenFacts
 
Physics Of A Magritek Nmr Spectrometer
Physics Of A Magritek Nmr SpectrometerPhysics Of A Magritek Nmr Spectrometer
Physics Of A Magritek Nmr SpectrometerLaura Martin
 
Best Practices of Fire Use – Prescribed Burning and Suppression Fire Programm...
Best Practices of Fire Use – Prescribed Burning and Suppression Fire Programm...Best Practices of Fire Use – Prescribed Burning and Suppression Fire Programm...
Best Practices of Fire Use – Prescribed Burning and Suppression Fire Programm...Gtfs Do Alto Minho
 
research ppt.pptx
research ppt.pptxresearch ppt.pptx
research ppt.pptxEyobFekadu3
 
ROMPF_MPF12_FINALPAPER
ROMPF_MPF12_FINALPAPERROMPF_MPF12_FINALPAPER
ROMPF_MPF12_FINALPAPERDan Rompf
 
Ultrasonic investigation of bio liquid mixtures of methanol with cinnamaldehy...
Ultrasonic investigation of bio liquid mixtures of methanol with cinnamaldehy...Ultrasonic investigation of bio liquid mixtures of methanol with cinnamaldehy...
Ultrasonic investigation of bio liquid mixtures of methanol with cinnamaldehy...eSAT Publishing House
 
Final Thesis- Mohammadreza Jafari Eshlaghi
Final Thesis- Mohammadreza Jafari EshlaghiFinal Thesis- Mohammadreza Jafari Eshlaghi
Final Thesis- Mohammadreza Jafari EshlaghiMorez Jafari
 
Applying Geospatial Technologies to Sustainable Development Analysis: The cas...
Applying Geospatial Technologies to Sustainable Development Analysis: The cas...Applying Geospatial Technologies to Sustainable Development Analysis: The cas...
Applying Geospatial Technologies to Sustainable Development Analysis: The cas...Laurent Lacaze Santos
 

Similar to Handbook Of Soil Analysis (20)

E-nano Newsletter 32
E-nano Newsletter 32E-nano Newsletter 32
E-nano Newsletter 32
 
Grsg abstract book v5 Advances in Geological Remote Sensing
Grsg abstract book v5 Advances in Geological Remote Sensing Grsg abstract book v5 Advances in Geological Remote Sensing
Grsg abstract book v5 Advances in Geological Remote Sensing
 
Análisis económico de algunos impactos del cambio climático en Europa: un enf...
Análisis económico de algunos impactos del cambio climático en Europa: un enf...Análisis económico de algunos impactos del cambio climático en Europa: un enf...
Análisis económico de algunos impactos del cambio climático en Europa: un enf...
 
Climate Change Impacts In Europe
Climate Change Impacts In EuropeClimate Change Impacts In Europe
Climate Change Impacts In Europe
 
IRJET- Study on various Bio-Medical Waste using FTIR Analysis
IRJET- Study on various Bio-Medical Waste using FTIR AnalysisIRJET- Study on various Bio-Medical Waste using FTIR Analysis
IRJET- Study on various Bio-Medical Waste using FTIR Analysis
 
Mercator Ocean newsletter 48
Mercator Ocean newsletter 48Mercator Ocean newsletter 48
Mercator Ocean newsletter 48
 
Short-rotation Willow Biomass Plantations Irrigated and Fertilised with Waste...
Short-rotation Willow Biomass Plantations Irrigated and Fertilised with Waste...Short-rotation Willow Biomass Plantations Irrigated and Fertilised with Waste...
Short-rotation Willow Biomass Plantations Irrigated and Fertilised with Waste...
 
Dr Pascal Jean-Lopez, National Museum of Natural History - France : Fundamet...
 Dr Pascal Jean-Lopez, National Museum of Natural History - France : Fundamet... Dr Pascal Jean-Lopez, National Museum of Natural History - France : Fundamet...
Dr Pascal Jean-Lopez, National Museum of Natural History - France : Fundamet...
 
Chemical Analysis Facility
Chemical Analysis FacilityChemical Analysis Facility
Chemical Analysis Facility
 
Indigo
Indigo Indigo
Indigo
 
Nanotechnologies
NanotechnologiesNanotechnologies
Nanotechnologies
 
Physics Of A Magritek Nmr Spectrometer
Physics Of A Magritek Nmr SpectrometerPhysics Of A Magritek Nmr Spectrometer
Physics Of A Magritek Nmr Spectrometer
 
Best Practices of Fire Use – Prescribed Burning and Suppression Fire Programm...
Best Practices of Fire Use – Prescribed Burning and Suppression Fire Programm...Best Practices of Fire Use – Prescribed Burning and Suppression Fire Programm...
Best Practices of Fire Use – Prescribed Burning and Suppression Fire Programm...
 
research ppt.pptx
research ppt.pptxresearch ppt.pptx
research ppt.pptx
 
Instrument.pptx
Instrument.pptxInstrument.pptx
Instrument.pptx
 
ROMPF_MPF12_FINALPAPER
ROMPF_MPF12_FINALPAPERROMPF_MPF12_FINALPAPER
ROMPF_MPF12_FINALPAPER
 
CV Matthieu Starck
CV Matthieu StarckCV Matthieu Starck
CV Matthieu Starck
 
Ultrasonic investigation of bio liquid mixtures of methanol with cinnamaldehy...
Ultrasonic investigation of bio liquid mixtures of methanol with cinnamaldehy...Ultrasonic investigation of bio liquid mixtures of methanol with cinnamaldehy...
Ultrasonic investigation of bio liquid mixtures of methanol with cinnamaldehy...
 
Final Thesis- Mohammadreza Jafari Eshlaghi
Final Thesis- Mohammadreza Jafari EshlaghiFinal Thesis- Mohammadreza Jafari Eshlaghi
Final Thesis- Mohammadreza Jafari Eshlaghi
 
Applying Geospatial Technologies to Sustainable Development Analysis: The cas...
Applying Geospatial Technologies to Sustainable Development Analysis: The cas...Applying Geospatial Technologies to Sustainable Development Analysis: The cas...
Applying Geospatial Technologies to Sustainable Development Analysis: The cas...
 

Handbook Of Soil Analysis

  • 1. Marc Pansu Jacques Gautheyrou Handbook of Soil Analysis Mineralogical, Organic and Inorganic Methods
  • 2. Marc Pansu Jacques Gautheyrou Handbook of Soil Analysis Mineralogical, Organic and Inorganic Methods with 183 Figures and 84 Tables
  • 3. Dr Marc Pansu Centre IRD BP 64501 Avenue Agropolis 911 34394 Montpellier Cedex 5 France E-mail : pansu@mpl.ird.fr Jacques Gautheyrou Avenue de Marinville 6 94100 St. Maur des Fossés France Updated English version, corrected by Daphne Goodfellow. The original French book "L'analyse du sol, minéralogique et minérale" by Marc Pansu and Jacques Gautheyrou, was published in 2003 by Springer-Verlag , Berlin Heidelberg New York. Library of Congress Control Number: 2005938390 ISBN-10 3-540-31210-2 Springer Berlin Heidelberg New York ISBN-13 978-3-540-31210-9 Springer Berlin Heidelberg New York This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are liable to prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2006 Printed in The Netherlands The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: E. Kirchner, Heidelberg Production: Almas Schimmel Typesetting: SPI Publisher Services Printing: Krips bv, Meppel Binding: Stürtz AG, Würzburg Printed on acid-free paper 30/3141/as 5 4 3 2 1 0
  • 4. FOREWORD This new book by Marc Pansu and Jacques Gautheyrou provides a synopsis of the analytical procedures for the physicochemical analysis of soils. It is written to conform to analytical standards and quality control. It focuses on mineralogical, organic and inorganic analyses, but also describes physical methods when these are a precondition for analysis. It will help a range of different users to choose the most appropriate method for the type of material and the particular problems they have to face. The compiled work is the product of the experience gained by the authors in the laboratories of the Institute of Research for Development (IRD) in France and in tropical countries, and includes an extensive review of the literature. The reference section at the end of each chapter lists source data from pioneer studies right up to current works, such as, proposals for structural models of humic molecules, and itself represents a valuable source of information. IRD soil scientists collected data on Mediterranean and tropical soils in the field from West and North Africa, Madagascar, Latin America, and South East Asia. Soil materials from these regions are often different from those found in temperate zones. As their analysis brought new problems to light, it was essential to develop powerful and specific physicochemical methods. Physicists, chemists and biologists joined forces with IRD soil scientists to contribute knowledge from their own disciplines thereby widening its scope considerably. This work is the fruit of these experiments as applied to complex systems, involving soils and the environment. The methodological range is particularly wide and each chapter presents both simple analyses and analyses that may require sophisticated equipment, as well as specific skills. It is aimed both at teams involved in practical field work and at researchers involved in fundamental and applied research. It describes the principles, the physical and chemical basis of each method, the corresponding analytical procedures, and the constraints and limits of each. The descriptions are practical, easy to understand and implement. Summary tables enable a rapid overview of the data. Complex techniques are explained under the heading ‘Principle’ and concrete examples of methods include: spectra (near and far IR, UV- visible, 1H-NMR, 13C-NMR, ESR, ICP-AES, ICP-MS, X-ray fluorescence, EDX or WDX microprobe, neutron activation analysis), diffractograms (XRD, electron microdiffraction), thermograms (DTA, DTG, TGA), chromatograms (GPC, HPLC, ionic chromatography, exclusion chromatography), electrophoregrams, ion exchange methods, electrochemistry, biology, different physical separation techniques, selective dissolutions, and imagery.
  • 5. VI Foreword The book will be valuable not only for researchers, engineers, technicians and students in soil science, but also for agronomists and ecologists and others in related disciplines, such as, analytical physical chemistry, geology, climatology, civil engineering and industries associated with soil. It is a basic work whose goal is to contribute to the scientific analysis of the environment. The methodologies it describes apply to a wide range of bioclimatic zones: temperate, arid, subtropical and tropical. As with the previous books by the same authors (Pansu, Gautheyrou and Loyer, 1998, Masson, Paris, Milan, Barcelona; Pansu, Gautheyrou and Loyer, 2001, Balkema, Lisse, Abington, Exton, Tokyo), this new book represents a reference work for our laboratories. We are confident its originality and ease of use will ensure its success. Alain Aventurier, Director of Analytical Laboratories of CIRAD1 Christian Feller, Director of Research at IRD 2 Pierre Bottner, Director of Research at CNRS 3 1 CIRAD, Centre International pour la Recherche Agronomique et le Développement (France). 2 IRD, Institut de Recherche pour le Développement (ex ORSTOM, France). 3 CNRS, Centre National de la Recherche Scientifique (France).
  • 6. CONTENTS PART 1 - MINERALOGICAL ANALYSIS CHAPTER 1 Water Content and Loss on Ignition 1.1 Introduction ..................................................................................................3 1.2 Water Content at 105°C (H2O−) ....................................................................6 1.2.1 Principle .................................................................................................6 1.2.2 Materials ................................................................................................6 1.2.3 Sample...................................................................................................6 1.2.4 Procedure ..............................................................................................7 1.2.5 Remarks ................................................................................................7 + 1.3 Loss on Ignition at 1,000°C (H2O ) ..............................................................8 1.3.1 Introduction ............................................................................................8 1.3.2 Principle ...............................................................................................11 1.3.3 Equipment............................................................................................11 1.3.4 Procedure ............................................................................................11 1.3.5 Calculations .........................................................................................12 1.3.6 Remarks ..............................................................................................12 Bibliography .....................................................................................................12 CHAPTER 2 Particle Size Analysis 2.1 Introduction ................................................................................................15 2.1.1 Particle Size in Soil Science ................................................................15 2.1.2 Principle ...............................................................................................17 2.1.3 Law of Sedimentation ..........................................................................18 2.1.4 Conditions for Application of Stokes Law.............................................24 2.2 Standard Methods ......................................................................................26 2.2.1 Pretreatment of the Sample .................................................................26 2.2.2 Particle Suspension and Dispersion ....................................................31 2.2.3 Pipette Method after Robinson-Köhn or Andreasen ............................35 2.2.4 Density Method with Variable Depth ....................................................42 2.2.5 Density Method with Constant Depth...................................................47 2.2.6 Particle Size Analysis of Sands Only ...................................................48 2.3 Automated Equipment ...............................................................................50 2.3.1 Introduction ..........................................................................................50 2.3.2 Method Using Sedimentation by Simple Gravity..................................51 2.3.3 Methods Using Accelerated Sedimentation .........................................53 2.3.4 Methods Using Laser Scattering and Diffraction..................................54 2.3.5 Methods Using Optical and Electric Properties....................................55 2.3.6 Methods Allowing Direct Observations of the Particles........................55 2.3.7 Methods Using Conductivity ................................................................56 References ........................................................................................................56 Bibliography .....................................................................................................58 Generality .....................................................................................................58
  • 7. VIII Contents Pre-treatment................................................................................................58 Pipette Method..............................................................................................61 Hydrometer Method ......................................................................................62 Instrumental Methods ...................................................................................62 CHAPTER 3 Fractionation of the Colloidal Systems 3.1 Introduction ................................................................................................ 65 3.2 Fractionation by Continuous Centrifugation........................................... 66 3.2.1 Principle............................................................................................... 66 3.2.2 Theory ................................................................................................. 69 3.2.3 Equipment and reagents ..................................................................... 73 3.2.4 Procedure............................................................................................ 75 3.3 Pretreatment of the Extracted Phases ..................................................... 79 References........................................................................................................ 81 Bibliography ..................................................................................................... 81 CHAPTER 4 Mineralogical Characterisations by X-Ray Diffractometry 4.1 Introduction ................................................................................................ 83 4.1.1 X-Ray Diffraction and Mineralogy ........................................................ 83 4.1.2 Principle............................................................................................... 86 4.1.3 XRD Instrumentation ........................................................................... 87 4.2 Qualitative Diffractometry.......................................................................... 90 4.2.1 Overview of Preparation of the Samples ............................................. 90 4.2.2 Preparation for Powder Diagrams ....................................................... 90 4.2.3 Preparation for Oriented Diagrams...................................................... 94 4.2.4 Pretreatment of Clays.......................................................................... 99 4.2.5 Qualitative Diffractometry ..................................................................113 4.3 Quantitative Mineralogical Analysis .......................................................118 4.3.1 Interest ..............................................................................................118 4.3.2 Quantitative Mineralogical Analysis by XRD......................................118 4.3.3 Multi-Instrumental Quantitative Mineralogical Analysis......................124 References......................................................................................................126 Bibliography ...................................................................................................127 General.......................................................................................................127 Preparation of Oriented Aggregates on Porous Ceramic Plate ..................128 Saturation of Clays by Cations ...................................................................129 Saturation, Solvation, Intercalation Complex, Dissolution ..........................129 Preparation of Iron Oxides..........................................................................130 Quantitative XRD........................................................................................130 CHAPTER 5 Mineralogical Analysis by Infra-Red Spectrometry 5.1 Introduction ..............................................................................................133 5.1.1 Principle.............................................................................................133 5.1.2 IR Instrumentation .............................................................................135 5.2 IR Spectrometry in Mineralogy................................................................138 5.2.1 Equipment and Products ...................................................................138 5.2.2 Preparation of the Samples ...............................................................139 5.2.3 Brief Guide to Interpretation of the Spectra....................................... 146 5.2.4 Quantitative Analysis .........................................................................152
  • 8. Contents IX 5.3 Other IR Techniques ................................................................................156 5.3.1 Near-infrared Spectrometry (NIRS)................................................... 156 5.3.2 Coupling Thermal Measurements and FTIR Spectrometry of Volatile Products ............................................................................................158 5.3.3 Infrared Microscopy ...........................................................................159 5.3.4 Raman Scattering Spectroscopy ...................................................... 159 References......................................................................................................161 Chronobibliography.......................................................................................162 CHAPTER 6 Mineralogical Separation by Selective Dissolution 6.1 Introduction ............................................................................................. 167 6.1.1 Crystallinity of Clay Minerals............................................................. 167 6.1.2 Instrumental and Chemical Methods ................................................ 169 6.1.3 Selective Dissolution Methods .......................................................... 172 6.1.4 Reagents and Synthetic Standards .................................................. 174 6.2 Main Selective Dissolution Methods...................................................... 180 6.2.1 Acid Oxalate Method Under Darkness (AOD)................................... 180 6.2.2 Dithionite-Citrate-Bicarbonate Method (DCB) ................................... 187 6.2.3 EDTA Method ................................................................................... 192 6.2.4 Pyrophosphate Method..................................................................... 196 6.2.5 Extraction in Strongly Alkaline Mediums ........................................... 201 6.3 Other Methods, Improvements and Choices ........................................ 206 6.3.1 Differential Sequential Methods ........................................................ 206 6.3.2 Selective Methods for Amorphous Products ..................................... 210 6.3.3 Brief Overview to the Use of the Differential Methods ...................... 214 References ..................................................................................................... 215 CHAPTER 7 Thermal Analysis 7.1 Introduction ............................................................................................. 221 7.1.1 Definition........................................................................................... 221 7.1.2 Interest.............................................................................................. 223 7.2 Classical Methods ................................................................................... 226 7.2.1 Thermogravimetric Analysis.............................................................. 226 7.2.2 Differential Thermal Analysis and Differential Scanning Calorimetry 235 7.3 Multi-component Apparatuses for Thermal Analysis........................... 246 7.3.1 Concepts........................................................................................... 246 7.3.2 Coupling Thermal Analysis and Evolved Gas Analysis..................... 247 References ..................................................................................................... 249 Chronobibliography ...................................................................................... 250 CHAPTER 8 Microscopic Analysis 8.1 Introduction ............................................................................................. 253 8.2 Preparation of the Samples .................................................................... 254 8.2.1 Interest.............................................................................................. 254 8.2.2 Coating and Impregnation, Thin Sections ......................................... 255 8.2.3 Grids and Replicas for Transmission Electron Microscopy ............... 261 8.2.4 Mounting the Samples for Scanning Electron Microscopy ................ 263 8.2.5 Surface Treatment (Shadowing, Flash-carbon, Metallization) .......... 265
  • 9. X Contents 8.3 Microscope Studies................................................................................. 267 8.3.1 Optical Microscopy ........................................................................... 267 8.3.2 Electron Microscopy, General Information ........................................ 270 8.3.3 Transmission Electron Microscopy, Micro-diffraction ........................ 271 8.3.4 Scanning Electron Microscopy.......................................................... 279 8.3.5 Ultimate Micro-analysis by X-Ray Spectrometry............................... 282 References ..................................................................................................... 283 Chronobibliography ...................................................................................... 284 PART 2 - ORGANIC ANALYSIS CHAPTER 9 Physical Fractionation of Organic Matter 9.1 Principle and Limitations ........................................................................289 9.1.1 Forms of Organic Matter in Soil .........................................................289 9.1.2 Principle.............................................................................................289 9.1.3 Difficulties ..........................................................................................291 9.2 Methods ....................................................................................................293 9.2.1 Classification .....................................................................................293 9.2.2 Extraction of Plant Roots ...................................................................293 9.2.3 Dispersion of the Particles.................................................................296 9.2.4 Separation by Density. ......................................................................309 9.2.5 Particle Size Fractionations ...............................................................314 9.2.6 Precision of the Fractionation Methods .............................................320 9.3 Conclusion and Outlook..........................................................................321 References......................................................................................................322 CHAPTER 10 Organic and Total C, N (H, O, S) Analysis 10.1 Introduction ............................................................................................327 10.1.1 Soil Organic Matter..........................................................................327 10.1.2 Sampling, Preparation of the Samples, Analytical Significance.......330 10.2 Wet Methods...........................................................................................333 10.2.1 Total Carbon: General Information ..................................................333 10.2.2 Organic Carbon by Wet Oxidation at the Temperature of Reaction ......................................................................................335 10.2.3 Organic Carbon by Wet Oxidation at Controlled Temperature ........340 10.2.4 Organic Carbon by Wet Oxidation and Spectrocolorimetry..............342 10.2.5 Total Nitrogen by Wet Method: Introduction ........ ............................342 10.2.6 Total Nitrogen by Kjeldahl Method and Titrimetry ...........................344 10.2.7 Kjeldahl N, Titration by Spectrocolorimetry......................................349 10.2.8 Kjeldahl N, Titration by Selective Electrode . ....... ............................351 10.2.9 Mechanization and Automation of the Kjeldahl Method...................353 10.2.10 Modified Procedures for NO3–, NO2– and Fixed N .........................354 10.3 Dry Methods ...........................................................................................355 10.3.1 Total Carbon by Simple Volatilization ..............................................355 10.3.2 Simultaneous Instrumental Analysis by Dry Combustion: CHN(OS)356 10.3.3 CHNOS by Thermal Analysis ..........................................................362
  • 10. Contents XI 10.3.4 C and N Non-Destructive Instrumental Analysis..............................363 10.3.5 Simultaneous Analysis of the Different C and N Isotopes ...............364 References......................................................................................................365 Bibliography ...................................................................................................367 CHAPTER 11 Quantification of Humic Compounds 11.1 Humus in Soils .......................................................................................371 11.1.1 Definitions........................................................................................371 11.1.2 Role in the Soil and Environment ....................................................373 11.1.3 Extractions.......................................................................................374 11.2 Main Techniques ....................................................................................375 11.2.1 Extraction ........................................................................................375 11.2.2 Quantification of the Extracts...........................................................379 11.2.3 Precision and Correspondence of the Extraction Methods ............. 383 11.2.4 Purification of Humic Materials ....................................................... 389 11.3 Further Alternatives and Complements Methods............................... 392 11.3.1 Alternative Method of Extraction ..................................................... 392 11.3.2 Fractionation of the Humin Residue................................................ 392 References ..................................................................................................... 395 Humic Materials ......................................................................................... 395 Extraction, Titration, Purification and Fractionation of Humic Materials ..... 396 CHAPTER 12 Characterization of Humic Compounds 12.1 Introduction ........................................................................................... 399 12.1.1 Mechanisms of Formation............................................................... 399 12.1.2 Molecular Structure......................................................................... 400 12.2. Classical Techniques ........................................................................... 401 12.2.1 Fractionation of Humic Compounds................................................ 401 12.2.2 Titration of the Main Functional Groups .......................................... 408 12.2.3 UV–Visible Spectrometry ................................................................ 410 12.2.4 Infra-Red Spectrography................................................................. 413 12.3 Complementary Techniques ................................................................ 415 12.3.1 Improvements in Fractionation Technologies ................................. 415 12.3.2 Titration of Functional Groups......................................................... 418 12.3.3 Characterization by Fragmentation ................................................. 419 12.3.4 Nuclear Magnetic Resonance (NMR) ............................................. 424 12.3.5 Fluorescence Spectroscopy............................................................ 433 12.3.6 Electron Spin Resonance (ESR) Spectroscopy .............................. 435 12.3.7 Measurement of Molecular Weight and Molecular Size ................. 437 12.3.8 Microscopic Observations............................................................... 440 12.3.9 Other Techniques ........................................................................... 441 References ..................................................................................................... 442 Molecular Models....................................................................................... 442 Fractionation, Determination of Molecular Weights and Molecular Sizes .. 443 Functional Group of Humic Compounds .................................................... 445 Spectrometric Characterizations................................................................ 446 UV–Visible, IR, Fluorescence, ESR Spectrometries .................................. 446 Nuclear Magnetic Resonance.................................................................... 447
  • 11. XII Contents Methods of Characterization by Fragmentation ......................................... 449 Other Methods (Microscopy, X-ray, Electrochemistry, etc.) ...................... 451 CHAPTER 13 Measurement of Non-Humic Molecules 13.1 Introduction ........................................................................................... 453 13.1.1 Non-Humic Molecules..................................................................... 453 13.1.2 Soil Carbohydrates ......................................................................... 453 13.1.3 Soil Lipids ....................................................................................... 456 13.1.4 Pesticides and Pollutants................................................................ 457 13.2 Classical Techniques ............................................................................ 458 13.2.1 Acid Hydrolysis of Polysaccharides ................................................ 458 13.2.2 Purification of Acid Hydrolysates .................................................... 462 13.2.3 Colorimetric Titration of Sugars ...................................................... 464 13.2.4 Titration of Sugars by Gas Chromatography................................... 467 13.2.5 Quantification of Total Lipids........................................................... 472 13.2.6 Quantification of the Water-Soluble Organics ................................. 474 13.3 Complementary Techniques .................................................................475 13.3.1 Carbohydrates by Gas Chromatography..........................................475 13.3.2 Carbohydrates by Liquid Chromatography ......................................475 13.3.3 Fractionation and Study of the Soil Lipid Fraction ...........................478 13.3.4 Measurement of Pesticide Residues and Pollutants .......................483 References......................................................................................................492 Soil Carbohydrates..................................................................................... 492 Soil Lipids .................................................................................................. 494 Aqueous Extract ........................................................................................ 495 Pesticides and Pollutants........................................................................... 495 CHAPTER 14 Organic Forms of Nitrogen, Mineralizable Nitrogen (and Carbon) 14.1 Introduction ............................................................................................497 14.1.1 The Nitrogen Cycle..........................................................................497 14.1.2 Types of Methods ............................................................................499 14.2 Classical Methods..................................................................................500 14.2.1 Forms of Organic Nitrogen Released by Acid Hydrolysis ................500 14.2.2 Organic Forms of Nitrogen: Simplified Method ................................509 14.2.3 Urea Titration ...................................................................................511 14.2.4 Potentially Available Nitrogen: Biological Methods ..........................513 14.2.5 Potentially Mineralizable Nitrogen: Chemical Methods....................521 14.2.6 Kinetics of Mineralization.................................................................526 14.3 Complementary Methods ......................................................................531 14.3.1 Alternative Procedures for Acid Hydrolysis......................................531 14.3.2 Determination of Amino Acids .........................................................532 14.3.3 Determination of Amino Sugars .......................................................535 14.3.4 Proteins and Glycoproteins (glomalin).............................................538 14.3.5 Potentially Mineralizable Nitrogen by EUF ......................................538
  • 12. Contents XIII References ......................................................................................................540 Organic Nitrogen Forms: General Articles ..................................................540 Nitrogen Forms by Acid Hydrolysis and Distillation ....................................541 Improvement of Acid Hydrolysis .................................................................541 Determination of Amino Acids ....................................................................541 Determination of Amino Sugars..................................................................542 Glomalin .....................................................................................................542 Urea Titration..............................................................................................543 Potentially Mineralizable Nitrogen: General Papers ...................................543 Potentially Mineralizable Nitrogen: Biological Methods ..............................544 Potentially Mineralizable Nitrogen: Chemical Methods...............................545 Potentially Mineralizable Nitrogen by EUF .................................................545 Mineralization Kinetics ...............................................................................546 PART 3 - INORGANIC ANALYSIS – Exchangeable and Total Elements CHAPTER 15 pH Measurement 15.1 Introduction ........................................................................................... 551 15.1.1 Soil pH ............................................................................................ 551 15.1.2 Difficulties ....................................................................................... 553 15.1.3 Theoretical Aspects ........................................................................ 554 15.2 Classical Measurements....................................................................... 556 15.2.1 Methods .......................................................................................... 556 15.2.2 Colorimetric Method........................................................................ 557 15.2.3 Electrometric Method ...................................................................... 560 15.2.4 Electrometric Checking and Calibration .......................................... 564 15.2.5 Measurement on Aqueous Soil Suspensions ................................. 565 15.2.6 Determination of the pH-K and pH-Ca ............................................ 567 15.2.7 Measurement on Saturated Pastes ................................................ 567 15.2.8 Measurement on the Saturation Extract.......................................... 568 15.2.9 Measurement of the pH-NaF .......................................................... 569 15.3 In Situ Measurements ........................................................................... 570 15.3.1 Equipment....................................................................................... 570 15.3.2 Installation in the Field .................................................................... 570 15.3.3 Measurement on Soil Monoliths...................................................... 572 References ..................................................................................................... 574 Bibliography .................................................................................................. 575 Appendix ........................................................................................................ 576 Appendix 1: Table of Electrode Potentials ................................................. 576 Appendix 2: Constants of Dissociation of Certain Equilibriums.................. 577 Appendix 3: Buffer Solutions...................................................................... 577 Appendix 4: Coloured Indicators................................................................ 579 CHAPTER 16 Redox Potential 16.1 Definitions and Principle ...................................................................... 581 16.2 Equipment and Reagents ..................................................................... 583 16.2.1 Electrodes....................................................................................... 583 16.2.2 Salt Bridge for Connection .............................................................. 584 16.2.3 System of Measurement ................................................................. 584 16.2.4 Calibration Solutions ....................................................................... 585
  • 13. XIV Contents 16.3 Procedure............................................................................................... 585 16.3.1 Pretreatment of the Electrode ......................................................... 585 16.3.2 Measurement on Soil Sample......................................................... 586 16.3.3 Measurement on Soil Monolith ....................................................... 586 16.3.4 In Situ Measurements..................................................................... 587 16.3.5 Measurement of Oxygen Diffusion Rate ......................................... 588 16.3.6 Colorimetric Test of Eh ................................................................... 589 References ..................................................................................................... 589 Bibliography .................................................................................................. 590 CHAPTER 17 Carbonates 17.1 Introduction ........................................................................................... 593 17.2 Measurement of Total Carbonates....................................................... 595 17.2.1 Introduction ..................................................................................... 595 17.2.2 Volumetric Measurement by Calcimetry ..........................................596 17.2.3 Acidimetry........................................................................................599 17.3 Titration of Active Carbonate ................................................................601 17.3.1 Principle...........................................................................................601 17.3.2 Implementation ................................................................................601 17.3.3 Index of Chlorosis Potential.............................................................603 References......................................................................................................604 CHAPTER 18 Soluble Salts 18.1 Introduction ............................................................................................605 18.2 Extraction ...............................................................................................606 18.2.1 Soil/solution Ratio............................................................................606 18.2.2 Extraction of Saturated Paste..........................................................607 18.2.3 Diluted Extracts ...............................................................................608 18.2.4 In Situ Sampling of the Soil Water ...................................................609 18.2.5 Extracts with Hot Water ...................................................................610 18.3 Measurement and Titration ...................................................................610 18.3.1 Electrical Conductivity of Extracts....................................................610 18.3.2 In Situ Conductivity..........................................................................613 18.3.3 Total Dissolved Solid Material .........................................................614 18.3.4 Soluble Cations ...............................................................................615 18.3.5 Extractable Carbonate and Bicarbonate (Alkalinity) ........................616 18.3.6 Extractable Chloride ........................................................................618 18.3.7 Extractable Sulphate, Nitrate and Phosphate ..................................620 18.3.7 Extractable Boron ............................................................................620 18.3.8 Titration of Extractable Anions by Ionic Chromatography................622 18.3.9 Expression of the Results................................................................625 References......................................................................................................626 CHAPTER 19 Exchange Complex 19.1 Introduction ............................................................................................629 19.2 Origin of Charges...................................................................................630 19.2.1 Ionic Exchange ................................................................................630
  • 14. Contents XV 19.2.2 Exchange Complex .........................................................................631 19.2.3 Theory .............................................................................................633 References......................................................................................................636 Chronobibliography.......................................................................................637 CHAPTER 20 Isoelectric and Zero Charge Points 20.1 Introduction ............................................................................................645 20.1.1 Charges of Colloids .........................................................................645 20.1.2 Definitions........................................................................................647 20.1.3 Conditions for the Measurement of Charge.....................................649 20.2 Main Methods .........................................................................................651 20.2.1 Measurement of pH0 (PZSE), Long Equilibrium Time .....................651 20.2.2 Point of Zero Salt Effect (PZSE), Short Equilibrium Time ................652 References......................................................................................................655 CHAPTER 21 Permanent and Variable Charges 21.1 Introduction ........................................................................................... 657 21.2 Main Methods......................................................................................... 661 21.2.1 Measurement of Variable Charges ................................................. 661 21.2.2 Determination of Permanent Charges............................................. 662 References ..................................................................................................... 664 Bibliography .................................................................................................. 665 CHAPTER 22 Exchangeable Cations 22.1 Introduction ........................................................................................... 667 22.1.1 Exchangeable Cations of Soil ......................................................... 667 22.1.2 Extracting Reagents........................................................................ 668 22.1.3 Equipment....................................................................................... 669 22.2 Ammonium Acetate Method at pH 7 .................................................... 671 22.2.1 Principle .......................................................................................... 671 22.2.2 Procedure ....................................................................................... 671 22.3 Automated Continuous Extraction ...................................................... 674 References ..................................................................................................... 674 Bibliography .................................................................................................. 676 CHAPTER 23 Exchangeable Acidity 23.1 Introduction ........................................................................................... 677 23.1.1 Origin of Acidity............................................................................... 677 23.1.2 Aims of the Analysis........................................................................ 678 23.2 Method.................................................................................................... 680 23.2.1 Principle .......................................................................................... 680 23.2.2 Reagents ........................................................................................ 680 23.2.3 Procedure ....................................................................................... 681 23.3 Other Methods ....................................................................................... 683 References ..................................................................................................... 684 Chronobibliography ...................................................................................... 685
  • 15. XVI Contents CHAPTER 24 Lime Requirement 24.1 Introduction ........................................................................................... 687 24.1.1 Correction of Soil Acidity................................................................. 687 24.1.2 Calculation of Correction................................................................. 688 24.2 SMP Buffer Method ............................................................................... 690 24.2.1 Principle .......................................................................................... 690 24.2.2 Reagents ........................................................................................ 691 24.2.3 Procedure ....................................................................................... 691 24.2.4 Remarks ......................................................................................... 692 References ..................................................................................................... 693 Chronobibliography ...................................................................................... 693 CHAPTER 25 Exchange Selectivity, Cation Exchange Isotherm 25.1 Introduction ........................................................................................... 697 25.2 Determination of the Exchange Isotherm............................................ 702 25.2.1 Principle .......................................................................................... 702 25.2.2 Reagents ........................................................................................ 702 25.2.3 Procedure........................................................................................703 25.2.4 Remarks ..........................................................................................704 References......................................................................................................705 Chronobibliography.......................................................................................706 CHAPTER 26 Cation Exchange Capacity 26.1 Introduction ............................................................................................709 26.1.1 Theoretical Aspects .........................................................................709 26.1.2 Variables that Influence the Determination of CEC..........................711 26.2 Determination of Effective CEC by Summation (ECEC) .....................718 26.2.1 Principle...........................................................................................718 26.2.2 Alternative Methods.........................................................................718 26.3 CEC Measurement at Soil pH in Not-Buffered Medium .....................719 26.3.1 Principle...........................................................................................719 26.3.2 Methods Using Not-Buffered Metallic Salts .....................................719 26.3.3 Procedure Using Not-Buffered Organo Metallic Cations .................722 26.3.4 Not-Buffered Methods Using Organic Cations ................................ 728 26.4 CEC Measurement in Buffered Medium ...............................................730 26.4.1 Buffered Methods — General Information .......................................730 26.4.2 Ammonium Acetate Method at pH 7.0.............................................732 26.4.3 Buffered Methods at pH 8.0–8.6......................................................738 26.4.4 Buffered Methods at Different pH ....................................................743 References......................................................................................................745 Bibliography ...................................................................................................750 CEC General Theory ..................................................................................750 Barium Method at soil pH ...........................................................................751 Buffered Method at pH 7.0 .........................................................................751 Cobaltihexamine CEC ................................................................................752 Silver-Thiourea ...........................................................................................753 CEC with Organic Cations (Coloured Reagents) ....................................... 753 Buffered Methods at pH 8.0–8.6.................................................................753 Barium Chloride-Triethanolamine at pH 8.1 ............................................... 753
  • 16. Contents XVII CHAPTER 27 Anion Exchange Capacity 27.1 Theory .....................................................................................................755 27.2 Measurement ..........................................................................................758 27.2.1 Principle...........................................................................................758 27.2.2 Method ............................................................................................760 27.3 Simultaneous Measurement of AEC, EC, CEC and net CEC ..............760 27.3.1 Aim ..................................................................................................760 27.3.2 Description ......................................................................................761 References......................................................................................................763 CHAPTER 28 Inorganic Forms of Nitrogen 28.1 Introduction ............................................................................................767 28.1.1 Ammonium, Nitrate and Nitrite ........................................................767 28.1.3 Sampling Problems .........................................................................768 28.1.4 Analytical Problems .........................................................................768 28.2 Usual Methods .......................................................................................769 28.2.1 Extraction of Exchangeable Forms..................................................769 28.2.2 Separation by Micro-Diffusion......................................................... 770 28.2.3 Colorimetric Titration of Ammonium................................................ 773 28.2.4 Colorimetric Titration of Nitrites....................................................... 775 28.2.5 Colorimetric Titration of Nitrates ..................................................... 778 28.2.6 Extracted Organic Nitrogen............................................................. 779 28.3 Other Methods ....................................................................................... 780 28.3.1 Nitrate and Nitrite by Photometric UV Absorption ........................... 780 28.3.2 Ammonium Titration Using a Selective Electrode ........................... 782 28.3.3 Measurement of Nitrates with an Ion-Selective Electrode............... 785 28.3.4 In situ Measurement ....................................................................... 788 28.3.5 Non-Exchangeable Ammonium ...................................................... 790 References ..................................................................................................... 791 Bibliography .................................................................................................. 792 CHAPTER 29 Phosphorus 29.1 Introduction ........................................................................................... 793 29.2 Total Soil Phosphorus .......................................................................... 794 29.2.1 Introduction ..................................................................................... 794 29.2.2 Wet Mineralization for Total Analyses............................................. 795 29.2.3 Dry Mineralization ........................................................................... 798 29.3 Fractionation of Different Forms of Phosphorus................................ 799 29.3.1 Introduction ..................................................................................... 799 29.3.2 Sequential Methods ........................................................................ 800 29.3.3 Selective Extractions – Availability Indices ..................................... 804 29.3.4 Isotopic Dilution Methods................................................................ 813 29.3.5 Determination of Organic Phosphorus ............................................ 814 29.4 Retention of Phosphorus...................................................................... 818 29.4.1 Introduction ..................................................................................... 818 29.4.2 Determination of P Retention.......................................................... 819
  • 17. XVIII Contents 29.5 Titration of P in the Extracts................................................................. 821 29.5.1 Introduction ..................................................................................... 821 29.5.2 Titration of Ortho-phosphoric P by Spectrocolorimetry ................... 823 29.5.3 P Titration by Atomic Spectrometry . ............................................... 828 31 29.5.4 Titration of Different Forms of P by P NMR .................................. 828 29.5.5 Separation of P Compounds by Liquid Chromatography ................ 829 29.6 Direct Speciation of P in situ, or on Extracted Particles .................... 830 References ..................................................................................................... 830 Chronobibliography ...................................................................................... 833 CHAPTER 30 Sulphur 30.1 Introduction ........................................................................................... 835 30.1.1 Sulphur Compounds ....................................................................... 835 30.1.2 Mineralogical Studies...................................................................... 838 30.2 Total Sulphur and Sulphur Compounds .............................................. 839 30.2.1 Characteristics of Fluviomarine Soils .............................................. 839 30.2.2 Soil Sampling and Sample Preparation .......................................... 840 30.2.3 Testing for Soluble Sulphur Forms ................................................. 841 30.2.4 Titration of Total Sulphur................................................................. 842 30.2.5 Total S Solubilisation by Alkaline Oxidizing Fusion......................... 843 30.2.6 Total Solubilisation by Sodium Hypobromite in Alkaline Medium.... 844 30.2.7 S titration with Methylen Blue Colorimetry ...................................... 845 30.2.8 Sulphate Titration by Colorimetry with Methyl Thymol Blue............. 850 30.2.9 Total Sulphur by Automated Dry CHN(OS) Ultimate Analysis ......... 853 2– 30.2.10 Titration of Total SO4 -S by Ionic Chromatography ...................... 855 30.2.11 Total S Titration by Plasma Emission Spectrometry...................... 857 30.2.12 Titration by X-ray Fluorescence..................................................... 857 30.2.13 Titration by Atomic Absorption Spectrometry ................................ 857 30.2.14 Analytical Fractionation of Sulphur Compounds ............................ 858 30.2.15 Titration of Organic S bound to C .................................................. 859 30.2.16 Titration of Organic S not bound to C ............................................ 861 30.2.17 Extraction and Titration of Soluble Sulphides ................................ 863 30.2.18 Titration of Sulphur in Pyrites ........................................................ 865 30.2.19 Titration of Elementary Sulphur ..................................................... 867 30.2.20 Titration of Water Soluble Sulphates ............................................. 869 30.2.21 Titration of Na3-EDTA Extractable Sulphates ................................ 871 30.2.22 Titration of Jarosite ........................................................................ 873 30.2.23 Sequential Analysis of S Forms..................................................... 876 30.3 Sulphur of Gypseous Soils ................................................................... 878 30.3.1 Gypseous Soils ............................................................................... 878 30.3.2 Preliminary Tests............................................................................. 879 30.3.3 Extraction and Titration from Multiple Extracts ................................ 881 30.3.4 Gypsum Determination by Acetone Precipitation ............................ 882 30.4 Sulphur and Gypsum Requirement of Soil .......................................... 883 30.4.1 Introduction...................................................................................... 883 30.4.2 Plant Sulphur Requirement ............................................................. 884 30.4.3 Gypsum Requirement...................................................................... 886 References...................................................................................................... 888 Chronobibliography....................................................................................... 890
  • 18. Contents XIX CHAPTER 31 Analysis of Extractable and Total Elements 31.1 Elements of Soils ...................................................................................895 31.1.1 Major Elements ...............................................................................895 31.1.2 Trace Elements and Pollutants........................................................897 31.1.3 Biogenic and Toxic Elements ..........................................................899 31.1.4 Analysis of Total Elements ..............................................................900 31.1.5 Extractable Elements.......................................................................901 31.2 Methods using Solubilization................................................................901 31.2.1 Total Solubilization Methods............................................................901 31.2.2 Mean Reagents for Complete Dissolutions .....................................903 31.2.3 Acid Attack in Open Vessel .............................................................906 31.2.4 Acid Attack in Closed Vessel...........................................................911 31.2.5 Microwave Mineralization ................................................................913 31.2.6 Alkaline Fusion ................................................................................915 31.2.7 Selective Extractions .......................................................................920 31.2.8 Measurement Methods....................................................................925 31.2.9 Spectrocolorimetric Analysis ............................................................927 31.2.10 Analysis by Flame Atomic Emission Spectrometry........................931 31.2.11 Analysis by Flame Atomic Absorption Spectrometry .....................932 31.2.12 Analysis of Trace Elements by Hydride and Cold Vapour AAS .....937 31.2.13 Analysis of Trace Elements by Electrothermal AAS ......................940 31.2.14 Analysis by Inductively Coupled Plasma-AES ..............................941 31.2.15 Analysis by Inductively Coupled Plasma-Mass Spectrometry .......946 31.3 Analysis on Solid Medium ....................................................................952 31.3.1 Method ............................................................................................952 31.3.2 X-ray Fluorescence Analysis ........................................................... 954 31.3.3 Neutron Activation Analysis ............................................................962 References .....................................................................................................969 INDEX ...................………………………………………………………………….975 PERIODIC TABLE OF THE ELEMENTS ....................................................... 993
  • 20. 1 Water Content and Loss on Ignition 1.1 Introduction Schematically, a soil is made up of a solid, mineral and organic phase, a liquid phase and a gas phase. The physical and chemical characteristics of the solid phase result in both marked variability of water contents and a varying degree of resistance to the elimination of moisture. For all soil analytical studies, the analyst must know the exact quantity of the solid phase in order to transcribe his results in a stable and reproducible form. The liquid phase must be separate, and this operation must not modify the solid matrix significantly (structural water is related to the crystal lattice). Many definitions exist for the terms “moisture” and “dry soil”. The water that is eliminated by moderate heating, or extracted using solvents, represents only one part of total moisture, known as hygroscopic water, which is composed of (1) the water of adsorption retained on the surface of solids by physical absorption (forces of van der Waals), or by chemisorption, (2) the water of capillarity and swelling and (3) the hygrometrical water of the gas fraction of the soil (ratio of the effective pressure of the water vapour to maximum pressure). The limits between these different types of water are not strict. “Air-dried” soil, which is used as the reference for soil preparation in the laboratory, contains varying amounts of water which depend in particular on the nature of secondary minerals, but also on external forces (temperature, the relative humidity of the air). Some andisols or histosols that are air dried for a period of 6 months can still contain 60% of water in comparison with soils dried at 105°C, and this can lead to unacceptable errors if the analytical results are not compared with a more realistic
  • 21. 4 Mineralogical Analysis reference for moisture.1 Saline soils can also cause problems because of the presence of hygroscopic salts. It is possible to determine remarkable water contents involving fields of force of retention that are sufficiently reproducible and representative (Table 1.1). These values can be represented in the form of capillary potential (pF), the decimal logarithm of the pressure in millibars needed to bring a sample to a given water content (Table 1.1). It should be noted that because of the forces of van der Waals, there can be differences in state, but not in form, between water likely to evaporate at 20°C and water that does not freeze at –78°C. The analyst defines remarkable points for example: – The water holding capacity, water content where the pressure component of the total potential becomes more significant than the gravitating component; this depends on the texture and the nature of the mineral and approaches field capacity which, after suitable drainage, corresponds to a null gravitating flow. – The capillary frangible point, a state of moisture where the continuous water film becomes monomolecular and breaks. – The points of temporary and permanent wilting where the pellicular water retained by the bonding strength balances with osmotic pressure; in this case, except for some halophilous plants, the majority of plants can no longer absorb the water that may still be present in the soil. – The hygroscopic water which cannot be easily eliminated in the natural environment as this requires considerable energy, hygroscopic water evaporates at temperatures above 100°C and does not freeze at –78°C. – The water of constitution and hydration of the mineral molecules can only be eliminated at very high pressures or at high temperatures, with irreversible modification or destruction of the crystal lattice. These types of water are estimated using different types of measurements to study the water dynamics and the mechanisms related to the mechanical properties of soils in agronomy and agricultural engineering, for example: – usable reserves (UR), easily usable reserves (EUR), or reserves that are easily available in soil–water–plant relations. – thresholds of plasticity, adhesiveness, liquidity (limits of Atterberg, etc.). 1 It should be noted that for these types of soil, errors are still amplified by the ponderal expression (because of an apparent density that is able to reach 0.3) this is likely to make the analytical results unsuitable for agronomic studies.
  • 22. Table 1.1 - Approximate correspondence moistures – pressure – diameter of the Water Content and Loss on Ignition pores – types of water and critical points in soils with respect to plant requirements 5
  • 23. 6 Mineralogical Analysis This brief summary gives an indication of the complexity of the concept of soil moisture and the difficulty for the analyst to find a scientifically defined basis for dry soil where the balance of the solid, liquid and gas phases is constant. 1.2 Water Content at 105°C (H2 O −) 1.2.1 Principle By convention, the term “moisture” is considered to be unequivocal. Measurement is carried out by gravimetry after drying at a maximum temperature of 105°C. This increase in temperature maintained for a controlled period of time, is sufficiently high to eliminate “free” forms of water and sufficiently low not to cause a significant loss of organic matter and unstable salts by volatilization. Repeatability and reproducibility are satisfactory in the majority of soils if procedures are rigorously respected. 1.2.2 Materials – 50 × 30 mm borosilicate glass low form weighing bottle with ground flat top cap. – Vacuum type Ø 200 mm desiccator made of borosilicate glass with removable porcelain floor, filled with anhydrous magnesium perchlorate [Mg(ClO4)2]. – Thermostatically controlled drying oven with constant speed blower for air circulation and exhausting through a vent in the top of oven – temperature uniformity ± 0.5–1°C. – Analytical balance: precision 0.1 mg, range 100 g. 1.2.3 Sample It is essential to measure water content on the same batch of samples prepared at the same time (fine earth with 2 mm particles or ground soil) for subsequent analyses. It should be noted that the moisture content of the prepared soil may change during storage (fluctuations in air moisture and temperature, oxidation of organic matter, loss or fixing of volatile substances, etc.).
  • 24. Water Content and Loss on Ignition 7 This method can be considered “destructive” for certain types of soils and analyses, as the physical and chemical properties can be transformed. Samples dried at 105°C should generally not be used for other measurements. 1.2.4 Procedure – Dry tared weighing bottles for 2 h at 105°C, let them cool in the desiccator and weigh the tare with the lid placed underneath: m0 – Place about 5 g of air-dried soil (fine earth sieved through a 2 mm mesh) in the tare box and note the new weight: m1 – Place the weighing bottles with their flat caps placed underneath in a ventilated drying oven for 4 h at 105°C (the air exit must be open and the drying oven should not be overloaded) – Cool in the desiccator and weigh (all the lids of the series contained in the desiccator should be closed to avoid moisture input): m2 – Again place the opened weighing bottles in the drying oven for 1 h at 105°C and weigh under the same conditions; the weight should be constant; if not, continue drying the weighing bottles until their weight is constant m1 − m2 % water content at 105°C = 100 × . m1 − m0 1.2.5 Remarks The results can also be expressed in pedological terms of water holding capacity (HC) by the soil: HC = 100 × m1 − m2 . m 2 − m0 The point of measurement at 105°C with constant mass is empirical (Fig. 1.1). A temperature of 130°C makes it possible to release almost all “interstitial water”, but this occurs to the detriment of the stability of organic matter. The speed of drying should be a function of the temperature, the surface of diffusion, the division of the solid, ventilation, pressure (vacuum), etc. Respecting the procedure is thus essential: – For andisols and histosols, the initial weighing should be systematically carried out after 6 h. – For saline soils with large quantities of dissolved salts, the sample can be dried directly, soluble salts then being integrated into the “dry soil” or eliminated beforehand by treatment with water.
  • 25. 8 Mineralogical Analysis Fig. 1.1 - Theoretical diagrammatic curve showing water moved at a given temperature as a function of time (180°C = end of H2O losses in allophanes) 1.3 Loss on Ignition at 1,000°C (H2O +) 1.3.1 Introduction As we have just seen, the reference temperature (105°C) selected for the determination of the moisture content of a “dry soil” represents only _ a totally hypothetical state of the water that is normally referred to as H2O . When a sample undergoes controlled heating and the uninterrupted ponderal variations are measured, curves of “dehydration” are obtained whose inflections characterize losses in mass at certain critical temperatures (TGA).1 If one observes the temperature curve compared to a thermically inert substance (Fig. 1.2), it is possible to determine changes in energy between the sample studied and the reference substance, this results in a change in the temperature which can be measured (DTA–DSC).2 – If the temperature decreases compared to the reference, an endothermic _ peak appears that characterizes loss of H2O (dehydration), of OH (dehydroxylation), sublimation, or evaporation, or decomposition of certain substances, etc. – If the temperature increases compared to the reference, an exothermic peak appears that characterizes transformations of crystalline structures, oxidations (Fe2+ → Fe3+), etc. 2 TGA thermogravimetric analysis; DTA differential thermal analysis; DSA differential scanning calorimetry (cf. Chap. 7).
  • 26. Water Content and Loss on Ignition 9 Fig. 1.2 - Schematized example of thermal analysis curves TGA (solid line) and DTA (dashed line) The simultaneous analysis of the gases or vapours that are emitted and X-ray diffraction (cf. Chap. 4) of the modifications in structure make it possible to validate the inflections of the curves or the different endo- and exothermic peaks. As can be seen in the highly simplified Table 1.2, the most commonly observed clays are completely dehydroxyled at 1,000°C, oxides at 400°C or 500°C, carbonates, halogens, sulphates, sulphides are broken down or dehydrated between 300°C and 1,000°C, and free or bound organic matter between 300°C and 500°C. The temperature of 1,000°C can thus be retained as a stable reference temperature for loss on ignition, the thermal spectra then being practically flat up to the peaks of fusion which generally only appear at temperatures higher than 1,500°C or even 2,500°C. 1.3.2 Principle The sample should be gradually heated in oxidizing medium to 1,000°C and maintained at this temperature for 4 h.
  • 27. 10 Mineralogical Analysis Table 1.2 Dehydration and dehydroxylation of some clays, oxides and salts as a function of temperature in °C type name dehydrationa dehydroxylationb clays 1:1 Kaolinite–halloysite 350 1,000 clays 2:1 smectites – 370 1,000 montmorillonite clays 2:1 Illite – micas 350–370 1,000 clays 2:1 vermiculite 700 1,000 clays 2:1:1 chlorite 600 800 fibrous clays Sepiolite– 300 800–900 palygorskite 200 900–1,000 allophane iron oxides Hematite α Fe2O3 (flat 1,000 spectrum) goethite α FeO–OH 100 370 magnetite Fe2O3 375 650 Al oxides gibbsite γ-Al(OH)3 100 350 Ca carbonate Calcite–aragonite – 950–1,000 CaCO3 Mg carbonate magnesite MgCO3 – 710 Ca–Mg dolomie – 800–940 carbonate CaMg(CO3)2 halogenous sodium chloride – 800 (fusion) compounds NaCl sulphate gypsum CaSO4, – 300 2H2O sulphide pyrite FeS2 – 615 organic free or linked organic – 300–500 compounds matter a Dehydration: loss of water adsorbed on outer or inner surfaces, with or without reversible change in the lattice depending on the types of clay, water organized in monomolecular film on surface oxygen atoms or around exchangeable cations. b dehydroxylation (+ decarbonatation and desulphurization reactions), loss of water linked to lattice (OH−), irreversible reaction or destruction of the structure, water present in the cavities, O forming the base of the tetrahedrons.
  • 28. Water Content and Loss on Ignition 11 Loss on ignition is determined by gravimetry. It includes combined water linked to the crystal lattice plus a little residual non-structural adsorbed water, organic matter, possibly volatile soluble salts (F−, S2−) and carbonates (CO32−, CO2). The use of an oxidizing atmosphere is essential to ensure combustion of the organic matter and in particular oxidation of reduced forms of iron, this being accompanied by an increase in mass of the soils with minerals rich in Fe2+. A complete analysis generally includes successive measurements of H2O− and H2O+ on the same sample. 1.3.3 Equipment – Platinum or Inconel (Ni–Cr–Fe) crucible with cover, diameter 46 mm. – Analytical balances (id. H2O−) – Desiccator (id. H2O−) – Muffle electric furnace (range 100–1,100°C) with proportional electronic regulation allowing modulation of the impulses with oscillation of about 1°C around the point of instruction; built-in ventilation system for evacuation of smoke and vapour – Thermal protective gloves – 300 mm crucible tong 1.3.4 Procedure – Tare a crucible, heat it to 1,000°C and cool it in the desiccator with its lid on: m0 – Introduce 2–3 g of air-dried soil crushed to 0.1 mm: m1 – Dry in the drying oven at 105°C for 4 h – Cool in the desiccator and weigh: m2 – Adjust the lid of the crucible so it covers approximately 2/3 of the crucible and put it in the electric furnace – Programme a heating gradient of approximately 6°C per minute with a 20-min stage at 300°C, then a fast rise at full power up to 1,000°C with a 4-h graduation step (the door of the furnace should only be closed after complete combustion of the organic matter) – Cool the crucible in the desiccator and weigh: m3 1.3.5 Calculations m1 – m0 = weight of air-dried soil m1 – m2 = moisture at 105°C
  • 29. 12 Mineralogical Analysis m2 – m0 = weight of soil dried at 105°C m2 – m3 = loss on ignition m1 − m2 H 2O – % = 100 × m1 − m0 related to air-dried soil + m2 − m3 H 2O % = 100 × m2 − m0 related to soil dried at 105°C 1.3.6 Remarks Knowing the moisture of the air-dried soil, it is possible to calculate the weight of air-dried soil required to work with a standard weight soil dried at 105°C, thus simplifying calculations during analyses of the samples. To obtain the equivalent of 1 g of soil dried at 105°C, it is necessary to weigh: 100 with wc = % water content of air dried soil. 100 − wc Platinum crucibles are very expensive and are somewhat volatile at 1,000°C, which means they have to be tared before each operation, particularly when operating in reducing conditions. Combustion of organic matter with insufficient oxygen can lead to the formation of carbide of Pt, sulphides combine with Pt, chlorine attacks Pt, etc. Bibliography Campbell GS, Anderson RY (1998) Evaluation of simple transmission line oscillators for soil moisture measurement. Comput. and Electron. Agric., 20, 31–44 Chin Huat Lim, Jackson ML (1982) Dissolution for total elemental analysis. In Methods of Soil Analysis, Part 2, Page A.L., Miller R.H., Kenny D.R. ed. Am. Soc. Agronomy, pp. 1–11 Dixon JB (1977) Minerals in soil environments. Soil Sci. Soc. Am. Dubois J, Paindavoine JM (1982) Humidité dans les solides, liquides et gaz. Techniques de l’ingénieur., (P 3760) Gardner WH (1986) Water content. In Methods of Soil Analysis, Part 1, Klute ed. Am. Soc. Agronomy, Soil Sci. Soc. Am., pp. 493–544 Henin S (1977) Cours de physique du sol: l'eau et le sol tome II., Editest, Paris: 1–164 Lane PNJ, Mackenzie DH, Nadler AD (2002) Note of clarification about: Field and laboratory calibration and test of TDR and capacitance techniques for indirect measurement of soil water content. Aust. J. Soil Res., 40, 555–1386
  • 30. Water Content and Loss on Ignition 13 Lane PNJ, Mackenzie DH (2001) Field and laboratory calibration and test of TDR and capacitance techniques for indirect measurement of soil. Aust. J. Soil Res., 39, 1371–1386 NF ISO 11465 (X31-102) (1994) Détermination de la teneur pondérale en matière sèche et en eau. In Qualité des sols, AFNOR, 1996, 517–524 Rankin LK, Smajstrla AG (1997) Evaluation of the carbide method for soil moisture measurement in sandy soils. Soil and Crop Science Society of Florida, 56, pp. 136–139 Skierucha W (2000) Accuracy of soil moisture measurement by TDR technique. Int. Agrophys., 14, 417–426 Slaughter DC, Pelletier MG, Upadhyaya SK (2001) Sensing soil moisture using NIR spectroscopy. Appl. Eng. Agric., 17, 241–247 Walker JP, Houser PR (2002) Evaluation of the Ohm Mapper instrument for soil moisture measurement. Soil Sci. Soc. Am. J., 66, 728–734 X31-505 (1992) Méthode de détermination du volume, apparent, et du contenu en eau des mottes. In Qualité des sols, AFNOR, 1996, 373–384 Yu C, Warrick AW, Conklin MH (1999) Derived functions of time domain reflectometry for soil moisture measurement. Water Resour. Res., 35, 1789–1796
  • 31. 2 Particle Size Analysis 2.1 Introduction 2.1.1 Particle Size in Soil Science Determination of grain-size distribution of a sample of soil is an important analysis for various topics in pedology, agronomy, sedimentology, and other fields such as road geotechnics. Soil texture has an extremely significant influence on the physical and mechanical behaviours of the soil, and on all the properties related to water content and the movement of water, (compactness, plasticity, thrust force, slaking, holding capacity, moisture at different potentials, per- meability, capillary movements, etc.). Particle size analysis of a sample of soil, sometimes called “mechanical analysis”, is a concept that has been the subject of much discussion (Hénin 1976). Soil is an organized medium including an assemblage of mineral and organic particles belonging to a continuous dimensional series. The first difficulty is to express the proportion of these different particles according to a standard classification, which is consequently somewhat artificial. One classification scale was proposed by Atterberg (1912). Today this scale is recognized at different national and international levels and includes two main fractions: fine earth (clay, silts and sands with a grain diameter <2 mm) and coarse elements (gravels, stones with a grain diameter >2 mm). The particle size series (Fig. 2.1) for fine earth is generally expressed after analysis in three size fractions (clay fraction less than 0.002 mm, silt fraction from 0.002 to 0.02 mm, and sand fraction from 0.02 to 2 mm). In some countries, or for the purpose of a particular type of pedological interpretation, a more detailed scale of classes is sometimes used, for example five fractions: fine clays, silts, coarse silts or very fine sands, fine sands, and coarse sands (Fig. 2.1).
  • 32. 16 Mineralogical Analysis Fig. 2.1. Ranges of particle size used for soils (NC number of classes; FSi fine silts, CSi coarse silts; FS, VFS, CS fine, very fine and coarse sands, respectively; FC fine clays; FG, CG fine gravels and coarse gravels), from top to bottom: (CSSC) Canadian Soil Survey Committee (1978): 10 particle size ranges < 2 mm; France (before 1987): 8 ranges; USDA United States Department of Agriculture (1975): 7 ranges; AFNOR Association Française de Normalisation (1987): 5 ranges; ISSS = International Soil Science Society (1966): 4 ranges; ASTM = American Society for Testing Materials (1985): 3 ranges However, it should be noted that the terminology used does not provide much information about the real nature of the classes; thus clay defined as having a diameter equal to or less than 0.002 mm does not contain only clay corresponding to this mineralogical definition but can also contain sesquioxides, very fine silts, organic matter, carbonates, or compounds without colloidal properties. In the same way, sands, which generally result from fragmentation of the parent rock, can also include pseudo-sands, small ferruginous concretions, small limestone or cemented nodules that are resistant to dispersion treatments. The presence of these pseudo-sands can render the conclusions of particle size analysis illusory. Another difficulty appears with the fractionation of elementary particles by dissociating them from their original assembly. Here too analytical standards exist, but it should be recognized that in certain cases the rupture of all the forces of cohesion is not complete (the case in hardened cemented soils), or on the contrary the forces are too energetic. Lastly, particle size analysis accounts for the size but not for the shape of the particles, or their nature. If necessary, these are the subject of
  • 33. Particle Size Analysis 17 specific morphoscopic and mineralogical analyses. The result of particle size analysis is expressed in classes of which the relative proportions can be summed up in the form of a triangular diagram enabling the texture of a sample, a horizon, or a soil to be defined. Depending on the school, there are several different types of triangles that represent textures: GEPPA (Groupe d’Etude des Problèmes de Pédologie Appliquée, AFES, Grignon, France) includes 17 textural classes; the USDA’s (United States Department of Agriculture) includes 12 classes (Gras 1988); others are simplified to a greater or lesser extent depending on the pedological or agronomic purpose of the study. Starting from these results, different interpretations are usually made in terms of pedogenesis (comparison of the vertical sand percents to check the homogeneity of a given material in a given soil profile, calculation of different indices of leaching, clay transport, etc.); others are more practical (definition of the relation of texture to hydric characteristics for the initial calculation of the amounts and frequencies of irrigation, or for the choice of machinery for cultivation. 2.1.2 Principle Particle size analysis is a laboratory process, which initially causes dissociation of the material into elementary particles; this implies the destruction of the aggregates by eliminating the action of cements. But this action should not be too violent to avoid the creation of particles that would not naturally exist; the procedure of dispersion must thus be sufficiently effective to break down the aggregates into individual components, but not strong enough to create neo-particles. Measurements (Table 2.1, Fig. 2.2) then will link the size of the particles to physical characteristics of the suspension of soil after dispersion (cf. Sect. 2.1.3). These measurements may be distorted by the presence of some compounds in the soil: organic matter, soluble salts, sesquioxides, carbonates, or gypsum. The latter compound can be particularly awkward because it can result in two opposing actions (Vieillefon 1979): flocculation due to soluble calcium ions (relative reduction in clay content), and low density of gypsum compared to other minerals (increase in clay content). Particle size analysis thus generally starts with a pre-treatment of the sample that varies with the type of soil; the characteristics of different soils are given in Table 2.3.
  • 34. 18 Mineralogical Analysis – – – – – – – – – – – – – – – – – – – – – – – – – – – Fig. 2.2. Particle size ranges of some automated particle-measurement instruments 2.1.3 Law of Sedimentation After possible pretreatment (cf. Sect. 2.2.1), the sample is suspended in aqueous medium in the presence of a dispersant (cf. Sect. 2.2.2). During sedimentation, the particles are then subjected to two essential forces: a force of gravity that attracts them to the bottom, and a force of viscous resistance of the medium in the opposite direction to their displacement. By comparing the particles to spheres of radius r, the force of gravity Fg (dynes) is expressed by: Fg = 4 3 ( ) p r 3 ρs − ρ f g r = equivalent radius of the spherical particle in cm; g = gravity constant, 981 cm s–2; ρs = density of the particles in g cm–3 (between 2.4 and 2.8 for soils); ρf = density of the liquid of dispersion in g cm–3; The force of resistance of the medium Fr (dynes) is expressed by:
  • 35. Particle Size Analysis 19 Fr = 6 p r η V , V = falling speed in cm s–1; η = viscosity of the medium in Poises (g cm–1 s–1), at temperature θ °C (Table 2.2). When the particles reach equilibrium, the forces Fr and Fr are equal, from which their drop speed can be estimated according to the law originally established by Stokes (1851): 2 (ρs −ρf ) g r 2 V= . (2.1) 9η For calculations, the average density of the solid particles in dispersions of soils is often selected with ρ S = 2.65 or 2.60 g cm–3. Empirical relationships have been established for the calculation of ρF and η in aqueous solutions of hexametaphosphate generally used for particle-size distribution of soils (Gee and Bauder 1986): ρt = ρ 0 (1 + 0.630 CHMP), (2.2) η = η0 (1 + 4.25 CHMP), (2.2’) ρ0 = density of water (g cm–3 at the working temperature (Table 2.2); η0 = viscosity of water (poise) at the working temperature (Table 2.2); CHMP = hexametaphosphate concentration in g cm–3. The constant of Stokes for the medium can thus be defined by: C = 2 (ρs – ρf ) g/9 η. Equation (2.1) shows that the falling speed is proportional to the square of the particle radius and remains constant throughout sedimentation if certain conditions are strictly respected (cf. Sect. 2.1.4). The speed can also be defined by V = h/t where T is the time (s) spent by the particle of radius r(cm) to fall a height H(cm). Either the depth of its sedimentation over a given period, or the time needed for sedimentation to a given depth is determined by: 9 h η −1 −2 t = = h C ( ) r . (2.3) 2 2 ρs − ρ f g r
  • 36. 20 Table 2.1. Systems of particulate characterization for particle size distribution of soils – destruction of organic matter (H2O2, Na hypochlorite), hypobromite... individualization – destruction of cements (Al, Fe, Si): – acid or basic media of particles – reducer or complexing media – in water 2+ desaturation (elimination cations ) chemical acid medium (some andosols) choice of pH basic medium: NaOH, NH4OH, pyrophosphate, hexametaphosphate – preliminary treatments various surfactants suspension ultrasounds (dispersion) physical mechanical agitation (disintegration: 40 reversals/min) limiting concentrations – choice of concentration wall-attachment effects separation – techniques used – size phase 1990 principle advantages drawbacks measurements range recovery firms measurement by fragility of sieves, separation on sieve mesh defects, 2 mm with vibration with or measurement of dry mesh obtrusions, – without ultrasonic 1. sieving etc. Saulas 0.050 yes waves simple particles wet when dry, fine Tamisor, etc (5 µm) weighing of the powders stick to fractions coarse ones (discontinuous) measurement of weight of a molecular film (nitrogen, EGME...) retained at 2. surface measurement (for internal and ≤ 2 µm no the surface of the difficult to measure micromeritics memorandum) external surface particles (preliminary separation of phases) Mineralogical Analysis