SlideShare uma empresa Scribd logo
1 de 2
FÍSICA I – EXAMEN 3

1. El desplazamiento angular de un motor eléctrico que gira está dado por θ(t) = 72 t – 3 t2 – t3.
   (a) Calcular la velocidad angular inicial. (b) ¿En qué instante es cero la velocidad angular del
   motor?; (c) calcular la aceleración angular en ese instante. (d) ¿Cuántas revoluciones gira el
   motor entre el instante t = 0 y el instante en el que la velocidad angular es cero? (4 puntos)

Derivando dos veces: θ(t) = 72 t – 3 t2 – t3           ω(t) = 72 – 6t – 3t2          α(t) = -6 – 6t
Velocidad inicial:    ωo = ω(0) = 72 rad/s
Instante en que ω = 0 = 72 – 6t – 3t2     Resolviendo:     t=4s
Aceleración angular en t = 4 s:         α(4) = -6 – 6x4 = -30 rad/s2
Ángulo que gira el motor:     θ = θ(4) - θ(0) = 176 rad
Número de revoluciones:       N = θ/2π = 28 rev


2. Una esfera de acero de 40 kg se deja caer desde una altura de 2 m sobre una plancha de
   acero horizontal. Después de rebotar, la esfera sube hasta una altura de 1.6 m. (a) Calcular el
   impulso dado a la esfera en el impacto. (b) Si el contacto entre la esfera y la plancha dura 2 x
   10-3 s, calcular la fuerza media que actúa sobre la esfera durante el impacto. (4 puntos)

Velocidad de la esfera antes del impacto:             v12 = 0 + 2 x 9,8 x 2          v1 = 6,26 m/s
Velocidad de la esfera después del impacto:           v22 = 0 + 2 x 9,8 x 1,6        v2 = 5,6 m/s
Impulso dado a la esfera:     I = p2 – p1 = mv2 – mv1 = 40 (5.6 – 6.26)              I = -26,4 N . s
Fuerza media que actúa sobre la esfera:        I = Fm ∆t      Fm = I/∆t =            Fm = 132 x 103 N


3. La Tierra que no es una esfera uniforme, tiene un momento de inercia de 0.3308MR 2 respecto
   a un eje que pasa por los polos norte y sur geográficos. La Tierra tarda 86 164 s en dar una
   revolución. (a) Calcular la energía cinética de la Tierra debida a esa rotación. (b) Calcular la
   energía cinética de la Tierra debida a su movimiento orbital (supuesto circular) en torno al Sol
   que demora 365.3 días en dar una revolución. Datos: Masa de la Tierra: 5.97 x 1024 kg, radio
   de la Tierra: 6.38 x 106 m; distancia Tierra-Sol: 1.5 x 1011 m       (4 puntos)

Velocidad angular de rotación de la Tierra alrededor de su eje:        ω = 2π rad/86164 s = 7,29 x 10-5 rad/s
Energía cinética de rotación de la Tierra alrededor de su eje:         K = I ω2/2 = 2,14 X 1031 J
Velocidad angular de rotación de la Tierra alrededor del Sol:          ω = 2π rad/365.3 días = 1,99x10-7 rad/s
Energía cinética de rotación de la Tierra alrededor del Sol:           K = Mv2/2 = Mr2 ω2 /2 = 2,66 x 1033 J


4. Una barra uniforme de longitud L = 2 m y masa M = 10 kg puede girar sin fricción alrededor de
   un eje que pasa por el extremo O. La barra se suelta desde el reposo en una posición
   horizontal. En el instante en que la barra está en posición vertical, hallar (a) su velocidad
   angular; la velocidad lineal del extremo libre de la barra P. (4 Pts) O
                 2
Dato: I =
              ML
       cm
               12




                                                                                        P
Teorema de Steiner:        I0 = Icm + Md2 = ML2/12 + ML2/4 = ML2/3
Conservación de la energía mecánica:       E1 = E2
                                           0 + Mg L/2 = I0 ω2 /2 + 0
                                           Mg L/2 = )ML2/3) (ω2 /2)
                                            ω = 3,83 rad/s

Velocidad del punto P:                       vP = Lω = 7,67 m/s


5. La polea móvil de la figura (masa 0.1 kg y radio 0.2 m) se suelta desde el reposo y desciende
   trasladándose y rotando. Calcular (a) la aceleración lineal de la polea; (b) la tensión en la
   cuerda.
                                       2
(4 puntos)         Dato: I =
                                 MR
                          cm
                                   2




2da Ley de Newton para la traslación:        Mg – T = Ma
Para la rotación de la polea:                TR = Iα = (MR2/2) (a/R)
Resolviendo:                    a = 2g/3 = 6,53 m/s2
                                T = Ma/2 = 0,33 N

Mais conteúdo relacionado

Mais procurados

Grupo 10 trabajo y energia- ejercicios
Grupo 10  trabajo y energia- ejerciciosGrupo 10  trabajo y energia- ejercicios
Grupo 10 trabajo y energia- ejercicios
etubay
 
40933000 taller-38-energia-potencial-y-ley-conservacion-energia
40933000 taller-38-energia-potencial-y-ley-conservacion-energia40933000 taller-38-energia-potencial-y-ley-conservacion-energia
40933000 taller-38-energia-potencial-y-ley-conservacion-energia
Albiter Dionicio Diaz
 
Ejercicos capacitancia
Ejercicos capacitanciaEjercicos capacitancia
Ejercicos capacitancia
ERICK CONDE
 

Mais procurados (20)

C E09 S07 D C
C E09  S07  D CC E09  S07  D C
C E09 S07 D C
 
7.19 s
7.19 s7.19 s
7.19 s
 
Ejercicios 4
Ejercicios 4Ejercicios 4
Ejercicios 4
 
Inducción magnética.pdf
Inducción magnética.pdfInducción magnética.pdf
Inducción magnética.pdf
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
Aplicación de las ecuaciones diferenciales de orden superior
Aplicación de las ecuaciones diferenciales de orden superiorAplicación de las ecuaciones diferenciales de orden superior
Aplicación de las ecuaciones diferenciales de orden superior
 
Integrales de superficie
Integrales de superficieIntegrales de superficie
Integrales de superficie
 
Grupo 10 trabajo y energia- ejercicios
Grupo 10  trabajo y energia- ejerciciosGrupo 10  trabajo y energia- ejercicios
Grupo 10 trabajo y energia- ejercicios
 
Dinamica semana 4 - 5
Dinamica   semana 4 - 5Dinamica   semana 4 - 5
Dinamica semana 4 - 5
 
Dinámica grupo 4
Dinámica grupo 4Dinámica grupo 4
Dinámica grupo 4
 
Equilibrio estático y elasticidad
Equilibrio estático y elasticidadEquilibrio estático y elasticidad
Equilibrio estático y elasticidad
 
Tema 1
Tema 1Tema 1
Tema 1
 
40933000 taller-38-energia-potencial-y-ley-conservacion-energia
40933000 taller-38-energia-potencial-y-ley-conservacion-energia40933000 taller-38-energia-potencial-y-ley-conservacion-energia
40933000 taller-38-energia-potencial-y-ley-conservacion-energia
 
Ejercicos capacitancia
Ejercicos capacitanciaEjercicos capacitancia
Ejercicos capacitancia
 
Ley de gauss clase 5 ok TE
Ley de gauss clase 5 ok TELey de gauss clase 5 ok TE
Ley de gauss clase 5 ok TE
 
ejercicio-2.2
ejercicio-2.2ejercicio-2.2
ejercicio-2.2
 
Capitulo 8 de Dinámica del movimiento
Capitulo 8 de Dinámica del movimientoCapitulo 8 de Dinámica del movimiento
Capitulo 8 de Dinámica del movimiento
 
1.2 razones a fines (ejemplos)
1.2 razones a fines (ejemplos)1.2 razones a fines (ejemplos)
1.2 razones a fines (ejemplos)
 
Ecuaciones de onda
Ecuaciones de ondaEcuaciones de onda
Ecuaciones de onda
 
Aplicaciones de las leyes de newton.docx
Aplicaciones de las leyes de newton.docxAplicaciones de las leyes de newton.docx
Aplicaciones de las leyes de newton.docx
 

Semelhante a Solución del examen parcial 3

Tippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11bTippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11b
Robert
 
Examen final de fisica a primer termino 2006
Examen final de fisica a primer termino 2006Examen final de fisica a primer termino 2006
Examen final de fisica a primer termino 2006
centro cristiano Sauces
 
Cinematica Rotacional y Rotacion de Cuerpos Rigidos.ppt
Cinematica Rotacional y Rotacion de Cuerpos Rigidos.pptCinematica Rotacional y Rotacion de Cuerpos Rigidos.ppt
Cinematica Rotacional y Rotacion de Cuerpos Rigidos.ppt
Walter Jerezano
 
Blog fisica 1
Blog fisica 1Blog fisica 1
Blog fisica 1
grupo5uts
 

Semelhante a Solución del examen parcial 3 (20)

Tippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11bTippens fisica 7e_diapositivas_11b
Tippens fisica 7e_diapositivas_11b
 
Inercia rotacional
Inercia rotacionalInercia rotacional
Inercia rotacional
 
Algunos resueltos de capítulo 13 sears
Algunos resueltos de capítulo 13 searsAlgunos resueltos de capítulo 13 sears
Algunos resueltos de capítulo 13 sears
 
Movimientos circulares
Movimientos circularesMovimientos circulares
Movimientos circulares
 
Dinamica de cuerpo rigido
Dinamica de cuerpo rigidoDinamica de cuerpo rigido
Dinamica de cuerpo rigido
 
Examen final de fisica a primer termino 2006
Examen final de fisica a primer termino 2006Examen final de fisica a primer termino 2006
Examen final de fisica a primer termino 2006
 
Cinematica Rotacional y Rotacion de Cuerpos Rigidos.ppt
Cinematica Rotacional y Rotacion de Cuerpos Rigidos.pptCinematica Rotacional y Rotacion de Cuerpos Rigidos.ppt
Cinematica Rotacional y Rotacion de Cuerpos Rigidos.ppt
 
Movimiento armonico simple y péndulo
Movimiento armonico simple y pénduloMovimiento armonico simple y péndulo
Movimiento armonico simple y péndulo
 
Fisica i-b1 mas ondas
Fisica i-b1 mas ondasFisica i-b1 mas ondas
Fisica i-b1 mas ondas
 
Semana 3 cinemática circular
Semana 3 cinemática circularSemana 3 cinemática circular
Semana 3 cinemática circular
 
solido.pdf
solido.pdfsolido.pdf
solido.pdf
 
Blog fisica 1
Blog fisica 1Blog fisica 1
Blog fisica 1
 
E11 cinematica y dinamica
E11 cinematica y dinamicaE11 cinematica y dinamica
E11 cinematica y dinamica
 
Semana 4mod
Semana 4modSemana 4mod
Semana 4mod
 
Dinamica%20 grupo%201
Dinamica%20 grupo%201Dinamica%20 grupo%201
Dinamica%20 grupo%201
 
R24515
R24515R24515
R24515
 
R24515
R24515R24515
R24515
 
Movimiento Circular Uniforme & Conceptos Fundamentales
Movimiento Circular Uniforme & Conceptos FundamentalesMovimiento Circular Uniforme & Conceptos Fundamentales
Movimiento Circular Uniforme & Conceptos Fundamentales
 
Grupo 5-1
Grupo 5-1Grupo 5-1
Grupo 5-1
 
Upn moo s09
Upn moo s09Upn moo s09
Upn moo s09
 

Mais de Yuri Milachay

Mais de Yuri Milachay (20)

Satélites del Perú
Satélites del PerúSatélites del Perú
Satélites del Perú
 
Biopirateria. Cómo se defiende el Perú contra este mal.
Biopirateria. Cómo se defiende el Perú contra este mal.Biopirateria. Cómo se defiende el Perú contra este mal.
Biopirateria. Cómo se defiende el Perú contra este mal.
 
Cinemática del punto material
Cinemática del punto materialCinemática del punto material
Cinemática del punto material
 
Cinemática
CinemáticaCinemática
Cinemática
 
Campos Escalares y Vectoriales
Campos Escalares y VectorialesCampos Escalares y Vectoriales
Campos Escalares y Vectoriales
 
Vectores. Álgebra vectorial
Vectores. Álgebra vectorialVectores. Álgebra vectorial
Vectores. Álgebra vectorial
 
Ley de Coulomb
Ley de CoulombLey de Coulomb
Ley de Coulomb
 
Magnitudes. Sistemas de Unidades
Magnitudes. Sistemas de UnidadesMagnitudes. Sistemas de Unidades
Magnitudes. Sistemas de Unidades
 
Upn moo s06
Upn moo s06Upn moo s06
Upn moo s06
 
Upn moo s04
Upn moo s04Upn moo s04
Upn moo s04
 
Upn moo s03
Upn moo s03Upn moo s03
Upn moo s03
 
Upn moo s02
Upn moo s02Upn moo s02
Upn moo s02
 
Upn moo s01
Upn moo s01Upn moo s01
Upn moo s01
 
Upn moo s07
Upn moo s07Upn moo s07
Upn moo s07
 
Diagramas de Cuerpo Libre. Equilibrio
Diagramas de Cuerpo Libre. EquilibrioDiagramas de Cuerpo Libre. Equilibrio
Diagramas de Cuerpo Libre. Equilibrio
 
Ondas mecánicas
Ondas mecánicasOndas mecánicas
Ondas mecánicas
 
Oscilaciones forzadas y Resonancia
Oscilaciones forzadas y ResonanciaOscilaciones forzadas y Resonancia
Oscilaciones forzadas y Resonancia
 
Energía del MAS. Oscilaciones Amortiguadas
Energía del MAS. Oscilaciones AmortiguadasEnergía del MAS. Oscilaciones Amortiguadas
Energía del MAS. Oscilaciones Amortiguadas
 
CURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO
CURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEOCURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO
CURSO DINAMICA ING. CIVIL CINEMÁTICA DEL MOVIMIENTO RECTILÍNEO
 
Urp fb s03
Urp fb s03Urp fb s03
Urp fb s03
 

Último

Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Fernando Solis
 
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfPROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
EduardoJosVargasCama1
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
Wilian24
 

Último (20)

Biografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdfBiografía de Charles Coulomb física .pdf
Biografía de Charles Coulomb física .pdf
 
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLAACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
ACRÓNIMO DE PARÍS PARA SU OLIMPIADA 2024. Por JAVIER SOLIS NOYOLA
 
Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024Interpretación de cortes geológicos 2024
Interpretación de cortes geológicos 2024
 
Los avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtualesLos avatares para el juego dramático en entornos virtuales
Los avatares para el juego dramático en entornos virtuales
 
Desarrollo y Aplicación de la Administración por Valores
Desarrollo y Aplicación de la Administración por ValoresDesarrollo y Aplicación de la Administración por Valores
Desarrollo y Aplicación de la Administración por Valores
 
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).pptPINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
PINTURA DEL RENACIMIENTO EN ESPAÑA (SIGLO XVI).ppt
 
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIASISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
SISTEMA RESPIRATORIO PARA NIÑOS PRIMARIA
 
Posición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptxPosición astronómica y geográfica de Europa.pptx
Posición astronómica y geográfica de Europa.pptx
 
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
1ro Programación Anual D.P.C.C planificación anual del área para el desarroll...
 
Los dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la VerdadLos dos testigos. Testifican de la Verdad
Los dos testigos. Testifican de la Verdad
 
Revista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdfRevista Apuntes de Historia. Mayo 2024.pdf
Revista Apuntes de Historia. Mayo 2024.pdf
 
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdfFICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
FICHA PROYECTO COIL- GLOBAL CLASSROOM.docx.pdf
 
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESOPrueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
Prueba de evaluación Geografía e Historia Comunidad de Madrid 2º de la ESO
 
Actividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docxActividades para el 11 de Mayo día del himno.docx
Actividades para el 11 de Mayo día del himno.docx
 
Concepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptxConcepto y definición de tipos de Datos Abstractos en c++.pptx
Concepto y definición de tipos de Datos Abstractos en c++.pptx
 
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdfPROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
PROPUESTA COMERCIAL SENA ETAPA 2 ACTIVIDAD 3.pdf
 
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdfPlan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
Plan-de-la-Patria-2019-2025- TERCER PLAN SOCIALISTA DE LA NACIÓN.pdf
 
Power Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptxPower Point E. S.: Los dos testigos.pptx
Power Point E. S.: Los dos testigos.pptx
 
6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria6°_GRADO_-_MAYO_06 para sexto grado de primaria
6°_GRADO_-_MAYO_06 para sexto grado de primaria
 
AEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptxAEC 2. Aventura en el Antiguo Egipto.pptx
AEC 2. Aventura en el Antiguo Egipto.pptx
 

Solución del examen parcial 3

  • 1. FÍSICA I – EXAMEN 3 1. El desplazamiento angular de un motor eléctrico que gira está dado por θ(t) = 72 t – 3 t2 – t3. (a) Calcular la velocidad angular inicial. (b) ¿En qué instante es cero la velocidad angular del motor?; (c) calcular la aceleración angular en ese instante. (d) ¿Cuántas revoluciones gira el motor entre el instante t = 0 y el instante en el que la velocidad angular es cero? (4 puntos) Derivando dos veces: θ(t) = 72 t – 3 t2 – t3 ω(t) = 72 – 6t – 3t2 α(t) = -6 – 6t Velocidad inicial: ωo = ω(0) = 72 rad/s Instante en que ω = 0 = 72 – 6t – 3t2 Resolviendo: t=4s Aceleración angular en t = 4 s: α(4) = -6 – 6x4 = -30 rad/s2 Ángulo que gira el motor: θ = θ(4) - θ(0) = 176 rad Número de revoluciones: N = θ/2π = 28 rev 2. Una esfera de acero de 40 kg se deja caer desde una altura de 2 m sobre una plancha de acero horizontal. Después de rebotar, la esfera sube hasta una altura de 1.6 m. (a) Calcular el impulso dado a la esfera en el impacto. (b) Si el contacto entre la esfera y la plancha dura 2 x 10-3 s, calcular la fuerza media que actúa sobre la esfera durante el impacto. (4 puntos) Velocidad de la esfera antes del impacto: v12 = 0 + 2 x 9,8 x 2 v1 = 6,26 m/s Velocidad de la esfera después del impacto: v22 = 0 + 2 x 9,8 x 1,6 v2 = 5,6 m/s Impulso dado a la esfera: I = p2 – p1 = mv2 – mv1 = 40 (5.6 – 6.26) I = -26,4 N . s Fuerza media que actúa sobre la esfera: I = Fm ∆t Fm = I/∆t = Fm = 132 x 103 N 3. La Tierra que no es una esfera uniforme, tiene un momento de inercia de 0.3308MR 2 respecto a un eje que pasa por los polos norte y sur geográficos. La Tierra tarda 86 164 s en dar una revolución. (a) Calcular la energía cinética de la Tierra debida a esa rotación. (b) Calcular la energía cinética de la Tierra debida a su movimiento orbital (supuesto circular) en torno al Sol que demora 365.3 días en dar una revolución. Datos: Masa de la Tierra: 5.97 x 1024 kg, radio de la Tierra: 6.38 x 106 m; distancia Tierra-Sol: 1.5 x 1011 m (4 puntos) Velocidad angular de rotación de la Tierra alrededor de su eje: ω = 2π rad/86164 s = 7,29 x 10-5 rad/s Energía cinética de rotación de la Tierra alrededor de su eje: K = I ω2/2 = 2,14 X 1031 J Velocidad angular de rotación de la Tierra alrededor del Sol: ω = 2π rad/365.3 días = 1,99x10-7 rad/s Energía cinética de rotación de la Tierra alrededor del Sol: K = Mv2/2 = Mr2 ω2 /2 = 2,66 x 1033 J 4. Una barra uniforme de longitud L = 2 m y masa M = 10 kg puede girar sin fricción alrededor de un eje que pasa por el extremo O. La barra se suelta desde el reposo en una posición horizontal. En el instante en que la barra está en posición vertical, hallar (a) su velocidad angular; la velocidad lineal del extremo libre de la barra P. (4 Pts) O 2 Dato: I = ML cm 12 P
  • 2. Teorema de Steiner: I0 = Icm + Md2 = ML2/12 + ML2/4 = ML2/3 Conservación de la energía mecánica: E1 = E2 0 + Mg L/2 = I0 ω2 /2 + 0 Mg L/2 = )ML2/3) (ω2 /2) ω = 3,83 rad/s Velocidad del punto P: vP = Lω = 7,67 m/s 5. La polea móvil de la figura (masa 0.1 kg y radio 0.2 m) se suelta desde el reposo y desciende trasladándose y rotando. Calcular (a) la aceleración lineal de la polea; (b) la tensión en la cuerda. 2 (4 puntos) Dato: I = MR cm 2 2da Ley de Newton para la traslación: Mg – T = Ma Para la rotación de la polea: TR = Iα = (MR2/2) (a/R) Resolviendo: a = 2g/3 = 6,53 m/s2 T = Ma/2 = 0,33 N