SlideShare uma empresa Scribd logo
1 de 30
Induced Fields
Magnetic fields may vary in time.
Experiments conducted in 1831 showed that an emf can be induced in a
circuit by a changing magnetic field.
 Experiments were done by Michael Faraday and Joseph Henry.
The results of these experiments led to Faraday’s Law of Induction.
An induced current is produced by a changing magnetic field.
There is an induced emf associated with the induced current.
A current can be produced without a battery present in the circuit.
Faraday’s law of induction describes the induced emf.
Michael Faraday
1791 – 1867
British physicist and chemist
Great experimental scientist
Contributions to early electricity include:
 Invention of motor, generator, and
transformer
 Electromagnetic induction
 Laws of electrolysis
EMF Produced by a Changing Magnetic Field, 1
A loop of wire is connected to a
sensitive ammeter.
When a magnet is moved toward the
loop, the ammeter deflects.
 The direction was arbitrarily
chosen to be negative.
EMF Produced by a Changing Magnetic Field, 2
When the magnet is held stationary,
there is no deflection of the ammeter.
Therefore, there is no induced current.
 Even though the magnet is in the
loop
EMF Produced by a Changing Magnetic Field, 3
The magnet is moved away from the
loop.
The ammeter deflects in the opposite
direction.
Induced Current Experiment, Summary
EMF Produced by a Changing Magnetic Field, Summary
The ammeter deflects when the magnet is moving toward or away from the loop.
The ammeter also deflects when the loop is moved toward or away from the
magnet.
Therefore, the loop detects that the magnet is moving relative to it.
 We relate this detection to a change in the magnetic field.
 This is the induced current that is produced by an induced emf.
Faraday’s Experiment – Set Up
A primary coil is connected to a switch
and a battery.
The wire is wrapped around an iron
ring.
A secondary coil is also wrapped
around the iron ring.
There is no battery present in the
secondary coil.
The secondary coil is not directly
connected to the primary coil.
Faraday’s Experiment
Close the switch and observe the current readings given by the ammeter.
Faraday’s Experiment – Findings
At the instant the switch is closed, the ammeter changes from zero in one
direction and then returns to zero.
When the switch is opened, the ammeter changes in the opposite direction and
then returns to zero.
The ammeter reads zero when there is a steady current or when there is no
current in the primary circuit.
Faraday’s Experiment – Conclusions
An electric current can be induced in a loop by a changing magnetic field.
 This would be the current in the secondary circuit of this experimental set-up.
The induced current exists only while the magnetic field through the loop is
changing.
This is generally expressed as:
an induced emf is produced in the loop by the
changing magnetic field.
 The actual existence of the magnetic flux is
not sufficient to produce the induced emf, the
flux must be changing.
Faraday’s Law of Induction – Statements
The emf induced in a circuit is directly proportional to the time rate of change of
the magnetic flux through the circuit.
Mathematically,
Remember ΦB is the magnetic flux through the circuit and is found by
If the circuit consists of N loops, all of the same area, and if ΦB is the flux through
one loop, an emf is induced in every loop and Faraday’s law becomes
Bd
ε
dt
Φ
= −
Bd
ε N
dt
Φ
= −
dSB •=Ψ ∫
dt
d
dlE
Ψ
−=•∫ ______________(1)
Relation between EMF and Electrostatic field
Faraday’s Law – Example
Assume a loop enclosing an area A lies in a
uniform magnetic field.
The magnetic flux through the loop is ΦB = BA
cos θ.
The induced emf is
Vemf = - d/dt (BA cos θ).
Section 31.1
Nature of a changing fluxNature of a changing flux
Since flux is defined as a dot product
 B can change
 A can change
 q can change
∫ ⋅−=
S
dSB
dt
d
NVemf

dSB•=Ψ ∫ _______________(2)
Polarity of the Induced Emf
The polarity (direction) of the induced emf is
determined by Lenz’s law.
LENZ’S Law
The direction of theThe direction of the
emf induced byemf induced by
changing flux willchanging flux will
produce a currentproduce a current
that generates athat generates a
magnetic fieldmagnetic field
opposing the fluxopposing the flux
change thatchange that
produced itproduced it..
Lenz’s Law
B, H
Lenz’s Law: emf appears and current flows that creates a
magnetic field that opposes the change – in this case an
decrease – hence the negative sign in Faraday’s Law.
B, H
N S
V+, V-

Iinduced
Lenz’s Law
B, H
Lenz’s Law: emf appears and current flows that creates a
magnetic field that opposes the change – in this case an
increase – hence the negative sign in Faraday’s Law.
B, H
N S

V-, V+
Iinduced
Faraday’s Law for a Single Loop
dt
d
E
Ψ
−== ε
Faraday’s Law for a coil having NFaraday’s Law for a coil having N
turnsturns
dt
d
NE
Ψ
−==ε
Ways of Inducing an emf
1. A stationary loop in a time varying magnetic field B [TRANSFORMER EMF]
i.e. The magnitude of the magnetic field can change with time.
2. A time varying loop area in a static field B [ MOTIONAL EMF]
i.e., The area enclosed by the loop can change with time.
3. Time varying loop area in a time varying magnetic field
i.e., The angle between the magnetic field and the normal to the loop can change
with time.
Any combination of the above can occur.
Motional emf
A motional emf is the emf induced in a
conductor moving through a constant
magnetic field.
The electrons in the conductor
experience a force, that is
directed along ℓ .
q= ×F v B
r rr
Motional emfMotional emf
Apply the Lorentz ForceApply the Lorentz Force
quation:quation:
0qvBqEF =−=
vBE =
 vBE =ε=
vB=ε
qvBqE =
Faraday’s Law
md d dx
Blx Bl
dt dt dt
Φ
= =
dx
Blv Bl
dt
= =E
m
Therefore,
d
dt
Φ
=E
CONCLUSION: to produce emf one should make
ANY change in a magnetic flux with time!
Consider the loop shown:
Sliding Conducting Bar
A conducting bar moving through a uniform field and the equivalent circuit
diagram.
Assume the bar has zero resistance.
The stationary part of the circuit has a resistance R.
Moving Conductor, Variations
Use the active figure to adjust the
applied force, the electric field and the
resistance.
Observe the effects on the motion of
the bar.
Sliding Conducting Bar, cont.
The induced emf is
Since the resistance in the circuit is R, the current is
Bd dx
ε B B v
dt dt
Φ
= − = − = − 
I
ε B v
R R
= =

Maxwell’s Equations

Mais conteúdo relacionado

Mais procurados

self inductance , mutual inductance and coeffecient of coupling
self inductance , mutual inductance and coeffecient of couplingself inductance , mutual inductance and coeffecient of coupling
self inductance , mutual inductance and coeffecient of couplingsaahil kshatriya
 
Maxwells equation and Electromagnetic Waves
Maxwells equation and Electromagnetic WavesMaxwells equation and Electromagnetic Waves
Maxwells equation and Electromagnetic WavesA K Mishra
 
Maxwell's equations and their derivations.
Maxwell's equations and their derivations.Maxwell's equations and their derivations.
Maxwell's equations and their derivations.Praveen Vaidya
 
Ch.4, The Semiconductor in Equilibrium
Ch.4, The Semiconductor in Equilibrium Ch.4, The Semiconductor in Equilibrium
Ch.4, The Semiconductor in Equilibrium Mazin A. Al-alousi
 
AMPERE’S CIRCUITAL LAW and its applications
AMPERE’S CIRCUITAL LAW and its applicationsAMPERE’S CIRCUITAL LAW and its applications
AMPERE’S CIRCUITAL LAW and its applicationsPriyanka Jakhar
 
Gauss's Law and its applications
Gauss's Law and its applicationsGauss's Law and its applications
Gauss's Law and its applicationsUSAMA
 
Electromagnetic Waves !
Electromagnetic Waves !Electromagnetic Waves !
Electromagnetic Waves !Manmohan Dash
 
Chapter5 carrier transport phenomena
Chapter5 carrier transport phenomenaChapter5 carrier transport phenomena
Chapter5 carrier transport phenomenaK. M.
 
Hall effect
Hall effectHall effect
Hall effectHasan C
 
Plane wave
Plane wavePlane wave
Plane waveUCP
 

Mais procurados (20)

Ppt19 magnetic-potential
Ppt19  magnetic-potentialPpt19  magnetic-potential
Ppt19 magnetic-potential
 
Hall effect
Hall effectHall effect
Hall effect
 
Zeeman Effect
Zeeman EffectZeeman Effect
Zeeman Effect
 
Maxwell's equation
Maxwell's equationMaxwell's equation
Maxwell's equation
 
self inductance , mutual inductance and coeffecient of coupling
self inductance , mutual inductance and coeffecient of couplingself inductance , mutual inductance and coeffecient of coupling
self inductance , mutual inductance and coeffecient of coupling
 
Maxwells equation and Electromagnetic Waves
Maxwells equation and Electromagnetic WavesMaxwells equation and Electromagnetic Waves
Maxwells equation and Electromagnetic Waves
 
Maxwell's equations and their derivations.
Maxwell's equations and their derivations.Maxwell's equations and their derivations.
Maxwell's equations and their derivations.
 
Ch.4, The Semiconductor in Equilibrium
Ch.4, The Semiconductor in Equilibrium Ch.4, The Semiconductor in Equilibrium
Ch.4, The Semiconductor in Equilibrium
 
AMPERE’S CIRCUITAL LAW and its applications
AMPERE’S CIRCUITAL LAW and its applicationsAMPERE’S CIRCUITAL LAW and its applications
AMPERE’S CIRCUITAL LAW and its applications
 
Electromagnetic Wave Propagations
Electromagnetic Wave PropagationsElectromagnetic Wave Propagations
Electromagnetic Wave Propagations
 
Gauss's Law and its applications
Gauss's Law and its applicationsGauss's Law and its applications
Gauss's Law and its applications
 
bloch.pdf
bloch.pdfbloch.pdf
bloch.pdf
 
Electromagnetic Waves !
Electromagnetic Waves !Electromagnetic Waves !
Electromagnetic Waves !
 
Faradays law
Faradays lawFaradays law
Faradays law
 
Chapter5 carrier transport phenomena
Chapter5 carrier transport phenomenaChapter5 carrier transport phenomena
Chapter5 carrier transport phenomena
 
Hall effect
Hall effectHall effect
Hall effect
 
Hall effect
Hall effectHall effect
Hall effect
 
Plane wave
Plane wavePlane wave
Plane wave
 
Electrodynamics
ElectrodynamicsElectrodynamics
Electrodynamics
 
6 slides
6 slides6 slides
6 slides
 

Destaque

Destaque (20)

Maxwell's Equations
Maxwell's EquationsMaxwell's Equations
Maxwell's Equations
 
Maxwell’s equations
Maxwell’s equationsMaxwell’s equations
Maxwell’s equations
 
Maxwell's equations
Maxwell's equationsMaxwell's equations
Maxwell's equations
 
Lecture10 maxwells equations
Lecture10 maxwells equationsLecture10 maxwells equations
Lecture10 maxwells equations
 
Maxwell's equations 3rd 2
Maxwell's equations 3rd 2Maxwell's equations 3rd 2
Maxwell's equations 3rd 2
 
Divergence theorem
Divergence theoremDivergence theorem
Divergence theorem
 
Vector Spaces
Vector SpacesVector Spaces
Vector Spaces
 
Invariance of Maxwell equation.
 Invariance of Maxwell equation.  Invariance of Maxwell equation.
Invariance of Maxwell equation.
 
The Hamiltonian constraint and its possible deformations
The Hamiltonian constraint and its possible deformationsThe Hamiltonian constraint and its possible deformations
The Hamiltonian constraint and its possible deformations
 
Roots of polynomials
Roots of polynomialsRoots of polynomials
Roots of polynomials
 
Vector space interpretation_of_random_variables
Vector space interpretation_of_random_variablesVector space interpretation_of_random_variables
Vector space interpretation_of_random_variables
 
real vector space
real vector spacereal vector space
real vector space
 
Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.Relativistic formulation of Maxwell equations.
Relativistic formulation of Maxwell equations.
 
Lecture 09
Lecture 09Lecture 09
Lecture 09
 
statistic mechanics
statistic mechanicsstatistic mechanics
statistic mechanics
 
maxwells equation
 maxwells equation maxwells equation
maxwells equation
 
Alg1 8.3 Linear Combination
Alg1 8.3 Linear CombinationAlg1 8.3 Linear Combination
Alg1 8.3 Linear Combination
 
Lagrange
LagrangeLagrange
Lagrange
 
Maxwell Equations (2)
Maxwell Equations (2)Maxwell Equations (2)
Maxwell Equations (2)
 
Differential Equations Lecture: Non-Homogeneous Linear Differential Equations
Differential Equations Lecture: Non-Homogeneous Linear Differential EquationsDifferential Equations Lecture: Non-Homogeneous Linear Differential Equations
Differential Equations Lecture: Non-Homogeneous Linear Differential Equations
 

Semelhante a Induced Fields and Faraday's Law

1 electromagnetic induction
1 electromagnetic induction1 electromagnetic induction
1 electromagnetic inductionKoncept Classes
 
1_ELECTROMAGNETIC_INDUCTION.ppt
1_ELECTROMAGNETIC_INDUCTION.ppt1_ELECTROMAGNETIC_INDUCTION.ppt
1_ELECTROMAGNETIC_INDUCTION.pptReeve2
 
1_ELECTROMAGNETIC_INDUCTION.ppt
1_ELECTROMAGNETIC_INDUCTION.ppt1_ELECTROMAGNETIC_INDUCTION.ppt
1_ELECTROMAGNETIC_INDUCTION.pptmonukumarsah349
 
1_ELECTROMAGNETIC_INDUCTION.ppt
1_ELECTROMAGNETIC_INDUCTION.ppt1_ELECTROMAGNETIC_INDUCTION.ppt
1_ELECTROMAGNETIC_INDUCTION.pptnikhilsingh1149
 
1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt1_electromagnetic_induction.ppt
1_electromagnetic_induction.pptUdayveerSingh55
 
1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt1_electromagnetic_induction.ppt
1_electromagnetic_induction.pptUmeshPatil149
 
1_electromagnetic_induction (1).ppt
1_electromagnetic_induction (1).ppt1_electromagnetic_induction (1).ppt
1_electromagnetic_induction (1).pptKillerGamers3
 
Electromagnetic Induction Class 12
Electromagnetic Induction Class 12 Electromagnetic Induction Class 12
Electromagnetic Induction Class 12 Self-employed
 
1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt1_electromagnetic_induction.ppt
1_electromagnetic_induction.pptssuser943a79
 
electromagnetic induction
electromagnetic inductionelectromagnetic induction
electromagnetic inductionx6tence Pillai
 
electromagnetic induction
 electromagnetic induction electromagnetic induction
electromagnetic inductionx6tence Pillai
 
electromagnetic induction for class 12
 electromagnetic induction for class 12 electromagnetic induction for class 12
electromagnetic induction for class 12x6tence Pillai
 
Faradays law of EMI.pptx
Faradays law of EMI.pptxFaradays law of EMI.pptx
Faradays law of EMI.pptxnivi55
 
electromagnetic induction ( part 1 )
electromagnetic induction ( part 1 )electromagnetic induction ( part 1 )
electromagnetic induction ( part 1 )Priyanka Jakhar
 
19552135 pc-chapter-31
19552135 pc-chapter-3119552135 pc-chapter-31
19552135 pc-chapter-31Krishna Patel
 
EMI physics (premuim content)
EMI physics (premuim content)EMI physics (premuim content)
EMI physics (premuim content)Aarsh5
 
PHY167-6-Electromagnetic_induction.pdf
PHY167-6-Electromagnetic_induction.pdfPHY167-6-Electromagnetic_induction.pdf
PHY167-6-Electromagnetic_induction.pdfAdityaKumar665340
 
Art integration project
Art integration projectArt integration project
Art integration projectpiyushyadav168
 

Semelhante a Induced Fields and Faraday's Law (20)

6 faradays law
6 faradays law6 faradays law
6 faradays law
 
Unidad V.ppt
Unidad V.pptUnidad V.ppt
Unidad V.ppt
 
1 electromagnetic induction
1 electromagnetic induction1 electromagnetic induction
1 electromagnetic induction
 
1_ELECTROMAGNETIC_INDUCTION.ppt
1_ELECTROMAGNETIC_INDUCTION.ppt1_ELECTROMAGNETIC_INDUCTION.ppt
1_ELECTROMAGNETIC_INDUCTION.ppt
 
1_ELECTROMAGNETIC_INDUCTION.ppt
1_ELECTROMAGNETIC_INDUCTION.ppt1_ELECTROMAGNETIC_INDUCTION.ppt
1_ELECTROMAGNETIC_INDUCTION.ppt
 
1_ELECTROMAGNETIC_INDUCTION.ppt
1_ELECTROMAGNETIC_INDUCTION.ppt1_ELECTROMAGNETIC_INDUCTION.ppt
1_ELECTROMAGNETIC_INDUCTION.ppt
 
1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt
 
1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt
 
1_electromagnetic_induction (1).ppt
1_electromagnetic_induction (1).ppt1_electromagnetic_induction (1).ppt
1_electromagnetic_induction (1).ppt
 
Electromagnetic Induction Class 12
Electromagnetic Induction Class 12 Electromagnetic Induction Class 12
Electromagnetic Induction Class 12
 
1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt1_electromagnetic_induction.ppt
1_electromagnetic_induction.ppt
 
electromagnetic induction
electromagnetic inductionelectromagnetic induction
electromagnetic induction
 
electromagnetic induction
 electromagnetic induction electromagnetic induction
electromagnetic induction
 
electromagnetic induction for class 12
 electromagnetic induction for class 12 electromagnetic induction for class 12
electromagnetic induction for class 12
 
Faradays law of EMI.pptx
Faradays law of EMI.pptxFaradays law of EMI.pptx
Faradays law of EMI.pptx
 
electromagnetic induction ( part 1 )
electromagnetic induction ( part 1 )electromagnetic induction ( part 1 )
electromagnetic induction ( part 1 )
 
19552135 pc-chapter-31
19552135 pc-chapter-3119552135 pc-chapter-31
19552135 pc-chapter-31
 
EMI physics (premuim content)
EMI physics (premuim content)EMI physics (premuim content)
EMI physics (premuim content)
 
PHY167-6-Electromagnetic_induction.pdf
PHY167-6-Electromagnetic_induction.pdfPHY167-6-Electromagnetic_induction.pdf
PHY167-6-Electromagnetic_induction.pdf
 
Art integration project
Art integration projectArt integration project
Art integration project
 

Mais de Kumar

Graphics devices
Graphics devicesGraphics devices
Graphics devicesKumar
 
Fill area algorithms
Fill area algorithmsFill area algorithms
Fill area algorithmsKumar
 
region-filling
region-fillingregion-filling
region-fillingKumar
 
Bresenham derivation
Bresenham derivationBresenham derivation
Bresenham derivationKumar
 
Bresenham circles and polygons derication
Bresenham circles and polygons dericationBresenham circles and polygons derication
Bresenham circles and polygons dericationKumar
 
Introductionto xslt
Introductionto xsltIntroductionto xslt
Introductionto xsltKumar
 
Extracting data from xml
Extracting data from xmlExtracting data from xml
Extracting data from xmlKumar
 
Xml basics
Xml basicsXml basics
Xml basicsKumar
 
XML Schema
XML SchemaXML Schema
XML SchemaKumar
 
Publishing xml
Publishing xmlPublishing xml
Publishing xmlKumar
 
Applying xml
Applying xmlApplying xml
Applying xmlKumar
 
Introduction to XML
Introduction to XMLIntroduction to XML
Introduction to XMLKumar
 
How to deploy a j2ee application
How to deploy a j2ee applicationHow to deploy a j2ee application
How to deploy a j2ee applicationKumar
 
JNDI, JMS, JPA, XML
JNDI, JMS, JPA, XMLJNDI, JMS, JPA, XML
JNDI, JMS, JPA, XMLKumar
 
EJB Fundmentals
EJB FundmentalsEJB Fundmentals
EJB FundmentalsKumar
 
JSP and struts programming
JSP and struts programmingJSP and struts programming
JSP and struts programmingKumar
 
java servlet and servlet programming
java servlet and servlet programmingjava servlet and servlet programming
java servlet and servlet programmingKumar
 
Introduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC DriversIntroduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC DriversKumar
 
Introduction to J2EE
Introduction to J2EEIntroduction to J2EE
Introduction to J2EEKumar
 

Mais de Kumar (20)

Graphics devices
Graphics devicesGraphics devices
Graphics devices
 
Fill area algorithms
Fill area algorithmsFill area algorithms
Fill area algorithms
 
region-filling
region-fillingregion-filling
region-filling
 
Bresenham derivation
Bresenham derivationBresenham derivation
Bresenham derivation
 
Bresenham circles and polygons derication
Bresenham circles and polygons dericationBresenham circles and polygons derication
Bresenham circles and polygons derication
 
Introductionto xslt
Introductionto xsltIntroductionto xslt
Introductionto xslt
 
Extracting data from xml
Extracting data from xmlExtracting data from xml
Extracting data from xml
 
Xml basics
Xml basicsXml basics
Xml basics
 
XML Schema
XML SchemaXML Schema
XML Schema
 
Publishing xml
Publishing xmlPublishing xml
Publishing xml
 
DTD
DTDDTD
DTD
 
Applying xml
Applying xmlApplying xml
Applying xml
 
Introduction to XML
Introduction to XMLIntroduction to XML
Introduction to XML
 
How to deploy a j2ee application
How to deploy a j2ee applicationHow to deploy a j2ee application
How to deploy a j2ee application
 
JNDI, JMS, JPA, XML
JNDI, JMS, JPA, XMLJNDI, JMS, JPA, XML
JNDI, JMS, JPA, XML
 
EJB Fundmentals
EJB FundmentalsEJB Fundmentals
EJB Fundmentals
 
JSP and struts programming
JSP and struts programmingJSP and struts programming
JSP and struts programming
 
java servlet and servlet programming
java servlet and servlet programmingjava servlet and servlet programming
java servlet and servlet programming
 
Introduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC DriversIntroduction to JDBC and JDBC Drivers
Introduction to JDBC and JDBC Drivers
 
Introduction to J2EE
Introduction to J2EEIntroduction to J2EE
Introduction to J2EE
 

Último

DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brandgvaughan
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clashcharlottematthew16
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 3652toLead Limited
 

Último (20)

DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
WordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your BrandWordPress Websites for Engineers: Elevate Your Brand
WordPress Websites for Engineers: Elevate Your Brand
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
Powerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time ClashPowerpoint exploring the locations used in television show Time Clash
Powerpoint exploring the locations used in television show Time Clash
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365Ensuring Technical Readiness For Copilot in Microsoft 365
Ensuring Technical Readiness For Copilot in Microsoft 365
 

Induced Fields and Faraday's Law

  • 1.
  • 2. Induced Fields Magnetic fields may vary in time. Experiments conducted in 1831 showed that an emf can be induced in a circuit by a changing magnetic field.  Experiments were done by Michael Faraday and Joseph Henry. The results of these experiments led to Faraday’s Law of Induction. An induced current is produced by a changing magnetic field. There is an induced emf associated with the induced current. A current can be produced without a battery present in the circuit. Faraday’s law of induction describes the induced emf.
  • 3. Michael Faraday 1791 – 1867 British physicist and chemist Great experimental scientist Contributions to early electricity include:  Invention of motor, generator, and transformer  Electromagnetic induction  Laws of electrolysis
  • 4. EMF Produced by a Changing Magnetic Field, 1 A loop of wire is connected to a sensitive ammeter. When a magnet is moved toward the loop, the ammeter deflects.  The direction was arbitrarily chosen to be negative.
  • 5. EMF Produced by a Changing Magnetic Field, 2 When the magnet is held stationary, there is no deflection of the ammeter. Therefore, there is no induced current.  Even though the magnet is in the loop
  • 6. EMF Produced by a Changing Magnetic Field, 3 The magnet is moved away from the loop. The ammeter deflects in the opposite direction.
  • 8. EMF Produced by a Changing Magnetic Field, Summary The ammeter deflects when the magnet is moving toward or away from the loop. The ammeter also deflects when the loop is moved toward or away from the magnet. Therefore, the loop detects that the magnet is moving relative to it.  We relate this detection to a change in the magnetic field.  This is the induced current that is produced by an induced emf.
  • 9. Faraday’s Experiment – Set Up A primary coil is connected to a switch and a battery. The wire is wrapped around an iron ring. A secondary coil is also wrapped around the iron ring. There is no battery present in the secondary coil. The secondary coil is not directly connected to the primary coil.
  • 10. Faraday’s Experiment Close the switch and observe the current readings given by the ammeter.
  • 11. Faraday’s Experiment – Findings At the instant the switch is closed, the ammeter changes from zero in one direction and then returns to zero. When the switch is opened, the ammeter changes in the opposite direction and then returns to zero. The ammeter reads zero when there is a steady current or when there is no current in the primary circuit.
  • 12. Faraday’s Experiment – Conclusions An electric current can be induced in a loop by a changing magnetic field.  This would be the current in the secondary circuit of this experimental set-up. The induced current exists only while the magnetic field through the loop is changing. This is generally expressed as: an induced emf is produced in the loop by the changing magnetic field.  The actual existence of the magnetic flux is not sufficient to produce the induced emf, the flux must be changing.
  • 13. Faraday’s Law of Induction – Statements The emf induced in a circuit is directly proportional to the time rate of change of the magnetic flux through the circuit. Mathematically, Remember ΦB is the magnetic flux through the circuit and is found by If the circuit consists of N loops, all of the same area, and if ΦB is the flux through one loop, an emf is induced in every loop and Faraday’s law becomes Bd ε dt Φ = − Bd ε N dt Φ = − dSB •=Ψ ∫ dt d dlE Ψ −=•∫ ______________(1)
  • 14. Relation between EMF and Electrostatic field
  • 15. Faraday’s Law – Example Assume a loop enclosing an area A lies in a uniform magnetic field. The magnetic flux through the loop is ΦB = BA cos θ. The induced emf is Vemf = - d/dt (BA cos θ). Section 31.1
  • 16. Nature of a changing fluxNature of a changing flux Since flux is defined as a dot product  B can change  A can change  q can change ∫ ⋅−= S dSB dt d NVemf  dSB•=Ψ ∫ _______________(2)
  • 17. Polarity of the Induced Emf The polarity (direction) of the induced emf is determined by Lenz’s law.
  • 18. LENZ’S Law The direction of theThe direction of the emf induced byemf induced by changing flux willchanging flux will produce a currentproduce a current that generates athat generates a magnetic fieldmagnetic field opposing the fluxopposing the flux change thatchange that produced itproduced it..
  • 19. Lenz’s Law B, H Lenz’s Law: emf appears and current flows that creates a magnetic field that opposes the change – in this case an decrease – hence the negative sign in Faraday’s Law. B, H N S V+, V-  Iinduced
  • 20. Lenz’s Law B, H Lenz’s Law: emf appears and current flows that creates a magnetic field that opposes the change – in this case an increase – hence the negative sign in Faraday’s Law. B, H N S  V-, V+ Iinduced
  • 21. Faraday’s Law for a Single Loop dt d E Ψ −== ε
  • 22. Faraday’s Law for a coil having NFaraday’s Law for a coil having N turnsturns dt d NE Ψ −==ε
  • 23. Ways of Inducing an emf 1. A stationary loop in a time varying magnetic field B [TRANSFORMER EMF] i.e. The magnitude of the magnetic field can change with time. 2. A time varying loop area in a static field B [ MOTIONAL EMF] i.e., The area enclosed by the loop can change with time. 3. Time varying loop area in a time varying magnetic field i.e., The angle between the magnetic field and the normal to the loop can change with time. Any combination of the above can occur.
  • 24. Motional emf A motional emf is the emf induced in a conductor moving through a constant magnetic field. The electrons in the conductor experience a force, that is directed along ℓ . q= ×F v B r rr
  • 25. Motional emfMotional emf Apply the Lorentz ForceApply the Lorentz Force quation:quation: 0qvBqEF =−= vBE =  vBE =ε= vB=ε qvBqE =
  • 26. Faraday’s Law md d dx Blx Bl dt dt dt Φ = = dx Blv Bl dt = =E m Therefore, d dt Φ =E CONCLUSION: to produce emf one should make ANY change in a magnetic flux with time! Consider the loop shown:
  • 27. Sliding Conducting Bar A conducting bar moving through a uniform field and the equivalent circuit diagram. Assume the bar has zero resistance. The stationary part of the circuit has a resistance R.
  • 28. Moving Conductor, Variations Use the active figure to adjust the applied force, the electric field and the resistance. Observe the effects on the motion of the bar.
  • 29. Sliding Conducting Bar, cont. The induced emf is Since the resistance in the circuit is R, the current is Bd dx ε B B v dt dt Φ = − = − = −  I ε B v R R = = 

Notas do Editor

  1. There is a negative sign in Faraday’s Law – and this is why.
  2. There is a negative sign in Faraday’s Law – and this is why.