SlideShare uma empresa Scribd logo
1 de 13
Prediction Method


By Rama Krishna Kompella
Multiple Regression
• MR is an intermediate prediction method, allowing:

• 2 or more (usually continuous) IVs

• 1 Continuous DV

• Want IVs relatively uncorrelated

• Want IVs correlated with DV

• Focus is on weights for IVs
Multiple Regression
• A regression model specifies a relation between a dependent
  variable Y and certain independent variables X1, …,XK.
  – Here “independence” is not in the sense of random variables; rather, it
    means that the value of Y depends on - or is determined by - the Xi
    variables.)
• A linear model sets
      Y = β1 + β1X1 + … + βkXK + ε,
   where ε is the error term.
• To use such a model, we need to have data on values of Y
  corresponding to values of the Xi's.
  – selling prices for various house features, past growth values for various
    economic conditions
When to Use MR?
o Standard: Examines how whole set of IVs relates to DV
o Combines all IVs at once to find multiple correlation
o Hierarchical: Examines several sets of IVs based on theory
o Researcher chooses order of variables entered in steps
o Stepwise: Examines IVs most highly correlated with DV
o Computer selects best IVs related to DV
o Conduct any of above in stand-alone MR analysis
o Conduct set of MRs as follow-up to significant Canonical
                                4
Correlation
Example
• Suppose we have data on sales of houses in some area.
  – For each house, we have complete information about its size,
    the number of bedrooms, bathrooms, total rooms, the size of
    the lot, the corresponding property tax, etc., and also the price
    at which the house was eventually sold.
  – Can we use this data to predict the selling price of a house
    currently on the market?
  – The first step is to postulate a model of how the various
    features of a house determine its selling price.
Example
– A linear model would have the following form:
   selling price = β0 + β1(sq.ft.) + β2 (no. bedrooms) + β3 (no. bath)
                  + β4 (no. acres) + β5 (taxes) + error
   • In this expression, β1 represents the increase in selling price for each
     additional square foot of area: it is the marginal cost of additional area.
   • β2 and β3 are the marginal costs of additional bedrooms and bathrooms,
     and so on.
   • The intercept β0 could in theory be thought of as the price of a house for
     which all the variables specified are zero; of course, no such house could
     exist, but including β0 gives us more flexibility in picking a model.
Example
  – The error reflects the fact that two houses with exactly the same
    characteristics need not sell for exactly the same price.
     • There is always some variability left over, even after we specify the value of a large
       number variables.
     • This variability is captured by an error term, which we will treat as a random
       variable.
• Regression analysis is a technique for using data to identify
  relationships among variables and use these relationships to make
 predictions.
Levels of advertising
• Determine appropriate levels of advertising and promotion for a
  particular market segment.
• Consider the problem of managing sales of beer at large college
  campuses.
   – Sales over, say, one semester might be influenced by ads in the college
     paper, ads on the campus radio station, sponsorship of sports-related
     events, sponsorship of contests, etc.
• Use data on advertising and promotional expenditures at many
  different campuses to tell us the marginal value of dollars spent in
  each category.
• A marketing strategy is designed accordingly.
• Set up a model of the following type:
   sales = β0 + β1(print budget) + β2(radio budget)
          + β3(sports promo budget) + β4(other promo) + error
General Research Questions:

• How do consumers make decisions about
  the foods that they eat?

• How do these decisions vary across
  cultures?



                                          9
More Specific Research Questions:

• What factors influence consumers’
  willingness to purchase genetically modified
  food products?

• Does the influence of these factors vary
  between U.S. and U.K. consumers?
Descriptive Statistics
                        U.S. and U.K. Students
                                                                 US            UK
                      N                                          44            33

                      Willingness to Purchase                   4.86          4.60

                      General Trust                            3.51*         3.22*

                      Cognitive Trust                          5.39*         4.65*

                      Affective Trust                          5.02*         4.41*

                      Technology                               5.17*         4.70*
All student data are on a 7 point scale except general trust which is on a 5 point scale.

†p < .10
*p < .05
Multiple Regression Results
       U.S. and U.K. Students
      Dependent Variable: WTP
             U.S.         U.K.    Combined
              β              β       β

General       .465†       .645†     .520*
Cognitive    -.422†        .121     -.167
Affective     .892*        .271     .649*
Technology     .179        .000      .000
Country         na          na      -1.09

N             44           31        75
R2            .54          .34       .46

               †p < .10
               *p < .05
Questions?

Mais conteúdo relacionado

Semelhante a T16 multiple regression

2010 06-03 pilot study 1950s with-basements
2010 06-03 pilot study 1950s with-basements2010 06-03 pilot study 1950s with-basements
2010 06-03 pilot study 1950s with-basementsMargaret Maginnis
 
2010 06-03 pilot study 1950s with-basements
2010 06-03 pilot study 1950s with-basements2010 06-03 pilot study 1950s with-basements
2010 06-03 pilot study 1950s with-basementsMargaret Maginnis
 
Math 221 week 1 lecture feb 2012
Math 221 week 1 lecture feb 2012Math 221 week 1 lecture feb 2012
Math 221 week 1 lecture feb 2012Brent Heard
 
Home Performance Labelling
Home Performance LabellingHome Performance Labelling
Home Performance LabellingLone Feifer
 
2010 Pilot Study Regression Analysis of 1950s Housing Stock
2010 Pilot Study Regression Analysis of 1950s Housing Stock2010 Pilot Study Regression Analysis of 1950s Housing Stock
2010 Pilot Study Regression Analysis of 1950s Housing StockMargaret Maginnis
 
2010 pilot study 1950s with basements
2010 pilot study 1950s with basements2010 pilot study 1950s with basements
2010 pilot study 1950s with basementsmhmaggie
 
Rss Oct 2011 Mixed Modes Pres5
Rss Oct 2011 Mixed Modes Pres5Rss Oct 2011 Mixed Modes Pres5
Rss Oct 2011 Mixed Modes Pres5GerryNicolaas
 
Exploring housing patterns and dynamics in low demand neighbourhoods using Ge...
Exploring housing patterns and dynamics in low demand neighbourhoods using Ge...Exploring housing patterns and dynamics in low demand neighbourhoods using Ge...
Exploring housing patterns and dynamics in low demand neighbourhoods using Ge...Graham Squires
 
Some results on household subjective probabilities of future house prices
Some results on household subjective probabilities of future house pricesSome results on household subjective probabilities of future house prices
Some results on household subjective probabilities of future house pricesEesti Pank
 
Chapter 4 - multiple regression
Chapter 4  - multiple regressionChapter 4  - multiple regression
Chapter 4 - multiple regressionTauseef khan
 
Resolving e commerce challenges with probabilistic programming
Resolving e commerce challenges with probabilistic programmingResolving e commerce challenges with probabilistic programming
Resolving e commerce challenges with probabilistic programmingLogicAI
 
2016_Apres_Lares_EC_29set2016
2016_Apres_Lares_EC_29set20162016_Apres_Lares_EC_29set2016
2016_Apres_Lares_EC_29set2016Eduardo Cazassa
 
Math 221 week 1 lecture
Math 221 week 1 lectureMath 221 week 1 lecture
Math 221 week 1 lectureBrent Heard
 
A review of net lift models
A review of net lift modelsA review of net lift models
A review of net lift modelsZixia Wang
 
Relative valuation
Relative valuationRelative valuation
Relative valuationariedler
 

Semelhante a T16 multiple regression (20)

2010 06-03 pilot study 1950s with-basements
2010 06-03 pilot study 1950s with-basements2010 06-03 pilot study 1950s with-basements
2010 06-03 pilot study 1950s with-basements
 
2010 06-03 pilot study 1950s with-basements
2010 06-03 pilot study 1950s with-basements2010 06-03 pilot study 1950s with-basements
2010 06-03 pilot study 1950s with-basements
 
Math 221 week 1 lecture feb 2012
Math 221 week 1 lecture feb 2012Math 221 week 1 lecture feb 2012
Math 221 week 1 lecture feb 2012
 
Home Performance Labelling
Home Performance LabellingHome Performance Labelling
Home Performance Labelling
 
2010 Pilot Study Regression Analysis of 1950s Housing Stock
2010 Pilot Study Regression Analysis of 1950s Housing Stock2010 Pilot Study Regression Analysis of 1950s Housing Stock
2010 Pilot Study Regression Analysis of 1950s Housing Stock
 
2010 pilot study 1950s with basements
2010 pilot study 1950s with basements2010 pilot study 1950s with basements
2010 pilot study 1950s with basements
 
Rss Oct 2011 Mixed Modes Pres5
Rss Oct 2011 Mixed Modes Pres5Rss Oct 2011 Mixed Modes Pres5
Rss Oct 2011 Mixed Modes Pres5
 
Exploring housing patterns and dynamics in low demand neighbourhoods using Ge...
Exploring housing patterns and dynamics in low demand neighbourhoods using Ge...Exploring housing patterns and dynamics in low demand neighbourhoods using Ge...
Exploring housing patterns and dynamics in low demand neighbourhoods using Ge...
 
Machine Learning (Decisoion Trees)
Machine Learning (Decisoion Trees)Machine Learning (Decisoion Trees)
Machine Learning (Decisoion Trees)
 
demand forecasting
demand forecastingdemand forecasting
demand forecasting
 
bbch5.ppt.ppt
bbch5.ppt.pptbbch5.ppt.ppt
bbch5.ppt.ppt
 
Some results on household subjective probabilities of future house prices
Some results on household subjective probabilities of future house pricesSome results on household subjective probabilities of future house prices
Some results on household subjective probabilities of future house prices
 
Economic NotesLipsey ppt ch02
Economic NotesLipsey ppt ch02Economic NotesLipsey ppt ch02
Economic NotesLipsey ppt ch02
 
Chapter 4 - multiple regression
Chapter 4  - multiple regressionChapter 4  - multiple regression
Chapter 4 - multiple regression
 
Getting testing right
Getting testing right Getting testing right
Getting testing right
 
Resolving e commerce challenges with probabilistic programming
Resolving e commerce challenges with probabilistic programmingResolving e commerce challenges with probabilistic programming
Resolving e commerce challenges with probabilistic programming
 
2016_Apres_Lares_EC_29set2016
2016_Apres_Lares_EC_29set20162016_Apres_Lares_EC_29set2016
2016_Apres_Lares_EC_29set2016
 
Math 221 week 1 lecture
Math 221 week 1 lectureMath 221 week 1 lecture
Math 221 week 1 lecture
 
A review of net lift models
A review of net lift modelsA review of net lift models
A review of net lift models
 
Relative valuation
Relative valuationRelative valuation
Relative valuation
 

Mais de kompellark

T22 research report writing
T22 research report writingT22 research report writing
T22 research report writingkompellark
 
Rubric assignment 2
Rubric   assignment 2Rubric   assignment 2
Rubric assignment 2kompellark
 
Answers mid-term
Answers   mid-termAnswers   mid-term
Answers mid-termkompellark
 
T21 conjoint analysis
T21 conjoint analysisT21 conjoint analysis
T21 conjoint analysiskompellark
 
T20 cluster analysis
T20 cluster analysisT20 cluster analysis
T20 cluster analysiskompellark
 
T19 factor analysis
T19 factor analysisT19 factor analysis
T19 factor analysiskompellark
 
T18 discriminant analysis
T18 discriminant analysisT18 discriminant analysis
T18 discriminant analysiskompellark
 
T17 correlation
T17 correlationT17 correlation
T17 correlationkompellark
 
T16 multiple regression
T16 multiple regressionT16 multiple regression
T16 multiple regressionkompellark
 
T13 parametric tests
T13 parametric testsT13 parametric tests
T13 parametric testskompellark
 
T11 types of tests
T11 types of testsT11 types of tests
T11 types of testskompellark
 
T13 parametric tests
T13 parametric testsT13 parametric tests
T13 parametric testskompellark
 
T12 non-parametric tests
T12 non-parametric testsT12 non-parametric tests
T12 non-parametric testskompellark
 
T11 types of tests
T11 types of testsT11 types of tests
T11 types of testskompellark
 
T10 statisitical analysis
T10 statisitical analysisT10 statisitical analysis
T10 statisitical analysiskompellark
 

Mais de kompellark (20)

T22 research report writing
T22 research report writingT22 research report writing
T22 research report writing
 
Rubric assignment 2
Rubric   assignment 2Rubric   assignment 2
Rubric assignment 2
 
Answers mid-term
Answers   mid-termAnswers   mid-term
Answers mid-term
 
Exam paper
Exam paperExam paper
Exam paper
 
T21 conjoint analysis
T21 conjoint analysisT21 conjoint analysis
T21 conjoint analysis
 
T20 cluster analysis
T20 cluster analysisT20 cluster analysis
T20 cluster analysis
 
T19 factor analysis
T19 factor analysisT19 factor analysis
T19 factor analysis
 
T18 discriminant analysis
T18 discriminant analysisT18 discriminant analysis
T18 discriminant analysis
 
T17 correlation
T17 correlationT17 correlation
T17 correlation
 
T16 multiple regression
T16 multiple regressionT16 multiple regression
T16 multiple regression
 
T15 ancova
T15 ancovaT15 ancova
T15 ancova
 
T14 anova
T14 anovaT14 anova
T14 anova
 
T13 parametric tests
T13 parametric testsT13 parametric tests
T13 parametric tests
 
T11 types of tests
T11 types of testsT11 types of tests
T11 types of tests
 
T15 ancova
T15 ancovaT15 ancova
T15 ancova
 
T14 anova
T14 anovaT14 anova
T14 anova
 
T13 parametric tests
T13 parametric testsT13 parametric tests
T13 parametric tests
 
T12 non-parametric tests
T12 non-parametric testsT12 non-parametric tests
T12 non-parametric tests
 
T11 types of tests
T11 types of testsT11 types of tests
T11 types of tests
 
T10 statisitical analysis
T10 statisitical analysisT10 statisitical analysis
T10 statisitical analysis
 

Último

Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxhariprasad279825
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):comworks
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DaySri Ambati
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Manik S Magar
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsMark Billinghurst
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek SchlawackFwdays
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 

Último (20)

Artificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptxArtificial intelligence in cctv survelliance.pptx
Artificial intelligence in cctv survelliance.pptx
 
CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):CloudStudio User manual (basic edition):
CloudStudio User manual (basic edition):
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo DayH2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
H2O.ai CEO/Founder: Sri Ambati Keynote at Wells Fargo Day
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!Anypoint Exchange: It’s Not Just a Repo!
Anypoint Exchange: It’s Not Just a Repo!
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Human Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR SystemsHuman Factors of XR: Using Human Factors to Design XR Systems
Human Factors of XR: Using Human Factors to Design XR Systems
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
"Subclassing and Composition – A Pythonic Tour of Trade-Offs", Hynek Schlawack
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 

T16 multiple regression

  • 1. Prediction Method By Rama Krishna Kompella
  • 2. Multiple Regression • MR is an intermediate prediction method, allowing: • 2 or more (usually continuous) IVs • 1 Continuous DV • Want IVs relatively uncorrelated • Want IVs correlated with DV • Focus is on weights for IVs
  • 3. Multiple Regression • A regression model specifies a relation between a dependent variable Y and certain independent variables X1, …,XK. – Here “independence” is not in the sense of random variables; rather, it means that the value of Y depends on - or is determined by - the Xi variables.) • A linear model sets Y = β1 + β1X1 + … + βkXK + ε, where ε is the error term. • To use such a model, we need to have data on values of Y corresponding to values of the Xi's. – selling prices for various house features, past growth values for various economic conditions
  • 4. When to Use MR? o Standard: Examines how whole set of IVs relates to DV o Combines all IVs at once to find multiple correlation o Hierarchical: Examines several sets of IVs based on theory o Researcher chooses order of variables entered in steps o Stepwise: Examines IVs most highly correlated with DV o Computer selects best IVs related to DV o Conduct any of above in stand-alone MR analysis o Conduct set of MRs as follow-up to significant Canonical 4 Correlation
  • 5. Example • Suppose we have data on sales of houses in some area. – For each house, we have complete information about its size, the number of bedrooms, bathrooms, total rooms, the size of the lot, the corresponding property tax, etc., and also the price at which the house was eventually sold. – Can we use this data to predict the selling price of a house currently on the market? – The first step is to postulate a model of how the various features of a house determine its selling price.
  • 6. Example – A linear model would have the following form: selling price = β0 + β1(sq.ft.) + β2 (no. bedrooms) + β3 (no. bath) + β4 (no. acres) + β5 (taxes) + error • In this expression, β1 represents the increase in selling price for each additional square foot of area: it is the marginal cost of additional area. • β2 and β3 are the marginal costs of additional bedrooms and bathrooms, and so on. • The intercept β0 could in theory be thought of as the price of a house for which all the variables specified are zero; of course, no such house could exist, but including β0 gives us more flexibility in picking a model.
  • 7. Example – The error reflects the fact that two houses with exactly the same characteristics need not sell for exactly the same price. • There is always some variability left over, even after we specify the value of a large number variables. • This variability is captured by an error term, which we will treat as a random variable. • Regression analysis is a technique for using data to identify relationships among variables and use these relationships to make predictions.
  • 8. Levels of advertising • Determine appropriate levels of advertising and promotion for a particular market segment. • Consider the problem of managing sales of beer at large college campuses. – Sales over, say, one semester might be influenced by ads in the college paper, ads on the campus radio station, sponsorship of sports-related events, sponsorship of contests, etc. • Use data on advertising and promotional expenditures at many different campuses to tell us the marginal value of dollars spent in each category. • A marketing strategy is designed accordingly. • Set up a model of the following type: sales = β0 + β1(print budget) + β2(radio budget) + β3(sports promo budget) + β4(other promo) + error
  • 9. General Research Questions: • How do consumers make decisions about the foods that they eat? • How do these decisions vary across cultures? 9
  • 10. More Specific Research Questions: • What factors influence consumers’ willingness to purchase genetically modified food products? • Does the influence of these factors vary between U.S. and U.K. consumers?
  • 11. Descriptive Statistics U.S. and U.K. Students US UK N 44 33 Willingness to Purchase 4.86 4.60 General Trust 3.51* 3.22* Cognitive Trust 5.39* 4.65* Affective Trust 5.02* 4.41* Technology 5.17* 4.70* All student data are on a 7 point scale except general trust which is on a 5 point scale. †p < .10 *p < .05
  • 12. Multiple Regression Results U.S. and U.K. Students Dependent Variable: WTP U.S. U.K. Combined β β β General .465† .645† .520* Cognitive -.422† .121 -.167 Affective .892* .271 .649* Technology .179 .000 .000 Country na na -1.09 N 44 31 75 R2 .54 .34 .46 †p < .10 *p < .05