SlideShare uma empresa Scribd logo
1 de 33
Seminar #2
Infosecurity
Number theory. Group, ring and
field theory
Kolybelnikov Alexander
kisttan@gmail.com
Agenda
•Number theory
–Modular arithmetic
–GCD (greatest common divisor)

• Fermat theorem, Euler function, modulo
inverse value
• Group, ring, field theory
Number theory
Modular arithmetic
Modular arithmetic. Definitions
•Two integer numbers a and b are comparable
in absolute value n (modulo n parity) if a and b
give the same remainder of division by n.
•Example: 32 and −10 are comparable in
absolute value 7 because 32 = 7∙4 + 4, −10 =
7∙(-2) + 4.
•Statement «a and b are comparable in absolute
value n» is commonly expressed as:
a ≡b (mod n)
Modular arithmetic.
Characteristics
•Comparison relation means a relation of
equivalence and is characterized by many
properties of common equations.
•For instance, addition and multiplication are
allowed in following cases:
a2≡b2(mod n)
•a1≡b1(mod n)
•a1 a2 ≡b1b2 (mod n) a1 +a2 ≡b1+b2 (mod n)
•
•
•
Prime numbers and methods of their
detection
Prime numbers
•Prime number is a natural number that has
exactly two different natural divisors: unit and
itself. All other numbers except unit element are
called composite numbers. So all natural
numbers greater than unit are divided into prime
and composite. Number theory studies properties
of prime numbers. In ring theory irreducible
elements correspond to prime numbers.
Tests detecting prime numbers
•Sieve of Eratosthenes
•Fermat test
•For the next seminars:
–Miller Rabin test
–AKS test
Sieve of Eratosthenes
•Choosing of a random number N;
•Dividing of N by all numbers from 1 to N/2.
Fermat test
•If p is a prime number then
• a p − 1 ≡ 1 (mod p)
•The probability that p is a prime number
increases with large amount of testing a and
equals to 1/2n , n means amount of a.
•
•
Prime numbers properties
•If p is a prime number and p is divisible by ab then p is divisible bya and by b.
(Euclidean lemma, this is used in the proof of fundamental theorem of
arithmetic.
•Residue ring is considered to be a field if and only if n is a prime number.
•Field characteristic is zero or a prime number.
•If p is a prime number and a is a natural number then (ap − a) is divisible by p
(Fermat little theorem).
•If G is a finite group of pn elements then G contains an element of p order.
•If G is a finite group and pn is the maximum power of p that divides | G | then
G has a subgroup of pn order (Sylov subgroup) and the number of Sylov
subgroups is equal to pk + 1 for an integer k (Sylov's theorems).
•Natural number p > 1 is a prime number if and only if ((p − 1)! + 1) is
divisible by p (Vilson theorem).
•If n > 1 is a natural number then a prime number p is defined as follows:
•n < p < 2n (Bertrand postulate).
Greatest common divisor (GCD)
GCD. Definition
Greatest common divisor (GCD) for two
integer numbers m and n is the greatest from
their common divisors.
Example: for numbers 70 and 105 GCD = 35
GCD calculation. Euclidean
algorithm
•Provides a and b are integer numbers that are never both zero together
and number sequence
•
is defined in the way that each rk is a remainder of division of previous
but one by previous number
and the last but one number is divisible by the last number (without a
remainder):
a = bq0 + r1 b = r1q1 + r2 r1 = r2q2 + r3 rk − 2 = rk − 1qk − 1 + rk rn − 1 = rnqn Then
GCD (a,b) = rn ; rn is the last non-zero member of the sequence.
•The presence of r1,r2,..(that means possibility of division of m by n with
a remainder for any integer m and n) is proved by induction on m.
•The following statement: if a = bq + r then GCD(a,b) = GCD(b,r) leads
to the correctness of this algorithm.
Inverse element calculation
•Input: integer numbers а, b: 0 < b ≤ а.
•Output: d = GCD(а, b); integer numbers х, у: ах+ by = d.
•1. Initiate r0 ← а, r1 ← b, х0 ← 1, x1 ← 0, у0 ← 0, y1 ←1, i ← 1
•2. Divide ri–1 by ri with a remainder: ri–1 = qiri +ri+1
•3. If ri+1 = 0 then initiate d ← ri , х ← xi у ← yi. Else initiate xi+1 ← xi–1 –
qixi, yi+1 ← yi–1 – qiyi, i← i + 1 and go to step 2.
•4. Result: d, х, у.
Extended Euclidean algorithm
•Is used for:
–GCD calculation;
–Modulo inverse element calculation.

•Example:
–calculate GCD (462, 1071);
–Calculate modulo inverse element for 109 in Galois
field GF(28).
Example# 1 – GCD calculation
•Calculate GCD (462, 1071)
•1. Subtract a multiple value of 462 from
1071 before a remainder is less than 462.
q0 = 2, remainder = 147
1071 = 2 × 462 + 147
•2. Subtract a multiple value of 147 from 462
before a remainder is less than 147. q1 = 3,
remainder = 21.
462 = 3 × 147 + 21
Example# 1 – GCD calculation
•3. Subtract a multiple value of 21 from 147
before a remainder is less than 21.
•q2 = 7, remainder = 0.
147 = 7 × 21 + 0.
The last remainder is equal to 0,
subsequently, the algorithm output is 21;
GCD(1071, 462)=21.
Example#2 — Modulo inverse
element calculation
•Given: a = 1769, b = 551.
•Using extended Euclidean algorithm find
integer numbers x и y: d = ax + by,
•d = GCD(a, b).
•
Example#2 — Modulo inverse
element calculation
1. Initiate a0 = 1, a1 = 0, b0 = 0, b1 = 1, a= 1769, b =
551.
2. Quotient q = a/b = 1769/551 = 3, remainder r =
116.
3. If r = 0 then go to the last step (6).
4. Initiate: a = 551; b = 116; t = a0 = 1; a0 = a1 =0;
a1 = t – a1q = 1 – 0 · = 1 t = b0 = 0; b0 = b1 = 1; b1
= t – b1q = – 3;
Result of the step : a= 551, b = 116, a0 = 0, a1 = 1,
Example#2 — Modulo inverse
element calculation
1. Parameters values: a = 551, b = 116, a0 = 0, a1 =
1, b0 = 1, b1 = – 3.
2. Quotient q = a/b = 551/116 = 4, remainder r =
87.
3. If r = 0 then go to the last step (6).
4. Initiate: a = 116; b = 87; t = a0 = 0; a0 = a1 =1; a1
= t – a1q = 0 – 1 · 4 = – 4t = b0 = 1;b0 = b1 = – 3;
b1 = t – b1q = 1 – ( – 3) 4 = 13;
Result of the step : a= 116, b = 87, a0 = 1, a1 = – 4,
b = – 3, b = 13.
Example#2 — Modulo inverse
element calculation
1. Parameters values: a=116, b =87, a0 =1, a1 = –4, b0
= –3, b1=13
2. Quotient q = a/b = 116/87 = 1, remainder r = 29.
3. If r = 0 then go th the last step (6).
4. Initiate: a = 87; b = 29; t = a0 = 1; a0 = a1 = – 4: a1 =
t – a1q = 1 – ( – 4) · 1 = 5; t = b0 = – 3; b0 = b1 = 13; b1
= t – b1q = – 3 – (13) · 1 = – 16;
Result of the step: a= 87, b = 29, a0 = – 4, a1 = 5, b0 =
13, b1 = – 16.
Example#2 — Modulo inverse
element calculation
1. Parameters values: a= 87, b = 29, a0 = –4, a1 =5, b0
=13, b1 = –16.
2. Quotient q = a/b = 87/29 = 3, remainder r = 0.
3. If r = 0 then go to the last step (6).
4. Initiate: a = 87; b = 29; t = a0 = – 4; a0 = a1 = 5; – 4
– 5·3 = – 19; t = b0 = 13;
b0 = b1 = – 16; b1 = t – b1q = 13 – ( – 16)·3 = 61;
Result of the step: a= 87, b = 29, a0 = 5, a1 = – 19,
b0 = – 16, b1 =6
Result
Calculate GCD according to formula d = ax + by,
x = x0 = 5, y = y0 = – 16, a= 1769, b = 551.
According to parameters values:
d = ax + by = 1769 · 5 – 551 · 16 = 8845 – 8816 =29.
Fermat little theorem
•If p is a prime number and integer number a is
not divisible by p then
•a p − 1 ≡ 1 (mod p) (a p − 1 − 1 is divisible by p).
Euler function
•Euler function
(n is a natural number)
is equal to a number of natural numbers that
are non-greater than n and are coprime with n.
It is named after Euler who was the first used
it in his works on number theory.
Group, ring and field theory.
Brief information
Group. Definition
•Group is a nonempty multitude with
defined binary operation.
•Axioms for a group:
•Associativity:(a*b)*c=a*(b*c)
•The presence of neutral element:
e*a=a*e=a
•The presence of inverse element:
•a*a-1=a-1*a=e
Ring
•Ring is a nonempty multitude with two binary
operations defined on it.
•Axioms for ring:
•Addition commutativity: a+b=b+a
•Addition associativity: (a+b)+c=a+(b+c)
•Addition neutral element: a+0=0+a=a
•Addition inverse element: a+b=b+a=0
•Multiplication associativity a*(b*c)=(a*b)*c
•Multiplication commutativity: a*b=b*a
•Distributivity: a*(b+c)=a*b+a*c
•
Field of numbers
Field is a commutative, associative ring with
unit element and reversible non-zero
elements.
Galois fields
•Finite field (Galois field) is a field that contains
finite number of elements.
•Finite field is commonly expressed as GF(q), q is a
number of the field elements.
•Simple example of finite field is residue ring
modulo a prime number p.
Galois fields
•Field GF(pn) defining (p is a prime number, n is a natural number) starts with defining of its
prime subfield GF(p) (that is equal to the whole field for n=1).
•Prime field GF(p) is defined as a residue ring modulo p, that doesn't have zero divisors and
is a field (because p is a prime number).
•Elements are numbers. Operate with elements like integer numbers, reducting a result on p
modulo.
•Field GF(pn) for n>1 is defined as a factor ring, f(x) is a prime polynomial of degree n on
the field. So to define a field from pn elements it is enough to find a polynomial of degree n
that is a prime for the field.
•Field elements are polynomials of degree less than n. Arithmetic operations (addition and
multipliciation) are on modulo of polynomial f(x), so the result corresponding to an
operation is a remainder from division by f(x) with reduction of coefficients on modulo p.
Literature
•Number theory. Vinogradov I. M.
•Groups, rings, fields. Zelvensky I.G.
SPbGETU

Mais conteúdo relacionado

Mais procurados

Is unit 4_number_theory
Is unit 4_number_theoryIs unit 4_number_theory
Is unit 4_number_theorySarthak Patel
 
Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107Dennis Almeida
 
Solving Linear Equations Over p-Adic Integers
Solving Linear Equations Over p-Adic IntegersSolving Linear Equations Over p-Adic Integers
Solving Linear Equations Over p-Adic IntegersJoseph Molina
 
Elliptic Curve Cryptography
Elliptic Curve CryptographyElliptic Curve Cryptography
Elliptic Curve CryptographyJorgeVillamarin5
 
RECURRENCE EQUATIONS & ANALYZING THEM
RECURRENCE EQUATIONS & ANALYZING THEMRECURRENCE EQUATIONS & ANALYZING THEM
RECURRENCE EQUATIONS & ANALYZING THEMAlpana Ingale
 
Elliptical curve cryptography
Elliptical curve cryptographyElliptical curve cryptography
Elliptical curve cryptographyBarani Tharan
 
Further pure mathmatics 3 vectors
Further pure mathmatics 3 vectorsFurther pure mathmatics 3 vectors
Further pure mathmatics 3 vectorsDennis Almeida
 
Polyhedral computations in computational algebraic geometry and optimization
Polyhedral computations in computational algebraic geometry and optimizationPolyhedral computations in computational algebraic geometry and optimization
Polyhedral computations in computational algebraic geometry and optimizationVissarion Fisikopoulos
 
Practice questions( calculus ) xii
Practice questions( calculus ) xiiPractice questions( calculus ) xii
Practice questions( calculus ) xiiindu psthakur
 
Eucledian algorithm for gcd of integers and polynomials
Eucledian algorithm for gcd of integers and polynomialsEucledian algorithm for gcd of integers and polynomials
Eucledian algorithm for gcd of integers and polynomialsSWAMY J S
 
GCD of n Numbers
GCD of n NumbersGCD of n Numbers
GCD of n NumbersSaikat Roy
 

Mais procurados (19)

Is unit 4_number_theory
Is unit 4_number_theoryIs unit 4_number_theory
Is unit 4_number_theory
 
Sect2 1
Sect2 1Sect2 1
Sect2 1
 
Ch08
Ch08Ch08
Ch08
 
Vectors2
Vectors2Vectors2
Vectors2
 
Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107Year 13 challenge mathematics problems 107
Year 13 challenge mathematics problems 107
 
Recurrences
RecurrencesRecurrences
Recurrences
 
Solving Linear Equations Over p-Adic Integers
Solving Linear Equations Over p-Adic IntegersSolving Linear Equations Over p-Adic Integers
Solving Linear Equations Over p-Adic Integers
 
JC Vectors summary
JC Vectors summaryJC Vectors summary
JC Vectors summary
 
Igv2008
Igv2008Igv2008
Igv2008
 
Alex1 group2
Alex1 group2Alex1 group2
Alex1 group2
 
Elliptic Curve Cryptography
Elliptic Curve CryptographyElliptic Curve Cryptography
Elliptic Curve Cryptography
 
Information security Seminar #7
Information security Seminar #7Information security Seminar #7
Information security Seminar #7
 
RECURRENCE EQUATIONS & ANALYZING THEM
RECURRENCE EQUATIONS & ANALYZING THEMRECURRENCE EQUATIONS & ANALYZING THEM
RECURRENCE EQUATIONS & ANALYZING THEM
 
Elliptical curve cryptography
Elliptical curve cryptographyElliptical curve cryptography
Elliptical curve cryptography
 
Further pure mathmatics 3 vectors
Further pure mathmatics 3 vectorsFurther pure mathmatics 3 vectors
Further pure mathmatics 3 vectors
 
Polyhedral computations in computational algebraic geometry and optimization
Polyhedral computations in computational algebraic geometry and optimizationPolyhedral computations in computational algebraic geometry and optimization
Polyhedral computations in computational algebraic geometry and optimization
 
Practice questions( calculus ) xii
Practice questions( calculus ) xiiPractice questions( calculus ) xii
Practice questions( calculus ) xii
 
Eucledian algorithm for gcd of integers and polynomials
Eucledian algorithm for gcd of integers and polynomialsEucledian algorithm for gcd of integers and polynomials
Eucledian algorithm for gcd of integers and polynomials
 
GCD of n Numbers
GCD of n NumbersGCD of n Numbers
GCD of n Numbers
 

Destaque

Защита информации семинар №9
Защита информации семинар №9Защита информации семинар №9
Защита информации семинар №9Alexander Kolybelnikov
 
Deep learning for mere mortals - Devoxx Belgium 2015
Deep learning for mere mortals - Devoxx Belgium 2015Deep learning for mere mortals - Devoxx Belgium 2015
Deep learning for mere mortals - Devoxx Belgium 2015Samir Bessalah
 
Algebird : Abstract Algebra for big data analytics. Devoxx 2014
Algebird : Abstract Algebra for big data analytics. Devoxx 2014Algebird : Abstract Algebra for big data analytics. Devoxx 2014
Algebird : Abstract Algebra for big data analytics. Devoxx 2014Samir Bessalah
 
Definition ofvectorspace
Definition ofvectorspaceDefinition ofvectorspace
Definition ofvectorspaceTanuj Parikh
 
Production and Beyond: Deploying and Managing Machine Learning Models
Production and Beyond: Deploying and Managing Machine Learning ModelsProduction and Beyond: Deploying and Managing Machine Learning Models
Production and Beyond: Deploying and Managing Machine Learning ModelsTuri, Inc.
 
Chapter 12(cpm pert)
Chapter 12(cpm pert)Chapter 12(cpm pert)
Chapter 12(cpm pert)Debanjan15
 
Machine Learning In Production
Machine Learning In ProductionMachine Learning In Production
Machine Learning In ProductionSamir Bessalah
 

Destaque (9)

Защита информации семинар №9
Защита информации семинар №9Защита информации семинар №9
Защита информации семинар №9
 
Information security Seminar #3
Information security Seminar #3 Information security Seminar #3
Information security Seminar #3
 
Deep learning for mere mortals - Devoxx Belgium 2015
Deep learning for mere mortals - Devoxx Belgium 2015Deep learning for mere mortals - Devoxx Belgium 2015
Deep learning for mere mortals - Devoxx Belgium 2015
 
algebraic-geometry
algebraic-geometryalgebraic-geometry
algebraic-geometry
 
Algebird : Abstract Algebra for big data analytics. Devoxx 2014
Algebird : Abstract Algebra for big data analytics. Devoxx 2014Algebird : Abstract Algebra for big data analytics. Devoxx 2014
Algebird : Abstract Algebra for big data analytics. Devoxx 2014
 
Definition ofvectorspace
Definition ofvectorspaceDefinition ofvectorspace
Definition ofvectorspace
 
Production and Beyond: Deploying and Managing Machine Learning Models
Production and Beyond: Deploying and Managing Machine Learning ModelsProduction and Beyond: Deploying and Managing Machine Learning Models
Production and Beyond: Deploying and Managing Machine Learning Models
 
Chapter 12(cpm pert)
Chapter 12(cpm pert)Chapter 12(cpm pert)
Chapter 12(cpm pert)
 
Machine Learning In Production
Machine Learning In ProductionMachine Learning In Production
Machine Learning In Production
 

Semelhante a Information Security Seminar #2

NumberTheory explanations in the easiest way.ppt
NumberTheory explanations in the easiest way.pptNumberTheory explanations in the easiest way.ppt
NumberTheory explanations in the easiest way.pptIshwariKhanal
 
555_Spring12_topic06.ppt
555_Spring12_topic06.ppt555_Spring12_topic06.ppt
555_Spring12_topic06.pptSnehSinha6
 
Cryptography and Network Security chapter 4.ppt
Cryptography and Network Security chapter 4.pptCryptography and Network Security chapter 4.ppt
Cryptography and Network Security chapter 4.pptthe9amit
 
Design and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesDesign and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesSreedhar Chowdam
 
Chap7 2 Ecc Intro
Chap7 2 Ecc IntroChap7 2 Ecc Intro
Chap7 2 Ecc IntroEdora Aziz
 
Cryptography and Network Security Principles and Practice.docx
Cryptography and Network Security Principles and Practice.docxCryptography and Network Security Principles and Practice.docx
Cryptography and Network Security Principles and Practice.docxAbhinav816839
 
Real number system full
Real  number  system fullReal  number  system full
Real number system fullAon Narinchoti
 
Real number system full
Real  number  system fullReal  number  system full
Real number system fullAon Narinchoti
 
CRYPTOGRAPHY AND NUMBER THEORY, he ha huli
CRYPTOGRAPHY AND NUMBER THEORY, he ha huliCRYPTOGRAPHY AND NUMBER THEORY, he ha huli
CRYPTOGRAPHY AND NUMBER THEORY, he ha huliharshmacduacin
 
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdff00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdfSRSstatusking
 

Semelhante a Information Security Seminar #2 (20)

2.ppt
2.ppt2.ppt
2.ppt
 
Lecture-1.pptx
Lecture-1.pptxLecture-1.pptx
Lecture-1.pptx
 
NumberTheory explanations in the easiest way.ppt
NumberTheory explanations in the easiest way.pptNumberTheory explanations in the easiest way.ppt
NumberTheory explanations in the easiest way.ppt
 
Nbvtalkatbzaonencryptionpuzzles
NbvtalkatbzaonencryptionpuzzlesNbvtalkatbzaonencryptionpuzzles
Nbvtalkatbzaonencryptionpuzzles
 
Nbvtalkatbzaonencryptionpuzzles
NbvtalkatbzaonencryptionpuzzlesNbvtalkatbzaonencryptionpuzzles
Nbvtalkatbzaonencryptionpuzzles
 
Chap4
Chap4Chap4
Chap4
 
new 2.ppt
new 2.pptnew 2.ppt
new 2.ppt
 
CH04.ppt
CH04.pptCH04.ppt
CH04.ppt
 
555_Spring12_topic06.ppt
555_Spring12_topic06.ppt555_Spring12_topic06.ppt
555_Spring12_topic06.ppt
 
Cryptography and Network Security chapter 4.ppt
Cryptography and Network Security chapter 4.pptCryptography and Network Security chapter 4.ppt
Cryptography and Network Security chapter 4.ppt
 
The RSA Algorithm
The RSA AlgorithmThe RSA Algorithm
The RSA Algorithm
 
Design and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture NotesDesign and Analysis of Algorithms Lecture Notes
Design and Analysis of Algorithms Lecture Notes
 
Chap7 2 Ecc Intro
Chap7 2 Ecc IntroChap7 2 Ecc Intro
Chap7 2 Ecc Intro
 
Cryptography and Network Security Principles and Practice.docx
Cryptography and Network Security Principles and Practice.docxCryptography and Network Security Principles and Practice.docx
Cryptography and Network Security Principles and Practice.docx
 
Real number system full
Real  number  system fullReal  number  system full
Real number system full
 
Real number system full
Real  number  system fullReal  number  system full
Real number system full
 
CEE100-Lecture Notes1.pdf
CEE100-Lecture Notes1.pdfCEE100-Lecture Notes1.pdf
CEE100-Lecture Notes1.pdf
 
CRYPTOGRAPHY AND NUMBER THEORY, he ha huli
CRYPTOGRAPHY AND NUMBER THEORY, he ha huliCRYPTOGRAPHY AND NUMBER THEORY, he ha huli
CRYPTOGRAPHY AND NUMBER THEORY, he ha huli
 
Formular
FormularFormular
Formular
 
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdff00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
f00a5f08-14cf-4f73-a749-f8e30a016fa4.pdf
 

Mais de Alexander Kolybelnikov

вебинар 18102016 архитектура подсистемы обеспечения юр. эдо
вебинар 18102016 архитектура подсистемы обеспечения юр. эдовебинар 18102016 архитектура подсистемы обеспечения юр. эдо
вебинар 18102016 архитектура подсистемы обеспечения юр. эдоAlexander Kolybelnikov
 
Юридическая значимость документооборота
Юридическая значимость документооборотаЮридическая значимость документооборота
Юридическая значимость документооборотаAlexander Kolybelnikov
 
лекция о защите дистанционного банковского обслуживания
лекция о защите дистанционного банковского обслуживаниялекция о защите дистанционного банковского обслуживания
лекция о защите дистанционного банковского обслуживанияAlexander Kolybelnikov
 
безопасность использования электронной подписи
безопасность использования электронной подписибезопасность использования электронной подписи
безопасность использования электронной подписиAlexander Kolybelnikov
 
лекция безопасная разработка приложений
лекция  безопасная разработка приложенийлекция  безопасная разработка приложений
лекция безопасная разработка приложенийAlexander Kolybelnikov
 
Seminar no.1 Information security for 4th course MIPT
Seminar no.1 Information security for 4th course MIPTSeminar no.1 Information security for 4th course MIPT
Seminar no.1 Information security for 4th course MIPTAlexander Kolybelnikov
 
Защита информации семинар №8
Защита информации семинар №8Защита информации семинар №8
Защита информации семинар №8Alexander Kolybelnikov
 
Защита информации семинар №7
Защита информации семинар №7Защита информации семинар №7
Защита информации семинар №7Alexander Kolybelnikov
 
Защита информации семинар №6
Защита информации семинар №6Защита информации семинар №6
Защита информации семинар №6Alexander Kolybelnikov
 
Защита информации семинар №4 МФТИ
Защита информации семинар №4 МФТИЗащита информации семинар №4 МФТИ
Защита информации семинар №4 МФТИAlexander Kolybelnikov
 
Защита информации семинар №3 МФТИ
Защита информации семинар №3 МФТИЗащита информации семинар №3 МФТИ
Защита информации семинар №3 МФТИAlexander Kolybelnikov
 
Защита информации семинар №2 МФТИ
Защита информации семинар №2 МФТИЗащита информации семинар №2 МФТИ
Защита информации семинар №2 МФТИAlexander Kolybelnikov
 
Защита информации семинар №1 МФТИ
Защита информации семинар №1 МФТИЗащита информации семинар №1 МФТИ
Защита информации семинар №1 МФТИAlexander Kolybelnikov
 

Mais de Alexander Kolybelnikov (16)

вебинар 18102016 архитектура подсистемы обеспечения юр. эдо
вебинар 18102016 архитектура подсистемы обеспечения юр. эдовебинар 18102016 архитектура подсистемы обеспечения юр. эдо
вебинар 18102016 архитектура подсистемы обеспечения юр. эдо
 
Юридическая значимость документооборота
Юридическая значимость документооборотаЮридическая значимость документооборота
Юридическая значимость документооборота
 
лекция о защите дистанционного банковского обслуживания
лекция о защите дистанционного банковского обслуживаниялекция о защите дистанционного банковского обслуживания
лекция о защите дистанционного банковского обслуживания
 
Information security Seminar #6
Information security Seminar #6 Information security Seminar #6
Information security Seminar #6
 
безопасность использования электронной подписи
безопасность использования электронной подписибезопасность использования электронной подписи
безопасность использования электронной подписи
 
Основы протокола IPsec
Основы протокола IPsecОсновы протокола IPsec
Основы протокола IPsec
 
лекция безопасная разработка приложений
лекция  безопасная разработка приложенийлекция  безопасная разработка приложений
лекция безопасная разработка приложений
 
Seminar no.1 Information security for 4th course MIPT
Seminar no.1 Information security for 4th course MIPTSeminar no.1 Information security for 4th course MIPT
Seminar no.1 Information security for 4th course MIPT
 
Защита информации семинар №8
Защита информации семинар №8Защита информации семинар №8
Защита информации семинар №8
 
Защита информации семинар №7
Защита информации семинар №7Защита информации семинар №7
Защита информации семинар №7
 
Защита информации семинар №6
Защита информации семинар №6Защита информации семинар №6
Защита информации семинар №6
 
Защита информации семинар №4 МФТИ
Защита информации семинар №4 МФТИЗащита информации семинар №4 МФТИ
Защита информации семинар №4 МФТИ
 
Защита информации семинар №3 МФТИ
Защита информации семинар №3 МФТИЗащита информации семинар №3 МФТИ
Защита информации семинар №3 МФТИ
 
Защита информации семинар №2 МФТИ
Защита информации семинар №2 МФТИЗащита информации семинар №2 МФТИ
Защита информации семинар №2 МФТИ
 
Защита информации семинар №1 МФТИ
Защита информации семинар №1 МФТИЗащита информации семинар №1 МФТИ
Защита информации семинар №1 МФТИ
 
лекция №4
лекция №4лекция №4
лекция №4
 

Último

Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.MateoGardella
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Disha Kariya
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphThiyagu K
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDThiyagu K
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterMateoGardella
 

Último (20)

Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
Mattingly "AI & Prompt Design: Structured Data, Assistants, & RAG"
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.Gardella_Mateo_IntellectualProperty.pdf.
Gardella_Mateo_IntellectualProperty.pdf.
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..Sports & Fitness Value Added Course FY..
Sports & Fitness Value Added Course FY..
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
Z Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot GraphZ Score,T Score, Percential Rank and Box Plot Graph
Z Score,T Score, Percential Rank and Box Plot Graph
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Measures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SDMeasures of Dispersion and Variability: Range, QD, AD and SD
Measures of Dispersion and Variability: Range, QD, AD and SD
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Gardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch LetterGardella_PRCampaignConclusion Pitch Letter
Gardella_PRCampaignConclusion Pitch Letter
 

Information Security Seminar #2

  • 1. Seminar #2 Infosecurity Number theory. Group, ring and field theory Kolybelnikov Alexander kisttan@gmail.com
  • 2. Agenda •Number theory –Modular arithmetic –GCD (greatest common divisor) • Fermat theorem, Euler function, modulo inverse value • Group, ring, field theory
  • 4. Modular arithmetic. Definitions •Two integer numbers a and b are comparable in absolute value n (modulo n parity) if a and b give the same remainder of division by n. •Example: 32 and −10 are comparable in absolute value 7 because 32 = 7∙4 + 4, −10 = 7∙(-2) + 4. •Statement «a and b are comparable in absolute value n» is commonly expressed as: a ≡b (mod n)
  • 5. Modular arithmetic. Characteristics •Comparison relation means a relation of equivalence and is characterized by many properties of common equations. •For instance, addition and multiplication are allowed in following cases: a2≡b2(mod n) •a1≡b1(mod n) •a1 a2 ≡b1b2 (mod n) a1 +a2 ≡b1+b2 (mod n) • • •
  • 6. Prime numbers and methods of their detection
  • 7. Prime numbers •Prime number is a natural number that has exactly two different natural divisors: unit and itself. All other numbers except unit element are called composite numbers. So all natural numbers greater than unit are divided into prime and composite. Number theory studies properties of prime numbers. In ring theory irreducible elements correspond to prime numbers.
  • 8. Tests detecting prime numbers •Sieve of Eratosthenes •Fermat test •For the next seminars: –Miller Rabin test –AKS test
  • 9. Sieve of Eratosthenes •Choosing of a random number N; •Dividing of N by all numbers from 1 to N/2.
  • 10. Fermat test •If p is a prime number then • a p − 1 ≡ 1 (mod p) •The probability that p is a prime number increases with large amount of testing a and equals to 1/2n , n means amount of a. • •
  • 11. Prime numbers properties •If p is a prime number and p is divisible by ab then p is divisible bya and by b. (Euclidean lemma, this is used in the proof of fundamental theorem of arithmetic. •Residue ring is considered to be a field if and only if n is a prime number. •Field characteristic is zero or a prime number. •If p is a prime number and a is a natural number then (ap − a) is divisible by p (Fermat little theorem). •If G is a finite group of pn elements then G contains an element of p order. •If G is a finite group and pn is the maximum power of p that divides | G | then G has a subgroup of pn order (Sylov subgroup) and the number of Sylov subgroups is equal to pk + 1 for an integer k (Sylov's theorems). •Natural number p > 1 is a prime number if and only if ((p − 1)! + 1) is divisible by p (Vilson theorem). •If n > 1 is a natural number then a prime number p is defined as follows: •n < p < 2n (Bertrand postulate).
  • 13. GCD. Definition Greatest common divisor (GCD) for two integer numbers m and n is the greatest from their common divisors. Example: for numbers 70 and 105 GCD = 35
  • 14. GCD calculation. Euclidean algorithm •Provides a and b are integer numbers that are never both zero together and number sequence • is defined in the way that each rk is a remainder of division of previous but one by previous number and the last but one number is divisible by the last number (without a remainder): a = bq0 + r1 b = r1q1 + r2 r1 = r2q2 + r3 rk − 2 = rk − 1qk − 1 + rk rn − 1 = rnqn Then GCD (a,b) = rn ; rn is the last non-zero member of the sequence. •The presence of r1,r2,..(that means possibility of division of m by n with a remainder for any integer m and n) is proved by induction on m. •The following statement: if a = bq + r then GCD(a,b) = GCD(b,r) leads to the correctness of this algorithm.
  • 15. Inverse element calculation •Input: integer numbers а, b: 0 < b ≤ а. •Output: d = GCD(а, b); integer numbers х, у: ах+ by = d. •1. Initiate r0 ← а, r1 ← b, х0 ← 1, x1 ← 0, у0 ← 0, y1 ←1, i ← 1 •2. Divide ri–1 by ri with a remainder: ri–1 = qiri +ri+1 •3. If ri+1 = 0 then initiate d ← ri , х ← xi у ← yi. Else initiate xi+1 ← xi–1 – qixi, yi+1 ← yi–1 – qiyi, i← i + 1 and go to step 2. •4. Result: d, х, у.
  • 16. Extended Euclidean algorithm •Is used for: –GCD calculation; –Modulo inverse element calculation. •Example: –calculate GCD (462, 1071); –Calculate modulo inverse element for 109 in Galois field GF(28).
  • 17. Example# 1 – GCD calculation •Calculate GCD (462, 1071) •1. Subtract a multiple value of 462 from 1071 before a remainder is less than 462. q0 = 2, remainder = 147 1071 = 2 × 462 + 147 •2. Subtract a multiple value of 147 from 462 before a remainder is less than 147. q1 = 3, remainder = 21. 462 = 3 × 147 + 21
  • 18. Example# 1 – GCD calculation •3. Subtract a multiple value of 21 from 147 before a remainder is less than 21. •q2 = 7, remainder = 0. 147 = 7 × 21 + 0. The last remainder is equal to 0, subsequently, the algorithm output is 21; GCD(1071, 462)=21.
  • 19. Example#2 — Modulo inverse element calculation •Given: a = 1769, b = 551. •Using extended Euclidean algorithm find integer numbers x и y: d = ax + by, •d = GCD(a, b). •
  • 20. Example#2 — Modulo inverse element calculation 1. Initiate a0 = 1, a1 = 0, b0 = 0, b1 = 1, a= 1769, b = 551. 2. Quotient q = a/b = 1769/551 = 3, remainder r = 116. 3. If r = 0 then go to the last step (6). 4. Initiate: a = 551; b = 116; t = a0 = 1; a0 = a1 =0; a1 = t – a1q = 1 – 0 · = 1 t = b0 = 0; b0 = b1 = 1; b1 = t – b1q = – 3; Result of the step : a= 551, b = 116, a0 = 0, a1 = 1,
  • 21. Example#2 — Modulo inverse element calculation 1. Parameters values: a = 551, b = 116, a0 = 0, a1 = 1, b0 = 1, b1 = – 3. 2. Quotient q = a/b = 551/116 = 4, remainder r = 87. 3. If r = 0 then go to the last step (6). 4. Initiate: a = 116; b = 87; t = a0 = 0; a0 = a1 =1; a1 = t – a1q = 0 – 1 · 4 = – 4t = b0 = 1;b0 = b1 = – 3; b1 = t – b1q = 1 – ( – 3) 4 = 13; Result of the step : a= 116, b = 87, a0 = 1, a1 = – 4, b = – 3, b = 13.
  • 22. Example#2 — Modulo inverse element calculation 1. Parameters values: a=116, b =87, a0 =1, a1 = –4, b0 = –3, b1=13 2. Quotient q = a/b = 116/87 = 1, remainder r = 29. 3. If r = 0 then go th the last step (6). 4. Initiate: a = 87; b = 29; t = a0 = 1; a0 = a1 = – 4: a1 = t – a1q = 1 – ( – 4) · 1 = 5; t = b0 = – 3; b0 = b1 = 13; b1 = t – b1q = – 3 – (13) · 1 = – 16; Result of the step: a= 87, b = 29, a0 = – 4, a1 = 5, b0 = 13, b1 = – 16.
  • 23. Example#2 — Modulo inverse element calculation 1. Parameters values: a= 87, b = 29, a0 = –4, a1 =5, b0 =13, b1 = –16. 2. Quotient q = a/b = 87/29 = 3, remainder r = 0. 3. If r = 0 then go to the last step (6). 4. Initiate: a = 87; b = 29; t = a0 = – 4; a0 = a1 = 5; – 4 – 5·3 = – 19; t = b0 = 13; b0 = b1 = – 16; b1 = t – b1q = 13 – ( – 16)·3 = 61; Result of the step: a= 87, b = 29, a0 = 5, a1 = – 19, b0 = – 16, b1 =6
  • 24. Result Calculate GCD according to formula d = ax + by, x = x0 = 5, y = y0 = – 16, a= 1769, b = 551. According to parameters values: d = ax + by = 1769 · 5 – 551 · 16 = 8845 – 8816 =29.
  • 25. Fermat little theorem •If p is a prime number and integer number a is not divisible by p then •a p − 1 ≡ 1 (mod p) (a p − 1 − 1 is divisible by p).
  • 26. Euler function •Euler function (n is a natural number) is equal to a number of natural numbers that are non-greater than n and are coprime with n. It is named after Euler who was the first used it in his works on number theory.
  • 27. Group, ring and field theory. Brief information
  • 28. Group. Definition •Group is a nonempty multitude with defined binary operation. •Axioms for a group: •Associativity:(a*b)*c=a*(b*c) •The presence of neutral element: e*a=a*e=a •The presence of inverse element: •a*a-1=a-1*a=e
  • 29. Ring •Ring is a nonempty multitude with two binary operations defined on it. •Axioms for ring: •Addition commutativity: a+b=b+a •Addition associativity: (a+b)+c=a+(b+c) •Addition neutral element: a+0=0+a=a •Addition inverse element: a+b=b+a=0 •Multiplication associativity a*(b*c)=(a*b)*c •Multiplication commutativity: a*b=b*a •Distributivity: a*(b+c)=a*b+a*c •
  • 30. Field of numbers Field is a commutative, associative ring with unit element and reversible non-zero elements.
  • 31. Galois fields •Finite field (Galois field) is a field that contains finite number of elements. •Finite field is commonly expressed as GF(q), q is a number of the field elements. •Simple example of finite field is residue ring modulo a prime number p.
  • 32. Galois fields •Field GF(pn) defining (p is a prime number, n is a natural number) starts with defining of its prime subfield GF(p) (that is equal to the whole field for n=1). •Prime field GF(p) is defined as a residue ring modulo p, that doesn't have zero divisors and is a field (because p is a prime number). •Elements are numbers. Operate with elements like integer numbers, reducting a result on p modulo. •Field GF(pn) for n>1 is defined as a factor ring, f(x) is a prime polynomial of degree n on the field. So to define a field from pn elements it is enough to find a polynomial of degree n that is a prime for the field. •Field elements are polynomials of degree less than n. Arithmetic operations (addition and multipliciation) are on modulo of polynomial f(x), so the result corresponding to an operation is a remainder from division by f(x) with reduction of coefficients on modulo p.
  • 33. Literature •Number theory. Vinogradov I. M. •Groups, rings, fields. Zelvensky I.G. SPbGETU