SlideShare a Scribd company logo
1 of 52
Lexical Analysis and Lexical Analyzer Generators Chapter 3 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2007-2009
The Reason Why Lexical Analysis is a Separate Phase ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Interaction of the Lexical Analyzer with the Parser Lexical Analyzer Parser Source Program Token, tokenval Symbol Table Get next token error error
Attributes of Tokens Lexical analyzer < id , “ y ”> < assign , > < num , 31> < + , > < num , 28> < * , > < id , “ x ”> y := 31 + 28*x Parser token tokenval (token attribute)
Tokens, Patterns, and Lexemes ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Specification of Patterns for Tokens:  Definitions ,[object Object],[object Object],[object Object],[object Object],[object Object]
Specification of Patterns for Tokens:  String Operations ,[object Object],[object Object]
Specification of Patterns for Tokens:  Language Operations ,[object Object],[object Object],[object Object],[object Object],[object Object]
Specification of Patterns for Tokens:  Regular Expressions ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Specification of Patterns for Tokens:  Regular Definitions ,[object Object],[object Object]
Specification of Patterns for Tokens:  Regular Definitions ,[object Object],[object Object]
Specification of Patterns for Tokens:  Notational Shorthand ,[object Object],[object Object]
Regular Definitions and Grammars stmt      if   expr   then   stmt      if  expr   then   stmt   else   stmt         expr    term  relop   term      term term     id      num if      if   then      then   else      else relop      <      <=      <>      >      >=      =   id      letter ( letter  |  digit  ) *  num      digit +  ( . digit + )? (  E  ( +  - )?  digit +  )? Grammar Regular definitions
Coding Regular Definitions in  Transition Diagrams 0 2 1 6 3 4 5 7 8 return ( relop ,  LE ) return ( relop ,  NE ) return ( relop ,  LT ) return ( relop ,  EQ ) return ( relop ,  GE ) return ( relop ,  GT ) start < = > = > = other other * * 9 start letter 10 11 * other letter  or  digit return ( gettoken (),   install_id ()) relop      <  <=  <>  >  >=  = id      letter ( letter  digit  ) *
Coding Regular Definitions in Transition Diagrams: Code token nexttoken() {  while  (1) {   switch  (state) {   case  0: c = nextchar();   if  (c==blank || c==tab || c==newline) {   state = 0;   lexeme_beginning++;   }   else   if  (c==‘<’) state = 1; else   if  (c==‘=’) state = 5;   else   if  (c==‘>’) state = 6;   else  state = fail();   break ;   case  1:   …   case  9: c = nextchar();   if  (isletter(c)) state = 10;   else  state = fail();   break ;   case  10: c = nextchar();   if  (isletter(c)) state = 10;   else   if  (isdigit(c)) state = 10;   else  state = 11;   break ;   … int  fail() { forward = token_beginning; swith  (start) {   case   0: start =  9;  break ; case   9: start = 12;  break ;   case  12: start = 20;  break ;   case  20: start = 25;  break ;   case  25: recover();  break ;   default : /* error */ } return  start; } Decides the next start state to check
The Lex and Flex Scanner Generators ,[object Object],[object Object],[object Object]
Creating a Lexical Analyzer with Lex and Flex lex or flex compiler lex source program lex.l lex.yy.c input stream C compiler a.out sequence of tokens lex.yy.c a.out
Lex Specification ,[object Object],[object Object]
Regular Expressions in Lex x match the character  x    match the character  .   “ string ” match contents of string of characters   .  match any character except newline ^ match beginning of a line $ match the end of a line [xyz] match one character  x ,  y , or  z  (use   to escape  - )  [^xyz] match any character except  x ,  y , and  z   [a-z] match one of  a  to  z r * closure (match zero or more occurrences) r + positive closure (match one or more occurrences) r ?  optional (match zero or one occurrence) r 1 r 2 match  r 1  then  r 2  (concatenation) r 1 | r 2 match  r 1  or  r 2  (union) (  r  )  grouping r 1 r 2 match  r 1  when followed by  r 2 { d } match the regular expression defined by  d
Example Lex Specification 1 %{ #include <stdio.h> %} %% [0-9]+  { printf(“%s”, yytext); } .|  { } %% main() { yylex(); } Contains the matching lexeme Invokes the lexical analyzer lex spec.l gcc lex.yy.c -ll ./a.out < spec.l Translation rules
Example Lex Specification 2 %{ #include <stdio.h> int ch = 0, wd = 0, nl = 0; %} delim  [ ]+ %%   { ch++; wd++; nl++; } ^{delim}  { ch+=yyleng; } {delim}  { ch+=yyleng; wd++; } .  { ch++; } %% main() { yylex(); printf(&quot;%8d%8d%8d&quot;, nl, wd, ch); } Regular definition Translation rules
Example Lex Specification 3 %{ #include <stdio.h> %} digit  [0-9] letter  [A-Za-z] id  {letter}({letter}|{digit})* %% {digit}+  { printf(“number: %s”, yytext); } {id}  { printf(“ident: %s”, yytext); } .  { printf(“other: %s”, yytext); } %% main() { yylex();  } Regular definitions Translation rules
Example Lex Specification 4 %{ /* definitions of manifest constants */ #define LT (256) … %} delim  [ ] ws  {delim}+ letter  [A-Za-z] digit  [0-9] id  {letter}({letter}|{digit})* number  {digit}+({digit}+)?(E[+]?{digit}+)? %% {ws}  { } if  {return IF;} then  {return THEN;} else  {return ELSE;} {id}  {yylval = install_id(); return ID;} {number}  {yylval = install_num(); return NUMBER;} “<“  {yylval = LT; return RELOP;} “<=“  {yylval = LE; return RELOP;} “ =“  {yylval = EQ; return RELOP;} “ <>“  {yylval = NE; return RELOP;} “>“  {yylval = GT; return RELOP;} “ >=“  {yylval = GE; return RELOP;} %% int install_id() … Return token to parser Token attribute Install  yytext  as identifier in symbol table
Design of a Lexical Analyzer Generator ,[object Object],[object Object],regular expressions NFA DFA Simulate NFA to recognize tokens Simulate DFA to recognize tokens Optional
Nondeterministic Finite Automata ,[object Object]
Transition Graph ,[object Object],0 start a 1 3 2 b b a b S  = {0,1,2,3}   = { a , b } s 0  = 0 F  = {3}
Transition Table ,[object Object], (0, a ) = {0,1}  (0, b ) = {0}  (1, b ) = {2}  (2, b ) = {3} State Input a Input b 0 {0, 1} {0} 1 {2} 2 {3}
The Language Defined by an NFA ,[object Object],[object Object],[object Object]
Design of a Lexical Analyzer Generator: RE to NFA to DFA s 0 N ( p 1 ) N ( p 2 ) start   N ( p n )  … p 1 {  action 1  } p 2 {  action 2  } … p n {  action n  } action 1 action 2 action n Lex specification with regular expressions NFA DFA Subset construction
From Regular Expression to NFA (Thompson’s Construction) N ( r 2 ) N ( r 1 ) f i  f a i f i N ( r 1 ) N ( r 2 ) start start start     f i start N ( r ) f i start    a r 1  r 2 r 1 r 2 r *  
Combining the NFAs of a Set of Regular Expressions 2 a 1 start 6 a 3 start 4 5 b b 8 b 7 start a b a {  action 1  } abb {  action 2  }   a * b + {  action 3  } 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start   
Simulating the Combined NFA Example 1 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start    Must find the  longest match : Continue until no further moves are possible When last state is accepting: execute action action 1 action 2 action 3 a b a a none action 3 0 1 3 7 2 4 7 7 8
Simulating the Combined NFA Example 2 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start    When two or more accepting states are reached, the first action given in the Lex specification is executed action 1 action 2 action 3 a b b a none action 2 action 3 0 1 3 7 2 4 7 5 8 6 8
Deterministic Finite Automata ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Example DFA 0 start a 1 3 2 b b b b a a a A DFA that accepts ( a  b )* abb
Conversion of an NFA into a DFA ,[object Object],[object Object]
 -closure  and  move  Examples 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start     -closure ({0}) = {0,1,3,7} move ({0,1,3,7}, a ) = {2,4,7}  -closure ({2,4,7}) = {2,4,7} move ({2,4,7}, a ) = {7}  -closure ({7}) = {7} move ({7}, b ) = {8}  -closure ({8}) = {8} move ({8}, a ) =   a b a a none Also used to simulate NFAs 0 1 3 7 2 4 7 7 8
Simulating an NFA using  -closure  and  move S  :=   -closure ({ s 0 }) S prev  :=     a  :=  nextchar () while   S        do S prev  :=  S S  :=   -closure ( move ( S,a )) a  :=  nextchar () end do if  S prev      F        then execute  action in S prev return  “yes” else return  “no”
The Subset Construction Algorithm Initially,   -closure ( s 0 ) is the only state in  Dstates  and it is unmarked while  there is an unmarked state  T  in  Dstates   do mark  T for  each input symbol  a        do U  :=   -closure ( move ( T,a )) if   U  is not in  Dstates   then add  U  as an unmarked state to  Dstates end if Dtran [ T , a ] :=  U end do end do
Subset Construction Example 1 0 start a 1 10 2 b b a b 3 4 5 6 7 8 9         A start B C D E b b b b b a a a a Dstates A = {0,1,2,4,7} B = {1,2,3,4,6,7,8} C = {1,2,4,5,6,7} D = {1,2,4,5,6,7,9} E = {1,2,4,5,6,7,10} a
Subset Construction Example 2 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start    a 1 a 2 a 3 Dstates A = {0,1,3,7} B = {2,4,7} C = {8} D = {7} E = {5,8} F = {6,8} A start a D b b b a b b B C E F a b a 1 a 3 a 3 a 2  a 3
Minimizing the Number of States of a DFA A start B C D E b b b b b a a a a a A start B D E b b a a b a a
From Regular Expression to DFA Directly ,[object Object],[object Object]
From Regular Expression to DFA Directly (Algorithm) ,[object Object],[object Object],[object Object]
From Regular Expression to DFA Directly: Syntax Tree of  ( a | b )* abb# * | 1 a 2 b 3 a 4 b 5 b # 6 concatenation closure alternation position number (for leafs   )
From Regular Expression to DFA Directly: Annotating the Tree ,[object Object],[object Object],[object Object],[object Object]
From Regular Expression to DFA Directly: Annotating the Tree Node  n nullable ( n ) firstpos ( n ) lastpos ( n ) Leaf   true   Leaf  i false { i } { i } | /   c 1   c 2 nullable ( c 1 ) or nullable ( c 2 ) firstpos ( c 1 )  firstpos ( c 2 ) lastpos ( c 1 )  lastpos ( c 2 ) • /   c 1   c 2 nullable ( c 1 )  and nullable ( c 2 ) if  nullable ( c 1 )  then   firstpos ( c 1 )     firstpos ( c 2 ) else  firstpos ( c 1 ) if  nullable ( c 2 )  then   lastpos ( c 1 )     lastpos ( c 2 ) else  lastpos ( c 2 ) * | c 1 true firstpos ( c 1 ) lastpos ( c 1 )
From Regular Expression to DFA Directly: Syntax Tree of  ( a | b )* abb# {6} {1, 2, 3} {5} {1, 2, 3} {4} {1, 2, 3} {3} {1, 2, 3} {1, 2} {1, 2} * {1, 2} {1, 2} | {1} {1} a {2} {2} b {3} {3} a {4} {4} b {5} {5} b {6} {6} # nullable firstpos lastpos 1 2 3 4 5 6
From Regular Expression to DFA Directly:  followpos for  each node  n  in the tree  do if  n  is a cat-node with left child  c 1  and right child  c 2   then for  each  i  in  lastpos ( c 1 )  do followpos ( i ) :=  followpos ( i )     firstpos ( c 2 ) end do else if  n  is a star-node for  each  i  in  lastpos ( n )  do followpos ( i ) :=  followpos ( i )     firstpos ( n ) end do end if end do
From Regular Expression to DFA Directly: Algorithm s 0  :=  firstpos ( root ) where  root  is the root of the syntax tree Dstates  := { s 0 } and is unmarked while  there is an unmarked state  T  in  Dstates   do mark  T for  each input symbol  a         do let  U  be the set of positions that are in  followpos ( p ) for some position  p  in  T , such that the symbol at position  p  is  a if  U  is not empty and not in  Dstates   then add  U  as an unmarked state to  Dstates end if Dtran [ T,a ] :=  U end do end do
From Regular Expression to DFA Directly: Example 1,2,3 start a 1,2, 3,4 1,2, 3,6 1,2, 3,5 b b b b a a a 1 2 3 4 5 6 Node followpos 1 {1, 2, 3} 2 {1, 2, 3} 3 {4} 4 {5} 5 {6} 6 -
Time-Space Tradeoffs Automaton Space (worst case) Time (worst case) NFA O (  r  ) O (  r  x  ) DFA O (2 | r | ) O (  x  )

More Related Content

What's hot

Top down and botttom up Parsing
Top down     and botttom up ParsingTop down     and botttom up Parsing
Top down and botttom up Parsing
Gerwin Ocsena
 

What's hot (20)

COMPILER DESIGN- Syntax Directed Translation
COMPILER DESIGN- Syntax Directed TranslationCOMPILER DESIGN- Syntax Directed Translation
COMPILER DESIGN- Syntax Directed Translation
 
1.8. equivalence of finite automaton and regular expressions
1.8. equivalence of finite automaton and regular expressions1.8. equivalence of finite automaton and regular expressions
1.8. equivalence of finite automaton and regular expressions
 
Top down parsing
Top down parsingTop down parsing
Top down parsing
 
Bottom - Up Parsing
Bottom - Up ParsingBottom - Up Parsing
Bottom - Up Parsing
 
Compiler Construction introduction
Compiler Construction introductionCompiler Construction introduction
Compiler Construction introduction
 
CLR AND LALR PARSER
CLR AND LALR PARSERCLR AND LALR PARSER
CLR AND LALR PARSER
 
Syntax directed translation
Syntax directed translationSyntax directed translation
Syntax directed translation
 
Lexical analysis - Compiler Design
Lexical analysis - Compiler DesignLexical analysis - Compiler Design
Lexical analysis - Compiler Design
 
Syntax analysis
Syntax analysisSyntax analysis
Syntax analysis
 
Predictive parser
Predictive parserPredictive parser
Predictive parser
 
Compiler design syntax analysis
Compiler design syntax analysisCompiler design syntax analysis
Compiler design syntax analysis
 
Chapter 5 Syntax Directed Translation
Chapter 5   Syntax Directed TranslationChapter 5   Syntax Directed Translation
Chapter 5 Syntax Directed Translation
 
Lecture 01 introduction to compiler
Lecture 01 introduction to compilerLecture 01 introduction to compiler
Lecture 01 introduction to compiler
 
Top down and botttom up Parsing
Top down     and botttom up ParsingTop down     and botttom up Parsing
Top down and botttom up Parsing
 
Bottom up parser
Bottom up parserBottom up parser
Bottom up parser
 
RECURSIVE DESCENT PARSING
RECURSIVE DESCENT PARSINGRECURSIVE DESCENT PARSING
RECURSIVE DESCENT PARSING
 
Regular expressions
Regular expressionsRegular expressions
Regular expressions
 
Top Down Parsing, Predictive Parsing
Top Down Parsing, Predictive ParsingTop Down Parsing, Predictive Parsing
Top Down Parsing, Predictive Parsing
 
LR Parsing
LR ParsingLR Parsing
LR Parsing
 
0 1 knapsack using branch and bound
0 1 knapsack using branch and bound0 1 knapsack using branch and bound
0 1 knapsack using branch and bound
 

Similar to Ch3 (20)

Ch3.ppt
Ch3.pptCh3.ppt
Ch3.ppt
 
Ch3.ppt
Ch3.pptCh3.ppt
Ch3.ppt
 
Ch3.ppt
Ch3.pptCh3.ppt
Ch3.ppt
 
Lecture 1 - Lexical Analysis.ppt
Lecture 1 - Lexical Analysis.pptLecture 1 - Lexical Analysis.ppt
Lecture 1 - Lexical Analysis.ppt
 
Chapter Two(1)
Chapter Two(1)Chapter Two(1)
Chapter Two(1)
 
compiler Design course material chapter 2
compiler Design course material chapter 2compiler Design course material chapter 2
compiler Design course material chapter 2
 
Lexicalanalyzer
LexicalanalyzerLexicalanalyzer
Lexicalanalyzer
 
Lexicalanalyzer
LexicalanalyzerLexicalanalyzer
Lexicalanalyzer
 
ANSI C REFERENCE CARD
ANSI C REFERENCE CARDANSI C REFERENCE CARD
ANSI C REFERENCE CARD
 
New compiler design 101 April 13 2024.pdf
New compiler design 101 April 13 2024.pdfNew compiler design 101 April 13 2024.pdf
New compiler design 101 April 13 2024.pdf
 
system software
system software system software
system software
 
Ch04
Ch04Ch04
Ch04
 
UNIT_-_II.docx
UNIT_-_II.docxUNIT_-_II.docx
UNIT_-_II.docx
 
12IRGeneration.pdf
12IRGeneration.pdf12IRGeneration.pdf
12IRGeneration.pdf
 
Ch8a
Ch8aCh8a
Ch8a
 
Compilers Design
Compilers DesignCompilers Design
Compilers Design
 
Ch 2.pptx
Ch 2.pptxCh 2.pptx
Ch 2.pptx
 
Chapter2CDpdf__2021_11_26_09_19_08.pdf
Chapter2CDpdf__2021_11_26_09_19_08.pdfChapter2CDpdf__2021_11_26_09_19_08.pdf
Chapter2CDpdf__2021_11_26_09_19_08.pdf
 
Lec1.pptx
Lec1.pptxLec1.pptx
Lec1.pptx
 
Introduction of bison
Introduction of bisonIntroduction of bison
Introduction of bison
 

More from kinnarshah8888 (16)

Yuva Msp All
Yuva Msp AllYuva Msp All
Yuva Msp All
 
Yuva Msp Intro
Yuva Msp IntroYuva Msp Intro
Yuva Msp Intro
 
Ch6
Ch6Ch6
Ch6
 
Ch9c
Ch9cCh9c
Ch9c
 
Ch5a
Ch5aCh5a
Ch5a
 
Ch9b
Ch9bCh9b
Ch9b
 
Ch9a
Ch9aCh9a
Ch9a
 
Ch10
Ch10Ch10
Ch10
 
Ch7
Ch7Ch7
Ch7
 
Ch2
Ch2Ch2
Ch2
 
Ch4b
Ch4bCh4b
Ch4b
 
Ch4a
Ch4aCh4a
Ch4a
 
Ch8b
Ch8bCh8b
Ch8b
 
Ch5b
Ch5bCh5b
Ch5b
 
Ch4c
Ch4cCh4c
Ch4c
 
Ch1
Ch1Ch1
Ch1
 

Recently uploaded

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
?#DUbAI#??##{{(☎️+971_581248768%)**%*]'#abortion pills for sale in dubai@
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Victor Rentea
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
WSO2
 

Recently uploaded (20)

+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
+971581248768>> SAFE AND ORIGINAL ABORTION PILLS FOR SALE IN DUBAI AND ABUDHA...
 
Corporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptxCorporate and higher education May webinar.pptx
Corporate and higher education May webinar.pptx
 
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024Finding Java's Hidden Performance Traps @ DevoxxUK 2024
Finding Java's Hidden Performance Traps @ DevoxxUK 2024
 
Architecting Cloud Native Applications
Architecting Cloud Native ApplicationsArchitecting Cloud Native Applications
Architecting Cloud Native Applications
 
How to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected WorkerHow to Troubleshoot Apps for the Modern Connected Worker
How to Troubleshoot Apps for the Modern Connected Worker
 
Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)Introduction to Multilingual Retrieval Augmented Generation (RAG)
Introduction to Multilingual Retrieval Augmented Generation (RAG)
 
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
Apidays New York 2024 - The Good, the Bad and the Governed by David O'Neill, ...
 
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data DiscoveryTrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
TrustArc Webinar - Unlock the Power of AI-Driven Data Discovery
 
WSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering DevelopersWSO2's API Vision: Unifying Control, Empowering Developers
WSO2's API Vision: Unifying Control, Empowering Developers
 
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost SavingRepurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
Repurposing LNG terminals for Hydrogen Ammonia: Feasibility and Cost Saving
 
presentation ICT roal in 21st century education
presentation ICT roal in 21st century educationpresentation ICT roal in 21st century education
presentation ICT roal in 21st century education
 
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin WoodPolkadot JAM Slides - Token2049 - By Dr. Gavin Wood
Polkadot JAM Slides - Token2049 - By Dr. Gavin Wood
 
[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf[BuildWithAI] Introduction to Gemini.pdf
[BuildWithAI] Introduction to Gemini.pdf
 
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, AdobeApidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
Apidays New York 2024 - Scaling API-first by Ian Reasor and Radu Cotescu, Adobe
 
Platformless Horizons for Digital Adaptability
Platformless Horizons for Digital AdaptabilityPlatformless Horizons for Digital Adaptability
Platformless Horizons for Digital Adaptability
 
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdfRising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
Rising Above_ Dubai Floods and the Fortitude of Dubai International Airport.pdf
 
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
Apidays New York 2024 - Passkeys: Developing APIs to enable passwordless auth...
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Artificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : UncertaintyArtificial Intelligence Chap.5 : Uncertainty
Artificial Intelligence Chap.5 : Uncertainty
 
Six Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal OntologySix Myths about Ontologies: The Basics of Formal Ontology
Six Myths about Ontologies: The Basics of Formal Ontology
 

Ch3

  • 1. Lexical Analysis and Lexical Analyzer Generators Chapter 3 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2007-2009
  • 2.
  • 3. Interaction of the Lexical Analyzer with the Parser Lexical Analyzer Parser Source Program Token, tokenval Symbol Table Get next token error error
  • 4. Attributes of Tokens Lexical analyzer < id , “ y ”> < assign , > < num , 31> < + , > < num , 28> < * , > < id , “ x ”> y := 31 + 28*x Parser token tokenval (token attribute)
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13. Regular Definitions and Grammars stmt  if expr then stmt  if expr then stmt else stmt   expr  term relop term  term term  id  num if  if then  then else  else relop  <  <=  <>  >  >=  = id  letter ( letter | digit ) * num  digit + ( . digit + )? ( E ( +  - )? digit + )? Grammar Regular definitions
  • 14. Coding Regular Definitions in Transition Diagrams 0 2 1 6 3 4 5 7 8 return ( relop , LE ) return ( relop , NE ) return ( relop , LT ) return ( relop , EQ ) return ( relop , GE ) return ( relop , GT ) start < = > = > = other other * * 9 start letter 10 11 * other letter or digit return ( gettoken (), install_id ()) relop  <  <=  <>  >  >=  = id  letter ( letter  digit ) *
  • 15. Coding Regular Definitions in Transition Diagrams: Code token nexttoken() { while (1) { switch (state) { case 0: c = nextchar(); if (c==blank || c==tab || c==newline) { state = 0; lexeme_beginning++; } else if (c==‘<’) state = 1; else if (c==‘=’) state = 5; else if (c==‘>’) state = 6; else state = fail(); break ; case 1: … case 9: c = nextchar(); if (isletter(c)) state = 10; else state = fail(); break ; case 10: c = nextchar(); if (isletter(c)) state = 10; else if (isdigit(c)) state = 10; else state = 11; break ; … int fail() { forward = token_beginning; swith (start) { case 0: start = 9; break ; case 9: start = 12; break ; case 12: start = 20; break ; case 20: start = 25; break ; case 25: recover(); break ; default : /* error */ } return start; } Decides the next start state to check
  • 16.
  • 17. Creating a Lexical Analyzer with Lex and Flex lex or flex compiler lex source program lex.l lex.yy.c input stream C compiler a.out sequence of tokens lex.yy.c a.out
  • 18.
  • 19. Regular Expressions in Lex x match the character x match the character . “ string ” match contents of string of characters . match any character except newline ^ match beginning of a line $ match the end of a line [xyz] match one character x , y , or z (use to escape - ) [^xyz] match any character except x , y , and z [a-z] match one of a to z r * closure (match zero or more occurrences) r + positive closure (match one or more occurrences) r ? optional (match zero or one occurrence) r 1 r 2 match r 1 then r 2 (concatenation) r 1 | r 2 match r 1 or r 2 (union) ( r ) grouping r 1 r 2 match r 1 when followed by r 2 { d } match the regular expression defined by d
  • 20. Example Lex Specification 1 %{ #include <stdio.h> %} %% [0-9]+ { printf(“%s”, yytext); } .| { } %% main() { yylex(); } Contains the matching lexeme Invokes the lexical analyzer lex spec.l gcc lex.yy.c -ll ./a.out < spec.l Translation rules
  • 21. Example Lex Specification 2 %{ #include <stdio.h> int ch = 0, wd = 0, nl = 0; %} delim [ ]+ %% { ch++; wd++; nl++; } ^{delim} { ch+=yyleng; } {delim} { ch+=yyleng; wd++; } . { ch++; } %% main() { yylex(); printf(&quot;%8d%8d%8d&quot;, nl, wd, ch); } Regular definition Translation rules
  • 22. Example Lex Specification 3 %{ #include <stdio.h> %} digit [0-9] letter [A-Za-z] id {letter}({letter}|{digit})* %% {digit}+ { printf(“number: %s”, yytext); } {id} { printf(“ident: %s”, yytext); } . { printf(“other: %s”, yytext); } %% main() { yylex(); } Regular definitions Translation rules
  • 23. Example Lex Specification 4 %{ /* definitions of manifest constants */ #define LT (256) … %} delim [ ] ws {delim}+ letter [A-Za-z] digit [0-9] id {letter}({letter}|{digit})* number {digit}+({digit}+)?(E[+]?{digit}+)? %% {ws} { } if {return IF;} then {return THEN;} else {return ELSE;} {id} {yylval = install_id(); return ID;} {number} {yylval = install_num(); return NUMBER;} “<“ {yylval = LT; return RELOP;} “<=“ {yylval = LE; return RELOP;} “ =“ {yylval = EQ; return RELOP;} “ <>“ {yylval = NE; return RELOP;} “>“ {yylval = GT; return RELOP;} “ >=“ {yylval = GE; return RELOP;} %% int install_id() … Return token to parser Token attribute Install yytext as identifier in symbol table
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29. Design of a Lexical Analyzer Generator: RE to NFA to DFA s 0 N ( p 1 ) N ( p 2 ) start   N ( p n )  … p 1 { action 1 } p 2 { action 2 } … p n { action n } action 1 action 2 action n Lex specification with regular expressions NFA DFA Subset construction
  • 30. From Regular Expression to NFA (Thompson’s Construction) N ( r 2 ) N ( r 1 ) f i  f a i f i N ( r 1 ) N ( r 2 ) start start start     f i start N ( r ) f i start    a r 1  r 2 r 1 r 2 r *  
  • 31. Combining the NFAs of a Set of Regular Expressions 2 a 1 start 6 a 3 start 4 5 b b 8 b 7 start a b a { action 1 } abb { action 2 } a * b + { action 3 } 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start   
  • 32. Simulating the Combined NFA Example 1 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start    Must find the longest match : Continue until no further moves are possible When last state is accepting: execute action action 1 action 2 action 3 a b a a none action 3 0 1 3 7 2 4 7 7 8
  • 33. Simulating the Combined NFA Example 2 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start    When two or more accepting states are reached, the first action given in the Lex specification is executed action 1 action 2 action 3 a b b a none action 2 action 3 0 1 3 7 2 4 7 5 8 6 8
  • 34.
  • 35. Example DFA 0 start a 1 3 2 b b b b a a a A DFA that accepts ( a  b )* abb
  • 36.
  • 37.  -closure and move Examples 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start     -closure ({0}) = {0,1,3,7} move ({0,1,3,7}, a ) = {2,4,7}  -closure ({2,4,7}) = {2,4,7} move ({2,4,7}, a ) = {7}  -closure ({7}) = {7} move ({7}, b ) = {8}  -closure ({8}) = {8} move ({8}, a ) =  a b a a none Also used to simulate NFAs 0 1 3 7 2 4 7 7 8
  • 38. Simulating an NFA using  -closure and move S :=  -closure ({ s 0 }) S prev :=  a := nextchar () while S   do S prev := S S :=  -closure ( move ( S,a )) a := nextchar () end do if S prev  F   then execute action in S prev return “yes” else return “no”
  • 39. The Subset Construction Algorithm Initially,  -closure ( s 0 ) is the only state in Dstates and it is unmarked while there is an unmarked state T in Dstates do mark T for each input symbol a   do U :=  -closure ( move ( T,a )) if U is not in Dstates then add U as an unmarked state to Dstates end if Dtran [ T , a ] := U end do end do
  • 40. Subset Construction Example 1 0 start a 1 10 2 b b a b 3 4 5 6 7 8 9         A start B C D E b b b b b a a a a Dstates A = {0,1,2,4,7} B = {1,2,3,4,6,7,8} C = {1,2,4,5,6,7} D = {1,2,4,5,6,7,9} E = {1,2,4,5,6,7,10} a
  • 41. Subset Construction Example 2 2 a 1 6 a 3 4 5 b b 8 b 7 a b 0 start    a 1 a 2 a 3 Dstates A = {0,1,3,7} B = {2,4,7} C = {8} D = {7} E = {5,8} F = {6,8} A start a D b b b a b b B C E F a b a 1 a 3 a 3 a 2 a 3
  • 42. Minimizing the Number of States of a DFA A start B C D E b b b b b a a a a a A start B D E b b a a b a a
  • 43.
  • 44.
  • 45. From Regular Expression to DFA Directly: Syntax Tree of ( a | b )* abb# * | 1 a 2 b 3 a 4 b 5 b # 6 concatenation closure alternation position number (for leafs  )
  • 46.
  • 47. From Regular Expression to DFA Directly: Annotating the Tree Node n nullable ( n ) firstpos ( n ) lastpos ( n ) Leaf  true   Leaf i false { i } { i } | / c 1 c 2 nullable ( c 1 ) or nullable ( c 2 ) firstpos ( c 1 )  firstpos ( c 2 ) lastpos ( c 1 )  lastpos ( c 2 ) • / c 1 c 2 nullable ( c 1 ) and nullable ( c 2 ) if nullable ( c 1 ) then firstpos ( c 1 )  firstpos ( c 2 ) else firstpos ( c 1 ) if nullable ( c 2 ) then lastpos ( c 1 )  lastpos ( c 2 ) else lastpos ( c 2 ) * | c 1 true firstpos ( c 1 ) lastpos ( c 1 )
  • 48. From Regular Expression to DFA Directly: Syntax Tree of ( a | b )* abb# {6} {1, 2, 3} {5} {1, 2, 3} {4} {1, 2, 3} {3} {1, 2, 3} {1, 2} {1, 2} * {1, 2} {1, 2} | {1} {1} a {2} {2} b {3} {3} a {4} {4} b {5} {5} b {6} {6} # nullable firstpos lastpos 1 2 3 4 5 6
  • 49. From Regular Expression to DFA Directly: followpos for each node n in the tree do if n is a cat-node with left child c 1 and right child c 2 then for each i in lastpos ( c 1 ) do followpos ( i ) := followpos ( i )  firstpos ( c 2 ) end do else if n is a star-node for each i in lastpos ( n ) do followpos ( i ) := followpos ( i )  firstpos ( n ) end do end if end do
  • 50. From Regular Expression to DFA Directly: Algorithm s 0 := firstpos ( root ) where root is the root of the syntax tree Dstates := { s 0 } and is unmarked while there is an unmarked state T in Dstates do mark T for each input symbol a   do let U be the set of positions that are in followpos ( p ) for some position p in T , such that the symbol at position p is a if U is not empty and not in Dstates then add U as an unmarked state to Dstates end if Dtran [ T,a ] := U end do end do
  • 51. From Regular Expression to DFA Directly: Example 1,2,3 start a 1,2, 3,4 1,2, 3,6 1,2, 3,5 b b b b a a a 1 2 3 4 5 6 Node followpos 1 {1, 2, 3} 2 {1, 2, 3} 3 {4} 4 {5} 5 {6} 6 -
  • 52. Time-Space Tradeoffs Automaton Space (worst case) Time (worst case) NFA O (  r  ) O (  r  x  ) DFA O (2 | r | ) O (  x  )