SlideShare uma empresa Scribd logo
1 de 54
Physical and Chemical Changes Pure Substances Mixtures States of Matter Matter
Everything that has mass and volume is called matter. What is matter?
All matter, regardless of state, undergoes physical and chemical changes.  These changes can be microscopic or macroscopic. What kind of changes does matter undergo?
Properties of Matter
What is a physical change? A physical change occurs when the substance changes state but does not change its chemical composition.  For example:  water freezing into ice, cutting a piece of wood into smaller pieces, etc.  The form or appearance has changed, but the properties of that substance are the same (i.e. it has the same melting point, boiling point, chemical composition, etc.)
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Characteristics of Physical Changes
What are chemical changes? A chemical change occurs when a substance changes into something new.  This occurs due to heating, chemical reaction, etc.  You can tell a chemical change has occurred if the density, melting point or freezing point of the original substance changes.  Many common signs of a chemical change can be seen (bubbles forming, mass changed, etc).
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Characteristics of Chemical Changes
[object Object],Intensive and Extensive Properties
[object Object],What are intensive properties?
[object Object],What are extensive properties?
[object Object],How can we identify physical properties?
[object Object],[object Object],Examples of physical properties:
[object Object],What are chemical properties?
[object Object],[object Object],How can chemical properties  be identified?
Comparison of Physical and Chemical Properties
What are "substances"? Substances can be identified as either an element, compound, or a mixture.
So, what is a substance? A substance cannot be further broken down or purified by physical means.  A substance is matter of a particular kind.  Each substance has its own characteristic properties that are different from the set of properties of any other substance.
[object Object],[object Object],[object Object],[object Object],Characteristics of Pure Substances
[object Object],[object Object],[object Object],[object Object],What is a pure substance?
What is a mixture? Mixtures are two or more substances that are NOT  chemically combined. Mixtures do not:         Have constant boiling points         Have constant melting points
[object Object],[object Object],[object Object],[object Object],Characteristics of Mixtures
Homogenous mixtures look the same throughout but can be separated by physical means (dissolution, centrifuge, gravimetric filtering, etc.).  Examples:  milk, yogurt Homogenous Mixtures
[object Object],[object Object],[object Object],[object Object],Indicators of Homogenous Mixtures
What are solutions? Solutions are homogenous mixtures that do not scatter light.  These mixtures are created when something is completely dissolved in pure water.  Therefore, they are easily separated by distillation or evaporation. Examples:  sugar water, salt water
Heterogeneous mixtures are composed of large pieces that are easily separated by physical means (ie. density, polarity, metallic properties).  Heterogenous Mixtures
[object Object],[object Object],[object Object],Indicators of Heterogenous Mixtures
Law of  Conservation of Matter There is no observable change in the quantity of matter during a chemical reaction or a physical change. In other words, matter cannot be created nor destroyed.  It is just converted from one form to another
What are colloids? Colloids are solutions.  They can be described as a substance trapped inside another substance.  They can be identified by their characteristic scattering of light. For example:  air trapped inside the fat molecules in whipped cream.
States of Matter ,[object Object],[object Object],[object Object],[object Object],[object Object],(And how the Kinetic Molecular Theory affects each)
States of Matter
Solids ,[object Object],[object Object],Molecules are held close together and there is very little movement between them.  Kinetic Molecular Theory
Liquids ,[object Object],[object Object],Kinetic Molecular Theory: Atoms and molecules have more space between them than a solid does, but less than a gas  (ie. It is more “fluid”.)
Gases ,[object Object],[object Object],Kinetic Molecular Theory: Molecules are moving in random patterns with varying amounts of distance between the particles.
Kinetic Molecular Model of Water  At 100 °C, water becomes water vapor, a gas.  Molecules can move randomly over large distances. Below 0 °C, water solidifies to become ice.  In the solid state, water molecules are held together in a rigid structure. Between 0 °C and 100 °C, water is a liquid.  In the liquid state, water molecules are close together, but can move about freely.
Changing States Changing states requires energy in either the form of heat.  Changing states may also be due to the change in pressure in a system. Heat of formation, H f . Heat of vaporization, H v
Plasma Plasma is by far the most common form of matter. Plasma in the stars and in the tenuous space between them makes up over 99% of the visible universe and perhaps most of that which is not visible.
On earth we live upon an island of "ordinary" matter. The different states of matter generally found on earth are solid, liquid, and gas. We have learned to work, play, and rest using these familiar states of matter. Sir William Crookes, an English physicist, identified a fourth state of matter, now called plasma, in 1879.
Plasma temperatures and densities range from relatively cool and tenuous (like aurora) to very hot and dense (like the central core of a star). Ordinary solids, liquids, and gases are both electrically neutral and too cool or dense to be in a plasma state.  The word "PLASMA" was first applied to ionized gas by Dr. Irving Langmuir, an American chemist and physicist, in 1929 .
(Above) X-ray view of Sun  from Yohkoh,  ISAS  and  NASA Star formation in the Eagle Nebula Space Telescope Science Institute ,  NASA (below)
Plasma radiation within the Princeton Tokamak during operation.
Laser plasma interaction during inertial confinement fusion test at the  University of Rochester .
Both inertial and magnetic confinement fusion research have focused on confinement and heating processes with dramatic results. The next stage of operating power reactors will produce about 1 GW of power and operate at  120 million degrees Kelvin.                                                
Plasma consists of a collection of free-moving electrons and ions - atoms that have lost electrons. Energy is needed to strip electrons from atoms to make plasma. The energy can be of various origins: thermal, electrical, or light (ultraviolet light or intense visible light from a laser). With insufficient sustaining power, plasmas recombine into neutral gas.
Plasma can be accelerated and steered by electric and magnetic fields which allows it to be controlled and applied. Plasma research is yielding a greater understanding of the universe. It also provides  many practical uses : new manufacturing techniques, consumer products, and the prospect of abundant energy.
Products manufactured using plasmas impact our daily lives:
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],Plasma technologies are important in industries with annual world markets approaching $200 billion
Water Purification Systems Plasma-based sources can emit intense beams of UV & X ray radiation or electron beams for a variety of environmental applications.                              
For water sterilization, intense UV emission disables the DNA of microorganisms in the water which then cannot replicate. There is no effect on taste or smell of the water and the technique only takes about 12 seconds.                     
This plasma-based UV method is effective against all water-born bacteria and viruses. Intense UV water purification systems are especially relevant to the needs of developing countries because they can be made simple to use and have low maintenance, high throughput and low cost.  Plasma-based UV water treatment systems use about 20,000 times less energy than boiling water!
Drastically Reduce Landfill Size Environmental impact:
High-temperature plasmas in arc furnaces can convert, in principle, any combination of materials to a vitrified or glassy substance with separation of molten metal. Substantial recycling is made possible with such furnaces and the highly stable, nonleachable, vitrified material can be used in landfills with essentially  no environmental impact.
Electron-beam generated plasma reactors can clean up hazardous chemical waste or enable soil remediation. Such systems are highly efficient and reasonably portable, can treat very low concentrations of toxic substances, and can treat a wide range of substances.   Environmental impact:

Mais conteúdo relacionado

Mais procurados

Elements, compound and mixture
Elements, compound and mixtureElements, compound and mixture
Elements, compound and mixturebrintha smith
 
Atoms and molecules
Atoms and moleculesAtoms and molecules
Atoms and moleculesPranay Dutta
 
Empirical and molecular formula class 11
Empirical and molecular formula class 11Empirical and molecular formula class 11
Empirical and molecular formula class 11ritik
 
Stoichiometry & The Mole
Stoichiometry & The MoleStoichiometry & The Mole
Stoichiometry & The MoleStephen Taylor
 
Chemical reaction types_grade_10
Chemical reaction types_grade_10Chemical reaction types_grade_10
Chemical reaction types_grade_10suryacad
 
Atoms, Element, Molecule and Compound
Atoms, Element, Molecule and CompoundAtoms, Element, Molecule and Compound
Atoms, Element, Molecule and CompoundJerome Bigael
 
Periodic table ppt cscope
Periodic table ppt cscopePeriodic table ppt cscope
Periodic table ppt cscopeJenny Dixon
 
8 e atoms & elements (boardworks)
8 e atoms & elements (boardworks)8 e atoms & elements (boardworks)
8 e atoms & elements (boardworks)cartlidge
 
CBSE Class 11 Chemistry Chapter 1 (Some Basic Concepts of Chemistry) | Homi I...
CBSE Class 11 Chemistry Chapter 1 (Some Basic Concepts of Chemistry) | Homi I...CBSE Class 11 Chemistry Chapter 1 (Some Basic Concepts of Chemistry) | Homi I...
CBSE Class 11 Chemistry Chapter 1 (Some Basic Concepts of Chemistry) | Homi I...Homi Institute
 
solution and solubility
solution and solubilitysolution and solubility
solution and solubilityvxiiayah
 
Unit 6 Organic Chemistry
Unit 6 Organic ChemistryUnit 6 Organic Chemistry
Unit 6 Organic ChemistryHaihao Liu
 
5 composition of matter
5 composition of matter5 composition of matter
5 composition of matterValerie Evans
 
Chapter 1-2 Mole concept
Chapter 1-2 Mole conceptChapter 1-2 Mole concept
Chapter 1-2 Mole conceptPriti Nayak
 

Mais procurados (20)

Periodic trends
Periodic trendsPeriodic trends
Periodic trends
 
Elements, compound and mixture
Elements, compound and mixtureElements, compound and mixture
Elements, compound and mixture
 
Atoms and molecules
Atoms and moleculesAtoms and molecules
Atoms and molecules
 
Empirical and molecular formula class 11
Empirical and molecular formula class 11Empirical and molecular formula class 11
Empirical and molecular formula class 11
 
Stoichiometry & The Mole
Stoichiometry & The MoleStoichiometry & The Mole
Stoichiometry & The Mole
 
carbon & its compounds
carbon & its compoundscarbon & its compounds
carbon & its compounds
 
Chemical reaction types_grade_10
Chemical reaction types_grade_10Chemical reaction types_grade_10
Chemical reaction types_grade_10
 
Redox reactions
Redox reactionsRedox reactions
Redox reactions
 
Atoms, Element, Molecule and Compound
Atoms, Element, Molecule and CompoundAtoms, Element, Molecule and Compound
Atoms, Element, Molecule and Compound
 
Periodic table ppt cscope
Periodic table ppt cscopePeriodic table ppt cscope
Periodic table ppt cscope
 
8 e atoms & elements (boardworks)
8 e atoms & elements (boardworks)8 e atoms & elements (boardworks)
8 e atoms & elements (boardworks)
 
CBSE Class 11 Chemistry Chapter 1 (Some Basic Concepts of Chemistry) | Homi I...
CBSE Class 11 Chemistry Chapter 1 (Some Basic Concepts of Chemistry) | Homi I...CBSE Class 11 Chemistry Chapter 1 (Some Basic Concepts of Chemistry) | Homi I...
CBSE Class 11 Chemistry Chapter 1 (Some Basic Concepts of Chemistry) | Homi I...
 
solution and solubility
solution and solubilitysolution and solubility
solution and solubility
 
Unit 6 Organic Chemistry
Unit 6 Organic ChemistryUnit 6 Organic Chemistry
Unit 6 Organic Chemistry
 
5 composition of matter
5 composition of matter5 composition of matter
5 composition of matter
 
Conservation of Mass
Conservation of MassConservation of Mass
Conservation of Mass
 
structure of atom
structure of atomstructure of atom
structure of atom
 
ION AND ITS TYPES
ION AND ITS TYPESION AND ITS TYPES
ION AND ITS TYPES
 
Metals
MetalsMetals
Metals
 
Chapter 1-2 Mole concept
Chapter 1-2 Mole conceptChapter 1-2 Mole concept
Chapter 1-2 Mole concept
 

Semelhante a Ch 2 Pre Ap Matter

Matter
MatterMatter
MatterSNS
 
matter.hgfihiuhr.ggdgfdte533314553456ppt
matter.hgfihiuhr.ggdgfdte533314553456pptmatter.hgfihiuhr.ggdgfdte533314553456ppt
matter.hgfihiuhr.ggdgfdte533314553456pptMayur Malgear
 
Ch 1 Matter in Our Surroundings Slide show 3.ppt
Ch 1 Matter in Our Surroundings Slide show 3.pptCh 1 Matter in Our Surroundings Slide show 3.ppt
Ch 1 Matter in Our Surroundings Slide show 3.pptRajveerKaushal1
 
Matter powerpoint
Matter powerpointMatter powerpoint
Matter powerpointclevengerk
 
201115985 power point slides ( matter and matterial)
201115985 power point slides ( matter and matterial)201115985 power point slides ( matter and matterial)
201115985 power point slides ( matter and matterial)musa chauke
 
Matter, Properties, & Phases
Matter, Properties, & PhasesMatter, Properties, & Phases
Matter, Properties, & PhasesEmmanuelDikolelay
 
Density Common Chemical Changes Q And A
Density Common Chemical Changes Q And ADensity Common Chemical Changes Q And A
Density Common Chemical Changes Q And Adeawscience
 
Changes_in_Matter_Revised.ppt
Changes_in_Matter_Revised.pptChanges_in_Matter_Revised.ppt
Changes_in_Matter_Revised.pptJeward Torregosa
 
Changes_in_Matter_Revised.ppt
Changes_in_Matter_Revised.pptChanges_in_Matter_Revised.ppt
Changes_in_Matter_Revised.pptRexAgua
 
Different Changes in Matter Revised2.ppt
Different Changes in Matter Revised2.pptDifferent Changes in Matter Revised2.ppt
Different Changes in Matter Revised2.pptIphanyi
 
Ch1.12.matter measurement ppt
Ch1.12.matter measurement pptCh1.12.matter measurement ppt
Ch1.12.matter measurement pptn_bean1973
 
physical and chemical change.pptx
physical and chemical change.pptxphysical and chemical change.pptx
physical and chemical change.pptxRonnieMa3
 
Changes_in_Matter_Revised.ppt
Changes_in_Matter_Revised.pptChanges_in_Matter_Revised.ppt
Changes_in_Matter_Revised.pptPatricioIsaran
 
Thobile matter and material
Thobile matter and materialThobile matter and material
Thobile matter and materialThobile Nkosi
 

Semelhante a Ch 2 Pre Ap Matter (20)

Matter
MatterMatter
Matter
 
matter.hgfihiuhr.ggdgfdte533314553456ppt
matter.hgfihiuhr.ggdgfdte533314553456pptmatter.hgfihiuhr.ggdgfdte533314553456ppt
matter.hgfihiuhr.ggdgfdte533314553456ppt
 
Ch 1 Matter in Our Surroundings Slide show 3.ppt
Ch 1 Matter in Our Surroundings Slide show 3.pptCh 1 Matter in Our Surroundings Slide show 3.ppt
Ch 1 Matter in Our Surroundings Slide show 3.ppt
 
2. PPT DOWNLOADED.ppt
2. PPT DOWNLOADED.ppt2. PPT DOWNLOADED.ppt
2. PPT DOWNLOADED.ppt
 
Matter powerpoint
Matter powerpointMatter powerpoint
Matter powerpoint
 
General Chemistry.pptx
General Chemistry.pptxGeneral Chemistry.pptx
General Chemistry.pptx
 
201115985 power point slides ( matter and matterial)
201115985 power point slides ( matter and matterial)201115985 power point slides ( matter and matterial)
201115985 power point slides ( matter and matterial)
 
Matter, Properties, & Phases
Matter, Properties, & PhasesMatter, Properties, & Phases
Matter, Properties, & Phases
 
Density Common Chemical Changes Q And A
Density Common Chemical Changes Q And ADensity Common Chemical Changes Q And A
Density Common Chemical Changes Q And A
 
Changes_in_Matter_Revised.ppt
Changes_in_Matter_Revised.pptChanges_in_Matter_Revised.ppt
Changes_in_Matter_Revised.ppt
 
Changes_in_Matter_Revised.ppt
Changes_in_Matter_Revised.pptChanges_in_Matter_Revised.ppt
Changes_in_Matter_Revised.ppt
 
Changes_in_Matter_Revised.ppt
Changes_in_Matter_Revised.pptChanges_in_Matter_Revised.ppt
Changes_in_Matter_Revised.ppt
 
Different Changes in Matter Revised2.ppt
Different Changes in Matter Revised2.pptDifferent Changes in Matter Revised2.ppt
Different Changes in Matter Revised2.ppt
 
Changes in matter
Changes in matterChanges in matter
Changes in matter
 
Matter
MatterMatter
Matter
 
Ch1.12.matter measurement ppt
Ch1.12.matter measurement pptCh1.12.matter measurement ppt
Ch1.12.matter measurement ppt
 
physical and chemical change.pptx
physical and chemical change.pptxphysical and chemical change.pptx
physical and chemical change.pptx
 
Changes_in_Matter_Revised.ppt
Changes_in_Matter_Revised.pptChanges_in_Matter_Revised.ppt
Changes_in_Matter_Revised.ppt
 
Thobile matter and material
Thobile matter and materialThobile matter and material
Thobile matter and material
 
Matter
MatterMatter
Matter
 

Mais de kermis

Ch 9 Stoichiometry
Ch 9 StoichiometryCh 9 Stoichiometry
Ch 9 Stoichiometrykermis
 
Ch 5 Notes
Ch 5 NotesCh 5 Notes
Ch 5 Noteskermis
 
Ch 1 And 2
Ch 1 And 2Ch 1 And 2
Ch 1 And 2kermis
 
Ch 6 Nomenclature
Ch 6 NomenclatureCh 6 Nomenclature
Ch 6 Nomenclaturekermis
 
Ch 3 Measurement And Density
Ch 3  Measurement And DensityCh 3  Measurement And Density
Ch 3 Measurement And Densitykermis
 
Ch 4 Dimensional Analysis
Ch 4 Dimensional AnalysisCh 4 Dimensional Analysis
Ch 4 Dimensional Analysiskermis
 

Mais de kermis (6)

Ch 9 Stoichiometry
Ch 9 StoichiometryCh 9 Stoichiometry
Ch 9 Stoichiometry
 
Ch 5 Notes
Ch 5 NotesCh 5 Notes
Ch 5 Notes
 
Ch 1 And 2
Ch 1 And 2Ch 1 And 2
Ch 1 And 2
 
Ch 6 Nomenclature
Ch 6 NomenclatureCh 6 Nomenclature
Ch 6 Nomenclature
 
Ch 3 Measurement And Density
Ch 3  Measurement And DensityCh 3  Measurement And Density
Ch 3 Measurement And Density
 
Ch 4 Dimensional Analysis
Ch 4 Dimensional AnalysisCh 4 Dimensional Analysis
Ch 4 Dimensional Analysis
 

Último

Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfEnterprise Knowledge
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)Gabriella Davis
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?Igalia
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?Antenna Manufacturer Coco
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxKatpro Technologies
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processorsdebabhi2
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfsudhanshuwaghmare1
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Enterprise Knowledge
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...apidays
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonAnna Loughnan Colquhoun
 

Último (20)

Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdfThe Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
The Role of Taxonomy and Ontology in Semantic Layers - Heather Hedden.pdf
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)A Domino Admins Adventures (Engage 2024)
A Domino Admins Adventures (Engage 2024)
 
A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?A Year of the Servo Reboot: Where Are We Now?
A Year of the Servo Reboot: Where Are We Now?
 
What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?What Are The Drone Anti-jamming Systems Technology?
What Are The Drone Anti-jamming Systems Technology?
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptxFactors to Consider When Choosing Accounts Payable Services Providers.pptx
Factors to Consider When Choosing Accounts Payable Services Providers.pptx
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Exploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone ProcessorsExploring the Future Potential of AI-Enabled Smartphone Processors
Exploring the Future Potential of AI-Enabled Smartphone Processors
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Boost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdfBoost Fertility New Invention Ups Success Rates.pdf
Boost Fertility New Invention Ups Success Rates.pdf
 
Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...Driving Behavioral Change for Information Management through Data-Driven Gree...
Driving Behavioral Change for Information Management through Data-Driven Gree...
 
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
Apidays Singapore 2024 - Building Digital Trust in a Digital Economy by Veron...
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
Data Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt RobisonData Cloud, More than a CDP by Matt Robison
Data Cloud, More than a CDP by Matt Robison
 

Ch 2 Pre Ap Matter

  • 1. Physical and Chemical Changes Pure Substances Mixtures States of Matter Matter
  • 2. Everything that has mass and volume is called matter. What is matter?
  • 3. All matter, regardless of state, undergoes physical and chemical changes. These changes can be microscopic or macroscopic. What kind of changes does matter undergo?
  • 5. What is a physical change? A physical change occurs when the substance changes state but does not change its chemical composition. For example: water freezing into ice, cutting a piece of wood into smaller pieces, etc. The form or appearance has changed, but the properties of that substance are the same (i.e. it has the same melting point, boiling point, chemical composition, etc.)
  • 6.
  • 7. What are chemical changes? A chemical change occurs when a substance changes into something new. This occurs due to heating, chemical reaction, etc. You can tell a chemical change has occurred if the density, melting point or freezing point of the original substance changes. Many common signs of a chemical change can be seen (bubbles forming, mass changed, etc).
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16. Comparison of Physical and Chemical Properties
  • 17. What are "substances"? Substances can be identified as either an element, compound, or a mixture.
  • 18. So, what is a substance? A substance cannot be further broken down or purified by physical means. A substance is matter of a particular kind. Each substance has its own characteristic properties that are different from the set of properties of any other substance.
  • 19.
  • 20.
  • 21. What is a mixture? Mixtures are two or more substances that are NOT chemically combined. Mixtures do not:        Have constant boiling points        Have constant melting points
  • 22.
  • 23. Homogenous mixtures look the same throughout but can be separated by physical means (dissolution, centrifuge, gravimetric filtering, etc.). Examples: milk, yogurt Homogenous Mixtures
  • 24.
  • 25. What are solutions? Solutions are homogenous mixtures that do not scatter light. These mixtures are created when something is completely dissolved in pure water. Therefore, they are easily separated by distillation or evaporation. Examples: sugar water, salt water
  • 26. Heterogeneous mixtures are composed of large pieces that are easily separated by physical means (ie. density, polarity, metallic properties). Heterogenous Mixtures
  • 27.
  • 28. Law of Conservation of Matter There is no observable change in the quantity of matter during a chemical reaction or a physical change. In other words, matter cannot be created nor destroyed. It is just converted from one form to another
  • 29. What are colloids? Colloids are solutions. They can be described as a substance trapped inside another substance. They can be identified by their characteristic scattering of light. For example: air trapped inside the fat molecules in whipped cream.
  • 30.
  • 32.
  • 33.
  • 34.
  • 35. Kinetic Molecular Model of Water At 100 °C, water becomes water vapor, a gas. Molecules can move randomly over large distances. Below 0 °C, water solidifies to become ice. In the solid state, water molecules are held together in a rigid structure. Between 0 °C and 100 °C, water is a liquid. In the liquid state, water molecules are close together, but can move about freely.
  • 36. Changing States Changing states requires energy in either the form of heat. Changing states may also be due to the change in pressure in a system. Heat of formation, H f . Heat of vaporization, H v
  • 37. Plasma Plasma is by far the most common form of matter. Plasma in the stars and in the tenuous space between them makes up over 99% of the visible universe and perhaps most of that which is not visible.
  • 38. On earth we live upon an island of "ordinary" matter. The different states of matter generally found on earth are solid, liquid, and gas. We have learned to work, play, and rest using these familiar states of matter. Sir William Crookes, an English physicist, identified a fourth state of matter, now called plasma, in 1879.
  • 39. Plasma temperatures and densities range from relatively cool and tenuous (like aurora) to very hot and dense (like the central core of a star). Ordinary solids, liquids, and gases are both electrically neutral and too cool or dense to be in a plasma state. The word "PLASMA" was first applied to ionized gas by Dr. Irving Langmuir, an American chemist and physicist, in 1929 .
  • 40. (Above) X-ray view of Sun from Yohkoh, ISAS and NASA Star formation in the Eagle Nebula Space Telescope Science Institute , NASA (below)
  • 41. Plasma radiation within the Princeton Tokamak during operation.
  • 42. Laser plasma interaction during inertial confinement fusion test at the University of Rochester .
  • 43. Both inertial and magnetic confinement fusion research have focused on confinement and heating processes with dramatic results. The next stage of operating power reactors will produce about 1 GW of power and operate at 120 million degrees Kelvin.                                               
  • 44. Plasma consists of a collection of free-moving electrons and ions - atoms that have lost electrons. Energy is needed to strip electrons from atoms to make plasma. The energy can be of various origins: thermal, electrical, or light (ultraviolet light or intense visible light from a laser). With insufficient sustaining power, plasmas recombine into neutral gas.
  • 45. Plasma can be accelerated and steered by electric and magnetic fields which allows it to be controlled and applied. Plasma research is yielding a greater understanding of the universe. It also provides many practical uses : new manufacturing techniques, consumer products, and the prospect of abundant energy.
  • 46. Products manufactured using plasmas impact our daily lives:
  • 47.
  • 48.
  • 49. Water Purification Systems Plasma-based sources can emit intense beams of UV & X ray radiation or electron beams for a variety of environmental applications.                              
  • 50. For water sterilization, intense UV emission disables the DNA of microorganisms in the water which then cannot replicate. There is no effect on taste or smell of the water and the technique only takes about 12 seconds.                    
  • 51. This plasma-based UV method is effective against all water-born bacteria and viruses. Intense UV water purification systems are especially relevant to the needs of developing countries because they can be made simple to use and have low maintenance, high throughput and low cost. Plasma-based UV water treatment systems use about 20,000 times less energy than boiling water!
  • 52. Drastically Reduce Landfill Size Environmental impact:
  • 53. High-temperature plasmas in arc furnaces can convert, in principle, any combination of materials to a vitrified or glassy substance with separation of molten metal. Substantial recycling is made possible with such furnaces and the highly stable, nonleachable, vitrified material can be used in landfills with essentially no environmental impact.
  • 54. Electron-beam generated plasma reactors can clean up hazardous chemical waste or enable soil remediation. Such systems are highly efficient and reasonably portable, can treat very low concentrations of toxic substances, and can treat a wide range of substances. Environmental impact: