SlideShare uma empresa Scribd logo
1 de 5
Calcular el percentil w0=95 y w0=25 en cada uno de los siguientes casos:

1. En una distribución t-Student con 3 grados de libertad.

2. En una distribución t-Student con 30 grados de libertad.

R=

1. Recordemos que w0=95 es aquel número real que verifica: S [W · w0=95] =
0=95

Para encontrar este valor en la tabla de la distribución t-Student bastará:

- ) Localizar en la primera columna los grados de libertad, en este caso: 3.

- ) Localizar en la primer fila la probabilidad acumulada, en nuestro caso: 0=95=

- ) Movernos horizontal y verticalmente desde las posiciones anteriores hasta
cruzarnos en el punto w0=95.

Por tanto el percentil w0=95, en una t-Student con 3 grados de libertad será el
valor: w0=95 = 2=3534

Es decir, si desde el valor 2.3534 nos movemos horizontalmente hasta la primera
columna, llegaremos al valor 3 (grados de libertad), y si lo hacemos verticalmente
hacia la primera fila la llegaremos al valor 0.95 (probabilidad acumulada).

Como en la tabla únicamente tenemos tabulada la t-Student para colas
probabilísticas que van desde 0=75 hasta 0=999, para calcular el percentil
w0=25, tendremos que realizar la siguiente consideración: S [W · w0=25] = 1 ¡
s[W ¸ w0=25]

Como la distribución t-Student es simétrica, se verifica:

                                  w0=25 = ¡w0=75

Y resulta: s[W · w0=25] = 1 ¡ s[W · w0=75]
Por tanto, buscando en la tabla con los datos:

Grados de libertad: 3

Cola de probabilidad: 0.75

Tenemos: w0=25 = ¡w0=75 = ¡0=7649

2. En el caso de 30 grados de libertad actuaremos de modo similar al caso
anterior, pero buscando en la fila 30 de la tabla. Resultando:

w0=95 = 1=6973

Y w0=25 = ¡w0=75 = ¡0=6828




Calcular los percentiles I8>7;0=99 y I8>7;0=01

R= Para buscar en la tabla de la F-Snedecor el percentil I8>7; 0=99 hemos de
tener en cuenta que:

df_1 = 8 (1d Fila de la tabla)

df_2 = 7 (1 d Columna de la tabla)

0=99 = Probabilidad acumulada (Última columna de la tabla)

El valor donde se cruzan todos estos datos será el percentil buscado.

                             Por tanto: I9>7; 099 = 6=840




Un fabricante de focos afirma que su producto durará un promedio de 500 horas
de trabajo. Para conservar este promedio esta persona verifica 25 focos cada
mes. Si el valor y calculado cae entre –t 0.05 y t 0.05, él se encuentra satisfecho
con esta afirmación. ¿Qué conclusión deberá él sacar de una muestra de 25 focos
cuya duración fue?:
520     521      511       513        510   µ=500 h
                513     522      500       521        495   n=25
                496     488      500       502        512   Nc=90%
                510     510      475       505        521   X=505.36
                506     503      487       493        500   S=12.07



t= x -μ

           SI   n                α = 1- Nc = 10%

v = n-1 = 24

t = 2.22




La longitud de los tornillos fabricados en una fábrica tienen media μ=10 mm y
desviación s=1 mm, calcular la probabilidad de que en una muestra de tamaño
n=25, la longitud media del tornillo sea inferior a 20.5 mm:



P (μ<20.5)

Estandarizamos T=(X-μ)/(s/√n) que sigue una distribución t de n-1 grados de
libertad

T=(20.5-20)/(1/√25) = 2.5
P (μ<20.5) --> P (T<2.5) ~ t(24)

P (T<2.5) = 0.9902

P (μ<20.5)=0.9902

La probabilidad que la longitud media de la muestra de 25 tornillos sea inferior a
20.5 mm es del 99.02%




El profesor Pérez olvida poner su despertador 3 de cada 10 días. Además, ha
comprobado que uno de cada 10 días en los que pone el despertador acaba no
levantándose a tiempo de dar su primera clase, mientras que 2 de cada 10 días en
los que olvida poner el despertador, llega a tiempo adar su primera clase.

(a) Identifica y da nombre a los sucesos que aparecen en el enunciado.

(b) ¿Cual es la probabilidad de que el profesor Pérez llegue a tiempo a dar su
primera clase?

R=: En primer lugar conviene identificar el experimento aleatorio que estamos
realizando. Este consiste en tomar un dia al azar en la vida del profesor Pérez y
analizarlo en base a los siguientes sucesos.

(a) Para un día al azar decimos que se ha dado el suceso:

O ≡ cuando el profesor ha olvidado poner el despertador

T ≡ cuando el profesor ha llegado tarde a su primera clase.

Notemos que tanto {O, O} como {T, T} forman un sistema completo de sucesos. A
continuación traducimos en términos de probabilidad de los sucesos anteriores
todos los datos que nos dan en el enunciado.

                 P(O) = ,    P (T |O) = ,   P(O) = , P(T |O) = .

(b) El suceso”llegar a tiempo a su clase” es el complementario de T , por tanto nos
piden que calculemos P(T¯). Puesto que {O, O} es un sistema completo de
sucesos, podemos aplicar la formulas de la probabilidad total, de donde tenemos
que:
P (T¯) = P (T |O¯) P(O) + P (T | ¯ O¯) P (O¯).

En la expresión anterior aparecen varios de los datos que nos ha proporcionando
el enunciado, sin embargo no conocemos directamente el valor de P(T |¯ O¯).
Para calcularlo utilizamos que

P(T |¯ O¯) = 1 − P(T |O¯) = 1 − = De esta forma, la expresión anterior se puede
escribir como: P(T¯) =    +     =0.69

Mais conteúdo relacionado

Mais procurados

Actividades seminario 9
Actividades seminario 9Actividades seminario 9
Actividades seminario 9noeliatoro95
 
Distribucion geometrica
Distribucion geometricaDistribucion geometrica
Distribucion geometricajavier
 
Ejercicios de distribucion normal estandar
Ejercicios de distribucion normal estandarEjercicios de distribucion normal estandar
Ejercicios de distribucion normal estandarNathywiiz Hernández
 
Ejercicios diseño de bloques completos al azar ejercicio 1
Ejercicios diseño de bloques completos al azar ejercicio 1Ejercicios diseño de bloques completos al azar ejercicio 1
Ejercicios diseño de bloques completos al azar ejercicio 1Instituto Tecnologico De Pachuca
 
La distribución normal
La distribución normalLa distribución normal
La distribución normalMatemolivares1
 
Ejercicios de distribución binomial
Ejercicios de distribución binomialEjercicios de distribución binomial
Ejercicios de distribución binomialMariangel Carrillo
 
RENNY MENDOZA Resolucion ejercicios dist normal
 RENNY MENDOZA  Resolucion ejercicios dist normal RENNY MENDOZA  Resolucion ejercicios dist normal
RENNY MENDOZA Resolucion ejercicios dist normalrennyjse
 
Ejercicios prueba de hipótesis
Ejercicios prueba de hipótesisEjercicios prueba de hipótesis
Ejercicios prueba de hipótesisHugo_Franco
 
Problemas de probabilidad (4)
Problemas de probabilidad  (4)Problemas de probabilidad  (4)
Problemas de probabilidad (4)lizbethantunez
 
Presentación probabilidad
Presentación probabilidadPresentación probabilidad
Presentación probabilidadojitos55
 
Distribuciones de Probabilidad (Variable Aleatoria Continua)
Distribuciones de Probabilidad (Variable Aleatoria Continua)Distribuciones de Probabilidad (Variable Aleatoria Continua)
Distribuciones de Probabilidad (Variable Aleatoria Continua)Daniel Gómez
 
Distribución de bernoulli ejercicios
Distribución de bernoulli ejerciciosDistribución de bernoulli ejercicios
Distribución de bernoulli ejerciciosAurora Sanchez Caro
 
Ejercicios diseño de bloques completos al azar ejercicio 2
Ejercicios diseño de bloques completos al azar ejercicio 2Ejercicios diseño de bloques completos al azar ejercicio 2
Ejercicios diseño de bloques completos al azar ejercicio 2Instituto Tecnologico De Pachuca
 

Mais procurados (20)

Actividades seminario 9
Actividades seminario 9Actividades seminario 9
Actividades seminario 9
 
Distribucion geometrica
Distribucion geometricaDistribucion geometrica
Distribucion geometrica
 
Ejercicios serie de fourier
Ejercicios serie de fourierEjercicios serie de fourier
Ejercicios serie de fourier
 
U0304
U0304U0304
U0304
 
Ejercicios de distribucion normal estandar
Ejercicios de distribucion normal estandarEjercicios de distribucion normal estandar
Ejercicios de distribucion normal estandar
 
Ejercicios diseño de bloques completos al azar ejercicio 1
Ejercicios diseño de bloques completos al azar ejercicio 1Ejercicios diseño de bloques completos al azar ejercicio 1
Ejercicios diseño de bloques completos al azar ejercicio 1
 
La distribución normal
La distribución normalLa distribución normal
La distribución normal
 
Ejercicios de distribución binomial
Ejercicios de distribución binomialEjercicios de distribución binomial
Ejercicios de distribución binomial
 
Distribucion uniforme continua
Distribucion uniforme continuaDistribucion uniforme continua
Distribucion uniforme continua
 
Exponencial Poisson
Exponencial PoissonExponencial Poisson
Exponencial Poisson
 
Chi cuadrado
Chi  cuadradoChi  cuadrado
Chi cuadrado
 
RENNY MENDOZA Resolucion ejercicios dist normal
 RENNY MENDOZA  Resolucion ejercicios dist normal RENNY MENDOZA  Resolucion ejercicios dist normal
RENNY MENDOZA Resolucion ejercicios dist normal
 
Ejercicios prueba de hipótesis
Ejercicios prueba de hipótesisEjercicios prueba de hipótesis
Ejercicios prueba de hipótesis
 
Problemas de probabilidad (4)
Problemas de probabilidad  (4)Problemas de probabilidad  (4)
Problemas de probabilidad (4)
 
Presentación probabilidad
Presentación probabilidadPresentación probabilidad
Presentación probabilidad
 
Ejercicios resueltos
Ejercicios resueltosEjercicios resueltos
Ejercicios resueltos
 
Distribuciones de Probabilidad (Variable Aleatoria Continua)
Distribuciones de Probabilidad (Variable Aleatoria Continua)Distribuciones de Probabilidad (Variable Aleatoria Continua)
Distribuciones de Probabilidad (Variable Aleatoria Continua)
 
EJERCICIOS DE DISTRIBUCIÓN MULTINOMIAL
EJERCICIOS DE DISTRIBUCIÓN MULTINOMIALEJERCICIOS DE DISTRIBUCIÓN MULTINOMIAL
EJERCICIOS DE DISTRIBUCIÓN MULTINOMIAL
 
Distribución de bernoulli ejercicios
Distribución de bernoulli ejerciciosDistribución de bernoulli ejercicios
Distribución de bernoulli ejercicios
 
Ejercicios diseño de bloques completos al azar ejercicio 2
Ejercicios diseño de bloques completos al azar ejercicio 2Ejercicios diseño de bloques completos al azar ejercicio 2
Ejercicios diseño de bloques completos al azar ejercicio 2
 

Semelhante a Calcular percentiles t-Student y F-Snedecor en distribuciones de probabilidad

Semelhante a Calcular percentiles t-Student y F-Snedecor en distribuciones de probabilidad (20)

Tstudentejemplos 120319172547-phpapp02
Tstudentejemplos 120319172547-phpapp02Tstudentejemplos 120319172547-phpapp02
Tstudentejemplos 120319172547-phpapp02
 
T-student
T-studentT-student
T-student
 
Ejemplos de tstudent estadistica
Ejemplos de tstudent estadisticaEjemplos de tstudent estadistica
Ejemplos de tstudent estadistica
 
T student 5 ejemplos beeto
T student 5 ejemplos beetoT student 5 ejemplos beeto
T student 5 ejemplos beeto
 
Bernoulli ejemplos
Bernoulli  ejemplosBernoulli  ejemplos
Bernoulli ejemplos
 
Bernoulli ejemplos
Bernoulli ejemplosBernoulli ejemplos
Bernoulli ejemplos
 
Disreibuciones
DisreibucionesDisreibuciones
Disreibuciones
 
T studen
T studenT studen
T studen
 
Cálculo numérico 7 corrección
Cálculo numérico 7 correcciónCálculo numérico 7 corrección
Cálculo numérico 7 corrección
 
Ejemplos de distribuciones
Ejemplos de distribucionesEjemplos de distribuciones
Ejemplos de distribuciones
 
Ejebn
EjebnEjebn
Ejebn
 
Ejebn
EjebnEjebn
Ejebn
 
Ejemplos de distribuciones
Ejemplos de distribucionesEjemplos de distribuciones
Ejemplos de distribuciones
 
trabajo de estadistca
trabajo de estadistcatrabajo de estadistca
trabajo de estadistca
 
Trabajo de estadística
Trabajo de estadísticaTrabajo de estadística
Trabajo de estadística
 
Trabajo de estadística
Trabajo de estadísticaTrabajo de estadística
Trabajo de estadística
 
Transporte y transbordo
Transporte y transbordoTransporte y transbordo
Transporte y transbordo
 
Ejercicios detallados del obj 7 mat iii 733
Ejercicios detallados del obj 7 mat iii  733 Ejercicios detallados del obj 7 mat iii  733
Ejercicios detallados del obj 7 mat iii 733
 
Estadio cognoscente - tratamiento de datos y ajuste de curva (WORD)
Estadio cognoscente - tratamiento de datos y ajuste de curva (WORD)Estadio cognoscente - tratamiento de datos y ajuste de curva (WORD)
Estadio cognoscente - tratamiento de datos y ajuste de curva (WORD)
 
EJEMPLOS DE CADA DISTRIBUCIÓN
EJEMPLOS DE CADA DISTRIBUCIÓN EJEMPLOS DE CADA DISTRIBUCIÓN
EJEMPLOS DE CADA DISTRIBUCIÓN
 

Mais de karemlucero

Laguna yo te quiero
Laguna yo te quieroLaguna yo te quiero
Laguna yo te quierokaremlucero
 
Laguna yo te quiero... limpia
Laguna yo te quiero... limpiaLaguna yo te quiero... limpia
Laguna yo te quiero... limpiakaremlucero
 
Laguna yo te quiero
Laguna yo te quieroLaguna yo te quiero
Laguna yo te quierokaremlucero
 
Laguna yo te quiero
Laguna yo te quieroLaguna yo te quiero
Laguna yo te quierokaremlucero
 
Karem lucero garcia vitela
Karem lucero garcia vitelaKarem lucero garcia vitela
Karem lucero garcia vitelakaremlucero
 
Universidad tecnologica de torreón
Universidad tecnologica de torreónUniversidad tecnologica de torreón
Universidad tecnologica de torreónkaremlucero
 
De bárbaros a burócratas
De bárbaros a burócratasDe bárbaros a burócratas
De bárbaros a burócrataskaremlucero
 
De bárbaros a burócratas
De bárbaros a burócratasDe bárbaros a burócratas
De bárbaros a burócrataskaremlucero
 
De bárbaros a burócratas
De bárbaros a burócratasDe bárbaros a burócratas
De bárbaros a burócrataskaremlucero
 
Aplicaciones de histogramas
Aplicaciones de histogramasAplicaciones de histogramas
Aplicaciones de histogramaskaremlucero
 
Universidad tecnologica de torreón cosas importantes
Universidad tecnologica de torreón cosas importantesUniversidad tecnologica de torreón cosas importantes
Universidad tecnologica de torreón cosas importanteskaremlucero
 
Intervalos de confianza
Intervalos de confianzaIntervalos de confianza
Intervalos de confianzakaremlucero
 
Prueba de hipótesis
Prueba de hipótesisPrueba de hipótesis
Prueba de hipótesiskaremlucero
 
Brandon alejandro
Brandon alejandroBrandon alejandro
Brandon alejandrokaremlucero
 
T student ejemplos
T student ejemplosT student ejemplos
T student ejemploskaremlucero
 
Poisson ejemplos
Poisson ejemplosPoisson ejemplos
Poisson ejemploskaremlucero
 
Poisson ejemplos
Poisson ejemplosPoisson ejemplos
Poisson ejemploskaremlucero
 

Mais de karemlucero (20)

Anova
AnovaAnova
Anova
 
Laguna yo te quiero
Laguna yo te quieroLaguna yo te quiero
Laguna yo te quiero
 
Z de 1 muestra
Z de 1 muestraZ de 1 muestra
Z de 1 muestra
 
Laguna yo te quiero... limpia
Laguna yo te quiero... limpiaLaguna yo te quiero... limpia
Laguna yo te quiero... limpia
 
Laguna yo te quiero
Laguna yo te quieroLaguna yo te quiero
Laguna yo te quiero
 
Laguna yo te quiero
Laguna yo te quieroLaguna yo te quiero
Laguna yo te quiero
 
Karem lucero garcia vitela
Karem lucero garcia vitelaKarem lucero garcia vitela
Karem lucero garcia vitela
 
Universidad tecnologica de torreón
Universidad tecnologica de torreónUniversidad tecnologica de torreón
Universidad tecnologica de torreón
 
De bárbaros a burócratas
De bárbaros a burócratasDe bárbaros a burócratas
De bárbaros a burócratas
 
De bárbaros a burócratas
De bárbaros a burócratasDe bárbaros a burócratas
De bárbaros a burócratas
 
De bárbaros a burócratas
De bárbaros a burócratasDe bárbaros a burócratas
De bárbaros a burócratas
 
50 palabras
50 palabras50 palabras
50 palabras
 
Aplicaciones de histogramas
Aplicaciones de histogramasAplicaciones de histogramas
Aplicaciones de histogramas
 
Universidad tecnologica de torreón cosas importantes
Universidad tecnologica de torreón cosas importantesUniversidad tecnologica de torreón cosas importantes
Universidad tecnologica de torreón cosas importantes
 
Intervalos de confianza
Intervalos de confianzaIntervalos de confianza
Intervalos de confianza
 
Prueba de hipótesis
Prueba de hipótesisPrueba de hipótesis
Prueba de hipótesis
 
Brandon alejandro
Brandon alejandroBrandon alejandro
Brandon alejandro
 
T student ejemplos
T student ejemplosT student ejemplos
T student ejemplos
 
Poisson ejemplos
Poisson ejemplosPoisson ejemplos
Poisson ejemplos
 
Poisson ejemplos
Poisson ejemplosPoisson ejemplos
Poisson ejemplos
 

Calcular percentiles t-Student y F-Snedecor en distribuciones de probabilidad

  • 1. Calcular el percentil w0=95 y w0=25 en cada uno de los siguientes casos: 1. En una distribución t-Student con 3 grados de libertad. 2. En una distribución t-Student con 30 grados de libertad. R= 1. Recordemos que w0=95 es aquel número real que verifica: S [W · w0=95] = 0=95 Para encontrar este valor en la tabla de la distribución t-Student bastará: - ) Localizar en la primera columna los grados de libertad, en este caso: 3. - ) Localizar en la primer fila la probabilidad acumulada, en nuestro caso: 0=95= - ) Movernos horizontal y verticalmente desde las posiciones anteriores hasta cruzarnos en el punto w0=95. Por tanto el percentil w0=95, en una t-Student con 3 grados de libertad será el valor: w0=95 = 2=3534 Es decir, si desde el valor 2.3534 nos movemos horizontalmente hasta la primera columna, llegaremos al valor 3 (grados de libertad), y si lo hacemos verticalmente hacia la primera fila la llegaremos al valor 0.95 (probabilidad acumulada). Como en la tabla únicamente tenemos tabulada la t-Student para colas probabilísticas que van desde 0=75 hasta 0=999, para calcular el percentil w0=25, tendremos que realizar la siguiente consideración: S [W · w0=25] = 1 ¡ s[W ¸ w0=25] Como la distribución t-Student es simétrica, se verifica: w0=25 = ¡w0=75 Y resulta: s[W · w0=25] = 1 ¡ s[W · w0=75]
  • 2. Por tanto, buscando en la tabla con los datos: Grados de libertad: 3 Cola de probabilidad: 0.75 Tenemos: w0=25 = ¡w0=75 = ¡0=7649 2. En el caso de 30 grados de libertad actuaremos de modo similar al caso anterior, pero buscando en la fila 30 de la tabla. Resultando: w0=95 = 1=6973 Y w0=25 = ¡w0=75 = ¡0=6828 Calcular los percentiles I8>7;0=99 y I8>7;0=01 R= Para buscar en la tabla de la F-Snedecor el percentil I8>7; 0=99 hemos de tener en cuenta que: df_1 = 8 (1d Fila de la tabla) df_2 = 7 (1 d Columna de la tabla) 0=99 = Probabilidad acumulada (Última columna de la tabla) El valor donde se cruzan todos estos datos será el percentil buscado. Por tanto: I9>7; 099 = 6=840 Un fabricante de focos afirma que su producto durará un promedio de 500 horas de trabajo. Para conservar este promedio esta persona verifica 25 focos cada mes. Si el valor y calculado cae entre –t 0.05 y t 0.05, él se encuentra satisfecho con esta afirmación. ¿Qué conclusión deberá él sacar de una muestra de 25 focos cuya duración fue?:
  • 3. 520 521 511 513 510 µ=500 h 513 522 500 521 495 n=25 496 488 500 502 512 Nc=90% 510 510 475 505 521 X=505.36 506 503 487 493 500 S=12.07 t= x -μ SI n α = 1- Nc = 10% v = n-1 = 24 t = 2.22 La longitud de los tornillos fabricados en una fábrica tienen media μ=10 mm y desviación s=1 mm, calcular la probabilidad de que en una muestra de tamaño n=25, la longitud media del tornillo sea inferior a 20.5 mm: P (μ<20.5) Estandarizamos T=(X-μ)/(s/√n) que sigue una distribución t de n-1 grados de libertad T=(20.5-20)/(1/√25) = 2.5
  • 4. P (μ<20.5) --> P (T<2.5) ~ t(24) P (T<2.5) = 0.9902 P (μ<20.5)=0.9902 La probabilidad que la longitud media de la muestra de 25 tornillos sea inferior a 20.5 mm es del 99.02% El profesor Pérez olvida poner su despertador 3 de cada 10 días. Además, ha comprobado que uno de cada 10 días en los que pone el despertador acaba no levantándose a tiempo de dar su primera clase, mientras que 2 de cada 10 días en los que olvida poner el despertador, llega a tiempo adar su primera clase. (a) Identifica y da nombre a los sucesos que aparecen en el enunciado. (b) ¿Cual es la probabilidad de que el profesor Pérez llegue a tiempo a dar su primera clase? R=: En primer lugar conviene identificar el experimento aleatorio que estamos realizando. Este consiste en tomar un dia al azar en la vida del profesor Pérez y analizarlo en base a los siguientes sucesos. (a) Para un día al azar decimos que se ha dado el suceso: O ≡ cuando el profesor ha olvidado poner el despertador T ≡ cuando el profesor ha llegado tarde a su primera clase. Notemos que tanto {O, O} como {T, T} forman un sistema completo de sucesos. A continuación traducimos en términos de probabilidad de los sucesos anteriores todos los datos que nos dan en el enunciado. P(O) = , P (T |O) = , P(O) = , P(T |O) = . (b) El suceso”llegar a tiempo a su clase” es el complementario de T , por tanto nos piden que calculemos P(T¯). Puesto que {O, O} es un sistema completo de sucesos, podemos aplicar la formulas de la probabilidad total, de donde tenemos que:
  • 5. P (T¯) = P (T |O¯) P(O) + P (T | ¯ O¯) P (O¯). En la expresión anterior aparecen varios de los datos que nos ha proporcionando el enunciado, sin embargo no conocemos directamente el valor de P(T |¯ O¯). Para calcularlo utilizamos que P(T |¯ O¯) = 1 − P(T |O¯) = 1 − = De esta forma, la expresión anterior se puede escribir como: P(T¯) = + =0.69