SlideShare uma empresa Scribd logo
1 de 87
Baixar para ler offline
Escuela Superior Politécnica del Litoral

Solucionario de Problemas
de Ecuaciones
Diferenciales
Primer parcial (3ra versión)
Roberto Cabrera

RESOLUCION DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN.

APLICACIONES DE ECUACIONES DIFERENCIALES DE PRIMER
ORDEN
RESOLUCION DE ECUACIONES DIFERENCIALES DE SEGUNDO
ORDEN: HOMOGENEAS Y NO HOMOGENEAS. METODO DE LOS
COEFICIENTES INDETERMINADOS Y VARIACION DE PARAMETROS.
RESOLUCION DE ECUACIONES DIFERENCIALES DE ORDEN
SUPERIOR: HOMOGENEAS Y NO HOMOGENEAS. METODO LOS
COEFICIENTES INDETERMINADOS Y VARIACION DE PARAMETROS.
RESOLUCION DE ECUACIONES DIFERENCIALES DE SEGUNDO
ORDEN ALREDEDOR DE PUNTOS ORDINARIOS. (SERIE DE TAYLOR)

09
Ecuaciones diferenciales de primer orden

Ecuaciones Diferenciales separables
Se tiene una ecuación diferencial ordinaria de primer orden:
XY
ͨ{Y Y{
XY

Se dice que ecuación diferencial de primer orden es separable si se puede expresar la esa
ecuación diferencial de la siguiente manera:
XY
ͨ{Y{ͩ{Y{
XY
Donde ˘{˲ ˳{ se lo expresa como una multiplicación de dos funciones, una que depende de la
variable “x” y otra de la variable “y”. En este caso se obtiene la siguiente solución de esta
ecuación diferencial:
XY
XY

XY
ͩ{Y{

XY
ͩ{Y{

ͨ{Y{ͩ{Y{
ͨ{Y{XY

ͨ{Y{XY

Donde la solución de esta ecuación diferencial separable tiene la siguiente forma:
{Y{
{Y{ - V

1.- Encontrar la solución implícita de la siguiente ecuación diferencial:

dy(xy - 2x + 4y - 8) - dx(xy + 3x - y - 3) = 0
dy
xy + 3x - y - 3
=
dx xy - 2x + 4y - 8
dy
x(y + 3) - (y + 3)
=
dx x(y - 2) + 4(y - 2)
dy (y + 3)(x - 1)
= f ( y )g ( x );
=
dx (y - 2)(x + 4)

(y − 2 )dy (x − 1)dx
⇒ Integramos
=
(y + 3 )
(x + 4 )
(y − 2 )dy (x − 1)dx
∫ (y + 3 ) = ∫ (x + 4 )

∫

a ambos lados de la ecuación

( y + 3 )dy
5dy
(x + 4 )dx
5dx
−∫
=∫
−∫
(x + 4 )
(x + 4 )
( y + 3)
y+3
5dy

5dx

∫ dy − ∫ y + 3 = ∫ dx − ∫ (x + 4 )
y − 5 ln y + 3 = x − 5 ln x + 4 + c
ESPOL 2009

2
Ecuaciones diferenciales de primer orden
2.- Encontrar la solución particular de la siguiente ecuación diferencial:
π
Si y(0) = ;
4
Reemplazan do u y v :
x
3e tan(y)dx + (2 − e x )sec 2 (y)dy = 0
ln tan(y) = 3ln 2 − e x + c;
(2 − e x )sec 2 (y)dy = −3e x tan(y)dx;
3ln 2 − e x + c
e ln tan(y) = e
;
− 3e x tan(y)
dy
=
= f(x).g(y);
x
2
x 3
dx (2 − e )sec (y)
tan(y) = (2 − e ) K;
2
x
sec (y)dy
3e dx
La solución general es :
=−
;
x
tan(y)
(2 − e )
y = arctan[(2 − e x )3 K ];
sec 2 (y)dy
3e x dx
= ∫−
;
∫ tan(y)
(2 − e x )

si y(0) = /4;
⇒

u = tan(y) ⇒ du = sec 2 (y);

/4 = arctan[(2 − e 0 )K ];

v = 2 − e ⇒ dv = − e dx;
x

x

/4 = arctan(K);

⇒ Reemplazan do :

 
tan   = K; ⇒ K = 1;
4
La solución particular es :

du
3dv
∫ u =∫ v ;
ln u = 3ln v + c;

y = arctan[(2 − e x )3 ];

3.- Exprese de forma implícita la solución de la siguiente ecuación diferencial:

e x/2 ydy −

e x/2 ydy =

dx
= 0
e (1 + ex/2 )
y

dx
;
e (1 + e x/2 )

Integrando por fracciones parciales obtenemos :
1
A B
C
= 2+ +
;
2
u ( u + 1) u
u 1+ u
Donde los valores de A, B, C son :

y

dy
1
= x/2
= f( x ).g( y );
dx e (1 + e x/2 )ye y
f( x) =
g( y ) =

e

x/2

1
;
(1 + e x/2 )

A = 1; B = - 1; C = 1;
⇒∫
⇒∫

1
;
ye y

dx
y
∫ ye dy = ∫ e x/2 (1 + e x/2 ) ;
dx
∫ e x/2 (1 + e x/2 ) = ?
1
u = e x /2 ⇒ du = e x /2 dx ;
2
2du
1
;
du = udx ⇒ dx =
u
2
2du
dx
2du
u
⇒ ∫ x/2
=∫
=∫ 2
x/2
e (1 + e )
u(1 + u )
u (1 + u )

1  
2du
  1 1
= 2 ∫  2 − +
du ;
u 1+u  
u (1 + u )

 u
du
du
du
2du
= 2∫ 2 − 2∫
+ 2∫
;
1+u
u
u
u (1 + u )

⇒∫

2du
2
= − − 2 ln u + 2 ln 1 + u + c ;
u (1 + u )
u

⇒∫

2

2

2

e

x/2

dx
2
= − x/2 − 2 ln e x/2 + 2 ln 1 + e x/2 + c ;
x/2
(1 + e )
e

dx
;
e (1 + e x/2 )
La solución implicita general es :
ye y − e y = ∫

x/2

⇒ ye y − e y = −

ESPOL 2009

2
e

x/2

− 2 ln e x/2 + 2 ln 1 + e x/2 + c ;
3
Ecuaciones diferenciales de primer orden

4. - Encuentre la solución general de la siguiente ecuación diferencial:
2 y ln( x )dx − (e y − e − y )x 1 + ln( x )dy = 0
(e y − e − y )x 1 + ln( x)dy = 2 y ln( x)dx ;
dy
2 y ln( x )
= y
= f( y ).g( x );
dx (e − e − y )x 1 + ln( x )
f( y ) =

2y
ln( x)
∧ g(x) =
;
−y
(e − e )
x 1 + ln( x )
y

dy
2 y ln( x )
= y
dx (e − e − y )x 1 + ln( x )
ln( x)
(e y − e − y )
dx ;
dy =
2y
x 1 + ln( x)
Integrando a ambos lados de la ecuación se obtiene :
ln( x )
(e y − e − y )
∫ 2 y dy = ∫ x 1 + ln(x) dx;
(e y − e −y )
= senh( y ) entonces tenemos lo siguiente :
2
senh( y )
ln( x)
∫ y dy = ∫ x 1 + ln(x) dx ;

Si observamos que

Para integrar

senh( y )
dy debemos usar series de potencias :
y

y 2 n +1
senh( y ) + ∞ y 2 n
⇒
=∑
;
y
n = 0 (2 n + 1 )!
n = 0 (2 n + 1 )!
+∞

Si senh( y ) = ∑

Re emplazando :
y2n
ln( x )
∫ ∑ (2 n + 1)!dy = ∫ x 1 + ln(x) dx;
n =0
+∞

y2n
dy obtenemos que :
n = 0 (2 n + 1)!
+∞

Integrando ∑

+∞
y 2 n +1
y2n
∫ ∑ (2 n + 1)!dy = ∑ (2 n + 1)(2n + 1)! ;
n =0
n =0
+∞

ESPOL 2009

4
Ecuaciones diferenciales de primer orden

Ahora integrando

∫x

ln(x)
dx = ?
1 + ln(x)

Si u = ln(x) ⇒ du =
⇒∫

ln(x)
dx :
x 1 + ln(x)

dx
x

ln(x)
udu
dx = ∫
;
1+u
x 1 + ln(x)

Ahora z 2 = 1 + u ⇒ 2 zdz = du ;
⇒∫

udu
(z 2 - 1)2zdz
;
=
z
1+u ∫


 z3
(z 2 - 1)2zdz
2
⇒∫
= 2 ∫ (z - 1)dz = 2  − z + C ;
z

3
⇒∫


udu
= 2
1+u



(

1+ u
3

)

3


− 1+ u +C



 1 + ln(x) 3

ln(x)
dx = 2 
⇒∫
− 1 + ln(x)  + C ;
3
x 1 + ln(x)




La solucion general de forma implícita es :

(


y 2 n +1
=2 
∑ (2n + 1)(2 n + 1)! 
n =0

+∞

(

)

3

1 + ln(x)
− 1 + ln(x)  + C
3



)

ESPOL 2009

5
Ecuaciones diferenciales de primer orden

Ecuaciones Diferenciales Lineales
Las ecuaciones diferenciales lineales tienen la siguiente forma:

y'+ p(x)y = g(x);
Existen dos métodos para resolver este tipos de ecuaciones:
El método del factor integrante.
Método de variación de parámetros

El método del factor integrante:
y' + p(x)y = g(x);
u(x) = e ∫

p(x)dx

;

u(x)[y' + p(x)y] = u(x)g(x);
d
[u(x)y] = u(x)g(x);
dx

∫ d[u(x)y] = ∫ u(x)g(x)dx;
u(x)y = ∫ u(x)g(x)dx;
y=

1
u(x)g(x)dx;
u(x) ∫

Método de variación de parámetros
y' + p(x)y = g(x);
yh' + p(x)yh = 0 ;
yh' = − p(x)yh ;
dyh
= − p(x)yh ;
dx
dyh
∫ yh = ∫ − p(x)dx;
ln yh = ∫ − p(x)dx;
yh = e ∫ − p(x)dx;
Asumir:

Re emplazando :
y' + p(x)y = g(x);
[ y hv'(x) + y' hv(x)] + p(x)y hv(x) = g(x);
v'(x)[ y h ] + v(x)[ y' h + p(x)y h ] = g(x);
Pero y' h + p(x)y h = 0 , entonce s:
v'(x)[ y h ] + v(x)[0] = g(x);
v'(x)[ y h ] = g(x);
dv
[ yh ] = g(x);
dx
g(x)
∫ dv = ∫ yh dx;
g(x)
dx;
yh

y = yhv(x);

v(x) = ∫

y' = yh v'(x) + y'hv(x);

y = y h v(x);
y = e∫

− p(x)dx

ESPOL 2009

∫

g(x)
dx;
yh

6
Ecuaciones diferenciales de primer orden

1)
y' −

x3
;
xy'−2 y =
sen 2 (x)4 ctg(x)
2
x2
;
y=
x
sen 2 (x)4 ctg(x)

Tiene la forma y' + p(x)y = g(x);
Por lo tanto podemos aplicar el método del factor integrante :
Encontremos el factor integrante u(x) :
u(x) = e ∫

p(x)dx
2

− dx
−2
1
u( x) = e ∫ x = e − 2 ln( x ) = e ln( x ) = x −2 = 2 ;
x
Multipliquemos el factor integrante u(x) a ambos lados de la ecuación :


x2
2  1 
1 
;

 y' − y  = 2 
x  x  sen 2 (x)4 ctg(x) 
x2 


1
d  1  
;
 2 y = 
dx  x   sen 2 (x)4 ctg(x) 




1
 1 
dx ;
⇒ ∫ d 2 y  = ∫ 
2
 sen (x)4 ctg(x) 
x 




1
1
dx ;
⇒ 2 y = ∫
 sen 2 (x)4 ctg(x) 
x


2


1
dx = csc ( x ) dx ;

⇒∫
∫ 4 ctg(x)
 sen 2 (x)4 ctg(x) 


Si u = ctg( x) ⇒ du = − csc 2 ( x )dx ;

⇒∫
⇒∫

csc 2 ( x )
ctg(x)

4

dx = ∫

 u 3/4 
4u 3 / 4
− du
=−
= − ∫ u −1 / 4 du = − 

4
3
u
 3 /4 

4 4 ctg 3 ( X )
4[ctg( X )]3 / 4
dx = −
+C =−
+ C;
3
3
ctg(x)

csc 2 ( x )
4

4 4 ctg 3 ( X )
1
y=−
+ C;
x2
3
La solución general de la ecuacion diferencial es :

⇒

 4 4 ctg 3 ( X )

−
y=x
+ C ;
3




2

ESPOL 2009

7
Ecuaciones diferenciales de primer orden

y'+ p(x)y = 1; y(0) = 1;
2)

1 ; 0 ≤ x < 2
p(x) = 
- 2x ; x ≥ 2

Para el intervalo 0 ≤ x < 2 resolvemos la ecuación diferencial, donde p(x) = 1 :
Ahora para x ≥ 2, p(x) = -2x;
y'-2xy = 1;

u( x ) = e ∫

y'+ y = 1;
dy
dy
+ y = 1; ⇒
= 1 − y ; (Ec. dif. separable);
dx
dx
dy
dy
= dx ⇒ ∫
= dx ;
1−y ∫
1−y
− ln 1 − y = x + C ;

(Ec. dif. lineal)

− 2 xdx

2

= e −x ;

2

2

e −x (y'- 2 xy ) = e − x (1);
2

2
d(e −x y )
= e −x ;
dx

−x
−x
−x
−x
∫ d(e y) = ∫ e dx; ⇒ e y = ∫ e dx;
2

2

2

2

2

Pero para integrar e −x dx necesitamos

ln 1 − y = −x + K

usar series de potencias :

e ln 1− y = e − x+K ;

+∞

(− 1 ) n x 2 n

n =0

n!

⇒ e −x y = ∫ ∑
2

−x

1 − y = k 1e ;
y 1 = 1 − k 1e −x ;

+∞

(− 1 ) n x 2 n + 1

n =0

( 2 n + 1)n!

⇒ e −x y = ∑
2

Pero y(0) = 1;
1 = 1 − k 1e 0 ; ⇒ k 1 = 0 ;
⇒ y 1 = 1 para 0 ≤ x < 2

⇒ y2 = ex

2

dx ;

+∞

(− 1 ) n x 2 n + 1

∑ ( 2n + 1)n!

+ k2 ;
2

+ e x k 2 ; para x > 2;

n =0

Ahora para encontrar k 2 usaremos la
condición de continuidad de dos funciones :
Esta condición dice :

lim f( x) = lim f(x);
⇒ lim y = lim y ;
x →a −

x→2 −

x→a +

1

x→2 +

2

2
 2 + ∞ (− 1 ) n x 2 n + 1

⇒ lim 1 = lim e x ∑
+ e x k 2 ;
x→2 −
x→2 + 
n = 0 (2 n + 1)n!

n 2 n +1
+∞
+∞
2
2
(− 1 ) 2
(− 1 ) n 2 2 n 2 4
⇒ 1 = e2 ∑
+ e2 k 2 ;⇒ 1 = e4 ∑
+e k2 ;
n = 0 (2 n + 1)n!
n = 0 (2 n + 1)n!

1 + ∞ (− 1 ) n 2 2 n 2
(− 1 ) n 2 2 n 2 4
= e k2 ;⇒ k2 = 4 − ∑
;
e
n = 0 (2 n + 1)n!
n = 0 (2 n + 1)n!
+∞
1
(− 1 ) n 2 2 n
⇒ k 2 = 4 − 2∑
;
e
n = 0 (2 n + 1)n!
+∞

⇒ 1−e4 ∑

La solución queda expresada con
la siguiente regla de correspondencia :
0≤x<2
1 ;
 +∞
+∞
y =  x 2 (− 1)n x 2 n +1
2  1
(− 1)n 2 2 n 
e ∑
+ e x  4 − 2∑
; x ≥ 2

n = 0 (2 n + 1 )n! 
e
 n =0 ( 2 n + 1)n!

ESPOL 2009

8
Ecuaciones diferenciales de primer orden

3.- Resolver la siguiente ecuación diferencial:

dy
y
= y
dx e + 2 x
Si observamos que esta es una ecuación diferencial no separable, no lineal con respecto
a y, que tal si hacemos que nuestra variable independiente sea “y”, y que “x” nuestra
variable dependiente, es decir obtener nuestra solución en función de “y” (x = f( y)) .

(e
(e
y

y

+ 2 x )dy = ydx ;

y

+ 2x) = y

dx
;
dy

dx
− e y − 2x = 0;
dy

≡ yx'−e y − 2 x = 0 ;

e y 2x
2x e y
;
−
= 0 ; ⇒ x'−
=
y
y
y
y
Tiene la forma x'+ p(y)x = g(y);
⇒ x'−

Ahora y es la variable independie nte :
Apliquemos el método del factor integrante :
x' + p(y)x = g(y);
* El factor integrante ahora depende de y :
u(y) = e ∫

p(y)dy

p( y ) = −

∫ − dy
2
; entonces u(y) = e y = e −2 ln y = y -2 ⇒ u(y) = y - 2
y

;
2

Multiplicando el factor integrante u(y) = y -2 a ambos lados de la ecuación diferencial :
x'−


2x 
ey
.
⇒ y -2  x'−  = y - 2

y 
y

 43
142 4
4

2x e y
=
y
y

d −2
y x
dy

[

]

y
y
d −2
[y x] = e 3 ⇒ d[y −2 x] = e 3 dy ⇒
y
dy
y

y −2 x =

∫

y

e
dy ⇒ x = y 2
y3

∫

∫

d[y − 2 x ] =

∫

ey
dy
y3

y

e
dy
y3

y

Para integrar
+∞

ey =

∑
n =0

+∞

∫∑
n =0

e
dy usamos series de potencias :
y3

yn
ey
⇒ 3 =
n!
y

y n −3
dy =
n!

x( y ) = y

2

∫

∫

+∞

∑
n =0

y n −3
n!

 1
1
1

+
+
+
3
2
2! y
 0! y 1! y


La solución es:
+∞

∑
n =3

y n −3 

n! 


 1
e
1 1
dy = y 2 − 2 − + ln( y ) +
3
y
y 2
 2y

y

+∞

∑
n =3

 1
1
x = − − y + y 2ln(y) +
2
 2


+∞

∑
n =3


yn
+ Cy 2 
(n − 2)n!




y n −2
+ C ;
( n − 2 )n!



ESPOL 2009

9
Ecuaciones diferenciales de primer orden

4.- Resuelva la siguiente ecuación diferencial:

xy' −y = x 2 sen(ln(x));

y(1) = 0 ;

Utilizando el método del factor integrante:
xy' − y = x 2 sen( ln (x));
y
y' − = xsen( ln (x));
x
Tiene la siguiente forma y'+ p(x)y = g(x), entonces :

u( x ) = e ∫ p( x )dx ;
⇒ u( x ) = e ∫ p( x )dx ;
⇒ u( x ) = e ∫ p( x )dx = e

donde
1
− ∫ dx
x

p(x) = −

1
;
x

= e −ln( x ) ;

⇒ u( x ) = x −1 ;
Multiplicando el factor integrante a ambos lados de la ecuación diferencial se obtiene :
y
x −1 y' − x −1 = x −1 xsen( ln (x));
x
14243
4 4
d −1
x y
dx

[

]

d −1
[x y] = sen( ln (x)) ⇒ d[x −1y] = sen( ln (x))dx ⇒
dx
x −1 y =

∫

∫

d[x −1 y] =

∫

sen( ln (x))dx

sen( ln (x))dx

∫

y = x sen( ln (x))dx

∫

sen(ln( x))dx = ?

Encontremo s ahora la solución particular si y(1) = 0;

z = ln( x);

⇒

dx = xdz ;

x 2 [sen (ln( x )) − cos(ln( x))]
+ Cx ;
2
y( 1) = 0 ;

dx
;
x

Pero x = e z ;

dz =

y=

dx = e zdz ;

∫
∫
∫

sen(ln( x))dx =

∫

sen(z )e zdz ;

sen(z )e zdz , integrando por partes obtenemos que :
sen(z )e zdz =

⇒

∫

12 [sen (ln( 1)) − cos(ln( 1))]
+ C( 1);
2
[sen(0) − cos( 0)] + C ;
⇒0=
2
1
1
⇒ 0 = − + C; ⇒ C = ;
2
2
⇒0=

e z [sen(z ) − cos(z )]
+ C;
2

sen(ln(x ))dx =

x[sen(ln( x)) − cos(ln(x))]
+ C;
2

 x[sen(ln( x)) − cos(ln(x ))]

⇒ y = x
+ C
2


x 2 [sen(ln( x)) − cos(ln( x))]
+ Cx;
y=
2

ESPOL 2009

La solución es :
y=

x 2 [sen(ln(x)) − cos(ln(x))] x
+
2
2

10
Ecuaciones diferenciales de primer orden

Ecuaciones diferenciales Exactas
Las ecuaciones diferenciales exactas tienen la siguiente forma:
M(x, y) + N(x, y)y' = 0;
Es exacta si :
∂M(x, y) ∂N(x, y)
=
;
∂y
∂x
My = Nx ;

Entonces existe :
F(x, y) tal que :
∂F(x,y)
= M(x,y);
∂x
∂F(x,y)
= N(x,y);
∂y
Si escogemos

∂F( x , y )
= M(x, y), se obtiene :
∂x

∂F(x,y)
= M(x,y)
∂x

∫ ∂F(x,y) = ∫ M(x,y)∂x;
F(x,y) = G(x,y) + h(y);
Luego derivando F(x, y) con respecto a y :
∂F( x , y )
= G' ( x , y ) + h' ( y );
∂y
∂F(x, y)
= N(x, y);
Luego igualando con
∂y
G'(x,y) + h'(y) = N(x,y);
h'(y) = N(x,y) − G'(x,y);
h( y ) = La constante de F(x, y).
Entonces :
F(x,y) = G(x,y) + h(y);
La solucíon es :
F(x,y) = 0 ;
G(x,y) + h(y) = 0 ;
Si se elige

∂F(x,y)
= N(x,y), y procedemos de la misma forma, se obtiene :
∂y

F(x, y) = H(x, y) + h(x);
Donde la solución es :
F(x, y) = 0;

ESPOL 2009

11
Ecuaciones diferenciales de primer orden
1.- Resuelva la siguiente ecuación diferencial:



 3
e xy
e xy
4x y −
+ xln(x) − x  dy = 0
+ yln(x) + x 3 x − 4  dx +  x 4 −

x
y





(

)


 3
 
e xy
e xy
4x y −
+ yln(x) + x 3 x − 4  +  x 4 −
+ xln(x) − x  y' = 0

x
y

 

xy
e
M(x,y) = 4 x 3 y −
+ y ln (x) + x 3 x − 4 ;
x
M y = 4 x 3 − e xy + ln (x) ;

(

)

(

N(x , y ) = x 4 −

)

e xy
+ xln(x) − x;
y

Nx = 4 x 3 − e xy + ln (x) ;
My = Nx ;

entonces la ecuacion diferencia l es exacta;

 Fx = M(x, y)
⇒ Existe una función F(x, y), donde 
 Fy = N(x, y)
Si Fy = N(x, y), entonces se obtiene lo siguiente :
Fy = x 4 −

e xy
+ x ln (x) − x;
y

∂(F(x,y))
e xy
4
=x −
+ x ln (x) − x;
y
∂y

 4 e xy
∂(F(x,y)) =  x −
+ x ln (x) − x  ∂y;


y


Entonces integrando a ambos lados de la ecuación :


e xy
∂ (F(x,y)) = ∫  x 4 −
+ x ln (x) − x  ∂y;
∫


y


 e xy 

F( x , y ) = x y − ∫ 
 y  ∂y + yx ln( x ) − xy + h ( x );


xy
e 

Para integrar 
 y  ∂y se usa series de potencias :


n
xy
+∞
(x )n (y )n − 1 1 + ∞ (x )n (y )n − 1
e
1 + ∞ (xy )
;
= ∑
=∑
= +∑
y
y n = 0 n!
n!
y n =1
n!
n =0
4

+∞
 1 + ∞ (x )n (y )n − 1 

(x )n (y )n
 ∂ y = ln( y ) + ∑
∂y = ∫  + ∑
;


y
n!
n =1
n = 1 (n )(n !)



+∞
(x )n (y )n
4
+ yx ln( x ) − xy + h ( x );
F( x , y ) = x y − ln( y ) − ∑
n = 1 (n )(n !)

 e xy
∫ y



ESPOL 2009

12
Ecuaciones diferenciales de primer orden

Ahora si Fx = M, entonces se obtiene lo siguiente :
Fx = M(x, y);
e xy
+ y ln (x) + x 3 x − 4 ;
x
+∞
n (x ) n −1 (y )n
+ y[1 + ln( x )] − y + h' ( x);
Fx = 4 x 3 y − ∑
(n )(n!)
n =1

(

Fx = 4 x 3 y −

)

(x ) n −1 (y )n
+ y + y ln( x) − y + h' ( x);
(n!)
n =1
+∞

Fx = 4 x 3 y − ∑

e xy
+ y ln( x ) + h' ( x );
x
Entonces reemplazando Fx :

Fx = 4 x 3 y −

e xy
e xy
+ y ln( x) + h' ( x ) = 4x 3 y −
+ y ln (x) + x 3 x − 4 ;
x
x
Eliminando términos :

(

4x 3 y −

(

)

)

h' ( x ) = x 3 x − 4 ;

Obteniendo h(x) :

(

)

h( x) = ∫ x 3 x − 4 dx ;
z 3 = x − 4 ; ⇒ 3z 2 dz = dx ;
z=

(

3

x−4

)

x = z 3 + 4;

( )

h(z) = ∫ (z 3 + 4 ) 3 z 3 3z 2 dz ;
h(z) = 3∫ (z 6 + 4z 3 )dz ;


z7
h( z ) = 3  + z 4 + C  ;

7
7
 3 x−4
+ 3 x−4
h( x ) = 3 
7



(

) (

)

4


+ C ;



Entonces :
 (3 x − 4 )

(x ) n (y )n
4
+ yx ln( x ) − xy + 3
+ (3 x − 4 ) + C  ;
F( x , y ) = x y − ln( y ) − ∑
7
n = 1 (n )(n!)




7

+∞

4

La solución implicitaes F(x, y) = 0, es decir :
 (3 x − 4 )7

(x )n (y )n
4
+ yx ln( x ) − xy + 3
+ (3 x − 4 ) + C  = 0 ;
x y − ln( y ) − ∑
7
n = 1 (n )(n!)




+∞

4

ESPOL 2009

13
Ecuaciones diferenciales de primer orden
2.- Resuelva la siguiente ecuación diferencial:

xy
y3 
 2
2
2
y' = 0 ;
+ xy  +  2xy − x + ln(x + 1) + x y + 8
y −
x+1
y − 2
 



M(x,y) = y 2 −

xy
+ xy 2
x+1

y3
N(x,y) = 2 xy − x + ln x + 1 + x y + 8
y −2
x
My = 2 y −
+ 2 xy
x+1
1
Nx = 2 y − 1 +
+ 2 xy ;
x+1
1−x−1
Nx = 2 y +
+ 2 xy ;
x+1
x
Nx = 2 y −
+ 2 xy ;
x+1
My = Nx ; la ecuación diferencial es exacta.
2

 Fx = M(x, y)
⇒ Existe una función F(x, y), donde 
 Fy = N(x, y)
Si Fx = M(x, y), entonces se obtiene lo siguiente :
Fx = M(x,y) = y 2 −

xy

+ xy 2 ;

x+1
xy
∂(F(x,y))
= y2 −
+ xy 2
x+1
∂x
xy


∂(F(x,y)) =  y 2 −
+ xy 2 ∂x;
x+1


x2 y2
x
2
F( x , y ) = xy − y ∫
∂x +
+ h( y );
x+1
2
x2y2
x+1−1
F( x , y ) = xy 2 − y ∫
∂x +
+ h( y );
x+1
2
x2y2
1
F( x , y ) = xy 2 − y ∫ ∂x + y ∫
∂x +
+ h( y );
x+1
2
x2 y2
2
F( x , y ) = xy − xy + y ln x + 1 +
+ h( y );
2
Ahora si Fy = N(x, y), entonces se obtiene lo siguiente :
Fy = N(x, y);
Fy = 2 xy − x + ln x + 1 + x 2 y + h' ( y );

ESPOL 2009

14
Ecuaciones diferenciales de primer orden

Entonces reemplazando Fy :
2 xy − x + ln x + 1 + x 2 y + h' ( y ); = 2 xy − x + ln x + 1 + x 2 y +

y3
y8 − 2

Eliminando términos :
h' ( y ) =

y3
y8 − 2

;

Obteniendo h(y) :
h( y ) = ∫
h( y ) = ∫

y3
y8 − 2

dy ;

y3

(y )

4 2

−2

dy ;

z = y 4 ; ⇒ dz = 4 y 3 dy ;
h( z ) =
h( z ) =
h( y ) =


z− 2
1
dz
1 1
∫ z 2 − 2 = 4  2 2 ln z + 2 + K  ;
4




1
8 2
1
8 2

ln
ln

z− 2
+ C;
z+ 2
y4 − 2
y4 + 2

+ C;

Entonces :
F( x , y ) = xy 2 − xy + y ln x + 1 +

y4 − 2
x2y2
1
+ C;
+
ln 4
2
y + 2
8 2

La solución implicitaes F(x, y) = 0, es decir :
xy 2 − xy + y ln x + 1 +

x2 y2
y4 − 2
1
+
ln 4
+ C = 0;
2
8 2
y + 2

3.- Determine el valor de N(x,y) para que la siguiente ecuación diferencial sea
exacta, luego encuentre la solución de forma implícita:

 1/2 −1/2
x 
dx + N(x, y)dy = 0
y x
+ 2

x +y


Para que la ecuación diferencial sea exacta debe cumplirse que My = Nx
Nx = My ;
x
1
;
Nx = y − 1 / 2 x − 1 / 2 −
2
2
(x + y )2
∂N( x , y ) 1 −1 / 2 −1 / 2
x
= y
− 2
;
x
∂x
2
(x + y )2

1
x
∂x ;
∂N( x , y ) =  y − 1 / 2 x − 1 / 2 −
2
(x 2 + y )2 



ESPOL 2009

15
Ecuaciones diferenciales de primer orden

1

∫ ∂N( x, y) = ∫  2 y


−1 / 2

x −1 / 2 −




∂x ;
(x 2 + y ) 

x

2



x
∂x ;
N( x , y ) = y −1 / 2 x 1 / 2 − ∫  2
2 
 (x + y )


2
u = x + y;
∂u = 2 x∂x ;
1 ∂u
;
2 ∫ u2
1
+
+ C;
2u
1
+
+ C;
2
2 (x + y )

N( x , y ) = y −1 / 2 x 1 / 2 −
N( x , y ) = y −1 / 2 x 1 / 2
N( x , y ) = y −1 / 2 x 1 / 2



 1 /2 − 1 /2
1
x 
dx +  y −1/2 x 1/2 +
y x
+ C dy = 0
+ 2
2



2 (x + y )
x +y




Ahora como My = Nx;
 Fx = M(x, y)
⇒ Existe una función F(x, y), donde 
 Fy = N(x, y)
Si Fx = M(x, y), entonces se obtiene lo siguiente :
x
Fx = M(x,y) = y 1/2 x −1/2 + 2
;
x +y
∂(F(x,y))
x
= y 1 /2 x − 1 /2 + 2
x +y
∂x

x 
∂x;
∂(F(x,y)) =  y 1/2 x −1/2 + 2

x + y



x 
∂x;
F(x,y) = ∫  y 1/2 x −1/2 + 2

x +y


x
F(x,y) = 2 y 1/2 x 1/2 + ∫ 2
∂x;
x +y
u = x 2 + y;
∂u = 2 x∂x;
1 ∂u
;
2∫ u
1
F(x,y) = 2 y 1/2 x 1/2 + ln x 2 + y + h(y);
2
Ahora si Fy = N(x, y), entonces se obtiene lo siguiente :
Fy = N(x, y);
1
Fy = x 1 / 2 y −1 / 2 +
+ h' ( y );
2
2( x + y )
F(x,y) = 2 y 1/2 x 1/2 +

ESPOL 2009

16
Ecuaciones diferenciales de primer orden
Entonces reemplazando Fy :
x 1 / 2 y −1 / 2 +

1
1
+ h' ( y ); = y − 1 / 2 x 1 / 2 +
+ C;
2(x 2 + y )
2( x 2 + y )

Eliminando términos :
h' ( y ) = C ;
Obteniendo h(y) :
h( y ) = Cx + K ;
Entonces :
1
ln x 2 + y + h(y);
2
1
1 / 2 1 /2
F(x,y) = 2 y x + ln x 2 + y + Cx + K;
2
La solución implicitaes F(x, y) = 0, es decir :
1
2 y 1 /2 x 1 /2 + ln x 2 + y + Cx + K ; = 0 ;
2
F(x,y) = 2 y 1/2 x 1 /2 +

ESPOL 2009

17
Ecuaciones diferenciales de primer orden

Ecuaciones diferenciales exactas con factor integrante
M( x , y ) + N( x , y )y' = 0 ;
Si My ≠ Nx;
Entonces es una ecuación diferencial no exacta, por lo tanto se necesita un factor integrante :
Un factor integrante que solo depende de x es :
My-Nx

u(x) = e

∫ N(x,y) dx

;

u(x)M(x,y) + u(x)N(x,y)y' = 0 ;
Ahora la ecuación diferencial es exacta.
Un factor integrante que depende de y :
Nx-My

u(y) = e

∫ N(x,y) dx

;

u(y)M(x,y) + u(y)N(x,y)y' = 0 ;
Ahora la ecuación diferencial es exacta.

1) xydx +
M(x,y) = xy;

(2x

2

+ 3y 2 − 20 )dy = 0;

Si y(1) = 1;

My = x;
N(x,y) = 2 x 2 + 3 y 2 − 20 ;
Nx = 4 x;
My ≠ Nx; entonces la ecuación diferencial no es exacta;
Por lo tanto debemos encontrar su factor integrante :
 Nx-My 

u(y) = e
u( y ) = e



∫  M(x, y)  dy


 4x-x 
 dy
xy 



∫


3

=e

 
∫  y  dy
 

= y 3;

u( y ) = y 3 ;
Luego mulitiplicando u(y) a ambos lados de la ecuación :

(

)
)dy = 0;

y 3 ( xydx ) + y 3 2 x 2 + 3 y 2 − 20 dy = 0 ;

(

xy 4 dx + 2 x 2 y 3 + 3 y 5 − 20 y 3
M ( x , y ) = xy 4 ;
My = 4 xy 3 ;

N ( x , y ) = 2 x 2 y 3 + 3 y 5 − 20 y 3 ;
Nx = 4 xy 3 ;

ESPOL 2009

18
Ecuaciones diferenciales de primer orden
My = Nx, por lo tanto la ecuación diferencial es exacta :
Fx = M(x, y);
∃(F(x, y)) talque : 
Fy = N(x, y);
Fx = M(x, y);
∂ ( F ( x , y ))
= xy 4 ;
∂x
F ( x , y ) = ∫ xy 4 ∂x;
x 2 y4
+ h( y );
2
Fy = N(x, y);
F ( x, y) =

2 x 2 y 3 + h'(y) = 2 x 2 y 3 + 3 y 5 − 20 y 3 ;
h'(y) = 3 y 5 − 20 y 3 ;

(

)

h( y ) = ∫ 3 y 5 − 20 y 3 dy;
y6
− 5 y 4 + C;
2
Entonces :
h( y ) =

x2 y4 y6
+
− 5 y 4 + C;
2
2
2 4
6
x y
y
+
− 5 y4 + C = 0;
2
2

F(x,y) =

2)

2xdy - [y + xy 3 (1 + ln(x) )]dx = 0;

Si y(1) = 1;
x2 y 4 y6
+
− 5y 4 + C = 0 ;
2
2
(12 )(14 ) + (16 ) − 5(14 ) + C = 0 ;
2
2
1 1
+ − 5 + C = 0;
2 2
C = 5 − 1;
C = 4;
x2 y 4 y6
+
− 5y 4 + 4 = 0 ;
2
2
La solución :
x 2 y 4 + y 6 − 10 y 4 + 8 = 0 ;

ESPOL 2009

19
Ecuaciones diferenciales de primer orden

[y + xy

3

(1 + ln(x))]dx - 2xdy = 0;

M(x,y) = y + xy 3 (1 + ln (x));
My = 1 + 3xy 2 + 3xy 2 ln (x);
N( x , y ) = -2x;
Nx = -2;
 Nx − My 

u(y) = e



∫  M ( x , y ) dy



u( y ) = e

;

 − 2 − 1 − 3 xy 2 − 3 xy 2 ln (x); 
dy

y + xy 3 (1 + ln (x) )


∫



 − 3 − 3 xy 2 − 3 xy 2 ln (x); 
dy



2
∫

= e  y (1+ xy (1+ ln( x ) ))

 − 3 (1 + xy 2 (1 + ln( x ) )) 
−3
∫  y (1+ xy 2 (1+ ln( x ) )) dy ∫ y dy 1




= 3;
u( y ) = e
e
y

Luego mulitiplicando u(y) a ambos lados de la ecuación :
1
[y + xy 3 (1 + ln (x))]dx- y13 (2 xdy) = 0;
3
y
1

 2x 
 2 + x(1 + ln (x))dx −  3 dy = 0 ;
y 
y

 
1
M( x , y ) = 2 + x(1 + ln (x));
y
My = −

2
;
y3

N( x , y ) = −
Nx = −

2x
;
y3

2
;
y3

My = Nx, por lo tanto la e.d. es exacta :
 Fx = M(x, y);
∃(F(x, y)) talque : 
 Fy = N(x, y);
Fx = M(x, y);
∂( F( x , y )) 1
= 2 + x(1 + ln (x));
∂x
y
1

F( x , y ) = ∫  2 + x(1 + ln (x)) ∂x ;
y

2
2
x x
x
x2
+ ln( x ) − + h( y );
F( x , y ) = 2 +
y
2
2
4
Fy = N(x, y);
−

2x
2x
+ h'(y) = − 3 ;
3
y
y

Entonces :
F( x , y ) =

x x2 x2
x2
ln( x ) −
+
+
+ C;
y2 2
2
4

x x2 x2
x2
ln( x ) −
+
+
+ C = 0;
y2 2
2
4

h'(y) = 0 ;
h( y ) = C

ESPOL 2009

20
Ecuaciones diferenciales de primer orden
3)

(

)

x 2 + y 2 y 2 + 1 y' = −2xyln(y);

[

]

2 xy ln (y) + x 2 + y 2 y 2 + 1 y' = 0 ;
M( x , y) = 2 xy ln (y);
My = 2 x[1 + ln( y )];

[

]

N( x , y) = x 2 + y 2 y 2 + 1 ;
Nx = 2 x ;
 Nx − My 

u( y ) = e



∫  M ( x , y )  dy



;

 2 x − 2 x [1+ ln( y ) ] 

 dy
2 xy ln (y)



∫
u( y ) = e 
1
u( y ) = ;
y

 − 2 x ln( y ) 

=e



∫  2 xy ln( y ) dy



1

=e

∫ − y dy

;

Luego se multiplica u(y) a ambos lados de la ecuación :

[

]

1
(2xy ln (y)) + 1 x 2 + y 2 y 2 + 1 y' = 0 ;
y
y
 x2

2 x ln (y) +  + y y 2 + 1  y' = 0 ;
y

M( x , y) = 2 x ln (y);
2x
My =
;
y
N( x , y) =
Nx =

x2
+ y y2 + 1 ;
y

2x
;
y

My = Nx, por lo tanto la e.d. es exacta :
 Fx = M(x, y);
∃(F(x, y)) talque : 
 Fy = N(x, y);
Fx = M(x, y);
∂(F( x , y ))
= 2 x ln (y); ;
∂x
F( x , y) = ∫ [2 x ln (y)]∂x ;
F( x , y) = x 2 ln( y ) + h( y );
Fy = N(x, y);
x2
x2
+ h'(y) =
+ y y2 + 1 ;
y
y
h'(y) = y y 2 + 1 ;

(

)

h( y ) = ∫ y y 2 + 1 dy ;
u = y 2 + 1;
du = 2 ydy ;
h( y ) =

1 2
(y + 1) y 2 + 1 + C;
3
Entonces :
1
F( x , y ) = x 2 ln( y ) + (y 2 + 1) y 2 + 1 + C ;
3
1 2
x 2 ln( y ) + (y + 1) y 2 + 1 + C = 0 ;
3
h(y) =

1
1  2 3 /2
 1
∫ udu = 2  3 u + C = 3 u u + C ;
2



ESPOL 2009

21
Ecuaciones diferenciales de primer orden

Ecuaciones diferenciales de Bernoulli
Sea
dy
+ p( x ) y = g ( x ) y n una ecuación diferencial de Bernoulli, donde n ≠ 0,1.
dx
Esta es una ecuación diferencial no lineal, que se la convierte en lineal
haciendo el siguiente cambio de variable :
v = y 1− n
Donde :
dv dv dy
dy
.
=
= (1 − n ) y − n
dx dy dx
dx
Se multiplicará el factor (1 − n ) y − n a ambos lados de la ecuación de Bernoulli :
(1 − n) y − n dy + (1 − n) y − n p( x ) y = (1 − n) y − n g( x ) y n
dx
Se obtiene lo siguiente :

(1 − n) y − n dy + (1 − n) p( x ){ = (1 − n)g( x )
y 1− n
dx
14 244
4
3
Esto es :

v

dv
dx

dv

+ (1 − n ) p( x )v = (1 − n )g ( x ) Esto es una ecuación diferencial Lineal,
dx

que se puede resolver por el método del factor integrante.

ESPOL 2009

22
Ecuaciones diferenciales de primer orden
1)

xdy - [y + xy 3 (1 + ln(x))]dx = 0;

xdy-[y + xy 3 (1 + ln (x))]dx = 0 ;

∫ (x

y

y' −  + y 3 (1 + ln (x)) = 0 ; .
x

y
y' − = y 3 (1 + ln (x)); n = 3;
x
Se sustituye v = y 1−n ;

)

ln( x ) dx = ?
⇒

u = ln( x );

(

dy
dv
= −2 y − 3
;
dx
dx
Luego se multiplica − 2 y − 3 a ambos de la ecuación :

v' =

y
= −2 y − 3 y 3 (1 + ln (x));
x

y −2
− 2 y y' + 2
= −2(1 + ln (x));
x
Reemplazando v y v' :
−3

du =

dx
;
x

x3
;
3
x 3 ln( x ) x 3
x 2 ln( x ) dx =
−
+ C;
∫
3
9
2
2 x 3 ln( x ) 2 x 3
x 2v = − x 3 −
+
+ K;
3
3
9
Despejandola solución:
2
2 x ln( x ) 2 x K
v =− x−
+
+ ;
3
3
9 x2
Reemplazan v = y-2 :
do
2
2 x ln( x ) 2 x K
y −2 = − x −
+
+ ;
3
3
9 x2
dv = x 2dx;

v = y −2 ;

− 2 y − 3 y' + 2 y − 3

2

⇒

v=

)

2v
= −2(1 + ln (x));
x
Resolviendo por factor integrante :

v'+

2

La solución general es:

dx
u( x ) = e ∫ x = x 2 ;

x 2 v'+ x 2

2v
= −2 x 2 (1 + ln (x));
x

d[x 2 v]
= −2 x 2 (1 + ln (x));
dx

y=

x 2 v = ∫ − 2 x 2 (1 + ln (x))dx ;

1
2xln(x) 2x K
2
;
− x−
+
+
3
9 x2
3

x 2 v = −2 ∫ (x 2 + x 2 ln( x ))dx ;
2
x 2 v = − x 3 − 2 ∫ (x 2 ln( x ))dx ;
3

ESPOL 2009

23
Ecuaciones diferenciales de primer orden

2)

xy'+y = y 2ln(x);

y
ln( x )
;
= y2
x
x
v = y 1− n = y −1 ;

y'+

si y(1) = 1;

n = 2;

dy
dv
;
= −y −2
dx
dx
Luego se multiplica − y − 2 a ambos lados de la ecuación :
y
ln( x )
;
− y − 2 y'− y − 2 = − y − 2 y 2
x
x
Reemplazando v y v' en la ecuación :
v ln( x )
;
=
x
x
Resolviendo por el método del factor integrante :

v'−

u( x ) = e ∫

dx
x

1
;
x
1
v ln( x )
v'− 2 = 2 ;
x
x
x
1
d  v
 x  ln( x )
 =
;
dx
x2
ln( x )
1
v = ∫ 2 dx ;
x
x
−

=

ln( x )
dx = ?
x2
dx
u = ln (x);
;
⇒ du =
x
dx
1
dv = 2 ;
v=- ;
⇒
x
x
ln( x)
1
dx
v=+∫ 2;
x
x
x
ln( x) 1
1
− + C;
v=x
x
x
v = − ln( x ) − 1 + Cx ;
Integrando

∫

Si y(1) = 1, entonces :
1
1=
C-1
C − 1 = 1;
C = 2;

La solución es :

y −1 = − ln( x) − 1 + Cx ;
1
;
y=
− ln( x ) − 1 + Cx

y=

ESPOL 2009

1
;
− ln(x) − 1 + 2x

24
Ecuaciones Diferenciales

3)

4(1 + x)dy + y[1 + 4xy 2 (1 + x)]dx = 0;


 1
+ xy 2  = 0
y'+ y 

 4(1 + x)
y
= −xy 3 ; n = 3;
y'+
4(1 + x)
v = y 1−n = y − 2 ;
dy
dv
= −2 y − 3
;
dx
dx
Luego se multiplica - 2y - 3 a ambos lados de la ecuación :
− 2 y − 3 y'+
v'−

− 2 y −3 y
= 2 y −3 xy 3 ;
4(1 + x)

2v
= 2x;
4(1 + x)
1

∫ − 2 ( 1+ x ) dx

1
− ln 1 + x
2

1
;
1+ x
1
2v
2x
1
=
;
v'−
1 + x 4(1 + x)
1+x
1+ x

u( x ) = e

=e

=


 1
v
d
 1 + x  = 2x ;
dx
1+x
2x
1
dx ;
v=∫
1+ x
1+ x
2x
∫ 1 + x dx = ?;
⇒
z2 = 1 + x;
2 zdz = dx ;
x = z 2 − 1;
2x
(z 2 − 1)2zdz = 4 (z 2 − 1)dz;
∫ 1 + x dx = 2 ∫
∫
z
4z 3
− 4z + C ;
4 ∫ (z 2 − 1)dz =
3

∫

4
2x
dx =
1+ x

(1 + x)3
3

La solución
general es:

− 4 1 + x + C;

4 (1 + x )3
1
− 4 1 + x + C;
v=
3
1+ x
4(1 + x )2
− 4(1 + x ) + C ;
v=
3
4(1 + x )2
− 4(1 + x ) + C 1 + x ;
y −2 =
3

ESPOL 2009

y=

1
4(1 + x )2
− 4(1 + x ) + C 1 + x
3

25

;
Ecuaciones Diferenciales

3y' +4csc(2x)y = 2y −1/2 ctg(x);

4)

4
2
y'+ csc(2 x)y = y −1 /2 ctg( x );
3
3
1− n
3 /2
v=y =y ;
v' =

1
n=− ;
2

3 1 /2
y y' ;
2

3 1 /2
y a ambos lados de la ecuación :
2
3 1 /2
3
4
3
2
y y'+ y 1 /2 csc(2 x )y = y 1 /2 y − 1 /2 ctg( x );
2
2
3
2
3
v'+2 csc( 2 x )v = ctg( x );

Se multiplica

u( x ) = e ∫

2 csc( 2 x )dx

= e ln csc( 2 x )− ctg ( 2 x )

u( x ) = csc(2 x ) − ctg( 2 x );
u( x ) =

cos( 2 x)
1
;
−
sen( 2 x ) sen( 2 x)

1 − cos( 2 x)
sen 2 ( x )
2
=
= tan( x );
sen( 2 x )
sen( x ) cos( x )
2
tan( x )v'+2 tan( x ) csc(2 x)v = tan( x)ctg( x );

1 − cos( 2 x )
u( x ) =
=
sen( 2 x )

d[tan( x )v]
= 1;
dx
tan( x )v = ∫ dx ;
tan( x )v = ∫ dx ;
tan( x )v = x + C ;
v = xctg( x ) + Cctg( x);
y 3 /2 = xctg( x) + Cctg( x );
y = 3 (xctg( x ) + Cctg( x ))2 ;
Si y( π/4) = 1;
2

π

1 =  + C ;
4

π
1 = + C;
4
π
C = 1− ;
4
3

ESPOL 2009

26
Ecuaciones Diferenciales

La solución particular es :
2

π



y = 3  xctg( x) +  1 − ctg( x)  ;
4



y
Ecuaciones diferenciales homogéneas de la forma y' = f  
 
x

dy
= f(x, y) es homogénea si se puede
dx
expresar esta ecuación como :

Se dice que la ecuación

dy  y 
= f  ;
dx  x 
Se hace la siguiente sustitución :
y
v = ; entonces y = vx;
x
dy
dv
;
= v+x
dx
dx
Reemplazando v, y y' en la ecuación :
dy  y 
= f  ;
dx  x 
dv
v+x
= f( v );
dx
dv
= f( v) − v ;
x
dx
dv
dx
;
=
f( v) − v x
v = φ( x);
y
= φ( x );
x
y = xφ( x );

ESPOL 2009

27
Ecuaciones Diferenciales
1)Resolver la siguiente ecuación diferencial:
y
sec 2  
dy y
x;
= +
dx x
y2
Asumiendo que :
y
⇒ y = xv;
x
dy
dv
⇒
=x
+ v;
dx
dx
v=

Reemplazando en la ecuación diferencial , y = xv, v =
y
sec 2  
dy y
x
= +
dx x
y2
⇒x
⇒

∫
∫
∫

⇒ x

sec 2 (v )
dv
+v = v+ 2 2 ;
x v
dx

⇒ x3

dv sec 2 (v )
= 2 2
dx
x v

v 2 dv
dx
= 3
2
sec (v ) x

y dy
dv
,
=x
+ v, se obtiene :
dx
x dx

dv sec 2 (v ) 
=
Ecuación diferencial separable.
dx
v2 

∫

Integrando :

v 2 dv
=
sec 2 (v )

∫

dx
;
x3

2

v dv
=?
sec 2 (v )
v 2 dv
=
sec 2 (v )

∫
∫

v 2cos 2 (v)dv =

∫

 1 + cos(2v) 
v2 
dv =
2



 v 2 v 2cos(2v) 
dv
 +

 2
2


2
 v cos(2v) 
dv



2



∫

v 
v
v cos(2v) 
dv =  dv +
 +

 2
 2
2

 

2
m = v ⇒ dm = 2vdv;
sen(2v)
dn = cos(2v)dv ⇒ n =
;
2
3
2
 v2 
v 2 dv
1
(v 2cos(2v))dv = v + 1  v sen(2v) −
=  dv +

 2
sec 2 (v )
2
6 2
2
 

∫
∫

2

v dv
=
sec 2 (v )

2

∫

2

3

∫

2

∫

2

∫

2

∫

2vsen(2v) 
dv 
2


∫

v dv
v
v sen(2v) 1
=
+
−
vsen(2v)dv
2
sec (v ) 6
4
2
m = v ⇒ dm = dv.
1
dn = sen(2v)dv ⇒ n = − cos(2v)
2
2
3
2
v 3 v 2sen(2v)  v
v dv
v
v sen(2v) 1
=
+
−
+
− − cos(2v) +
vsen(2v)dv =
6
2
sec 2 (v ) 6
4
2
 4

∫
∫
∫

∫

∫


1
cos(2v) dv
4


 v
1
v sen(2v) v
1
v dv
v
v sen(2v)  v
+
+ cos(2v) - sen(2v)
=
+
− − cos(2v) +
cos(2v) dv  =
2
8
4
4
4
sec (v ) 6
4
 6
 4
2
3
2
1
v dv
v
v sen(2v) v
=
+
+ cos(2v) - sen(2v)
8
sec 2 (v ) 6
4
4
2

3

2

∫

ESPOL 2009

3

2

28
Ecuaciones Diferenciales

∫

v 2 dv
=
sec 2 (v )

3

∫

dx
x3

⇔

1
1
v 3 v 2sen(2v) v
+
+ cos(2v) - sen(2v) = − 2 + C
x
8
6
4
4

2

1
1
v
v sen(2v) v
+
+ cos(2v) - sen(2v) = − 2 + C
x
8
6
4
4
y
Reemplazando v = ;
x
La solución de forma implícita queda expresada por :
2

3
 y   y  sen 2 y  
  
   
  x   + v cos 2 y   - 1 sen 2 y   = − 1 + C
x +x
  
  
4
4   x  8
x2
6
  x 

(xy + 4 y

2)

2

+ 2x 2 )dx − (x 2 )dy = 0; si y(1) =

Aplicando tan a ambos lados se obtiene :

dy (xy + 4 y 2 + 2 x 2 )
=
;
dx
x2
dy y 4 y 2
= +
+ 2;
dx x x 2
y
v= ;
x
y = xv ;


 4 ln x
2 v = tan 
+ K ;


2



 4 ln x
1
tan 
v=
+ K ;


2
2


y

 4 ln x
1
=
+ K ;
tan 


x
2
2



 4 ln x
x
+ K ;
tan 
y=


2
2



dy
dv
= v+x
;
dx
dx
dv
= v + 4v2 + 2 ;
v+x
dx
dv
= 4v2 + 2 ;
x
dx
dv
dx
=
;
2
4v + 2 x
dv
dx
=
;
2
4(v + 1 / 2 ) x

∫

dv
=
(v + 1 / 2 )
2

(

∫

Si y(1) =

(

4dx
;
x

La solución particular es :

)

)

2
;
2

1
2
=
tan (K );
2
2
π
K= ;
4

2 arctan 2 v = 4 ln x + C ;
arctan 2 v =

2 /2;

y=

4 ln x
+ K;
2

ESPOL 2009

 4 ln x π 
x
tan

 2 + 4 ;
2



29
Ecuaciones Diferenciales

x

3)

dy
= y + x2 − y2 ;
dx

y(x0 ) = 0; donde x0 > 0;

y(1) = /4;

v + xv' = v + 1 − v 2 ;

x2 − y2
dy y
= +
;
dx x
x

xv' = 1 − v 2 ;
dv
x
= 1− v2 ;
dx
dv
dx
;
=
2
1− v ; x

x2 − y2
dy y
;
= +
2
dx x
x

arcsen(v ) = ln x + C ;

y2
dy y
= + 1− 2 ;
x
dx x
Se asume :
y
v= ;
x
y = xv ;
y' = v + xv' ;

v = sen(ln x + C );
y
= sen(ln x + C );
x
y = xsen(ln x + C );
Si y(1) = 1;
1 = sen(C );

π

= C;
2
La solución paticular es :

π

y = xsen ln x + ;
2

x (ln(x) − ln(y) )dy − ydx = 0;

4)

x(ln (x) − ln (y))dy − ydx = 0 ;

v + xv ' = −

x(ln (y) − ln (x))dy + ydx = 0 ;

v

(ln (v ))

v

xv ' = −

;

− v;

(ln (v ))
dv
− v (1 + ln( v ) )
x
;
=
dx
(ln (v ))
 (ln( v ) ) 
 dx 
∫  v (1 + ln( v ) ) dv = − ∫  x ;







dy
y
;
=−
dx
x(ln (y) − ln (x))
dy
y
;
=−
dx
  y 
x ln   
  x 
Se asume :

u = ln( v );
dv
du =
;
v
 u 


∫  (1 + u ) du = − ln x + C ;



y
;
x
y = xv;
y' = v + xv' ;
v=



1





∫ du − ∫  (1 + u ) du = − ln x



+ C;

u − ln 1 + u = − ln x + C ;
ln v − ln 1 + ln( v ) = − ln x + C ;

La solución general de forma implícita es:
ln

y
y
− ln 1 + ln  = −ln x + C;
x
x

ESPOL 2009

30
Ecuaciones Diferenciales

Ecuaciones Diferenciales de Coeficientes Lineales
1)

dy (2y − x + 5 )
=
;
dx (2x − y − 4 )

( x − 2 y − 5)dx − (2 x − y − 4 )dy = 0 ;
a 1b2 ≠ a 2 b1 ;
(1)(1) ≠ (− 2 )( −2 );
1 ≠ 4;
Se asume :
x = (u + h );
y = (v + k );
dy dv
;
=
dx du
Reemplazando x, y, y' en la ecuación, se obtiene
dv 2(v + k ) − (u + h ) + 5
;
=
du 2(u + h ) − (v + k ) − 4
dv 2 v − u + 2k − h + 5
=
;
du 2 u − v + 2 h − k − 4
2 k − h + 5 = 0 ;

2 h − k − 4 = 0 ;
Resolviendo el sistema :
k = - 1;
h = 3;
Entonces :
dv 2 v − u
;
=
du 2 u − v
Divivdiendo para u, para poder obtener una ecuación homogénea :
2v
−1
dv
u
;
=
du 2 − v
u
Resolviendo como una ecuación diferencial homogénea :
v
;
u
v = zu ;

z=

dv
dz
;
= z+u
du
du
dz 2 z − 1
;
z+u
=
du 2 − z
dz 2 z − 1
u
− z;
=
du 2 − z

ESPOL 2009

31
Ecuaciones Diferenciales

dz 2 z − 1 − 2 z + z 2
;
=
du
2−z
du
(z − 2 )dz
;
=−
2
(z − 1)
u
(z )dz
(2 )dz
du
∫ (z 2 − 1) − ∫ (z 2 − 1) = ∫ − u ;
1
z−1
ln z 2 − 1 − ln
= − ln u + C ;
2
z+1
1
z−1
= − ln u + C ;
ln z 2 − 1 − ln
2
z+1
1
z−1
= − ln u + C ;
ln (z − 1)(z + 1) − ln
2
z+1
1
1
ln (z − 1) + ln (z + 1) − ln (z − 1) + ln (z + 1) = − ln u + C ;
2
2
1
3
ln (z + 1) − ln (z − 1) = − ln u + C ;
2
2
3 v
 1 v

ln  + 1  − ln  − 1  = − ln u + C ;
2 u
 2 u

⇒
v = y − k;
v = y + 1;

u

u = x − h;

⇒

u = x − 3;

La solución de forma implícita es :
3  y+1  1 y+1 
+ 1  − ln 
− 1  = − ln x − 3 + C ;
ln 
2 x−3
 2  x−3


(

2) 3y − 7x + 7
a 1b2 ≠ a 2 b1 ;

)dx − (3x − 7y − 3)dy = 0;

( −7 )(7 ) ≠ (− 3)( 3);
− 49 ≠ −9 ;
Usando :
x = (u + h );
y = (v + k );
dy dv
;
=
dx du
dy − 7 x + 3y + 7
;
=
dx − 3x + 7 y + 3

ESPOL 2009

32
Ecuaciones Diferenciales
Reemplazando x, y y y' :
dv − 7 (u + h ) + 3(v + k ) + 7
;
=
du − 3(u + h ) + 7 (v + k ) + 3
dv − 7 u + 3v − 7 h + 3k + 7
=
du − 3u + 7 v − 3h + 7 k + 3
 − 7 h + 3k + 7 = 0 ;

− 3 h + 7 k + 3 = 0 ;

Resolviendo el sistema :
k = 0;
h = 1;
dv − 7 u + 3 v
;
=
du − 3u + 7 v
3v
−7 +
dv
u ;
=
7v
du − 3 +
u
v
z= ;
u

v = zu ;
dz
dv
= z+u
;
du
du
dz − 7 + 3z
=
;
z+u
du − 3 + 7 z
dz − 7 + 3z
− z;
u
=
du − 3 + 7 z

dz − 7 + 3 z + 3 z − 7 z 2
;
=
du
− 3 + 7z
dz
7 z 2 − 6z + 7
u
;
=−
du
7z − 3
(7 z − 3 )dz
− du
∫ 7 z 2 − 6z + 7 = ∫ u ;
u = 7 z 2 − 6 z + 7;
du = 14 z- 6;
⇒
7
7z − 3 =
(14 z-6 ) − 3 + 3;
14
7
(14 z- 6)dz − du
14
∫ 7 z 2 − 6z + 7 = ∫ u ;
7
(14 z- 6)dz
∫ 7 z 2 − 6 z + 7 = − ln u + C ;
14
u

ln 7 z 2 − 6 z + 7

= − ln u + C ;
2
ln 7 z 2 − 6 z + 7 = − ln u 2 + K ;
2

v
v
ln 7  − 6 + 7 = − ln u 2 + K ;
u
 u
2

y
 y 
2
ln 7
+ 7 = − ln ( x − 1) + K ;
 −6
x −1
 x −1
La solución de forma implícita es :
2

y
C
 y 
7
;
+7=
 −6
x −1
( x − 1)2
 x −1

ESPOL 2009

33
Ecuaciones Diferenciales

3)

(y − x − 5)y'−(1 − x − y ) = 0;

(1-x-y) − (y − x − 5)y' = 0;
a1b2 ≠ a 2 b1 ;
(− 1)(− 1) ≠ (1)(− 1);
1 ≠ −1;
x = (u + h );
y = (v + k );
dy 1 − x − y
=
;
dx y − x − 5
Reemplazando x,y, y y’ en la ecuación:
dv
1-(u + h )-(v + k )
;
=
du (v + k ) − (u + h ) − 5
dv − u − v − h − k + 1
=
;
du − u + v − h + k − 5
− h − k + 1 = 0 ;

− h + k − 5 = 0 ;
Resolviendo el sistema de ecuaciones :
h = -2;
k = 3;
dv − u − v
=
du − u + v
v
−1−
dv
u;
=
du − 1 + v
u
v
z =  ;
u
v = zu ;
dv
dz
=z+u
;
du
du
dz − 1 − z
;
z+u
=
du − 1 + z
dz − 1 − z
u
− z;
=
du − 1 + z
dz − 1 − z + z − z 2
;
u
=
du
−1+z

ESPOL 2009

34
Ecuaciones Diferenciales

dz
z2 + 1
;
=−
du
z−1
(z − 1)dz
du
∫ (z 2 + 1) = ∫ − u ;
1
ln z 2 + 1 − arctan(z) = − ln u + C ;
2

u

2

1 v
v
ln   + 1 − arctan  = − ln u + C ;
2 u
u
La solución implicita de la ecuación diferencial es :
2

1  y−3
 y−3
ln 
 + 1 − arctan
 = − ln x + 2 + C ;
2 x+2
 x+2

Ecuaciones diferenciales de la forma G(ax+by)
XY
XY

ͩ{ͷY - ͸Y{

Se asume el siguiente cambio de variable

Despejando y:

Y

XY
XY

ͷY - ͸Y
͸

.

ͷ
Y
͸

ͷ
X
.
͸ XY ͸

XY
ͩ{ͷY - ͸Y{
XY
Se obtiene una ecuación diferencial de la forma:

Reemplazando y, y’ en:

X
ͷ
.
ͩ{Ͷ{
͸ XY ͸
X
ͷ
- ͩ{Ͷ{
͸ XY ͸
X

͸XY

Se obtiene una ecuación diferencial separable dela forma:

ͷ
- ͩ{Ͷ{
͸

ESPOL 2009

35
Ecuaciones Diferenciales

(

)2 − (x + y − 1)2 ;

1. y' = x + y + 1
Se sustituye :

si y(0) = 7/4;

z = x + y;
y = z − x;
dy dz
=
− 1;
dx dx
y' = (x + y + 1)2 − (x + y − 1)2 ;
dz
− 1 = (z + 1)2 − (z − 1)2 ;
dx
dz
= z 2 + 2 z + 1 − (z 2 − 2 z + 1) + 1;
dx
dz
= 4z + 1;
dx
dz
∫ 4z + 1 = ∫ dx;
1
ln 4z + 1 = x + C 1 ;
4
ln 4z + 1 = 4 x + C 2 ;
4z + 1 = ke 4 x ;
z = ke 4 x −

1
;
4

x + y = ke 4 x −
y = ke 4 x −
Si y(0) =

1
;
4

1
− x;
4

7
;
4

7
1
=k− ;
4
4
k = 2;
La solución particular es :
y = 2e 4 x −

1
− x;
4

ESPOL 2009

36
Ecuaciones Diferenciales
2

2. y' = tan (x + y);
z = x + y;
y = z − x;

si y(0) = π ;

dy dz
=
− 1;
dx dx
y' = tan 2 ( x + y );
dz
− 1 = tan 2 (z );
dx
dz
= 1 + tan 2 (z );
dx
dz
= sec 2 (z );
dx
dz
∫ sec 2 (z) = ∫ dx;

∫ cos (z)dz = x + C ;
2

 1 + cos( 2z ) 
dz = x + C ;
2

z sen( 2 z )
+
= x + C;
2
4
x + y sen( 2 x + 2 y )
+
= x + C;
2
4
2 x + 2 y + sen( 2 x + 2 y ) = 4 x + K ;

∫


Si y(0) = π ;
2 π + sen( 2 π) = K ;
k = 2π;
La solución particular es :
2 x + 2 y + sen( 2 x + 2 y ) = 4 x + 2 π ;

ESPOL 2009

37
Ecuaciones Diferenciales
3.

y' = 10x - 2y + 5 − 5;

y' = 10x - 2y + 5 − 5;
z = 10 x − 2 y ;
10 x z
− ;
2
2
dy
1 dz
= 5−
;
2 dx
dx
1 dz
= z + 5 − 5;
5−
2 dx
dz
10 −
= 2 z + 5 − 10 ;
dx
dz
= 20 − 2 z + 5 ;
dx
dz
∫ 20 − 2 z + 5 = ∫ dx;
u 2 = z + 5;
y=

2 udu = dz ;
dz

2 udu
udu
;
=∫
20 − 2 u
10 − u
z+5
udu
udu
∫ 10 − u = −∫ u − 10 ;
Dividiendo u para u - 10;

∫ 20 − 2

=∫

u
10
;
= 1+
u - 10
u − 10
du
udu
;
−∫
= − ∫ du − 10 ∫
u − 10
u − 10
udu
∫ 10 − u = −u − 10 ln u − 10 ;
dz
∫ 20 − 2 z + 5 = − z + 5 − 10 ln z + 5 − 10 ;
Reemplazando las integrales :
− z + 5 − 10 ln z + 5 − 10 = x + C ;
z = 10 x − 2 y ;
La solucion de forma explicita es :
− 10 x − 2 y + 5 − 10 ln 10 x − 2 y + 5 − 10 = x + C ;

ESPOL 2009

38
Ecuaciones Diferenciales
4.

(2x + y )dx − (4x + 2y − 1)dy = 0;

a1 b2 = a 2 b1
(2 )(− 2 ) = (− 4 )(1)
− 4 = −4 ;
dy
2x + y
=
;
dx 2(2 x + y ) − 1
z = 2x + y ;
y = z − 2x;
dy dz
=
− 2;
dx dx
Reemplazando :
dz
z
−2 =
;
dx
2z − 1
dz
z
=
+ 2;
dx 2z − 1
dz z + 2(2 z − 1)
=
;
dx
2z − 1
(2z − 1)dz
= dx ;
5z − 2
1
2z - 1 2
= −
;
Dividiendo
5z - 2 5 5(5z − 2 )
2dz
dz
∫ 5 − ∫ 5(5z − 2 ) = ∫ dx ;
1
2
z − ln 5z − 2 = x + C ;
25
5
La solución de forma implícita es :
2
(2 x + y ) − 1 ln 5(2 x + y ) − 2 = x + C ;
5
25

ESPOL 2009

39
Ecuaciones Diferenciales

Ecuaciones de Primer Orden
Aplicaciones
1.

Una taza de café caliente que inicialmente se encuentra a 95ºC, se enfría y llega a
80ºC en 5 minutos mientras permanece servida en un cuarto cuya temperatura
está a 21ºC. Determine en que momento el café estará a la temperatura ideal de
50ºC.

dT
= k (T − Ta )
dt
dT
∫ T − Ta = ∫ kdt
ln (T − Ta ) = kt + C
T (t ) = Ce kt + Ta
sabemos que la temperatura del cuarto es 21º C ∴
T (t ) = Ce kt + 21
en t = 0 el café está a 95º C ∴
T (0 ) = Ce k (0 ) + 21 = 95 → C = 95 − 21 = 74
T (t ) = 74e kt + 21
en t = 5 min el café está a 80º C ∴
 59 
ln 
ºC
74
T (5) = 74e5 k + 21 = 80 → k =   = −0.0453
5
min
− 0.0453t
+ 21
T (t ) = 74e
en t = t1 min el café está a 50º C ∴
T (t1 ) = 74e −0.0453t1

 29 
ln 
74
+ 21 = 50 → t1 =   = 20.67 min
− 0.0453

2. El Sábado 24 de Febrero del 2007 a las 07h00 A.M. un conserje del básico
encuentra el cuerpo de un estudiante de ecuaciones diferenciales en el aula
donde rindió su examen el día anterior, que se conserva a temperatura constante
de 26° C. En ese momento la temperatura del cuerpo es de 28° C y pasada hora y
media la temperatura es de 27.5° C. Considere la temperatura del cuerpo en el
momento de la muerte de 37° C y que se ha enfriado según la Ley de
Enfriamiento de Newton, cuál fue la hora de la muerte?

Ley de enfriamiento de Newton :
dT
= −K (Tc − Ta )
dt
dT
: (Variación de la temperatura con respecto al tiempo )
dt
Tc: (Temperatura del cuerpo )
Ta:

(Temperatura del aula )

ESPOL 2009

40
Ecuaciones Diferenciales
t : tiempo en horas.
Ta = 26° C
La temperatura del cuerpo cuando es hallado es 28° C.
El tiempo en que la temperatura es de 28° C es t1 .
⇒ T(t1 ) = 28° C
Después de una hora y media la temperatura del cuerpo desciende a 27.5° C.
El tiempo en que la temperatura es de 27.5° C será entonces : t1 + 1.5.
⇒ T(t 1 + 1.5) = 27.5° C
dT
= −K (Tc − 26 );
dt
dT
= −Kdt ⇔
(Tc − 26 )
e ln Tc − 26 = e −Kt + C

dT

∫ (T − 26) = ∫ − Kdt

⇔ ln Tc − 26 = −Kt + C

c

⇔ Tc − 26 = Ce −Kt

⇒ Tc ( t ) = Ce −Kt + 26;

⇒ Tc ( t ) = Ce −Kt + 26;
Si la temperatura antes de morir era de 37° C entonces:
T(0) = 37° C;
37 = C + 26 ⇒ C = 11
⇒ Tc ( t ) = 11e −Kt + 26
Si T(t1 ) = 28° C
⇒ T(t1 ) = 11e −Kt 1 + 26 = 28 ⇒ 11e − Kt1 = 2 ⇒ e −Kt1 =

2
;
11

1.7047
 2 
(ecuación 1);
⇒ −kt 1 = ln   ⇒ kt 1 = 1.7047 ⇒ k =
t1
 11 
Si T(t1 + 1.5) = 27.5° C
⇒ T(t1 + 1.5) = 11e −K ( t 1 + 1.5 ) + 26 = 27.5 ⇒ 11e −K (t 1 + 1.5 ) = 1.5 ⇒ e −K ( t 1 + 1.5 ) =

1.5
;
11

1.9924
 1.5 
(ecuación 2);
⇒ −k (t 1 + 1.5) = ln 
 ⇒ k (t 1 + 1.5 ) = 1.9924 ⇒ k =
t 1 + 1.5
 11 

Si se iguala ecuación 1 y 2 :

1.7047 1.9924
=
⇒ (t 1 + 1.5 )1.7047 = 1.9924t 1 ⇒ 1.7047 t 1 + 2.55705 = 1.9924t 1
t1
t 1 + 1.5
2.55705
⇒ 1.9924t 1 − 1.7047 t 1 = 2.55705 ⇒ t1 =
= 8.89 horas
1.9924 − 1.7047
Por lo tanto el estudiante murio 8.89 horas antes de ser encontrado es decir.
A las 22h06.

ESPOL 2009

41
Ecuaciones Diferenciales
3. Supóngase que un alumno de la ESPOL es portador del virus de la gripe y a
pesar de ella va a la escuela donde hay 5000 estudiantes. Si se supone que la
razón con la que se propaga el virus es proporcional no solo a la cantidad de
infectados sino también a al cantidad de no infectados. Determine la cantidad de
alumnos infectados a los 6 días después, si se observa que a los 4 días la
cantidad de infectados era de 50.
x :# de infectados
5000 − x :# de sanos
dx
= kx(5000 − x )
dt

dx

∫ x(5000 − x) = ∫ kdt

⇔

⇔

1
x


ln 
 = kt + C
5000  x − 5000 

x


ln 
 = 5000kt + C
 x − 5000 
− 5000Ce 5000 kt
x(t ) =
1 − Ce 5000 kt
en t = 0 x = 1
∴ x(0 ) =

1
− 5000Ce 0
=1→C = −
1 − Ce 0
4999

e 5000 kt
→ x(t ) = e 5000 kt
1
en t = 4 x = 50
x(t ) =

∴ x(4 ) = e 20000 k = 50 → k =

ln (50 )
20000

x(t ) = e 0.25 t ln ( 50 ) → x(t ) = 50 0.25 t
∴ x(6 ) = 50 0.25 *6 = 50 1.5 = 353 infectados

4. En un cultivo de levadura la rapidez de cambio es proporcional a la cantidad
existente. Si la cantidad de cultivo se duplica en 4 horas, ¿Qué cantidad puede
esperarse al cabo de 16 horas, con la misma rapidez de crecimiento?

x : cantidad existente
dx
= kx
dt
dx
∫ x = ∫ kd
ln(x ) = kt + C
x(t ) = Ce kt
en t = 0

x = x0

x(0 ) = Ce 0 = x0 → C = x0
en t = 4

x = 2x 0

x(4) = x0e 4 k = 2 x0 → k =
x(t ) = x0e

t ln ( 2 )
4

ln(2 )
4

→ x(t ) = x0 2

t
4

16
4

x(16) = x0 2 = 2 4 x0 = 32 x0

ESPOL 2009

42
Ecuaciones Diferenciales

5. Un objeto que pesa 30Kg se deja caer desde una altura de 40 mt, con una
velocidad de 3m/s. supóngase que la resistencia del aire es proporcional
a la velocidad del cuerpo. Se sabe que la velocidad límite debe ser 40m/s.
Encontrar la expresión de la velocidad en un tiempo t. La expresión para
la posición del cuerpo en un tiempo t cualquiera.

dv
dt
dv
mg − kv = m
dt
k
m
dv
m
= − dt → ln (kv − mg ) = − t + C → ln (kv − mg ) = − t + C
m
k
kv − mg
mg − fr = m

∫

∫

k


1  −m t
1  −kt
Ce
+ mg  → v(t ) = Ce 30 + 300 

k
k


en t = 0 , v = 3m/s

v (t ) =

1
[Ce0 + 300] = 3 → C − 3k = −300
k
en t = ∞ , v = 40 m/s
1
300
= 40 → k = 7.5 ∴ C = −277.5
v(∞ ) = [Ce −∞ + 300] = 40 →
k
k
v(t ) = −37 e −0.25 t + 40
v(0 ) =

v (t ) =

dx
→ x(t ) = v(t )dt + C
dt

x (t ) =

∫ [− 37e

∫

− 0.25 t

+ 40]dt + C = 148e − 0.25 t + 40 t + C

x(t ) = 148e − 0.25 t + 40 t + C
en t = 0 , x = 0m
x(0 ) = 148e 0 + 40(0 ) + C = 0 → C = −148
x(t ) = 148e − 0.25 t + 40 t − 148

ESPOL 2009

43
Ecuaciones Diferenciales
6. La fuerza resistente del agua que opera sobre un bote es proporcional a
su velocidad instantánea y es tal que cuando la velocidad es de 20
20m/seg
la resistencia es de 40 Newtons. Se conoce que el motor ejerce una fuerza
constante de 50Newtons. En la dirección del movimiento. El bote tiene
Newtons.
una masa de 420 Kg. y el pasajero de 80 Kg
Kg.
a) Determine la distancia recorrida y la velocidad en l cualquier
instante suponiendo que el bote parte del reposo.
b) Determine la máxima velocidad a la que puede viajar el bote.

Aplicando la segunda ley de Newton se obtiene:
.

∑ F = ma
x

a)
Fm: fuerza del motor
Fr: Fuerza de resistencia del agua
Fm = 50 Newtons
Fr = kv
Como la velocidad es de 20m/seg
y la fuerza de resistencia de 40 Newtons.
40 Newtons
Entonces k =
k=2
=2
⇒
20m/seg

∑F

x

= ma ⇒

Fm − Fr = ma;

dv
, k=2
dt
dv

500 + 2v = 50 ,  Ecuación dif. separable
dt

dv
dv
dt
500 = 50 − 2v
=
⇔
dt
50 − 2v 500
dv
dt
⇔
=−
2(v − 25)
500
dv
dt
t
∫ (v − 25) = − ∫ 250 + C ⇔ ln v-25 = - 250 + C
ln v- 25

=e

-

t
+C
250

⇒ v = 25 + ke

-

⇔ v-25 = ke

-

t

t

dv
dt
m: masa total del sistema
m = 420kg + 80 kg = 500kg.

e

-

v = 25 − 25e 250
Como v = dx/dt
Entonces:
dx
= 25 − 25e 250
dt
t
t


−
x(t) = ∫  25 − 25e 250  dt = 25t + 25( 250 )e 250 + C





50 − kv = m

⇒ 50 − kv = 500

Si la velocidad inicial es 0 por partir del reposo entonces v( 0 ) = 0 ;
0 = 25 + k ⇒ k = - 25
La ecuación de la velocidad:

x(t) = 25t + 25( 250 )e

−

t
250

+C
Si parte del reposo x( 0 ) = 0 ;
0 = 25( 250 ) + C ⇒ C = −25( 250 )
La ecuación del movimiento es:
⇒ x(t) = 25t + 25( 250 )e
b)

−

t
250

− 25( 250 )

La velocidad limite o máxima es :
t


vmax = lim 25 − 25e 250  = 25 pies/seg

t →∞ 



t
250

t
250

ESPOL 2009

44
Ecuaciones Diferenciales

7. Un circuito RL tiene una fem de 9 voltios, una resistencia de 30
ohmios, una inductancia de 1 henrio y no tiene corriente inical.
Hallar la corriente para t=1/5 segundos.
di
v = iR + L
dt
di
9 = 30i +
dt
di
∫ 30i − 9 = −∫ dt
1
ln (30i − 9 ) = −t + C
30
30i − 9 = −30t + C
1
i (t ) =
Ce −30t + 9
30
en t = 0 i = 0

[

]

1
Ce 0 + 9 → C = 21
30
1
i (t ) =
21e −30t + 9 → i (t ) = 0.7e −30t + 0.3
30
en t = 1 / 5

[

i (0 ) =

]

[

]

i (t ) = 0.7e − 6 + 0.3 → i (1 / 5) = 0.301amp

8. Una Fem. de 200e −5 t voltios se conecta en serie con una resistencia de 20
Ohmios y una capacitancia de 0.01 Faradios. Asumiendo que la carga
inicial del capacitor es cero. Encuentre la carga y la corriente en cualquier
instante de tiempo.
dq q

+ = fem  Ecuación diferencial para el circuito RC.
dt C

R = 20 ohmios
R : resistencia
⇒
R

q : carga
C : capacitancia
fem = 200e

⇒

C = 0.01 F

- 5t

ESPOL 2009

45
Ecuaciones Diferenciales
dq
q
+
= 20e − 5 t ;
dt 0.01
dq
⇒ 20
+ 100q = 20e − 5 t ;
dt
dq

⇒
+ 5q = e −5 t ; Ecuación diferencial lineal.
dt

5dt
5t
u(t) = e ∫ = e
20

⇒ q(t) =

⇒ q(t) = e −5t
q(t) = e

∫
∫e e

1
u(t)e −5t dt
u(t)

− 5t

5t −5t

∫

dt = e −5t dt = e −5t (t + c )

− 5t

− 5t

(t + c ) = e t + e c

Si inicialmente no hay carga en el capacitor, entonces :
q(0) = 0;
0=c
⇒ q(t) = e −5t t;

∫

∫

⇒ i(t) = q(t)dt = e − 5t tdt ;
u = t; ⇒ du = dt;
1
dv = e -5t dt v = − e −5t ;
5
1 − 5t
t
e dt
i(t) = e −5t tdt = − e −5t +
5
5
1
t
i(t) = − e −5t − e − 5t + C
25
5
Si la carga inicial es cero, entonces la corriente inicial es cero :
i(o) = 0;

∫

∫

t
1
⇒ i(t) = − e −5t − e −5t
5
25

ESPOL 2009

46
Ecuaciones Diferenciales

Casos especiales de ecuaciones diferenciales de segundo orden
Ecuaciones diferenciales en la que falta la variable “y”
 3x (1 + x )3 − y'  + y' ' = x 2 y' ;





1)

dy
= y' ;
dx
dv d 2 y
=
= y' ' ;
dx
dx

v=

Reemplazando en la ecuación :
 3 x (1 + x )3 − y'  + y'' = x 2 y'';




 3 x (1 + x )3 − v  + v' = x 2 v';




3 x (1 + x ) − v + v'-x 2v' = 0 ;
3

(

)

3 x (1 + x ) − v + v' 1 − x 2 = 0;
3

(

)

v' 1 − x 2 − v = −3 x (1 + x ) ;
3

− 3 x (1 + x )
v
;
v'−
=
2
1− x
1 − x2
3

(

)

−

u( x ) = e

(

)

=e

∫ ( x 2 −1 )

dx

∫ (1− x 2 )

x −1
u( x ) =
x +1

dx

1/ 2

(

 x −1 
v
d
 x +1  =
dx

;

x −1
;
x +1

=

v
x −1 
 v'−

1 − x2
1+ x 

=e

1 x −1
ln
2 x +1

)


=



x − 1 − 3 x (1 + x )
=
1 − x2
x +1
3

(

)

3
x − 1  − 3 x (1 + x )

x + 1  (1 − x )(1 + x )



;



3x
;
x −1

1− x
3 xdx
;
v=∫
1+ x
x −1
u 2 = ( x − 1);
x = 1 + u2 ;
dx = 2udu;

ESPOL 2009

47
Ecuaciones Diferenciales

∫

(

)

3 xdx
3 1 + u 2 (2udu )
=∫
u
x −1

∫ 6(1 + u )du = 6u + 2u
2

∫

3 xdx

3

+ C;

= 6 x −1 + 2

( x − 1)3 + C ;

x −1
v = 6 x −1 + 2
1+ x

( x − 1)3 + C ;

x −1

v = 6 1 + x + 2 1 + x ( x − 1) + C

1+ x
x −1

v = 6 1 + x + 2 1 + x ( x − 1) + C

1+ x

v=

x −1

;

dy
dx

1+ x
dy
;
= 6 1 + x + 2 1 + x ( x − 1) + C
dx
x −1
y = ∫ 6 1 + x dx + ∫ 2 1 + x ( x − 1)dx + C ∫

1+ x
dx;
x −1

z 2 = 1 + x;
z = 1+ x;
2 zdz = dx;
x = z 2 − 1;

(

)

x −1 = z 2 − 2 ;

(

)

y = 4(1 + x )

− ∫ 2 z z 2 − 2 2 zdz + C ∫

y = 4(1 + x )

− 4 ∫ z 4 − 2 z 2 dz + C ∫

3/ 2

3/ 2

(

)

(1 + x )dx ;

x2 −1
( x )dx ;
dx
+ C∫
x2 −1
x2 −1

4
8
− z 5 + z 3 + C ln x + x 2 − 1 − C x 2 − 1 + K ;
5
3
3
5
8
4
3/ 2
1+ x −
1 + x + C ln x + x 2 − 1 − C x 2 − 1 + K ;
y = 4(1 + x ) +
3
5
3/ 2

y = 4(1 + x )

(

)

(

)

ESPOL 2009

48
Ecuaciones Diferenciales

2)

x

-1

( y' )
y'+

2

x

=y'';

dy
= y' ;
dx
dv d 2 y
v' =
=
= y' ' ;
dx dx 2
Reemplazando en la ecuación :

v=

x -1y' +

(y' )2

= y' ' ;
x
(v )2
−1
x v+
= v';
x
v2
;
v'− x −1 v =
x
Es una E. diferencial de Bernoulli :

z = v 1-n ;

n = 2;

z = v -1 ;
dv
dz
;
= − v −2
dx
dx
− v − 2 v'−(− v −2 )x −1 v = − v − 2

v2
;
x

1
z'+ x −1z = − ;
x
−1
x dx
u( x ) = e ∫
= x;
1
xz'+ xx −1z = −x ;
x
d[x.z]
= −1;
dx
xz = − ∫ dx = −x + C ;
C
;
x
C C−x
v − 1 = −1 + =
;
x
x
x
;
v=
C−x
dy
x
x
;
=
=−
dx C − x
x−C
xdx
y = −∫
;
x−C
x−C
Cdx
y = −∫
dx − ∫
;
x−C
x−C
y = −x − ln x − C + K ;

z = −1 +

ESPOL 2009

49
Ecuaciones Diferenciales

Ecuaciones diferenciales en las que falta la variable “ x”
Cuando hace falta la variable “x” se hace el siguiente cambio de variable:
dy
= v;
dx
dv
dv dv dy
=
=v ;
dy
dx dy dx

2y 2 y' '+2y (y' )2 = 1; (HACE FALTA X)

3)

2

2y 2 y' ' +2y(y' ) = 1;
Reemplazando y' , y' ' en la ecuación :
dv
2
2y 2 v + 2y(v ) = 1;
dy
dv v v −1
;
+ =
dy y 2 y 2

Ecuacion diferencial de Bernoulli, n = -1.

z = v 1 − ( −1 ) ;
z = v 2;
dv
dz dz dv
=
= 2v ;
dy
dy dv dy
Multiplicando 2v a ambos lados de la ecuación :
dv 2v .v 2v .v −1
;
+
=
dy
y
2 y2
dz 2 z
1
+
= 2;
dy y
y

2v

2

u( y ) = e
y2

∫ y dy

= y 2;

dz
2z y 2
+ y2
= 2;
dy
y
y

[ ]

d y2z
= 1;
dy
y 2 z = ∫ dy = y + C ;
y 2 z = y + C;
1 C
z= + 2;
y y
v2 =
dy
=
dx

y+C
;
y2

⇒
⇒

v2 =
v=

1 C
+
;
y y2
y+C
;
y

y+C
entonces separando variables
y

y
dy = dx
y+C

u2 = y + C ;
2 zdz = dy;
y = u2 − C;

ESPOL 2009

50
Ecuaciones Diferenciales

Re emplazando en :

∫

y
dy =
y+C

(u

∫ dx
)

− C (2udu )
, entonces x + K =
u
2u 3
Entonces : x + K =
− 2Cu
3

∫

dx =

∫

2

1

Pero u = (y + C)

∫ (u

2

)

− C (2du ),

2

Por lo tanto la solución de la forma x = f(y) es :
3

2 (y + C)
x+K =
3
4) y' y

2

2

1

− 2C(y + C)

+ yy' ' − (y'

2

)2

= 0;

dy
;
dx
dv dv dy
dv
;
=
=v
dx dy dx
dy

v=

Reemplazando en la ecuación :
y' y 2 + yy' ' −(y' )2 = 0;
vy 2 + yv
y+

dv
− (v )2 = 0 ;
dy

dv v
− = 0;
dy y

dv v
− = −y ;
dy y
u( y ) = e

∫

−dy
y

=

1
;
y

1 dv 1 v
1
−
= −y ;
y dy y y
y

dy
= − y 2 + Cy;
dx
dy
dy
dy
x=
;
=
+
2
Cy − y
Cy
C(C − y)

∫

∫

∫

La solución es:
1
1
x = ln y − ln C − y + K;
C
C

1 
d  v
 y  = −1;
dy
1
v = − ∫ dy ;
y
1
v = −y + C;
y
v = − y 2 + Cy ;

ESPOL 2009

51
Ecuaciones Diferenciales

Ecuaciones diferenciales de coeficientes constantes
1) Resuelva: y' ' +3y' +2y

= sen(e x );

ESPOL 2009

52
Ecuaciones Diferenciales

ESPOL 2009

53
Ecuaciones Diferenciales

2) Resuelva:

si y(0)=3/16

ESPOL 2009

,

y’(0)=5/16;

54
Ecuaciones Diferenciales

y' = C 1 e x − C 2 e − x +
y(0) =

1
(tan 2 (x) sec(x) + sec 3 (x))
2

3
;
16

Re solviendo :

3
= C1 + C2 ;
16
5
y' (0) =
16
5
1
1
= C1 − C2 + 0 + 
16
2
8
1
C1 − C2 = ;
4

7
;
32
−1
;
C2 =
32
7 x 1 − x tan( x) sec( x )
y=
e − e +
32
32
2
C1 =

ESPOL 2009

55
Ecuaciones Diferenciales
3) Resuelva y' ' −5y' +6y
y' '−5y'+6 y = 0 ;

y = e rx ;

= xe x ;

y' = re rx ;

y' ' = r 2 e rx ;

Reemplazando y, y' , y' ' :

e rx [r 2 − 5r + 6] = 0 ;
r 245r4 6 = 0 ;
1−2 +
3
Ecuación
Característica

(r − 3)(r − 2 ) = 0;
r1 = 3;

r2 = 2 ;

y1 = e 3x ;
y2 = e2x ;
y h = C 1e 3 x + C 2 e 2 x ;
14 244
4
3
Solución hom ogénea

Encontremos la solución particular :

y' '−5y'+6 y = xe x ;
y p = x S [a 0 + a 1 x]e αx ;
s = 0;

α = 1;

y p = [a 0 + a 1 x]e x ;
y p = a 0 e x + a 1 xe x ;
y'p = a 0 e x + a 1 [xe x + e x ];
y' 'p = a 0 e x + a 1 [xe x + 2e x ];
Reemplazando en la ecuación diferencial no homogénea :

y' '−5y'+6 y = xe x ;
a 0 e x + a 1 [xe x + 2e x ] − 5[a 0 e x + a 1 [xe x + e x ]] + 6[a 0 e x + a 1 xe x ] = xe x ;

(2a 0 − 3a1 )e x + 2a1xe x = xe x ;
2a 0 − 3a 1 = 0 ;

2 a 1 = 1 ;

Resolviendo el sistema :
3
1
a0 = ;
a1 = ;
4
2
x
x
y p = a 0 e + a 1 xe ;

3 x 1 x
e + xe ;
2
4
y = yh + yp ;
yp =

3
1
y = C 1e 3 x + C 2 e 2 x + e x + xe x ;
4
2

ESPOL 2009

56
Ecuaciones Diferenciales
-x
4) Resuelva: y' +2y' +2y = e cosx;
y'+2 y'+2 y = 0 ;

y = e rx ;

y' = re rx ;

y' ' = r 2 e rx ;

Reemplazando y, y' , y' ' :
e rx [r 2 + 2 r + 2 ] = 0 ;
r 2 42r4 2 = 0 ;
1 +2 +
3
Ecuación
Característica

r1 , 2 =

− 2 ± 4 − 4( 2 )
2
β = 1;

λ = −1;
y1 = e

−x

= −1 ± i ;

cos x ;

−x

y 2 = e senx ;
y h = C 1 e − x cos x + C 2 e − x senx ;
14444 4444
2
3
Solución hom ogénea

Encontremos la solución particular :
y' '+2 y'+2 y = e − x cos( x );
y p = x S [a 0 cos x + b 0 senx ]e αx ;
s = 0;

α = -1 ;

y p = [a 0 cos x + b 0 senx ]e − x ;
y p = a 0 e − x cos x + b 0 e − x senx ;
No se puede asumir esta solución particular ya que contiene términos
linealmente dependiente con respecto a mi solución homogénea.
s=1
y p = x[a 0 e − x cos x + b 0 e − x senx ];
y p = a 0 xe − x cos x + b 0 xe − x senx ;
y'p = a 0 [x(− e − x senx − e − x cos x ) + e − x cos x] + b 0 [x(e − x cos x − e − x senx ) + e − x senx ];
y'p = a 0 [− xe − x senx − xe − x cos x + e − x cos x ] + b 0 [xe − x cos x − xe − x senx + e − x senx ];
y' 'p = a 0 [2 xe − x senx − 2 e − x senx − 2e − x cos x ] + b 0 [− 2 xe − x cos x − 2e − x senx + 2e − x cos x];
Reemplazando y simplificando y p , y'p , y' 'p en la ecuación diferencial no homogénea :
y' '+2 y'+2 y = e − x cos( x );
a 0 [− 2 e − x senx ] + b 0 [2e − x cos x ] = e − x cos( x );
− 2a 0 = 0;
2 b 0 = 1;
a 0 = 0;
1
b0 = ;
2

ESPOL 2009

57
Ecuaciones Diferenciales
1 −x
xe sen( x );
2
y = yh + yp ;

yp =

y = C 1e − x cos x + C 2 e − x senx +

1 −x
xe sen( x);
2

y' ' −2y' + y = cosx + 3e x + x 2 − 1;
Encontrando la solución homogénea :
y' '−2y' + y = 0 ;

y = e rx ;
y' = re rx ;
y' ' = r 2 e rx ;
Reemplazando y, y' , y' ' en la ecuación homogénea :
e rx [r 2 − 2r + 1] = 0 ;
r 2 − 2r + 1 = 0 ;

(r − 1)2 = 0 ;
r1 , 2 = 1;
y1 = ex ;
y 2 = xe x ;
y h = C 1 e x + C 2 xe x ;
Encontrando la solución particular :
y' '−2y' + y = cosx + 3e x + x 2 − 1;
Encontrando la primera solución particular :
y' '−2y' + y = cosx; Ecuación 1.

y p 1 = x s [a cos x + bsenx];
s = 0;
y p 1 = a cos x + bsenx;
y'p 1 = −asenx + b cos x = a[− senx] + b[cos x];
y' 'p 1 = −a cos x − bsenx = a[− cos x] + b[− senx];
Reemplazando y' ' p1 , y' p1 , y p1 en la ecuacion 1;
a[2senx] + b[− 2 cos x] = cosx;
 2a = 0;
Resolviendo

- 2b = 1;
1
y p1 = − senx ;
2

a = 0;

ESPOL 2009

1
b=− ;
2

58
Ecuaciones Diferenciales
Encontrand o la segunda solución particular :
y' ' −2y' + y = 3e x ; Ecuación 2.
y p 2 = x s [a ]e x ;
s = 0;
y p 2 = [a]e x ;
No se puede asumir esta solución particular , ya que es
lienalmente dependiente con respecto a la solución homogénea.
s = 1;
y p 2 = x[a]e x ;
Tampoco se puede asumir esta solución,
por la misma razón anterior.
s = 2;
y p 2 = x 2 [a]e x ;
En este caso, esta solución es linealmente independiente, respecto
a la solución homogénea
y p 2 = ax 2 e x ;

[
= a[x e

]

y'p 2 = a x 2 e x + 2 xe x ;
y' 'p 2

2

x

]

+ 4 xe x + 2 e x ;

Reemplazando y' ' p2 , y'p2 , y p2 en la ecuación 2.
y' ' −2y' + y = 3e x
2 ae x = 3e x ;
3
a= ;
2
La segunda solución particular es :
y p2 =

3 2 x
xe ;
2

Encontrand o la tercera solución particular :
y' ' −2y' + y = x 2 - 1; Ecuación 3.

[

]

y p 3 = x s a + bx + cx 2 ;
s = 0;
y p 3 = a + bx + cx 2 ;
y' p 3 = b + 2 cx;
y' ' p 3 = 2 c;
Reemplazando y' ' p3 , y' p3 , y p3 en la ecuación 2.
y' ' −2y' + y = x 2 − 1
2 c − 2[b + 2 cx] + [a + bx + cx 2 ] = x 2 − 1;

ESPOL 2009

59
Ecuaciones Diferenciales

[ 2c − 2 b + a ] + [ 2c + b] x + [ c] x 2 = x 2 − 1;
2c − 2 b + a = −1

−4c + b = 0
c = 1


Resolviendo el sistema:
c = 1;
b = 4;
a = 5;
La tercera solución particular:
yp 3 = 5 + 4x + x 2 ;
y p = y p 1 + y p 2 + yp 3 ;
1
3
y p = − sen(x) + x 2 e x + 5 + 4 x + x 2 ;
2
2
La solución general:
y = yh + yp ;
1
3
y = C1 e x + C2 xe x − sen(x) + x 2 e x + 5 + 4 x + x 2 ;
2
2

ESPOL 2009

60
Ecuaciones Diferenciales

Ecuacion diferencial de Euler – Cauchy
1) Demuestre que la ecuación diferencial x 2 y' ' + αxy' + βy = 0, donde α , β ∈ R , se
la puede transformar en una ecuación de coeficientes constantes haciendo el
cambio de variable x = e z , y luego resuelva:
x 2 y' ' +2xy' +4y = 4sen(lnx) + e 2ln(X) ;
Si x = e z ;
z = ln( x );
dz 1
= ;
dx x
Ahora :
dy dy dz dy 1
;
=
=
dx dz dx dz x
dy 1 dy
;
y' =
=
dx x dz
Se necesita luego y' ' :
d 2 y d  dy 
=
 ;
dx 2 dx  dx 
d 2 y d  dy  dz
=   ;
dx 2 dz  dx  dx
d2y  1
=
dx 2  x

d2y  1
=
dx 2  x


d 2 y 1 dx dy  dz

;
−
dz 2 x 2 dz dz  dx

d 2 y 1 dy  1
x  ;
−
dz 2 x 2 dz  x


d 2 y  1 d 2 y 1 dy 
;
y'' = 2 =  2 2 − 2
 x dz
dx
x dz 


Reemplazando en la ecuación diferencial
x 2 y' '+αxy'+βy = 0;

 1 d 2 y 1 dy 
 1 dy 
 + αx
x2 2 2 − 2
 + βy = 0 ;

 x dz
x dz 
 x dz 

dy
d 2 y dy
− + α + βy = 0 ;
2
dz
dz
dz
2
dy
d y
+ (α − 1) + βy = 0 ;
2
dz
dz
Resolviendo la ecuación x 2 y' ' +2xy' +4y = 4sen(lnx) + e 2ln(X) ;
Encontrando primero la solución homogénea :
x 2 y' ' +2xy' +4y = 0;
d2y
dy
+ (2 − 1) + 4 y = 0 ;
2
dz
dz

ESPOL 2009

61
Ecuaciones Diferenciales
y' '+ y'+4 y = 0 ;


e rz  r 24 r 44  = 0 ;
1+ +
23
 Ecuación característica 
2
r + r + 4 = 0;

1
15
− 1 ± 1 − 16
i;
=− ±
2
2
2
 15z 

y 1 = e −z / 2 cos
 2 ;



r1 , 2 =

 15z 
y 2 = e − z / 2 sen

 2 ;


 15z 
 15z 
−z / 2


sen
y h = C 1 e −z / 2 cos
 2 ;
 2  + C2e




 15 ln( x ) 
 15 ln( x ) 
;
 + C 2 xsen
y h = C 1 x cos




2
2




Ahora encontremos la solución particular :

Como se asume que x = e z y z = ln(x), al reemplazar
en la ecuación x 2 y' '+2xy'+4y = 4sen(lnx) + 5e 2ln(X) , se obtiene :

y'' + y' + 4 y = 4sen(z ) + 5e 2 z ;
Donde se tiene 2 soluciones particulares :
y'' + y' + 4 y = 4sen(z ); Ecuación 1.
La primera solución tiene la siguiente forma :

y p = a cos(z) + bsen(z);
y'p = −asen(z) + b cos(z) = a[− sen(z )] + b[cos(z)];
y' 'p = −a cos(z) − bsen(z) = a[− cos(z)] + b[− sen(z)];
Reemplazando y' ' p , y' p , y p en la ecuación 1 :

y'' + y' + 4 y = 4sen(z ); Ecuación 1.
a[3 cos(z) − sen(z)] + b[3sen(z) + cos(z)] = 4sen(z);
3a + b = 0

− a + 3 b = 4
Resolviendo el sistema se obtiene :
6
2
b= ;
a=− ;
5
5
2
6
y p 1 = − cos(z) + sen(z);
5
5
2
6
y p 1 = − cos(ln(x)) + sen(ln(x));
5
5
Encontrando la segunda la solución particular :

y'' + y' + 4 y = 5e 2 z ; Ecuación 2.

ESPOL 2009

62
Ecuaciones Diferenciales
Se asume la siguiente solución :
y p2 = ae 2 z ;
y' p2 = 2ae 2 z ;
y' ' p2 = 4ae 2 z ;
Reemplazando y' ' p2 , y' p2 , y p2 en la ecuación 2 :

y'' + y' + 4 y = 5e 2 z ; Ecuación 2.
4ae 2 z + 2ae 2 z + 4ae 2 z = 5e 2 z ;
10ae 2 z = 5e 2 z ;
1
a= ;
2
1
y p2 = e 2z ;
2
x2
1
;
y p 2 = e 2 ln( x ) =
2
2
y p = y p1 + y p2 ;
x2
6
2
;
y p = − cos(ln(x)) + sen(ln(x)) +
2
5
5
y = yh + yp ;
 15 ln( x )  2
 15 ln( x) 
6
x2
 − cos(ln(x )) + sen(ln(x )) +
 + C 2 xsen
y = C 1 x cos
;
 5



2
2
5
2




2

2) Resuelva: ( x − 2 ) y' ' +3( x − 2 )y' + y = ln
z

Si x - 2 = e ;

entonces

2

( x − 2) − 5ln ( x − 2) + 6;

z = ln( x − 1);

dz
1
=
;
dx x − 2
Ahora :
dy dy dz dy 1
=
=
;
dx dz dx dz x − 2
dy
1 dy
=
;
y' =
dx x − 2 dz
Se necesita luego y' ' :
d 2 y d  dy 
=
;

dx 2 dx  dx 
d 2 y d  dy  dz
=
;


dx 2 dz  dx  dx
d2y  1 d2y
1
dx dy  dz
=
2

 x − 2 dz 2 − (x − 2 )2 dz dz  dx ;
dx



ESPOL 2009

63
Ecuaciones Diferenciales
dy  1
d2 y  1 d2 y
1
=
2

 x − 2 dz 2 − (x − 2 )2 (x − 2 ) dz  x − 2 ;
dx


2
2
d y  1
d y
dy 
1
y'' = 2 = 

 (x − 2 )2 dz 2 − (x − 2 )2 dz  ;
dx


Reemplazando en la ecuación diferencial homog{enea :

(x - 2)2 y' '+3(x - 2)y'+ y = 0;
 1
d2 y
dy 
1
 1 dy 
 + 3(x − 2 )

(x − 2 ) 
−
 + y = 0;
2
2
2

(x − 2 ) dz 
 x − 2 dz 
 (x − 2 ) dz
dy
d 2 y dy
−
+3
+ y = 0;
2
dz
dz
dz
dy
d2 y
+ (3 − 1 )
+ y = 0;
2
dz
dz
Resolviendo la ecuación y' '+2y'+ y = 0 ;
2

d2 y
dy
+2
+ y = 0;
2
dz
dz
y = e rz ;
y' = re rz ;
y' ' = r 2 e rz ;
Reemplazando y, y' , y' ' en la ecuación homogénea :


e rz  r 242r + 1  = 0 ;
1+24
3
 Ecuación Característica 
2
r + 2r + 1 = 0 ;

(r + 1)2 = 0 ;
r1 , 2 = −1;
y 1 = e −z ;
y 2 = ze −z ;
y h = C 1e −z + C 2 ze −z ;
z = ln (x − 2 );
y h = C 1e −z + C 2 ze −z ;
y h = C 1e −ln ( x − 2 ) + C 2 ln (x − 2 )e −ln (x − 2 ) ;
C1
C ln (x − 2 )
;
+ 2
x−2
x−2
Ahora encontremos la solución particular :

yh =

Como se asume que x - 2 = e z y z = ln(x - 2), al reemplazar
en la ecuación ( x - 2)2 y' '+3( x - 2)y' + y = ln 2 ( x − 2) − 5ln( x − 2) + 6; , se obtiene :

y'' + 2 y' + y = z 2 − 5z + 6 ;

ESPOL 2009

64
Ecuaciones Diferenciales
Donde la solución particular tiene la siguiente forma :
y p = x S [a + bz + cz 2 ];

s = 0;
y p = [a + bz + cz 2 ];
y' p = b + 2 cz;

y' 'p = 2 c ;
Reemplazando y' ' p , y' p , y p en la ecuación y' '+2y' + y = z 2 − 5z + 6;

2 c + 2(b + 2 cz) + (a + bz + cz 2 ) = z 2 − 5z + 6 ;
2 c + 2 b + a = 6

4c + b = - 5
c = 1


Resolviendo el sistema :
c = 1;

b = -9 ;
a = 22 ;
y p = 22 − 9z + z 2 ;
y p = 22 − 9 ln( x − 2 ) + ln 2 ( x − 2 );
y = yh + yp ;
y=

C1
C ln (x − 2 )
+ 2
+ 22 − 9 ln( x − 2 ) + ln 2 ( x − 2 );
x−2
x−2

ESPOL 2009

65
Ecuaciones Diferenciales
x 2 y' '+ xy'+9y = 3tan(3ln(x)) ;

3)

Si x = e z , entonces z = ln(x);
Encontrand o la solución homogénea :
x 2 y' ' + xy' +9y = 0;

Usando :
d2y
dy
+ (α − 1)
+ βy = 0 ;
2
dz
dz
Se obtiene :
dy
d2y
+ (1 − 1)
+ 9y = 0;
2
dz
dz
d2y
+ 9y = 0;
dz 2
y' '+9 y = 0 ;
y = e rz ;
y' ' = r 2 e rz ;

[

]

e rz r 2 + 9 = 0 ;
r 2 + 9 = 0;
r = ±3i ;
y 1 = cos z ;
y 2 = senz ;
y h = C 1 cos(3z ) + C 2 sen (3z );
y h = C 1 cos(3 ln( x )) + C 2 sen (3 ln( x ));
Encontremo s la solución particular :
x 2 y' ' + xy' +9y = 3tan(3ln(x) ) ;
Reemplazan do z = ln( x ) y x = e z , se obtiene :
y'' + 9 y = 3 tan (3z );
g(z) = 3 tan (3z );
yp = u1y1 + u 2 y 2 ;
0
u'1 =

sen 3z

g(z ) 3 cos 3z
W (y 1 , y 2 )

W (y 1 , y 2 ) =

y1

y2

y'1

y'2

;

=

cos 3z

sen 3z

− 3sen 3z 3 cos 3z

= 3 cos 2 (3z ) + 3sen 2 (3z );

W (y 1 , y 2 ) = 3
u'1 = −

3 tan (3z )sen (3z ) − sen( 3z )sen( 3z )
;
=
3
cos( 3z )

ESPOL 2009

66
Ecuaciones Diferenciales
sen 2 ( 3z)
1 − cos 2 ( 3z )
;
=−
cos( 3z)
cos( 3z )
1
u' 1 = cos( 3z) −
;
cos( 3z)
u 1 ' = cos( 3z) − sec( 3z );
u' 1 = −

u 1 = ∫ (cos( 3z) − sec( 3z))dz
sen( 3z) ln sec( 3z) + tg( 3z)
;
−
3
3
cos 3z
0
− 3sen 3z 3 tan( 3z) 3 cos(3z ) tan( 3z )
u' 2 =
=
W (y 1 , y 2 )
3
cos( 3z)sen( 3z)
;
u' 2 =
cos( 3z)
u' 2 = sen( 3z);
1
u 2 = ∫ sen( 3z)dz = − cos( 3z )
3
yp = u1y1 + u2 y2 ;
u1 =

 sen( 3z) ln sec( 3z ) + tg( 3z) 
1
yp = 
−
 cos( 3z) − cos( 3z)sen( 3z);
3
3

 3


y = yh + yp ;
 sen( 3z) ln sec( 3z) + tg( 3z) 
1
y = C 1 cos(3z ) + C 2 sen (3z ) + 
−
 cos( 3z) − cos( 3z)sen( 3z);
3
3

 3


 sen( 3 ln x) ln sec(3 ln x) + tg( 3 ln x) 
1
y = C 1 cos(3 ln x) + C 2 sen(3 ln x ) + 
−
 cos(3 ln x) − cos(3 ln x)sen( 3 ln x);
3
3
3



ESPOL 2009

67
Ecuaciones Diferenciales
4) Si y 1 = x −1/2 cosx, y 2 = x −1/2 senx forman un conjunto linealmente independiente y
1
son soluciones de x 2 y' ' + xy' + x 2 − y = 0;


4

1
Hallar la solución particular para x 2 y' ' + xy' + x 2 − y = x 3/2 ; si


4

 
y  = 0;
 2

y' (

) = 0;

Como y 1 = x −1/2 cosx, y y 2 = x −1/2 senx son soluciones de
1

x 2 y' ' + xy' + x 2 − y = 0, entonces se obtiene :
4

y h = C 1 x −1/2 cos x + C 2 x −1/2 senx ;
1

Para encontrar la solución de x 2 y' ' + xy' + x 2 − y = x 3 / 2 ;
4

Se aplica variación de parámetros :
 x2
x 3 /2
1 
x
x2
y'' + 2 y' +  2 − 2  y = 2 ;
x
x
4x 
x
x2


y' 
1 
y'' + +  1 − 2  y = x −1/2 ;
4x 
x 
yp = u1y1 + u 2 y2 ;
g(x) = x −1/2 ;
0
u'1 =

y2

g( x ) y' 2
W( y 1 , y 2 )

;

ESPOL 2009

68
Ecuaciones Diferenciales
x −1/2 cos x
x −1/2 senx
y2
1
1
=
− 1/2
senx − x − 3 / 2 cos x x − 1/2 cos x − x − 3 / 2 senx
y' 2 − x
2
2
1
1




W( y 1 , y 2 ) = x − 1/2 cos x x − 1/2 cos x − x − 3 / 2 senx − x − 1/2 senx − x − 1/2 senx − x − 3 / 2 cos x ;
2
2




1
1
W( y 1 , y 2 ) = x − 1 cos 2 x − x − 2 senx cos x + x − 1 sen 2 x + x − 2 senx cos x ;
2
2
2
2
−1
−1
−1
W( y 1 , y 2 ) = x (cos x + sen x ) = x (1) = x ;
y1
W( y 1 , y 2 ) =
y' 1

W( y 1 , y 2 ) = x − 1 ;
0
x −1 / 2

x − 1 /2

u' 1 =

x − 1/2 senx
1
cos x − x − 3 / 2 senx
x − 1 senx
2
=−
= −sen( x);
x −1
x −1

u 1 = ∫ − sen( x )dx = cos x ;
x − 1 / 2 cos x
0
1 −3 / 2
− 1 /2
−1 / 2
senx − x
cos x x
−x
2
u' 2 =
;
=
W( y 1 , y 2 )
x −1
y1
y' 1

0
g( x)

x − 1 cos x
u' 2 =
= cos x ;
x −1
u 2 = senx ;
y p = (cos x )(x − 1 / 2 cos x ) + (senx )(x − 1 / 2 senx )
y p = x − 1 / 2 (cos 2 x + sen 2 x ) = x − 1 / 2 (1) = x − 1 / 2 ;
y p = x −1 / 2 ;
y = yh + yp ;
y = C 1 x − 1/2 cos x + C 2 x − 1/2 senx + x − 1 / 2 ;
 π
Si y  = 0 ; y y' ( π ) = 0;
2
y = C 1 x − 1/2 cos x + C 2 x − 1/2 senx + x − 1 / 2 ;
0 = C1

2
(0 ) + C 2
π

2
(1) +
π
C 2 = −1 ;
C2

2
(1) +
π

2
;
π

2
= 0;
π

−3 / 2
1 −3 / 2
1 −3 / 2
 − 1 /2

 − 1 /2
 x
y' = C 1 − x
senx − x
cos x + C 2 x
cos x − x
senx −
;
2
2
2




1
1
1


 1
 1
(0 ) −
(− 1) + C 2  (− 1) −
(0 ) −
;
0 = C 1 −
2π π  2π π
2π π
π

 π


ESPOL 2009

69
Ecuaciones Diferenciales
1
 1 
 1 
0 = C1 
 − C 2  π  − 2π π ;


 2π π 
1
C1
C
=
− 2 ;
2π π 2π π
π
1
C1
1
;
=
+
2π π 2π π
π
1 = C 1 + 2 π;
C 1 = 1 − 2 π;
y = (1 − 2 π )x −1/2 cos x − x − 1/2 senx + x − 1 /2 ;

ESPOL 2009

70
Ecuaciones Diferenciales

Identidad de Abel
1. Resuelva la siguiente ecuación diferencial usando la identidad de Abel:

(1 − 2x − x )y' '+2(1 + x )y'−2y = 0; Si y(0) = y' (0) = 1.
2

Si una solución es y 1 = x + 1;
Se usará la identidad de abel :
W (y 1 , y 2 ) = e ∫

− p(x)dx

;

Donde la ecuación diferencial debe tener la siguiente forma :
y' ' + p( x )y' + q(x)y = 0;

(1 − 2 x − x ) y'' + 2(1 + x) y'2
y = 0;
(1 − 2 x − x ) (1 − 2x − x ) (1 − 2 x − x )
2
2

2

2

W (y 1 , y 2 ) =

y1
y'1

y2
;
y'2

W (y 1 , y 2 ) =

x + 1 y2
= (x + 1)y'2 − y 2 ;
y'2
1

Entonces :
2 ( 1 + x )dx

(x + 1)y'2 − y 2 = e

∫ − (1−2 x −x 2 )

;

( − 2 − 2 x )dx

(x + 1)y'2 − y 2 = e

∫ (1−2 x −x 2 )

;

u( x ) = (1 − 2 x − x );
2

du = (− 2 − 2 x )dx ;
2

(x + 1)y'2 − y 2 = e ln 1−2 x−x ;
(x + 1)y'2 − y 2 = 1 − 2 x − x 2 ;
y2
1 − 2x − x2
;
y'2 −
=
x+1
x+1
dx
−∫
1
x +1
u( x ) = e
=
;
x+1
y2
1
1 − 2x − x2
=
y'2 −
;
x+1
(x + 1)2
(x + 1)2
2
d  1
 1 − 2x − x
;
y2  =
(x + 1)2
dx  x + 1 


(1 − 2x − x 2 )dx ;
1
y2 = ∫
(x + 1)2
x+1
(2 − 1 − 2x − x 2 )dx ;
1
y2 = ∫
x+1
(x + 1)2
ESPOL 2009

71
Ecuaciones Diferenciales

2dx
1
(x + 1)2 dx
;
y2 = −∫
+∫
2
(x + 1 )
(x + 1)2
x+1
1
2dx
;
y 2 = − ∫ dx + ∫
(x + 1)2
x+1
2
1
;
y 2 = −x −
x+1
x+1
2
1
;
y 2 = −x −
x+1
x+1
y 2 = − x (x + 1 ) − 2 ;
y 2 = −x 2 − x − 2 ;
y = C 1 (x + 1) + C 2 (− x 2 − x − 2 );
Si y(0) = 1;
1 = C 1 (1) + C 2 (− 2 );
Si y' (0) = 1;
y' = C 1 + C 2 (− 2x − 1) ;
1 = C 1 + C 2 (− 1);
C 1 − C 2 = 1

C 1 − 2C 2 = 1
Resolviendo el sistema :
1

1

C2
C1
C1

- 1 1  0 1 0 

→
- 2 1  1 - 2 1 

 
= 0;
= 1 + 2C 2 ;
= 1;

La solución es :
y = x + 1;

ESPOL 2009

72
Ecuaciones Diferenciales

Método de Reducción de Orden
xy' ' +( x + 1)y' + y = 0;
2) Resuelva:

Si y 1 = e − x ;

Usando el método de reducción de orden :
Se asume que y 2 = u( x)y 1 ;
y 2 = u( x)e − x ;
y'2 = −u( x )e −x + u' ( x)e − x ;
y' '2 = −[− u( x)e − x + u' ( x )e −x ] + [− u' ( x)e − x + u' ' ( x)e − x ];
y' '2 = u( x)e − x − 2 u' ( x)e − x + u' ' ( x )e −x ;
Reemplazando en la ecuación diferencial
xy' ' +( x + 1)y' + y = 0, se obtiene :
x[u(x)e − x − 2 u'(x)e −x + u''(x)e − x ] + (x + 1)[− u(x)e − x + u'(x)e − x ] + u(x)e − x = 0 ;
u' ' ( x )[xe − x ] + u' ( x )[− 2 xe −x + (x + 1)e − x ] + u( x)[xe − x − (x + 1)e −x + e − x ] = 0 ;
u' ' ( x )[xe − x ] + u' ( x )[− xe − x + e − x ] + u( x)[xe −x − xe − x − e −x + e −x ] = 0 ;
u' ' ( x )[xe − x ] + u' ( x )[− xe − x + e − x ] + u( x)[0] = 0 ;
u' ' ( x )[xe − x ] + u' ( x )[− xe − x + e − x ] = 0 ;
Falta y :
v(x) = u' (x);
v' (x) = u' ' (x);
Reemplazando v(x) y v' (x) en la ecuación diferencial :
u''(x)[xe −x ] + u'(x)[− xe −x + e − x ] = 0 ;
v'(x)[xe −x ] + v(x)[− xe − x + e −x ] = 0 ;
dv − x
[xe ] = v(x)[xe −x − e −x ];
dx
dv
 1
= v(x)1 −  ;
dx
 x
dv
 1
∫ v(x) = ∫ 1 − x dx;


ln v( x ) = x − ln x ;
ex
v( x ) = ;
x
ex
u' ( x) = ;
x

ESPOL 2009

73
Ecuaciones Diferenciales

e x dx
u( x ) = ∫
;
x
+∞
x n−1
u( x ) = ∫ ∑
dx;
n =0 n!
 1 + ∞ x n−1 
u( x ) = ∫  + ∑
dx;
 x n=1 n! 
+∞
xn
u( x ) = ln x + ∑
;
n=1 (n )n!
y 2 = u( x ) y1 ;
+∞

x n  −x
y 2 = ln x + ∑
e ;
n =1 (n )n! 

La solución es :
+∞

xn 
y = C1e − x + C 2 ln x + ∑
;
n =1 (n )n! 


ESPOL 2009

74
Ecuaciones Diferenciales
Ecuación homogénea de orden superior
1. Las raíces de la ecuación auxiliar, que corresponden a una
cierta ecuación diferencial homogénea de orden 10, con
coeficientes constantes, son:
4, 4, 4, 4, 2+3i, 2-3i, 2+3i, 2-3i, 2+3i, 2-3i,
Escriba la solución general.
Se tienen 4 raíces reales iguales y un par complejo conjugado 3 veces entonces :

(

)

(

)

(

y ( x ) = e 4 x C1 + C 2 x + C 3 x 2 + C 4 x 3 + e 2 x cos(3 x ) C 5 + C 6 x + C 7 x 2 + e 2 x sen(3 x ) C8 + C 9 x + C10 x 2

2. y' ' '−6y' '+12y'−8y = 0

φ (m ) = m 3 − 6 m 2 + 12 m − 8 = 0
1

−6

12

2
1

−8

−8

8

4

−4

2

0

φ (m ) = (m − 2 )(m 2 − 4 m + 4 ) = 0
φ (m ) = (m − 2 )3 = 0 → m 1 = m 2 = m 3 = 2

(

y (x ) = e 2 x C 1 + C 2 x + C 3 x 2

)

d 5y
+ 32y = 0
3.
dx 5

φ(m) = m + 32 = 0 → mk = 2e
5

iπ +2πki
5

; k = 0,1,2,3,4

iπ

 π 
 π 
m0, 4 = 2e 5 = 2 cos  + i sen   = 1.618± 1.175i


 5 
 5
m1,5 = 2e

i 3π
5

  3π 
 3π  
= 2 cos  + i sen   = −0.618± 1.902 i


 5 
 5

m3 = 2eiπ = 2(cos(π ) + i sen(π )) = −2
y(x) = (C1 cos(1.175x) + C2 sen(1.175x))e1.618x + (C3 cos(1.902x) + C4 sen(1.902x))e−0.618x + C5 e −2 x

(D − 2D + 5 ) y = 0
φ (m ) = (m − 2m + 5) = 0
φ (m ) = (m − 2m + 5)(m − 2m + 5) = 0
2

2

4.

2
2

2

2

2 ± 4 − 4.1.5 2 ± − 16
=
= 1 ± 2i
2
2
= 1 ± 2i

m1, 2 =
m3, 4

y ( x ) = e x cos(2 x )(C1 + C 2 x ) + e x sen(2 x )(C 3 + C 4 x )

ESPOL 2009

75

)
Ecuaciones Diferenciales

Ecuaciones de Orden Superior
Ecuación no homogénea de orden superior

1.

y' ' ' +3y' ' +2y' = x 2 + 4x + 8

y (x ) = y c (x ) + y p (x )
Encuentro la solución complement aria :
y ' ' '+ 3 y ' '+ 2 y ' = 0 → φ (m ) = m 3 + 3 m 2 + 2 m = 0

φ (m ) = m (m 2 + 3 m + 2 ) = 0
φ (m ) = m (m + 1)(m + 2 ) = 0
m1 = 0 , m 2 = − 1, m 3 = − 2 → y c ( x ) = C 1 + C 2 e − x + C 3 e − 2 x
Encuentro la solución particular :

(

g (x ) = x 2 + 4 x + 8 → y p ( x ) = x s Ax 2 + Bx + C

)

s = 0 → y p ( x ) = Ax 2 + Bx + C pero no es linealment e independie nte con y c ( x )

(

)

s = 1 → y p ( x ) = x Ax 2 + Bx + C = Ax 3 + Bx 2 + Cx si es l .i. con y c ( x )
y p ( x ) = Ax 3 + Bx 2 + Cx
y p ' ( x ) = 3 Ax 2 + 2 Bx + C
y p ' ' ( x ) = 6 Ax + 2 B
y p ' ' ' (x ) = 6 A

y p ' ' '+3 y p ' '+2 y p ' = x 2 + 4 x + 8

(

)

6 A + 3(6 Ax + 2 B ) + 2 3 Ax 2 + 2 Bx + C = x 2 + 4 x + 8

(6 A)x 2 + (18 A + 4 B )x + (6 A + 6 B + 2C ) = x 2 + 4 x + 8
1

6A = 1 → A =

6

4 − 18 A
1

18 A + 4 B = 4 → B =
→B=

4
4

6 A + 6 B + 2C = 8 → C = 8 − 6 A + 6 B → C = 11

2
4

Por lo que decimos :
1 3 1 2 11
x + x + x
6
4
4
Solución general :
y p (x ) =

y ( x ) = C1 + C 2 e − x + C 3 e −2 x +

1 3 1 2 11
x + x + x
6
4
4

ESPOL 2009

76
Ecuaciones Diferenciales
2.

y' ' ' − y' ' −4y' +4y = 2x 2 − 4x − 1 + 2x 2 e 2x + 5xe 2x + e 2x

y (x ) = y c (x ) + y p (x )
Encuentro la solución complement aria :
y ' ' '− y ' '− 4 y '+ 4 y = 0 → φ (m ) = m 3 − m 2 − 4 m + 4 = 0

φ (m ) = m 2 (m − 1) − 4 (m − 1) = 0
φ (m ) = (m − 1)(m 2 − 4 ) = (m − 1)(m − 2 )(m + 2 )
m1 = 1, m 2 = 2 , m 3 = − 2 → y c ( x ) = C1e x + C 2 e 2 x + C 3 e − 2 x
Encuentro la solución particular :
g (x ) = g 1 ( x ) + g 2 ( x )

(

g 1 ( x ) = 2 x 2 − 4 x − 1 → y p ( x ) = x s Ax 2 + Bx + C

)

s = 0 → y p (x ) = Ax 2 + Bx + C si es l .i. con y c ( x )
y p ( x ) = Ax 2 + Bx + C
y p ' ( x ) = 2 Ax + B
y p ' ' (x ) = 2 A
y p ' ' ' (x ) = 0
y p ' ' '− y p ' '− 4 y p '+ 4 y p = 2 x 2 − 4 x − 1

(

)

0 − 2 A − 4 (2 Ax + B ) + 4 Ax 2 + Bx + C = 2 x 2 − 4 x − 1

(4 A )x 2 + (− 8 A + 4 B )x + (− 2 A − 4 B + 4C ) = 2 x 2 − 4 x − 1
1

4A = 2 → A =

2

− 4 + 8A

− 8 A + 4 B = −4 → B =
→B=0

4

 − 2 A − 4 B + 4C = − 1 → C = − 1 + 2 A + 4 B → C = 0

4

Por lo que decimos :
1
y p1 (x ) = x 2
2

(

g 2 ( x ) = 2 x 2 e 2 x + 5 xe 2 x + e 2 x → y p ( x ) = x s e 2 x Ax 2 + Bx + C

(

)

)

s = 0 → y p (x ) = e 2 x Ax 2 + Bx + C pero no es linealment e independie nte con y c ( x )

(

)

(

)

s = 1 → y p ( x ) = xe 2 x Ax 2 + Bx + C = e 2 x Ax 3 + Bx 2 + Cx si es l .i. con y c ( x )

(
)
' ( x ) = e (2 Ax + (3 A + 2 B )x + (2 B + 2 C )x + C )
' ' ( x ) = e (4 Ax + (12 A + 4 B )x + (6 A + 8 B + 4C )x + (2 B + 4 C ))
' ' ' ( x ) = e (8 Ax + (36 A + 8 B )x + (36 A + 24 B + 8C )x + (6 A + 12 B + 12 C ))

y p ( x ) = e 2 x Ax 3 + Bx 2 + Cx
yp
yp
yp

2x

2x

2x

3

2

3

3

2

2

y p ' ' '− y p ' '−4 y p '+4 y p = 2 x 2 e 2 x + 5 xe 2 x + e 2 x

(

)

e 2 x (12 A)x 2 + (30 A + 8 B )x + (6 A + 10 B + 4C ) = 2 x 2 e 2 x + 5 xe 2 x + e 2 x

ESPOL 2009

77
Ecuaciones Diferenciales
1

12 A = 2 → A =

6

5 − 30 A

→B=0
30 A + 8 B = 5 → B =

8

6 A + 10 B + 4C = 1 → C = 1 − 6 A − 10 B → C = 0

4

1
y p2 (x ) = x 3 e 2 x
6
1
1
y ( x ) = C1 e x + C 2 e 2 x + C 3 e − 2 x + x 2 + x 3 e 2 x
2
6

(
3. y'''+y'= csc x)
y (x ) = y c (x ) + y p (x )
Encuentro la solución complement aria :
y ' ' '+ y ' = 0 → φ (m ) = m 3 + m = 0

φ (m ) = m (m 2 + 1) = 0
m1 = 0 , m 2 = i , m 3 = − i → y c ( x ) = C1 + C 2 cos (x ) + C 3 sen ( x )
Encuentro la solución particular :
y p ( x ) = u1 y1 + u 2 y 2 + u 3 y 3
1
W (1, cos ( x ), sen ( x )) = 0
0

cos ( x )
sen ( x )
− sen ( x ) cos (x ) = 1 cos 2 ( x ) + sen 2 ( x ) = 1
− cos ( x ) − sen ( x )

(

)

0
cos ( x )
sen ( x )
0
− sen ( x ) cos ( x )
csc ( x ) − cos (x ) − sen ( x )

 x 
u1 ' =
= csc ( x )(1) → u1 = ∫ csc ( x )dx = ln  tan   


1
 2 

0
sen (x )
0
cos ( x )
csc ( x ) − sen ( x )
u2 ' =
= − csc (x ) cos ( x ) → u 2 = − ∫ csc ( x ) cos ( x )dx = ln (csc ( x ))
1
1 cos ( x )
0
0 − sen ( x )
0
0 − cos ( x ) csc ( x )
u3 ' =
= − csc ( x )sen ( x ) → u 3 = − ∫ 1dx = − x
1

 x 
y p = ln  tan    (1) + ln (csc ( x ))(cos ( x )) + (− x )sen ( x )


 2 

1
0
0


 x 
y p ( x ) = ln  tan    + cos ( x ) ln (csc ( x )) − x sen ( x )


 2 


 x 
y ( x ) = C1 + C 2 cos ( x ) + C 3 sen ( x ) + ln  tan    + cos ( x ) ln (csc ( x )) − x sen ( x )


 2 


ESPOL 2009

78
Ecuaciones Diferenciales

(
4. y''' = xln x)
y (x ) = y c (x ) + y p (x )
Encuentro la solución complement aria :
y ' ' ' = 0 → φ (m ) = m 3 = 0

φ (m ) = m 3 = 0
m1 = 0 , m 2 = 0 , m 3 = 0 → y c ( x ) = C 1 + C 2 x + C 3 x 2
Encuentro la solución particular :
y p ( x ) = u 1 y1 + u 2 y 2 + u 3 y 3
1
W (1, cos ( x ), sen ( x )) = 0
0

u1 ' =

=

x2
1

u2 '=

x2
2x
2

0
x
0
1
x ln ( x ) 0

0
0

x2
2x = 1 2x 2 − x 2 = x 2
2

(

( )

x ln (x ) x 2
→ u1 =
x2

)

∫ x ln (x )dx =

1
x2 
 ln ( x ) − 
2 
2

x2

0

0
2x
x ln ( x ) 2
x

x
1
0

2

1

x
1
0

0
x ln ( x )

x ln ( x ).2 x
→ u 2 = − 2 ∫ ln ( x )dx = − 2 x (ln ( x ) − 1)
x2

0

0
0

=−

ln ( x )
ln 2 ( x )
dx =
∫ x
2
x2
2
2
 ln ( x )  2
1
x 
yp =
 ln ( x ) −  (1) + (− 2 x (ln ( x ) − 1))( x ) + 

 2 x
2 
2


2
2
x
x
2 ln 2 ( x ) − 6 ln ( x ) + 7 no es l .i. ∴ y p =
2 ln 2 ( x ) − 6 ln ( x )
yp =
4
4
Solución general :

u3 ' =

=

x ln ( x )
→ u3 =
x2

(

y (x ) = C1 + C 2 x + C 3 x 2 +

)

(

)

x2
2 ln 2 ( x ) − 6 ln ( x )
4

(

)

ESPOL 2009

79
Ecuaciones Diferenciales

Ecuación de Euler de orden n

d 3y
d 2y
dy
− x 2 2 − 6x
+ 18y = 0
3
dx
dx
dx
La resolveremos por dos métodos :
1° Método :
1. x 3

asumo y = x r como solución entonces la escución se reduce a :
x 3 r (r − 1)(r − 2)x r −3 − x 2 r (r − 1)x r −2 − 6 xrx r −1 + 18 x r = 0

[r (r − 1)(r − 2) − r (r − 1) − 6r + 18]x r = 0
[r (r − 1)(r − 2) − r (r − 1) − 6r + 18] = 0
r (r − 1)(r − 3) − 6(r − 3) = 0
(r − 3)(r 2 − r − 6) = 0
(r − 3)2 (r + 2) = 0
r1 = r2 = 3

r3 = −2

y ( x ) = (C1 + C 2 ln x )x 3 + C 3 x −2
2° Método :
aplicando el cambio x = e t → t = ln x se obtiene :
D(D − 1)(D − 2 ) − D(D − 1) − 6 D + 18 = 0
D 3 − 4 D 2 − 3D + 18 = 0

(D − 3)2 (D + 2) = 0
y ' ' '−4 y ' '−3 y '+18 y = 0 ecuación en t

φ (m ) = (m − 3)2 (m + 2) = 0 → m1 = 3

m2 = 3

m 3 = −2

y (t ) = C1e 3t + C 2 te 3t + C 3 e −2t
y ( x ) = (C1 + C 2 ln x )x 3 + C 3 x −2
d 3y
d 2y
dy
+ 2x 2 2 − 10x
− 8y = 0
3
dx
dx
dx
asumo y = x r como solución entonces la escución se reduce a :
2. x 3

x 3 r (r − 1)(r − 2)x r −3 + 2 x 2 r (r − 1)x r −2 − 10 xrx r −1 − 8 x r = 0

[r (r − 1)(r − 2) + 2r (r − 1) − 10r − 8]x r
[r 2 (r − 1) − 2(5r + 4)] = 0

=0

r 3 − r 2 − 10r − 8 = 0
(r − 4)(r + 1)(r + 2) = 0
r1 = 4
r2 = −1
r3 = −2
y ( x ) = C1 x 4 + C 2 x −1 + C 3 x − 2

ESPOL 2009

80
Ecuaciones Diferenciales
d 3y
d 2y
dy
− 4x 2 2 + 8x
− 8y = 4lnx
3
dx
dx
dx
aplicando el cambio x = e t → t = ln x se obtiene :
Encuentro la solución complementaria :
D(D − 1)(D − 2) − 4 D(D − 1) + 8D − 8 = 0
D(D − 1)(D − 2) − 4 D(D − 1) + 8(D − 1) = 0
(D − 1)(D(D − 2) − 4 D + 8) = 0

3. x 3

(D − 1)(D 2 − 6 D + 8) = 0
(D − 1)(D − 2)(D − 4) = 0 → y' ' '−7 y' '+14 y '−8 y = 0 ecuación en t
φ (m ) = (m − 1)(m − 2)(m − 4) = 0 → m1 = 1 m2 = 2 m3 = 4
y c (t ) = C1e t + C 2 e 2t + C 3 e 4t → y c ( x ) = C1 x + C 2 x 2 + C 3 x 4
Encuentro la solución particular :
y ' ' '−7 y ' '+14 y '−8 y = 4t
y p = t s ( At + B )
s = 0 → y p = At + B si es linealmente independiente con y c
y p = At + B
yp '= A
y p ''= y p '''= 0
Re emplazando :
0 − 7(0) + 14( A) − 8( At + B ) = 4t
(− 8 A)t + (14 A − 8B ) = 4t


 − 8A = 4

14 A − 8B = 0


1
2 → y (t ) = − 1 t + 7 → y (x ) = − 1 ln x + 7
p
p
7
2
8
2
8
B=
8
1
7
y ( x ) = C1 x + C 2 x 2 + C 3 x 4 − ln x +
2
8
A=−

ESPOL 2009

81
Ecuaciones Diferenciales

d 3y
d 2y
dy
− x 2 2 + 2x
− 2y = x 3
3
dx
dx
dx
r
asumo y = x como solución entonces la escución se reduce a :
4. x 3

x 3 r (r − 1)(r − 2)x r −3 − x 2 r (r − 1)x r −2 + 2 xrx r −1 − 2 x r = 0

[r (r − 1)(r − 2) − r (r − 1) + 2r − 2]x r = 0
[r (r − 1)(r − 2) − r (r − 1) + 2(r − 1)] = 0
(r − 1)(r (r − 2) − r + 2) = 0
(r − 1)(r (r − 2) − (r − 2)) = 0
(r − 1)2 (r − 2) = 0
r1 = r2 = 1

r3 = 2

y c = (C1 + C 2 ln x )x + C 3 x 2
encuentro la solución particular :
y p ( x ) = u1 y1 + u 2 y 2 + u 3 y 3
x ln x x 2
ln x + 1 2 x
x ln x
= 1 ln x + 1 2 x = x −1
− 1 −1
x
2
x
x −1
0
2
x

(

W x, x ln x, x 2

u1 ' =

)

0 x ln x x 2
0 ln x + 1 2 x
x −1
1
2
x

=

(2 x )(x ln x ) − (ln x + 1)(x 2 ) → u
x

1

x2

2

=x

= ∫ x(ln ( x ) − 1)dx =

x2 
3
 ln ( x ) − 
2
2 

x 0 x2

u2 ' =

1 0 2x
0 1 2

=−

(x )(2 x ) − x 2

x
x x ln x 0
1 ln x + 1 0
x −1

x

→ u 2 = − ∫ xdx = −

x2
2

x(ln x + 1) − x ln x
→ u 3 = ∫ 1dx = x
x
x
x2 
x2
3
yp =
ln ( x ) − ( x ) − ( x ln x ) + ( x )x 2

2 
2
2

u3 ' =

0

1

=

x3
4
Solución general :
yp =

y ( x ) = (C1 + C 2 ln x )x + C 3 x 2 +

x3
4

ESPOL 2009

82
Ecuaciones Diferenciales

Ecuaciones de segundo orden de coeficientes variables
Solución en serie alrededor de un punto ordinario
1. (x 2 − 1)

(x

2

d 2y
dy
+ 3x
+ xy = 0,
2
dx
dx

+∞

y (0 ) = 4; y' (0 ) = 6

+∞

+∞

− 1 ∑ C n n(n − 1)x n − 2 + 3 x ∑ C n nx n −1 + x ∑ C n x n = 0

)

n=2

n =1

n =0

+∞

+∞

+∞

n=2

n=2

n =1

+∞

+∞

n=2

n =0

+∞

∑ C n n(n − 1)x n − ∑ C n n(n − 1)x n − 2 + 3∑ C n nx n + ∑ C n x n +1 = 0
n =0
+∞

+∞

n =1

n =1

∑ C n n(n − 1)x n − ∑ C n + 2 (n + 2)(n + 1)x n + 3∑ C n nx n + ∑ C n −1x n = 0
+∞

− 2C2 − 6C3 x + 3C1 x + C0 x + ∑ [C n n(n + 2 ) −C n + 2 (n + 2 )(n + 1) +C n −1 ]x n = 0
n=2

− 2C2 = 0 → C2 = 0
− 6C3 + 3C1 + C0 = 0 → C3 =

C1 C0
+
2
6

C n n(n + 2 ) −C n + 2 (n + 2 )(n + 1) +C n −1= 0 → C n + 2 =

C n n(n + 2 ) +C n −1
;n≥2
(n + 2)(n + 1)

C 2 2(2 + 2 ) +C 1 8C 2 +C 1 C1
=
=
(2 + 2)(2 + 1)
12
12
C 3(3 + 2 ) +C 2 15C 3+C 2 3C1 C0
=
=
+
n = 3 → C5 = 3
(3 + 2)(3 + 1)
20
8
8

n = 2 → C4 =

+∞

y ( x ) = ∑ Cn x n = C0 + C1 x + C2 x 2 + C3 x 3 + ....
n =0

 x3 x5



x3 x 4 3x5
+
+ ... → y (0 ) = C0 = 4
y ( x ) = C0 1 + + + ... + C1  x + +
6
8
2 12
8







 3 x 2 x3 15 x 4
x 2 5x 4
y ' ( x ) = C0  x +
+
+ ... + C1 1 +
+ +
+ ... → y ' (0 ) = C1 = 6
2
8
2
3
8




4
5
11
x 11x
+
+ ...
y (x ) = 4 + 6 x + x3 +
3
3
4

ESPOL 2009

83
Ecuaciones Diferenciales

2. y' ' − xy' = e − x
+∞

∑ C n(n − 1)x

alrededor de x 0 = 0
+∞

n−2

n

n=2

− x ∑ C n nx
n =1

+∞

∑ C n(n − 1)x
n

n=2

n

xn
− ∑ C n nx = ∑ (− 1)
n!
n=0
n =1
+∞

n−2

xn
= ∑ (− 1)
n!
n =0
+∞

n −1

+∞

n

n

xn
∑ Cn+ 2 (n + 2)(n + 1)x − ∑ C n nx = ∑ (− 1) n!
n =0
n =0
n =1
+∞

+∞

+∞

n

n

n

+∞

n
= 1 + ∑ (− 1)

n =1

n =1

2C 2 + ∑ (C n + 2 (n + 2 )(n + 1) − C n n )x n
2C 2 = 1 → C 2 =

xn
n!

1
2

C n + 2 (n + 2 )(n + 1) − C n n =
n = 1 → C 3 = C1

+∞

(− 1)n
n!

(− 1)
n
n ≥1
+
(n + 2)(n + 1) n!(n + 2)(n + 1)
n

→ C n+2 = C n

(− 1)1 → C = C1 − 1
1
+
3
(1 + 2)(1 + 1) 1!(1 + 2)(1 + 1)
6 6
2

n = 2 → C4 = C2

C
(− 1)
2
1
1
+
= 2 +
→ C4 =
(2 + 2)(2 + 1) 2!(2 + 2)(2 + 1) 6 24
8

3C
C
(− 1)3
3
1
1
n = 3 → C5 = C3
= 3 −
→ C4 = 1 −
+
(3 + 2 )(3 + 1) 3!(3 + 2)(3 + 1) 20 120
40 30
+∞

y ( x ) = ∑ C n x n = C 0 + C1 x + C 2 x 2 + C 3 x 3 + .....
n=0

1 2  C1 1  3 1 4  C1 1  5
x +  −  x + x +  −  x + ......
2
8
 6 6
 40 30 
3
5
2
3
 x


x
x
x
x4 x5
+ −
x+
+
+ ....  
+
−
+ .... 
y ( x ) = C 0 + C1 

6 40
6
8 30
  2


y ( x ) = C 0 + C1 x +

ESPOL 2009

84
Ecuaciones Diferenciales

3) Resolver la siguiente ecuación diferencial alrededor del punto ˲" Ŵ.
Determine las soluciones homogéneas de esta ecuación diferencial en términos
de series indicando a que función converge cada una de ellas. (Sugerencia: para
encontrar la solución particular use el método de variación de parámetros).
ŵ
{˲ $ . ŵ{˳  - Ÿ˲˳  - Ŷ˳
˲

Desarrollo.

˜{˲{
˜JJ ˬJ ˮIJˮJ ˲
Se asume:
˳

(

ŵ
˲
˥JˮJJI˥J ˜{Ŵ{

{˲ $ . ŵ{˳  - Ÿ˲˳  - Ŷ˳

{˲ $ . ŵ{
˲ Ŵ
Ŵ ˥J ˯J J˯JˮJ JJˤ˩JIJ˩J
˳

I {˲{
($

(

˳Ȋ

I {˲ . ˲ {
(#

J˥JJ ˲

I {J{{˲{

I {J{{J . ŵ{{˲{

Ŵ

#

.ŵ

Ŵ

˳ȊȊ

$

Primero se obtendrá las soluciones homogéneas. Se reemplaza y, y’, y’’ en la ecuación:
{˲ $ . ŵ{˳  - Ÿ˲˳  - Ŷ˳ Ŵ
{˲ $ . ŵ{

($

I {J{{J . ŵ{{˲{

$

- Ÿ˲

(#

I {J{{˲{

Luego se introduce los coeficientes dentro de las sumatorias
($

I {J{{J . ŵ{{˲{ .
Ŵ

($

I {J{{J . ŵ{{˲{

$

-

(#

#

-Ŷ

(

I {˲{

ŸI {J{{˲{ -

(

Ŵ

ŶI {˲{

Se igualan las patencias de x de todas la sumatorias, en este caso a la que más se repite
que en este caso es n:

($

I {J{{J . ŵ{{˲{ .
Ŵ

($

I {J{{J . ŵ{{˲{

$

-

(#

ŸI {J{{˲{ -

(

ŶI {˲{

Para la
m=n–2
Si n = 2, entonces m =
0
Pero n = m + 2
Luego m = n

ESPOL 2009

85
Ecuaciones Diferenciales

($

I {J{{J . ŵ{{˲{ .
-

(

(

ŶI {˲{

I

$ {J

Ŵ

- Ŷ{{J - ŵ{{˲{ -

(#

ŸI {J{{˲{

Se igualan los subíndices de todas las sumatorias al mayor, en este caso n=2.
($

I {J{{J . ŵ{{˲{ . ŶI$ . źI% ˲ .
-

($

$ {J

ŸI {J{{˲{ - ŶI - ŶI# ˲ -

.ŶI$ . źI% ˲ - ŸI# ˲ - ŶI - ŶI# ˲
-

($

I

{I {J{{J . ŵ{ . I

($

$ {J

- Ŷ{{J - ŵ{{˲{ - ŸI# ˲
($

ŶI {˲{

Ŵ

- Ŷ{{J - ŵ{ - ŸI {J{ - ŶI {{˲{

Se igualan los coeficientes:
.ŶI$ - ŶI Ŵ ˥JˮJJI˥J J˥ ˮ˩˥J˥ J˯˥ I$ I
.źI% ˲ - źI# ˲ Ŵ ˥JˮJJI˥J J˥ ˮ˩˥J˥ J˯˥ I% I#
I {J{{J . ŵ{ . I $ {J - Ŷ{{J - ŵ{ - ŸI {J{ - ŶI
Ŵ
La fórmula de recurrencia es:
I {J{{J . ŵ{ - ŸI {J{ - ŶI
J4Ŷ
I $
{J - Ŷ{{J - ŵ{
{J$ . J - ŸJ - Ŷ{
{J$ - ŷJ - Ŷ{
{J$ - ŷJ - Ŷ{
I $
I
I
I
{J - Ŷ{{J - ŵ{
{J - Ŷ{{J - ŵ{
{J - Ŷ{{J - ŵ{
{J - Ŷ{{J - ŵ{
I
I
{J - Ŷ{{J - ŵ{
Por lo tanto:
I $ I
J4Ŷ
Encontrando los coeficientes:
˟˩ J
˟˩ J
˟˩ J
˟˩ J
˟˩ J
˟˩ J
Volviendo a la solución:
˳{˲{

(

I ˲

Ŷ
ŷ
Ÿ
Ź
ź
Ż

˥JˮJJI˥J I
˥JˮJJI˥J I'
˥JˮJJI˥J I
˥JˮJJI˥J I
˥JˮJJI˥J I
˥JˮJJI˥J I

I$
I%
I
I'
I
I

Ŵ

I
I#
I
I#
I
I

I - I# ˲ - I$ ˲ $ - I% ˲ % - I ˲  - I' ˲ ' - I ˲ -

˳{˲{
I - I# ˲ - I ˲ $ - I# ˲ % - I ˲  - I# ˲ ' - I ˲ La solución homogénea:
˳{˲{

I ŵ - ˲ $ -˲  - ˲ - - ˲ $ - G

{ {

- I# ˲ - ˲ % - ˲ ' - - ˲ $ # - G

{ {

ESPOL 2009

86
Ecuaciones Diferenciales

ŵ
F - I# ˲{ŵ - ˲ $ - ˲  - - ˲ $ - {
ŵ . ˲$
˲
ŵ
ŵ
F - I# Ә
ә
˳I J˯˥
ŵ - ˲ - ˲$ - ˲% ˳ {I{ I
ŵ . ˲$
ŵ.˲
ŵ . ˲$
Ahora se encuentra la solución particular ˳
I

Normalizando la ecuación diferencial {˲ $ . ŵ{˳  - Ÿ˲˳  - Ŷ˳
˳  -

Ŷ˳
Ÿ˲˳
- $
$ . ŵ{
{˲ . ŵ{
{˲


Usando el método de variación de parámetros:
˳
˯# ˳# - ˯$ ˳$

ŵ
. ŵ{

˲{˲ $

˳# ˳$
}˳ Ȋ ˳ Ȋ}
#
$
ŵ
˲
ŵ . ˲$
ŵ . ˲$
Ӷ
Ӷ
Ŷ˲
ŵ - ˲$
{ŵ . ˲ $ {$ {ŵ . ˲ $ {$

Encontrando el wronskiano: ˣ{˳# ˳$ {
ˣ{˳# ˳$ {


˖JJˤ˥ ˯#

˯#


˖JJˤ˥ ˯$

˳#

Ŵ
˳$
ŵ
˳$ Ȋ
˲{˲ $ . ŵ{
ˣ{˳# ˳$ {

ŵ
{ŵ . ˲ $ {$
ŵ
{ŵ . ˲ $ {$

Ŵ
ŵ
˳# Ȋ
˲{˲ $ . ŵ{
ˣ{˳# ˳$ {

ŵ

˲
ŵ . ˲$
Ӷ
ŵ
ŵ - ˲$ Ӷ
$ . ŵ{ {ŵ . ˲ $ {$
˲{˲
ŵ
{ŵ . ˲ $ {$

˥JˮJJI˥J ˯#

ŵ
ŵ . ˲$
Ӷ Ŷ˲
{ŵ . ˲ $ {$

.

˳
La solución general es:
˳{˲{

I

, se obtiene:

ŵ
{ŵ . ˲ $ {$

Ŵ

Ŵ

Ӷ
ŵ
. ŵ{

˲{˲ $

ŵ
{ŵ . ˲ $ {$

ŵ
˥JˮJJI˥J ˯$
˲
Por lo tanto a solución particular es:

˯$

#

.Ž {˲{

˲

ŵ
˲{ŵ . ˲ $ {$
ŵ
{ŵ . ˲ $ {$

.

˳

˯# ˳# - ˯$ ˳$
ŵ
˲
˲
F . Ž {˲{
$
ŵ.˲
ŵ . ˲$

˲
ŵ
˲
ŵ
F - I# Ә
ә-˲
F . Ž {˲{
$
$
$
ŵ.˲
ŵ.˲
ŵ . ˲$
ŵ.˲

Este es un solucionario de problemas de Ecuaciones Diferenciales correspondiente a la Primera
Evaluación, donde constan ejercicios tipo examen. Esta obra ha sido elaborada por Roberto
Cabrera y Christian de La Rosa, ex – estudiante de la ESPOL, con el auspicio de la directiva
A.E.F.I.E.C. de los años 2006, 2007, 2008. Modificado y corregido dos veces por Roberto
Cabrera.

ESPOL 2009

87

Mais conteúdo relacionado

Mais procurados

Formulario de derivadas
Formulario de derivadasFormulario de derivadas
Formulario de derivadasAndres Mendoza
 
Problemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serwayProblemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serwayjoaquings
 
Ejercicios resueltos dinamica de fluidos
Ejercicios resueltos dinamica de fluidosEjercicios resueltos dinamica de fluidos
Ejercicios resueltos dinamica de fluidosRoly Pariona Silva
 
Aplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferencialesAplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferencialesVirgilio Granda
 
Ejercicios sobre Transformada de Laplace
Ejercicios sobre Transformada de LaplaceEjercicios sobre Transformada de Laplace
Ejercicios sobre Transformada de LaplaceJeickson Sulbaran
 
Formulas de derivadas e integrales
Formulas de derivadas e integralesFormulas de derivadas e integrales
Formulas de derivadas e integralesIvan Vera Montenegro
 
Solucionario ecuaciones1
Solucionario ecuaciones1Solucionario ecuaciones1
Solucionario ecuaciones1ERICK CONDE
 
Resolucion problemas de campo electrico
Resolucion problemas de campo electricoResolucion problemas de campo electrico
Resolucion problemas de campo electricoJosé Miranda
 
Tabla de integrales 2
Tabla de integrales 2Tabla de integrales 2
Tabla de integrales 2EDWARD ORTEGA
 
ecuaciones diferenciales de variables separables y ecuaciones diferenciales r...
ecuaciones diferenciales de variables separables y ecuaciones diferenciales r...ecuaciones diferenciales de variables separables y ecuaciones diferenciales r...
ecuaciones diferenciales de variables separables y ecuaciones diferenciales r...ÁLGEBRA LINEAL ECUACIONES DIFERENCIALES
 
Problemas resueltos mecanica_de_fluidos
Problemas resueltos mecanica_de_fluidosProblemas resueltos mecanica_de_fluidos
Problemas resueltos mecanica_de_fluidosChristian Arias Vega
 
PROBLEMAS RESUELTOS ESTATICA - Phd. Genner Villarreal Castro
PROBLEMAS RESUELTOS ESTATICA - Phd. Genner Villarreal CastroPROBLEMAS RESUELTOS ESTATICA - Phd. Genner Villarreal Castro
PROBLEMAS RESUELTOS ESTATICA - Phd. Genner Villarreal CastroGiancarlos Villalobos Romero
 
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILLSOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILLJuan Manuel Garcia Ayala
 
Mecanica de-fluidos-ejercicios
Mecanica de-fluidos-ejerciciosMecanica de-fluidos-ejercicios
Mecanica de-fluidos-ejerciciosbriam mallqui
 

Mais procurados (20)

Formulario de derivadas
Formulario de derivadasFormulario de derivadas
Formulario de derivadas
 
Problemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serwayProblemas resueltos-cap-23-fisica-serway
Problemas resueltos-cap-23-fisica-serway
 
Ejercicios en integral
Ejercicios en integralEjercicios en integral
Ejercicios en integral
 
Ejercicios cap 25 y 26
Ejercicios cap 25 y 26Ejercicios cap 25 y 26
Ejercicios cap 25 y 26
 
Ejercicios resueltos dinamica de fluidos
Ejercicios resueltos dinamica de fluidosEjercicios resueltos dinamica de fluidos
Ejercicios resueltos dinamica de fluidos
 
ejercicios resuelto de estadística l
ejercicios resuelto de estadística lejercicios resuelto de estadística l
ejercicios resuelto de estadística l
 
Aplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferencialesAplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferenciales
 
Ejercicios sobre Transformada de Laplace
Ejercicios sobre Transformada de LaplaceEjercicios sobre Transformada de Laplace
Ejercicios sobre Transformada de Laplace
 
Formulas de derivadas e integrales
Formulas de derivadas e integralesFormulas de derivadas e integrales
Formulas de derivadas e integrales
 
Solucionario ecuaciones1
Solucionario ecuaciones1Solucionario ecuaciones1
Solucionario ecuaciones1
 
Resolucion problemas de campo electrico
Resolucion problemas de campo electricoResolucion problemas de campo electrico
Resolucion problemas de campo electrico
 
Tabla de integrales 2
Tabla de integrales 2Tabla de integrales 2
Tabla de integrales 2
 
ecuaciones diferenciales de variables separables y ecuaciones diferenciales r...
ecuaciones diferenciales de variables separables y ecuaciones diferenciales r...ecuaciones diferenciales de variables separables y ecuaciones diferenciales r...
ecuaciones diferenciales de variables separables y ecuaciones diferenciales r...
 
G5 oscilaciones
G5 oscilacionesG5 oscilaciones
G5 oscilaciones
 
Problemas resueltos mecanica_de_fluidos
Problemas resueltos mecanica_de_fluidosProblemas resueltos mecanica_de_fluidos
Problemas resueltos mecanica_de_fluidos
 
PROBLEMAS RESUELTOS ESTATICA - Phd. Genner Villarreal Castro
PROBLEMAS RESUELTOS ESTATICA - Phd. Genner Villarreal CastroPROBLEMAS RESUELTOS ESTATICA - Phd. Genner Villarreal Castro
PROBLEMAS RESUELTOS ESTATICA - Phd. Genner Villarreal Castro
 
Taller 3
Taller 3Taller 3
Taller 3
 
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILLSOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
SOLUCIONARIO ECUACIONES DIFERENCIALES DENNIS G. ZILL
 
Aplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferenciales Aplicaciones de las ecuaciones diferenciales
Aplicaciones de las ecuaciones diferenciales
 
Mecanica de-fluidos-ejercicios
Mecanica de-fluidos-ejerciciosMecanica de-fluidos-ejercicios
Mecanica de-fluidos-ejercicios
 

Destaque

Guía de Ecuaciones Diferenciales
Guía de Ecuaciones DiferencialesGuía de Ecuaciones Diferenciales
Guía de Ecuaciones DiferencialesAbril Bello
 
Polinomios soluciones 1
Polinomios soluciones 1Polinomios soluciones 1
Polinomios soluciones 1jcremiro
 
Ejercicios De D Zill 8° Edicion
Ejercicios  De D Zill 8° EdicionEjercicios  De D Zill 8° Edicion
Ejercicios De D Zill 8° EdicionMartin Galvez
 
Soluciones por sustituciones. ED de Bernoulli
Soluciones por sustituciones. ED de BernoulliSoluciones por sustituciones. ED de Bernoulli
Soluciones por sustituciones. ED de BernoulliGabriel Requelme
 
Polinomios soluciones 2
Polinomios soluciones 2Polinomios soluciones 2
Polinomios soluciones 2jcremiro
 
Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]Laura Cortes
 
Factorización y fracciones algebraicas
Factorización y fracciones algebraicasFactorización y fracciones algebraicas
Factorización y fracciones algebraicasmatbasuts1
 
Ecuaciones diferenciales.[dennis g. zill].[7 ed].solucionario
Ecuaciones diferenciales.[dennis g. zill].[7 ed].solucionarioEcuaciones diferenciales.[dennis g. zill].[7 ed].solucionario
Ecuaciones diferenciales.[dennis g. zill].[7 ed].solucionarioGabriel Limon Lopez
 
Integrales multiples
Integrales multiplesIntegrales multiples
Integrales multiplesEms Es
 

Destaque (11)

Guía de Ecuaciones Diferenciales
Guía de Ecuaciones DiferencialesGuía de Ecuaciones Diferenciales
Guía de Ecuaciones Diferenciales
 
Polinomios soluciones 1
Polinomios soluciones 1Polinomios soluciones 1
Polinomios soluciones 1
 
Algebra pre division (propuestos)
Algebra pre division (propuestos)Algebra pre division (propuestos)
Algebra pre division (propuestos)
 
Ejercicios De D Zill 8° Edicion
Ejercicios  De D Zill 8° EdicionEjercicios  De D Zill 8° Edicion
Ejercicios De D Zill 8° Edicion
 
Soluciones por sustituciones. ED de Bernoulli
Soluciones por sustituciones. ED de BernoulliSoluciones por sustituciones. ED de Bernoulli
Soluciones por sustituciones. ED de Bernoulli
 
Polinomios soluciones 2
Polinomios soluciones 2Polinomios soluciones 2
Polinomios soluciones 2
 
Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]Solucionario ecuaciones diferenciales dennis zill[7a edicion]
Solucionario ecuaciones diferenciales dennis zill[7a edicion]
 
Factorización y fracciones algebraicas
Factorización y fracciones algebraicasFactorización y fracciones algebraicas
Factorización y fracciones algebraicas
 
G1 transformada de laplace
G1 transformada de laplaceG1 transformada de laplace
G1 transformada de laplace
 
Ecuaciones diferenciales.[dennis g. zill].[7 ed].solucionario
Ecuaciones diferenciales.[dennis g. zill].[7 ed].solucionarioEcuaciones diferenciales.[dennis g. zill].[7 ed].solucionario
Ecuaciones diferenciales.[dennis g. zill].[7 ed].solucionario
 
Integrales multiples
Integrales multiplesIntegrales multiples
Integrales multiples
 

Semelhante a Ecuaciones diferenciales de orden superior

Matemática ii ecuaciones diferenciales
Matemática ii   ecuaciones diferenciales Matemática ii   ecuaciones diferenciales
Matemática ii ecuaciones diferenciales Joe Arroyo Suárez
 
Ejercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferencialesEjercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferencialesAlberto Hdz
 
Ejercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferencialesEjercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferencialesRubens Diaz Pulli
 
Problemas de Ecuaciones Diferenciales
Problemas de Ecuaciones Diferenciales Problemas de Ecuaciones Diferenciales
Problemas de Ecuaciones Diferenciales Joe Arroyo Suárez
 
Ecuaciones Diferenciales y problemas con valores en la frontera
Ecuaciones Diferenciales y problemas con valores en la frontera Ecuaciones Diferenciales y problemas con valores en la frontera
Ecuaciones Diferenciales y problemas con valores en la frontera Joe Arroyo Suárez
 
Ecuaciones Diferenciales y problemas con valores en la frontera
Ecuaciones Diferenciales y problemas con valores en la fronteraEcuaciones Diferenciales y problemas con valores en la frontera
Ecuaciones Diferenciales y problemas con valores en la fronteraJoe Arroyo Suárez
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferencialesaameeriikaa
 
Ecuaciones Diferenciales y problemas con valores en la frontera
Ecuaciones Diferenciales y problemas con valores en la fronteraEcuaciones Diferenciales y problemas con valores en la frontera
Ecuaciones Diferenciales y problemas con valores en la fronteraJoe Arroyo Suárez
 
304solbol6fmimec0304
304solbol6fmimec0304304solbol6fmimec0304
304solbol6fmimec0304Luzmira77
 
Ejercicios Resueltos de Integrales (Cálculo Diferencial e Integral UNAB)
Ejercicios Resueltos de Integrales (Cálculo Diferencial e Integral UNAB)Ejercicios Resueltos de Integrales (Cálculo Diferencial e Integral UNAB)
Ejercicios Resueltos de Integrales (Cálculo Diferencial e Integral UNAB)Mauricio Vargas 帕夏
 

Semelhante a Ecuaciones diferenciales de orden superior (20)

Matemática ii ecuaciones diferenciales
Matemática ii   ecuaciones diferenciales Matemática ii   ecuaciones diferenciales
Matemática ii ecuaciones diferenciales
 
Matematica avanzada luis enrique martinez ramirez
Matematica avanzada luis enrique martinez ramirezMatematica avanzada luis enrique martinez ramirez
Matematica avanzada luis enrique martinez ramirez
 
Ejercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferencialesEjercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferenciales
 
Ejercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferencialesEjercicios resueltos-ecuaciones-diferenciales
Ejercicios resueltos-ecuaciones-diferenciales
 
Problemas de Ecuaciones Diferenciales
Problemas de Ecuaciones Diferenciales Problemas de Ecuaciones Diferenciales
Problemas de Ecuaciones Diferenciales
 
Ecuaciones Diferenciales y problemas con valores en la frontera
Ecuaciones Diferenciales y problemas con valores en la frontera Ecuaciones Diferenciales y problemas con valores en la frontera
Ecuaciones Diferenciales y problemas con valores en la frontera
 
Remedial
RemedialRemedial
Remedial
 
Calculo IV
Calculo IVCalculo IV
Calculo IV
 
Calculo 4
Calculo 4Calculo 4
Calculo 4
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
 
Edos prob-sol-global
Edos prob-sol-globalEdos prob-sol-global
Edos prob-sol-global
 
Ecuaciones Diferenciales y problemas con valores en la frontera
Ecuaciones Diferenciales y problemas con valores en la fronteraEcuaciones Diferenciales y problemas con valores en la frontera
Ecuaciones Diferenciales y problemas con valores en la frontera
 
Tarea remedial-andrés-pastuña
Tarea remedial-andrés-pastuñaTarea remedial-andrés-pastuña
Tarea remedial-andrés-pastuña
 
Ecuaciones diferenciales
Ecuaciones diferencialesEcuaciones diferenciales
Ecuaciones diferenciales
 
Ecuaciones Diferenciales y problemas con valores en la frontera
Ecuaciones Diferenciales y problemas con valores en la fronteraEcuaciones Diferenciales y problemas con valores en la frontera
Ecuaciones Diferenciales y problemas con valores en la frontera
 
304solbol6fmimec0304
304solbol6fmimec0304304solbol6fmimec0304
304solbol6fmimec0304
 
Ejercicios Resueltos de Integrales (Cálculo Diferencial e Integral UNAB)
Ejercicios Resueltos de Integrales (Cálculo Diferencial e Integral UNAB)Ejercicios Resueltos de Integrales (Cálculo Diferencial e Integral UNAB)
Ejercicios Resueltos de Integrales (Cálculo Diferencial e Integral UNAB)
 
Matematica avanzada luis enrique martinez ramirez
Matematica avanzada luis enrique martinez ramirezMatematica avanzada luis enrique martinez ramirez
Matematica avanzada luis enrique martinez ramirez
 
Taller edo
Taller edoTaller edo
Taller edo
 
Matematica avanzada luis enrique martinez ramirez
Matematica avanzada luis enrique martinez ramirezMatematica avanzada luis enrique martinez ramirez
Matematica avanzada luis enrique martinez ramirez
 

Ecuaciones diferenciales de orden superior

  • 1. Escuela Superior Politécnica del Litoral Solucionario de Problemas de Ecuaciones Diferenciales Primer parcial (3ra versión) Roberto Cabrera RESOLUCION DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN. APLICACIONES DE ECUACIONES DIFERENCIALES DE PRIMER ORDEN RESOLUCION DE ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN: HOMOGENEAS Y NO HOMOGENEAS. METODO DE LOS COEFICIENTES INDETERMINADOS Y VARIACION DE PARAMETROS. RESOLUCION DE ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR: HOMOGENEAS Y NO HOMOGENEAS. METODO LOS COEFICIENTES INDETERMINADOS Y VARIACION DE PARAMETROS. RESOLUCION DE ECUACIONES DIFERENCIALES DE SEGUNDO ORDEN ALREDEDOR DE PUNTOS ORDINARIOS. (SERIE DE TAYLOR) 09
  • 2. Ecuaciones diferenciales de primer orden Ecuaciones Diferenciales separables Se tiene una ecuación diferencial ordinaria de primer orden: XY ͨ{Y Y{ XY Se dice que ecuación diferencial de primer orden es separable si se puede expresar la esa ecuación diferencial de la siguiente manera: XY ͨ{Y{ͩ{Y{ XY Donde ˘{˲ ˳{ se lo expresa como una multiplicación de dos funciones, una que depende de la variable “x” y otra de la variable “y”. En este caso se obtiene la siguiente solución de esta ecuación diferencial: XY XY XY ͩ{Y{ XY ͩ{Y{ ͨ{Y{ͩ{Y{ ͨ{Y{XY ͨ{Y{XY Donde la solución de esta ecuación diferencial separable tiene la siguiente forma: {Y{ {Y{ - V 1.- Encontrar la solución implícita de la siguiente ecuación diferencial: dy(xy - 2x + 4y - 8) - dx(xy + 3x - y - 3) = 0 dy xy + 3x - y - 3 = dx xy - 2x + 4y - 8 dy x(y + 3) - (y + 3) = dx x(y - 2) + 4(y - 2) dy (y + 3)(x - 1) = f ( y )g ( x ); = dx (y - 2)(x + 4) (y − 2 )dy (x − 1)dx ⇒ Integramos = (y + 3 ) (x + 4 ) (y − 2 )dy (x − 1)dx ∫ (y + 3 ) = ∫ (x + 4 ) ∫ a ambos lados de la ecuación ( y + 3 )dy 5dy (x + 4 )dx 5dx −∫ =∫ −∫ (x + 4 ) (x + 4 ) ( y + 3) y+3 5dy 5dx ∫ dy − ∫ y + 3 = ∫ dx − ∫ (x + 4 ) y − 5 ln y + 3 = x − 5 ln x + 4 + c ESPOL 2009 2
  • 3. Ecuaciones diferenciales de primer orden 2.- Encontrar la solución particular de la siguiente ecuación diferencial: π Si y(0) = ; 4 Reemplazan do u y v : x 3e tan(y)dx + (2 − e x )sec 2 (y)dy = 0 ln tan(y) = 3ln 2 − e x + c; (2 − e x )sec 2 (y)dy = −3e x tan(y)dx; 3ln 2 − e x + c e ln tan(y) = e ; − 3e x tan(y) dy = = f(x).g(y); x 2 x 3 dx (2 − e )sec (y) tan(y) = (2 − e ) K; 2 x sec (y)dy 3e dx La solución general es : =− ; x tan(y) (2 − e ) y = arctan[(2 − e x )3 K ]; sec 2 (y)dy 3e x dx = ∫− ; ∫ tan(y) (2 − e x ) si y(0) = /4; ⇒ u = tan(y) ⇒ du = sec 2 (y); /4 = arctan[(2 − e 0 )K ]; v = 2 − e ⇒ dv = − e dx; x x /4 = arctan(K); ⇒ Reemplazan do :   tan   = K; ⇒ K = 1; 4 La solución particular es : du 3dv ∫ u =∫ v ; ln u = 3ln v + c; y = arctan[(2 − e x )3 ]; 3.- Exprese de forma implícita la solución de la siguiente ecuación diferencial: e x/2 ydy − e x/2 ydy = dx = 0 e (1 + ex/2 ) y dx ; e (1 + e x/2 ) Integrando por fracciones parciales obtenemos : 1 A B C = 2+ + ; 2 u ( u + 1) u u 1+ u Donde los valores de A, B, C son : y dy 1 = x/2 = f( x ).g( y ); dx e (1 + e x/2 )ye y f( x) = g( y ) = e x/2 1 ; (1 + e x/2 ) A = 1; B = - 1; C = 1; ⇒∫ ⇒∫ 1 ; ye y dx y ∫ ye dy = ∫ e x/2 (1 + e x/2 ) ; dx ∫ e x/2 (1 + e x/2 ) = ? 1 u = e x /2 ⇒ du = e x /2 dx ; 2 2du 1 ; du = udx ⇒ dx = u 2 2du dx 2du u ⇒ ∫ x/2 =∫ =∫ 2 x/2 e (1 + e ) u(1 + u ) u (1 + u ) 1   2du   1 1 = 2 ∫  2 − + du ; u 1+u   u (1 + u )   u du du du 2du = 2∫ 2 − 2∫ + 2∫ ; 1+u u u u (1 + u ) ⇒∫ 2du 2 = − − 2 ln u + 2 ln 1 + u + c ; u (1 + u ) u ⇒∫ 2 2 2 e x/2 dx 2 = − x/2 − 2 ln e x/2 + 2 ln 1 + e x/2 + c ; x/2 (1 + e ) e dx ; e (1 + e x/2 ) La solución implicita general es : ye y − e y = ∫ x/2 ⇒ ye y − e y = − ESPOL 2009 2 e x/2 − 2 ln e x/2 + 2 ln 1 + e x/2 + c ; 3
  • 4. Ecuaciones diferenciales de primer orden 4. - Encuentre la solución general de la siguiente ecuación diferencial: 2 y ln( x )dx − (e y − e − y )x 1 + ln( x )dy = 0 (e y − e − y )x 1 + ln( x)dy = 2 y ln( x)dx ; dy 2 y ln( x ) = y = f( y ).g( x ); dx (e − e − y )x 1 + ln( x ) f( y ) = 2y ln( x) ∧ g(x) = ; −y (e − e ) x 1 + ln( x ) y dy 2 y ln( x ) = y dx (e − e − y )x 1 + ln( x ) ln( x) (e y − e − y ) dx ; dy = 2y x 1 + ln( x) Integrando a ambos lados de la ecuación se obtiene : ln( x ) (e y − e − y ) ∫ 2 y dy = ∫ x 1 + ln(x) dx; (e y − e −y ) = senh( y ) entonces tenemos lo siguiente : 2 senh( y ) ln( x) ∫ y dy = ∫ x 1 + ln(x) dx ; Si observamos que Para integrar senh( y ) dy debemos usar series de potencias : y y 2 n +1 senh( y ) + ∞ y 2 n ⇒ =∑ ; y n = 0 (2 n + 1 )! n = 0 (2 n + 1 )! +∞ Si senh( y ) = ∑ Re emplazando : y2n ln( x ) ∫ ∑ (2 n + 1)!dy = ∫ x 1 + ln(x) dx; n =0 +∞ y2n dy obtenemos que : n = 0 (2 n + 1)! +∞ Integrando ∑ +∞ y 2 n +1 y2n ∫ ∑ (2 n + 1)!dy = ∑ (2 n + 1)(2n + 1)! ; n =0 n =0 +∞ ESPOL 2009 4
  • 5. Ecuaciones diferenciales de primer orden Ahora integrando ∫x ln(x) dx = ? 1 + ln(x) Si u = ln(x) ⇒ du = ⇒∫ ln(x) dx : x 1 + ln(x) dx x ln(x) udu dx = ∫ ; 1+u x 1 + ln(x) Ahora z 2 = 1 + u ⇒ 2 zdz = du ; ⇒∫ udu (z 2 - 1)2zdz ; = z 1+u ∫   z3 (z 2 - 1)2zdz 2 ⇒∫ = 2 ∫ (z - 1)dz = 2  − z + C ; z  3 ⇒∫  udu = 2 1+u   ( 1+ u 3 ) 3  − 1+ u +C    1 + ln(x) 3  ln(x) dx = 2  ⇒∫ − 1 + ln(x)  + C ; 3 x 1 + ln(x)     La solucion general de forma implícita es : (  y 2 n +1 =2  ∑ (2n + 1)(2 n + 1)!  n =0  +∞ ( ) 3  1 + ln(x) − 1 + ln(x)  + C 3   ) ESPOL 2009 5
  • 6. Ecuaciones diferenciales de primer orden Ecuaciones Diferenciales Lineales Las ecuaciones diferenciales lineales tienen la siguiente forma: y'+ p(x)y = g(x); Existen dos métodos para resolver este tipos de ecuaciones: El método del factor integrante. Método de variación de parámetros El método del factor integrante: y' + p(x)y = g(x); u(x) = e ∫ p(x)dx ; u(x)[y' + p(x)y] = u(x)g(x); d [u(x)y] = u(x)g(x); dx ∫ d[u(x)y] = ∫ u(x)g(x)dx; u(x)y = ∫ u(x)g(x)dx; y= 1 u(x)g(x)dx; u(x) ∫ Método de variación de parámetros y' + p(x)y = g(x); yh' + p(x)yh = 0 ; yh' = − p(x)yh ; dyh = − p(x)yh ; dx dyh ∫ yh = ∫ − p(x)dx; ln yh = ∫ − p(x)dx; yh = e ∫ − p(x)dx; Asumir: Re emplazando : y' + p(x)y = g(x); [ y hv'(x) + y' hv(x)] + p(x)y hv(x) = g(x); v'(x)[ y h ] + v(x)[ y' h + p(x)y h ] = g(x); Pero y' h + p(x)y h = 0 , entonce s: v'(x)[ y h ] + v(x)[0] = g(x); v'(x)[ y h ] = g(x); dv [ yh ] = g(x); dx g(x) ∫ dv = ∫ yh dx; g(x) dx; yh y = yhv(x); v(x) = ∫ y' = yh v'(x) + y'hv(x); y = y h v(x); y = e∫ − p(x)dx ESPOL 2009 ∫ g(x) dx; yh 6
  • 7. Ecuaciones diferenciales de primer orden 1) y' − x3 ; xy'−2 y = sen 2 (x)4 ctg(x) 2 x2 ; y= x sen 2 (x)4 ctg(x) Tiene la forma y' + p(x)y = g(x); Por lo tanto podemos aplicar el método del factor integrante : Encontremos el factor integrante u(x) : u(x) = e ∫ p(x)dx 2 − dx −2 1 u( x) = e ∫ x = e − 2 ln( x ) = e ln( x ) = x −2 = 2 ; x Multipliquemos el factor integrante u(x) a ambos lados de la ecuación :  x2 2  1  1  ;   y' − y  = 2  x  x  sen 2 (x)4 ctg(x)  x2    1 d  1   ;  2 y =  dx  x   sen 2 (x)4 ctg(x)      1  1  dx ; ⇒ ∫ d 2 y  = ∫  2  sen (x)4 ctg(x)  x      1 1 dx ; ⇒ 2 y = ∫  sen 2 (x)4 ctg(x)  x   2   1 dx = csc ( x ) dx ;  ⇒∫ ∫ 4 ctg(x)  sen 2 (x)4 ctg(x)    Si u = ctg( x) ⇒ du = − csc 2 ( x )dx ; ⇒∫ ⇒∫ csc 2 ( x ) ctg(x) 4 dx = ∫  u 3/4  4u 3 / 4 − du =− = − ∫ u −1 / 4 du = −   4 3 u  3 /4  4 4 ctg 3 ( X ) 4[ctg( X )]3 / 4 dx = − +C =− + C; 3 3 ctg(x) csc 2 ( x ) 4 4 4 ctg 3 ( X ) 1 y=− + C; x2 3 La solución general de la ecuacion diferencial es : ⇒  4 4 ctg 3 ( X )  − y=x + C ; 3     2 ESPOL 2009 7
  • 8. Ecuaciones diferenciales de primer orden y'+ p(x)y = 1; y(0) = 1; 2) 1 ; 0 ≤ x < 2 p(x) =  - 2x ; x ≥ 2 Para el intervalo 0 ≤ x < 2 resolvemos la ecuación diferencial, donde p(x) = 1 : Ahora para x ≥ 2, p(x) = -2x; y'-2xy = 1; u( x ) = e ∫ y'+ y = 1; dy dy + y = 1; ⇒ = 1 − y ; (Ec. dif. separable); dx dx dy dy = dx ⇒ ∫ = dx ; 1−y ∫ 1−y − ln 1 − y = x + C ; (Ec. dif. lineal) − 2 xdx 2 = e −x ; 2 2 e −x (y'- 2 xy ) = e − x (1); 2 2 d(e −x y ) = e −x ; dx −x −x −x −x ∫ d(e y) = ∫ e dx; ⇒ e y = ∫ e dx; 2 2 2 2 2 Pero para integrar e −x dx necesitamos ln 1 − y = −x + K usar series de potencias : e ln 1− y = e − x+K ; +∞ (− 1 ) n x 2 n n =0 n! ⇒ e −x y = ∫ ∑ 2 −x 1 − y = k 1e ; y 1 = 1 − k 1e −x ; +∞ (− 1 ) n x 2 n + 1 n =0 ( 2 n + 1)n! ⇒ e −x y = ∑ 2 Pero y(0) = 1; 1 = 1 − k 1e 0 ; ⇒ k 1 = 0 ; ⇒ y 1 = 1 para 0 ≤ x < 2 ⇒ y2 = ex 2 dx ; +∞ (− 1 ) n x 2 n + 1 ∑ ( 2n + 1)n! + k2 ; 2 + e x k 2 ; para x > 2; n =0 Ahora para encontrar k 2 usaremos la condición de continuidad de dos funciones : Esta condición dice : lim f( x) = lim f(x); ⇒ lim y = lim y ; x →a − x→2 − x→a + 1 x→2 + 2 2  2 + ∞ (− 1 ) n x 2 n + 1  ⇒ lim 1 = lim e x ∑ + e x k 2 ; x→2 − x→2 +  n = 0 (2 n + 1)n!  n 2 n +1 +∞ +∞ 2 2 (− 1 ) 2 (− 1 ) n 2 2 n 2 4 ⇒ 1 = e2 ∑ + e2 k 2 ;⇒ 1 = e4 ∑ +e k2 ; n = 0 (2 n + 1)n! n = 0 (2 n + 1)n! 1 + ∞ (− 1 ) n 2 2 n 2 (− 1 ) n 2 2 n 2 4 = e k2 ;⇒ k2 = 4 − ∑ ; e n = 0 (2 n + 1)n! n = 0 (2 n + 1)n! +∞ 1 (− 1 ) n 2 2 n ⇒ k 2 = 4 − 2∑ ; e n = 0 (2 n + 1)n! +∞ ⇒ 1−e4 ∑ La solución queda expresada con la siguiente regla de correspondencia : 0≤x<2 1 ;  +∞ +∞ y =  x 2 (− 1)n x 2 n +1 2  1 (− 1)n 2 2 n  e ∑ + e x  4 − 2∑ ; x ≥ 2  n = 0 (2 n + 1 )n!  e  n =0 ( 2 n + 1)n! ESPOL 2009 8
  • 9. Ecuaciones diferenciales de primer orden 3.- Resolver la siguiente ecuación diferencial: dy y = y dx e + 2 x Si observamos que esta es una ecuación diferencial no separable, no lineal con respecto a y, que tal si hacemos que nuestra variable independiente sea “y”, y que “x” nuestra variable dependiente, es decir obtener nuestra solución en función de “y” (x = f( y)) . (e (e y y + 2 x )dy = ydx ; y + 2x) = y dx ; dy dx − e y − 2x = 0; dy ≡ yx'−e y − 2 x = 0 ; e y 2x 2x e y ; − = 0 ; ⇒ x'− = y y y y Tiene la forma x'+ p(y)x = g(y); ⇒ x'− Ahora y es la variable independie nte : Apliquemos el método del factor integrante : x' + p(y)x = g(y); * El factor integrante ahora depende de y : u(y) = e ∫ p(y)dy p( y ) = − ∫ − dy 2 ; entonces u(y) = e y = e −2 ln y = y -2 ⇒ u(y) = y - 2 y ; 2 Multiplicando el factor integrante u(y) = y -2 a ambos lados de la ecuación diferencial : x'−  2x  ey . ⇒ y -2  x'−  = y - 2  y  y   43 142 4 4 2x e y = y y d −2 y x dy [ ] y y d −2 [y x] = e 3 ⇒ d[y −2 x] = e 3 dy ⇒ y dy y y −2 x = ∫ y e dy ⇒ x = y 2 y3 ∫ ∫ d[y − 2 x ] = ∫ ey dy y3 y e dy y3 y Para integrar +∞ ey = ∑ n =0 +∞ ∫∑ n =0 e dy usamos series de potencias : y3 yn ey ⇒ 3 = n! y y n −3 dy = n! x( y ) = y 2 ∫ ∫ +∞ ∑ n =0 y n −3 n!  1 1 1  + + + 3 2 2! y  0! y 1! y  La solución es: +∞ ∑ n =3 y n −3   n!    1 e 1 1 dy = y 2 − 2 − + ln( y ) + 3 y y 2  2y  y +∞ ∑ n =3  1 1 x = − − y + y 2ln(y) + 2  2  +∞ ∑ n =3  yn + Cy 2  (n − 2)n!    y n −2 + C ; ( n − 2 )n!   ESPOL 2009 9
  • 10. Ecuaciones diferenciales de primer orden 4.- Resuelva la siguiente ecuación diferencial: xy' −y = x 2 sen(ln(x)); y(1) = 0 ; Utilizando el método del factor integrante: xy' − y = x 2 sen( ln (x)); y y' − = xsen( ln (x)); x Tiene la siguiente forma y'+ p(x)y = g(x), entonces : u( x ) = e ∫ p( x )dx ; ⇒ u( x ) = e ∫ p( x )dx ; ⇒ u( x ) = e ∫ p( x )dx = e donde 1 − ∫ dx x p(x) = − 1 ; x = e −ln( x ) ; ⇒ u( x ) = x −1 ; Multiplicando el factor integrante a ambos lados de la ecuación diferencial se obtiene : y x −1 y' − x −1 = x −1 xsen( ln (x)); x 14243 4 4 d −1 x y dx [ ] d −1 [x y] = sen( ln (x)) ⇒ d[x −1y] = sen( ln (x))dx ⇒ dx x −1 y = ∫ ∫ d[x −1 y] = ∫ sen( ln (x))dx sen( ln (x))dx ∫ y = x sen( ln (x))dx ∫ sen(ln( x))dx = ? Encontremo s ahora la solución particular si y(1) = 0; z = ln( x); ⇒ dx = xdz ; x 2 [sen (ln( x )) − cos(ln( x))] + Cx ; 2 y( 1) = 0 ; dx ; x Pero x = e z ; dz = y= dx = e zdz ; ∫ ∫ ∫ sen(ln( x))dx = ∫ sen(z )e zdz ; sen(z )e zdz , integrando por partes obtenemos que : sen(z )e zdz = ⇒ ∫ 12 [sen (ln( 1)) − cos(ln( 1))] + C( 1); 2 [sen(0) − cos( 0)] + C ; ⇒0= 2 1 1 ⇒ 0 = − + C; ⇒ C = ; 2 2 ⇒0= e z [sen(z ) − cos(z )] + C; 2 sen(ln(x ))dx = x[sen(ln( x)) − cos(ln(x))] + C; 2  x[sen(ln( x)) − cos(ln(x ))]  ⇒ y = x + C 2   x 2 [sen(ln( x)) − cos(ln( x))] + Cx; y= 2 ESPOL 2009 La solución es : y= x 2 [sen(ln(x)) − cos(ln(x))] x + 2 2 10
  • 11. Ecuaciones diferenciales de primer orden Ecuaciones diferenciales Exactas Las ecuaciones diferenciales exactas tienen la siguiente forma: M(x, y) + N(x, y)y' = 0; Es exacta si : ∂M(x, y) ∂N(x, y) = ; ∂y ∂x My = Nx ; Entonces existe : F(x, y) tal que : ∂F(x,y) = M(x,y); ∂x ∂F(x,y) = N(x,y); ∂y Si escogemos ∂F( x , y ) = M(x, y), se obtiene : ∂x ∂F(x,y) = M(x,y) ∂x ∫ ∂F(x,y) = ∫ M(x,y)∂x; F(x,y) = G(x,y) + h(y); Luego derivando F(x, y) con respecto a y : ∂F( x , y ) = G' ( x , y ) + h' ( y ); ∂y ∂F(x, y) = N(x, y); Luego igualando con ∂y G'(x,y) + h'(y) = N(x,y); h'(y) = N(x,y) − G'(x,y); h( y ) = La constante de F(x, y). Entonces : F(x,y) = G(x,y) + h(y); La solucíon es : F(x,y) = 0 ; G(x,y) + h(y) = 0 ; Si se elige ∂F(x,y) = N(x,y), y procedemos de la misma forma, se obtiene : ∂y F(x, y) = H(x, y) + h(x); Donde la solución es : F(x, y) = 0; ESPOL 2009 11
  • 12. Ecuaciones diferenciales de primer orden 1.- Resuelva la siguiente ecuación diferencial:     3 e xy e xy 4x y − + xln(x) − x  dy = 0 + yln(x) + x 3 x − 4  dx +  x 4 −  x y     ( )   3   e xy e xy 4x y − + yln(x) + x 3 x − 4  +  x 4 − + xln(x) − x  y' = 0  x y     xy e M(x,y) = 4 x 3 y − + y ln (x) + x 3 x − 4 ; x M y = 4 x 3 − e xy + ln (x) ; ( ) ( N(x , y ) = x 4 − ) e xy + xln(x) − x; y Nx = 4 x 3 − e xy + ln (x) ; My = Nx ; entonces la ecuacion diferencia l es exacta;  Fx = M(x, y) ⇒ Existe una función F(x, y), donde   Fy = N(x, y) Si Fy = N(x, y), entonces se obtiene lo siguiente : Fy = x 4 − e xy + x ln (x) − x; y ∂(F(x,y)) e xy 4 =x − + x ln (x) − x; y ∂y   4 e xy ∂(F(x,y)) =  x − + x ln (x) − x  ∂y;   y   Entonces integrando a ambos lados de la ecuación :   e xy ∂ (F(x,y)) = ∫  x 4 − + x ln (x) − x  ∂y; ∫   y    e xy   F( x , y ) = x y − ∫   y  ∂y + yx ln( x ) − xy + h ( x );   xy e   Para integrar   y  ∂y se usa series de potencias :   n xy +∞ (x )n (y )n − 1 1 + ∞ (x )n (y )n − 1 e 1 + ∞ (xy ) ; = ∑ =∑ = +∑ y y n = 0 n! n! y n =1 n! n =0 4 +∞  1 + ∞ (x )n (y )n − 1   (x )n (y )n  ∂ y = ln( y ) + ∑ ∂y = ∫  + ∑ ;   y n! n =1 n = 1 (n )(n !)    +∞ (x )n (y )n 4 + yx ln( x ) − xy + h ( x ); F( x , y ) = x y − ln( y ) − ∑ n = 1 (n )(n !)  e xy ∫ y   ESPOL 2009 12
  • 13. Ecuaciones diferenciales de primer orden Ahora si Fx = M, entonces se obtiene lo siguiente : Fx = M(x, y); e xy + y ln (x) + x 3 x − 4 ; x +∞ n (x ) n −1 (y )n + y[1 + ln( x )] − y + h' ( x); Fx = 4 x 3 y − ∑ (n )(n!) n =1 ( Fx = 4 x 3 y − ) (x ) n −1 (y )n + y + y ln( x) − y + h' ( x); (n!) n =1 +∞ Fx = 4 x 3 y − ∑ e xy + y ln( x ) + h' ( x ); x Entonces reemplazando Fx : Fx = 4 x 3 y − e xy e xy + y ln( x) + h' ( x ) = 4x 3 y − + y ln (x) + x 3 x − 4 ; x x Eliminando términos : ( 4x 3 y − ( ) ) h' ( x ) = x 3 x − 4 ; Obteniendo h(x) : ( ) h( x) = ∫ x 3 x − 4 dx ; z 3 = x − 4 ; ⇒ 3z 2 dz = dx ; z= ( 3 x−4 ) x = z 3 + 4; ( ) h(z) = ∫ (z 3 + 4 ) 3 z 3 3z 2 dz ; h(z) = 3∫ (z 6 + 4z 3 )dz ;  z7 h( z ) = 3  + z 4 + C  ;  7 7  3 x−4 + 3 x−4 h( x ) = 3  7   ( ) ( ) 4  + C ;   Entonces :  (3 x − 4 )  (x ) n (y )n 4 + yx ln( x ) − xy + 3 + (3 x − 4 ) + C  ; F( x , y ) = x y − ln( y ) − ∑ 7 n = 1 (n )(n!)     7 +∞ 4 La solución implicitaes F(x, y) = 0, es decir :  (3 x − 4 )7  (x )n (y )n 4 + yx ln( x ) − xy + 3 + (3 x − 4 ) + C  = 0 ; x y − ln( y ) − ∑ 7 n = 1 (n )(n!)     +∞ 4 ESPOL 2009 13
  • 14. Ecuaciones diferenciales de primer orden 2.- Resuelva la siguiente ecuación diferencial:  xy y3   2 2 2 y' = 0 ; + xy  +  2xy − x + ln(x + 1) + x y + 8 y − x+1 y − 2      M(x,y) = y 2 − xy + xy 2 x+1 y3 N(x,y) = 2 xy − x + ln x + 1 + x y + 8 y −2 x My = 2 y − + 2 xy x+1 1 Nx = 2 y − 1 + + 2 xy ; x+1 1−x−1 Nx = 2 y + + 2 xy ; x+1 x Nx = 2 y − + 2 xy ; x+1 My = Nx ; la ecuación diferencial es exacta. 2  Fx = M(x, y) ⇒ Existe una función F(x, y), donde   Fy = N(x, y) Si Fx = M(x, y), entonces se obtiene lo siguiente : Fx = M(x,y) = y 2 − xy + xy 2 ; x+1 xy ∂(F(x,y)) = y2 − + xy 2 x+1 ∂x xy   ∂(F(x,y)) =  y 2 − + xy 2 ∂x; x+1   x2 y2 x 2 F( x , y ) = xy − y ∫ ∂x + + h( y ); x+1 2 x2y2 x+1−1 F( x , y ) = xy 2 − y ∫ ∂x + + h( y ); x+1 2 x2y2 1 F( x , y ) = xy 2 − y ∫ ∂x + y ∫ ∂x + + h( y ); x+1 2 x2 y2 2 F( x , y ) = xy − xy + y ln x + 1 + + h( y ); 2 Ahora si Fy = N(x, y), entonces se obtiene lo siguiente : Fy = N(x, y); Fy = 2 xy − x + ln x + 1 + x 2 y + h' ( y ); ESPOL 2009 14
  • 15. Ecuaciones diferenciales de primer orden Entonces reemplazando Fy : 2 xy − x + ln x + 1 + x 2 y + h' ( y ); = 2 xy − x + ln x + 1 + x 2 y + y3 y8 − 2 Eliminando términos : h' ( y ) = y3 y8 − 2 ; Obteniendo h(y) : h( y ) = ∫ h( y ) = ∫ y3 y8 − 2 dy ; y3 (y ) 4 2 −2 dy ; z = y 4 ; ⇒ dz = 4 y 3 dy ; h( z ) = h( z ) = h( y ) =  z− 2 1 dz 1 1 ∫ z 2 − 2 = 4  2 2 ln z + 2 + K  ; 4     1 8 2 1 8 2 ln ln z− 2 + C; z+ 2 y4 − 2 y4 + 2 + C; Entonces : F( x , y ) = xy 2 − xy + y ln x + 1 + y4 − 2 x2y2 1 + C; + ln 4 2 y + 2 8 2 La solución implicitaes F(x, y) = 0, es decir : xy 2 − xy + y ln x + 1 + x2 y2 y4 − 2 1 + ln 4 + C = 0; 2 8 2 y + 2 3.- Determine el valor de N(x,y) para que la siguiente ecuación diferencial sea exacta, luego encuentre la solución de forma implícita:  1/2 −1/2 x  dx + N(x, y)dy = 0 y x + 2  x +y   Para que la ecuación diferencial sea exacta debe cumplirse que My = Nx Nx = My ; x 1 ; Nx = y − 1 / 2 x − 1 / 2 − 2 2 (x + y )2 ∂N( x , y ) 1 −1 / 2 −1 / 2 x = y − 2 ; x ∂x 2 (x + y )2  1 x ∂x ; ∂N( x , y ) =  y − 1 / 2 x − 1 / 2 − 2 (x 2 + y )2    ESPOL 2009 15
  • 16. Ecuaciones diferenciales de primer orden 1 ∫ ∂N( x, y) = ∫  2 y  −1 / 2 x −1 / 2 −   ∂x ; (x 2 + y )   x 2   x ∂x ; N( x , y ) = y −1 / 2 x 1 / 2 − ∫  2 2   (x + y )   2 u = x + y; ∂u = 2 x∂x ; 1 ∂u ; 2 ∫ u2 1 + + C; 2u 1 + + C; 2 2 (x + y ) N( x , y ) = y −1 / 2 x 1 / 2 − N( x , y ) = y −1 / 2 x 1 / 2 N( x , y ) = y −1 / 2 x 1 / 2    1 /2 − 1 /2 1 x  dx +  y −1/2 x 1/2 + y x + C dy = 0 + 2 2    2 (x + y ) x +y     Ahora como My = Nx;  Fx = M(x, y) ⇒ Existe una función F(x, y), donde   Fy = N(x, y) Si Fx = M(x, y), entonces se obtiene lo siguiente : x Fx = M(x,y) = y 1/2 x −1/2 + 2 ; x +y ∂(F(x,y)) x = y 1 /2 x − 1 /2 + 2 x +y ∂x  x  ∂x; ∂(F(x,y)) =  y 1/2 x −1/2 + 2  x + y    x  ∂x; F(x,y) = ∫  y 1/2 x −1/2 + 2  x +y   x F(x,y) = 2 y 1/2 x 1/2 + ∫ 2 ∂x; x +y u = x 2 + y; ∂u = 2 x∂x; 1 ∂u ; 2∫ u 1 F(x,y) = 2 y 1/2 x 1/2 + ln x 2 + y + h(y); 2 Ahora si Fy = N(x, y), entonces se obtiene lo siguiente : Fy = N(x, y); 1 Fy = x 1 / 2 y −1 / 2 + + h' ( y ); 2 2( x + y ) F(x,y) = 2 y 1/2 x 1/2 + ESPOL 2009 16
  • 17. Ecuaciones diferenciales de primer orden Entonces reemplazando Fy : x 1 / 2 y −1 / 2 + 1 1 + h' ( y ); = y − 1 / 2 x 1 / 2 + + C; 2(x 2 + y ) 2( x 2 + y ) Eliminando términos : h' ( y ) = C ; Obteniendo h(y) : h( y ) = Cx + K ; Entonces : 1 ln x 2 + y + h(y); 2 1 1 / 2 1 /2 F(x,y) = 2 y x + ln x 2 + y + Cx + K; 2 La solución implicitaes F(x, y) = 0, es decir : 1 2 y 1 /2 x 1 /2 + ln x 2 + y + Cx + K ; = 0 ; 2 F(x,y) = 2 y 1/2 x 1 /2 + ESPOL 2009 17
  • 18. Ecuaciones diferenciales de primer orden Ecuaciones diferenciales exactas con factor integrante M( x , y ) + N( x , y )y' = 0 ; Si My ≠ Nx; Entonces es una ecuación diferencial no exacta, por lo tanto se necesita un factor integrante : Un factor integrante que solo depende de x es : My-Nx u(x) = e ∫ N(x,y) dx ; u(x)M(x,y) + u(x)N(x,y)y' = 0 ; Ahora la ecuación diferencial es exacta. Un factor integrante que depende de y : Nx-My u(y) = e ∫ N(x,y) dx ; u(y)M(x,y) + u(y)N(x,y)y' = 0 ; Ahora la ecuación diferencial es exacta. 1) xydx + M(x,y) = xy; (2x 2 + 3y 2 − 20 )dy = 0; Si y(1) = 1; My = x; N(x,y) = 2 x 2 + 3 y 2 − 20 ; Nx = 4 x; My ≠ Nx; entonces la ecuación diferencial no es exacta; Por lo tanto debemos encontrar su factor integrante :  Nx-My  u(y) = e u( y ) = e   ∫  M(x, y)  dy    4x-x   dy xy    ∫  3 =e   ∫  y  dy   = y 3; u( y ) = y 3 ; Luego mulitiplicando u(y) a ambos lados de la ecuación : ( ) )dy = 0; y 3 ( xydx ) + y 3 2 x 2 + 3 y 2 − 20 dy = 0 ; ( xy 4 dx + 2 x 2 y 3 + 3 y 5 − 20 y 3 M ( x , y ) = xy 4 ; My = 4 xy 3 ; N ( x , y ) = 2 x 2 y 3 + 3 y 5 − 20 y 3 ; Nx = 4 xy 3 ; ESPOL 2009 18
  • 19. Ecuaciones diferenciales de primer orden My = Nx, por lo tanto la ecuación diferencial es exacta : Fx = M(x, y); ∃(F(x, y)) talque :  Fy = N(x, y); Fx = M(x, y); ∂ ( F ( x , y )) = xy 4 ; ∂x F ( x , y ) = ∫ xy 4 ∂x; x 2 y4 + h( y ); 2 Fy = N(x, y); F ( x, y) = 2 x 2 y 3 + h'(y) = 2 x 2 y 3 + 3 y 5 − 20 y 3 ; h'(y) = 3 y 5 − 20 y 3 ; ( ) h( y ) = ∫ 3 y 5 − 20 y 3 dy; y6 − 5 y 4 + C; 2 Entonces : h( y ) = x2 y4 y6 + − 5 y 4 + C; 2 2 2 4 6 x y y + − 5 y4 + C = 0; 2 2 F(x,y) = 2) 2xdy - [y + xy 3 (1 + ln(x) )]dx = 0; Si y(1) = 1; x2 y 4 y6 + − 5y 4 + C = 0 ; 2 2 (12 )(14 ) + (16 ) − 5(14 ) + C = 0 ; 2 2 1 1 + − 5 + C = 0; 2 2 C = 5 − 1; C = 4; x2 y 4 y6 + − 5y 4 + 4 = 0 ; 2 2 La solución : x 2 y 4 + y 6 − 10 y 4 + 8 = 0 ; ESPOL 2009 19
  • 20. Ecuaciones diferenciales de primer orden [y + xy 3 (1 + ln(x))]dx - 2xdy = 0; M(x,y) = y + xy 3 (1 + ln (x)); My = 1 + 3xy 2 + 3xy 2 ln (x); N( x , y ) = -2x; Nx = -2;  Nx − My  u(y) = e   ∫  M ( x , y ) dy   u( y ) = e ;  − 2 − 1 − 3 xy 2 − 3 xy 2 ln (x);  dy  y + xy 3 (1 + ln (x) )  ∫    − 3 − 3 xy 2 − 3 xy 2 ln (x);  dy   2 ∫  = e  y (1+ xy (1+ ln( x ) ))  − 3 (1 + xy 2 (1 + ln( x ) ))  −3 ∫  y (1+ xy 2 (1+ ln( x ) )) dy ∫ y dy 1     = 3; u( y ) = e e y Luego mulitiplicando u(y) a ambos lados de la ecuación : 1 [y + xy 3 (1 + ln (x))]dx- y13 (2 xdy) = 0; 3 y 1   2x   2 + x(1 + ln (x))dx −  3 dy = 0 ; y  y    1 M( x , y ) = 2 + x(1 + ln (x)); y My = − 2 ; y3 N( x , y ) = − Nx = − 2x ; y3 2 ; y3 My = Nx, por lo tanto la e.d. es exacta :  Fx = M(x, y); ∃(F(x, y)) talque :   Fy = N(x, y); Fx = M(x, y); ∂( F( x , y )) 1 = 2 + x(1 + ln (x)); ∂x y 1  F( x , y ) = ∫  2 + x(1 + ln (x)) ∂x ; y  2 2 x x x x2 + ln( x ) − + h( y ); F( x , y ) = 2 + y 2 2 4 Fy = N(x, y); − 2x 2x + h'(y) = − 3 ; 3 y y Entonces : F( x , y ) = x x2 x2 x2 ln( x ) − + + + C; y2 2 2 4 x x2 x2 x2 ln( x ) − + + + C = 0; y2 2 2 4 h'(y) = 0 ; h( y ) = C ESPOL 2009 20
  • 21. Ecuaciones diferenciales de primer orden 3) ( ) x 2 + y 2 y 2 + 1 y' = −2xyln(y); [ ] 2 xy ln (y) + x 2 + y 2 y 2 + 1 y' = 0 ; M( x , y) = 2 xy ln (y); My = 2 x[1 + ln( y )]; [ ] N( x , y) = x 2 + y 2 y 2 + 1 ; Nx = 2 x ;  Nx − My  u( y ) = e   ∫  M ( x , y )  dy   ;  2 x − 2 x [1+ ln( y ) ]    dy 2 xy ln (y)   ∫ u( y ) = e  1 u( y ) = ; y  − 2 x ln( y )  =e   ∫  2 xy ln( y ) dy   1 =e ∫ − y dy ; Luego se multiplica u(y) a ambos lados de la ecuación : [ ] 1 (2xy ln (y)) + 1 x 2 + y 2 y 2 + 1 y' = 0 ; y y  x2  2 x ln (y) +  + y y 2 + 1  y' = 0 ; y  M( x , y) = 2 x ln (y); 2x My = ; y N( x , y) = Nx = x2 + y y2 + 1 ; y 2x ; y My = Nx, por lo tanto la e.d. es exacta :  Fx = M(x, y); ∃(F(x, y)) talque :   Fy = N(x, y); Fx = M(x, y); ∂(F( x , y )) = 2 x ln (y); ; ∂x F( x , y) = ∫ [2 x ln (y)]∂x ; F( x , y) = x 2 ln( y ) + h( y ); Fy = N(x, y); x2 x2 + h'(y) = + y y2 + 1 ; y y h'(y) = y y 2 + 1 ; ( ) h( y ) = ∫ y y 2 + 1 dy ; u = y 2 + 1; du = 2 ydy ; h( y ) = 1 2 (y + 1) y 2 + 1 + C; 3 Entonces : 1 F( x , y ) = x 2 ln( y ) + (y 2 + 1) y 2 + 1 + C ; 3 1 2 x 2 ln( y ) + (y + 1) y 2 + 1 + C = 0 ; 3 h(y) = 1 1  2 3 /2  1 ∫ udu = 2  3 u + C = 3 u u + C ; 2   ESPOL 2009 21
  • 22. Ecuaciones diferenciales de primer orden Ecuaciones diferenciales de Bernoulli Sea dy + p( x ) y = g ( x ) y n una ecuación diferencial de Bernoulli, donde n ≠ 0,1. dx Esta es una ecuación diferencial no lineal, que se la convierte en lineal haciendo el siguiente cambio de variable : v = y 1− n Donde : dv dv dy dy . = = (1 − n ) y − n dx dy dx dx Se multiplicará el factor (1 − n ) y − n a ambos lados de la ecuación de Bernoulli : (1 − n) y − n dy + (1 − n) y − n p( x ) y = (1 − n) y − n g( x ) y n dx Se obtiene lo siguiente : (1 − n) y − n dy + (1 − n) p( x ){ = (1 − n)g( x ) y 1− n dx 14 244 4 3 Esto es : v dv dx dv  + (1 − n ) p( x )v = (1 − n )g ( x ) Esto es una ecuación diferencial Lineal, dx  que se puede resolver por el método del factor integrante. ESPOL 2009 22
  • 23. Ecuaciones diferenciales de primer orden 1) xdy - [y + xy 3 (1 + ln(x))]dx = 0; xdy-[y + xy 3 (1 + ln (x))]dx = 0 ; ∫ (x y  y' −  + y 3 (1 + ln (x)) = 0 ; . x  y y' − = y 3 (1 + ln (x)); n = 3; x Se sustituye v = y 1−n ; ) ln( x ) dx = ? ⇒ u = ln( x ); ( dy dv = −2 y − 3 ; dx dx Luego se multiplica − 2 y − 3 a ambos de la ecuación : v' = y = −2 y − 3 y 3 (1 + ln (x)); x y −2 − 2 y y' + 2 = −2(1 + ln (x)); x Reemplazando v y v' : −3 du = dx ; x x3 ; 3 x 3 ln( x ) x 3 x 2 ln( x ) dx = − + C; ∫ 3 9 2 2 x 3 ln( x ) 2 x 3 x 2v = − x 3 − + + K; 3 3 9 Despejandola solución: 2 2 x ln( x ) 2 x K v =− x− + + ; 3 3 9 x2 Reemplazan v = y-2 : do 2 2 x ln( x ) 2 x K y −2 = − x − + + ; 3 3 9 x2 dv = x 2dx; v = y −2 ; − 2 y − 3 y' + 2 y − 3 2 ⇒ v= ) 2v = −2(1 + ln (x)); x Resolviendo por factor integrante : v'+ 2 La solución general es: dx u( x ) = e ∫ x = x 2 ; x 2 v'+ x 2 2v = −2 x 2 (1 + ln (x)); x d[x 2 v] = −2 x 2 (1 + ln (x)); dx y= x 2 v = ∫ − 2 x 2 (1 + ln (x))dx ; 1 2xln(x) 2x K 2 ; − x− + + 3 9 x2 3 x 2 v = −2 ∫ (x 2 + x 2 ln( x ))dx ; 2 x 2 v = − x 3 − 2 ∫ (x 2 ln( x ))dx ; 3 ESPOL 2009 23
  • 24. Ecuaciones diferenciales de primer orden 2) xy'+y = y 2ln(x); y ln( x ) ; = y2 x x v = y 1− n = y −1 ; y'+ si y(1) = 1; n = 2; dy dv ; = −y −2 dx dx Luego se multiplica − y − 2 a ambos lados de la ecuación : y ln( x ) ; − y − 2 y'− y − 2 = − y − 2 y 2 x x Reemplazando v y v' en la ecuación : v ln( x ) ; = x x Resolviendo por el método del factor integrante : v'− u( x ) = e ∫ dx x 1 ; x 1 v ln( x ) v'− 2 = 2 ; x x x 1 d  v  x  ln( x )  = ; dx x2 ln( x ) 1 v = ∫ 2 dx ; x x − = ln( x ) dx = ? x2 dx u = ln (x); ; ⇒ du = x dx 1 dv = 2 ; v=- ; ⇒ x x ln( x) 1 dx v=+∫ 2; x x x ln( x) 1 1 − + C; v=x x x v = − ln( x ) − 1 + Cx ; Integrando ∫ Si y(1) = 1, entonces : 1 1= C-1 C − 1 = 1; C = 2; La solución es : y −1 = − ln( x) − 1 + Cx ; 1 ; y= − ln( x ) − 1 + Cx y= ESPOL 2009 1 ; − ln(x) − 1 + 2x 24
  • 25. Ecuaciones Diferenciales 3) 4(1 + x)dy + y[1 + 4xy 2 (1 + x)]dx = 0;   1 + xy 2  = 0 y'+ y    4(1 + x) y = −xy 3 ; n = 3; y'+ 4(1 + x) v = y 1−n = y − 2 ; dy dv = −2 y − 3 ; dx dx Luego se multiplica - 2y - 3 a ambos lados de la ecuación : − 2 y − 3 y'+ v'− − 2 y −3 y = 2 y −3 xy 3 ; 4(1 + x) 2v = 2x; 4(1 + x) 1 ∫ − 2 ( 1+ x ) dx 1 − ln 1 + x 2 1 ; 1+ x 1 2v 2x 1 = ; v'− 1 + x 4(1 + x) 1+x 1+ x u( x ) = e =e =   1 v d  1 + x  = 2x ; dx 1+x 2x 1 dx ; v=∫ 1+ x 1+ x 2x ∫ 1 + x dx = ?; ⇒ z2 = 1 + x; 2 zdz = dx ; x = z 2 − 1; 2x (z 2 − 1)2zdz = 4 (z 2 − 1)dz; ∫ 1 + x dx = 2 ∫ ∫ z 4z 3 − 4z + C ; 4 ∫ (z 2 − 1)dz = 3 ∫ 4 2x dx = 1+ x (1 + x)3 3 La solución general es: − 4 1 + x + C; 4 (1 + x )3 1 − 4 1 + x + C; v= 3 1+ x 4(1 + x )2 − 4(1 + x ) + C ; v= 3 4(1 + x )2 − 4(1 + x ) + C 1 + x ; y −2 = 3 ESPOL 2009 y= 1 4(1 + x )2 − 4(1 + x ) + C 1 + x 3 25 ;
  • 26. Ecuaciones Diferenciales 3y' +4csc(2x)y = 2y −1/2 ctg(x); 4) 4 2 y'+ csc(2 x)y = y −1 /2 ctg( x ); 3 3 1− n 3 /2 v=y =y ; v' = 1 n=− ; 2 3 1 /2 y y' ; 2 3 1 /2 y a ambos lados de la ecuación : 2 3 1 /2 3 4 3 2 y y'+ y 1 /2 csc(2 x )y = y 1 /2 y − 1 /2 ctg( x ); 2 2 3 2 3 v'+2 csc( 2 x )v = ctg( x ); Se multiplica u( x ) = e ∫ 2 csc( 2 x )dx = e ln csc( 2 x )− ctg ( 2 x ) u( x ) = csc(2 x ) − ctg( 2 x ); u( x ) = cos( 2 x) 1 ; − sen( 2 x ) sen( 2 x) 1 − cos( 2 x) sen 2 ( x ) 2 = = tan( x ); sen( 2 x ) sen( x ) cos( x ) 2 tan( x )v'+2 tan( x ) csc(2 x)v = tan( x)ctg( x ); 1 − cos( 2 x ) u( x ) = = sen( 2 x ) d[tan( x )v] = 1; dx tan( x )v = ∫ dx ; tan( x )v = ∫ dx ; tan( x )v = x + C ; v = xctg( x ) + Cctg( x); y 3 /2 = xctg( x) + Cctg( x ); y = 3 (xctg( x ) + Cctg( x ))2 ; Si y( π/4) = 1; 2 π  1 =  + C ; 4  π 1 = + C; 4 π C = 1− ; 4 3 ESPOL 2009 26
  • 27. Ecuaciones Diferenciales La solución particular es : 2 π    y = 3  xctg( x) +  1 − ctg( x)  ; 4    y Ecuaciones diferenciales homogéneas de la forma y' = f     x dy = f(x, y) es homogénea si se puede dx expresar esta ecuación como : Se dice que la ecuación dy  y  = f  ; dx  x  Se hace la siguiente sustitución : y v = ; entonces y = vx; x dy dv ; = v+x dx dx Reemplazando v, y y' en la ecuación : dy  y  = f  ; dx  x  dv v+x = f( v ); dx dv = f( v) − v ; x dx dv dx ; = f( v) − v x v = φ( x); y = φ( x ); x y = xφ( x ); ESPOL 2009 27
  • 28. Ecuaciones Diferenciales 1)Resolver la siguiente ecuación diferencial: y sec 2   dy y x; = + dx x y2 Asumiendo que : y ⇒ y = xv; x dy dv ⇒ =x + v; dx dx v= Reemplazando en la ecuación diferencial , y = xv, v = y sec 2   dy y x = + dx x y2 ⇒x ⇒ ∫ ∫ ∫ ⇒ x sec 2 (v ) dv +v = v+ 2 2 ; x v dx ⇒ x3 dv sec 2 (v ) = 2 2 dx x v v 2 dv dx = 3 2 sec (v ) x y dy dv , =x + v, se obtiene : dx x dx dv sec 2 (v )  = Ecuación diferencial separable. dx v2  ∫ Integrando : v 2 dv = sec 2 (v ) ∫ dx ; x3 2 v dv =? sec 2 (v ) v 2 dv = sec 2 (v ) ∫ ∫ v 2cos 2 (v)dv = ∫  1 + cos(2v)  v2  dv = 2    v 2 v 2cos(2v)  dv  +   2 2   2  v cos(2v)  dv    2   ∫ v  v v cos(2v)  dv =  dv +  +   2  2 2     2 m = v ⇒ dm = 2vdv; sen(2v) dn = cos(2v)dv ⇒ n = ; 2 3 2  v2  v 2 dv 1 (v 2cos(2v))dv = v + 1  v sen(2v) − =  dv +   2 sec 2 (v ) 2 6 2 2   ∫ ∫ 2 v dv = sec 2 (v ) 2 ∫ 2 3 ∫ 2 ∫ 2 ∫ 2 ∫ 2vsen(2v)  dv  2  ∫ v dv v v sen(2v) 1 = + − vsen(2v)dv 2 sec (v ) 6 4 2 m = v ⇒ dm = dv. 1 dn = sen(2v)dv ⇒ n = − cos(2v) 2 2 3 2 v 3 v 2sen(2v)  v v dv v v sen(2v) 1 = + − + − − cos(2v) + vsen(2v)dv = 6 2 sec 2 (v ) 6 4 2  4 ∫ ∫ ∫ ∫ ∫  1 cos(2v) dv 4   v 1 v sen(2v) v 1 v dv v v sen(2v)  v + + cos(2v) - sen(2v) = + − − cos(2v) + cos(2v) dv  = 2 8 4 4 4 sec (v ) 6 4  6  4 2 3 2 1 v dv v v sen(2v) v = + + cos(2v) - sen(2v) 8 sec 2 (v ) 6 4 4 2 3 2 ∫ ESPOL 2009 3 2 28
  • 29. Ecuaciones Diferenciales ∫ v 2 dv = sec 2 (v ) 3 ∫ dx x3 ⇔ 1 1 v 3 v 2sen(2v) v + + cos(2v) - sen(2v) = − 2 + C x 8 6 4 4 2 1 1 v v sen(2v) v + + cos(2v) - sen(2v) = − 2 + C x 8 6 4 4 y Reemplazando v = ; x La solución de forma implícita queda expresada por : 2 3  y   y  sen 2 y            x   + v cos 2 y   - 1 sen 2 y   = − 1 + C x +x       4 4   x  8 x2 6   x  (xy + 4 y 2) 2 + 2x 2 )dx − (x 2 )dy = 0; si y(1) = Aplicando tan a ambos lados se obtiene : dy (xy + 4 y 2 + 2 x 2 ) = ; dx x2 dy y 4 y 2 = + + 2; dx x x 2 y v= ; x y = xv ;   4 ln x 2 v = tan  + K ;   2     4 ln x 1 tan  v= + K ;   2 2   y   4 ln x 1 = + K ; tan    x 2 2     4 ln x x + K ; tan  y=   2 2   dy dv = v+x ; dx dx dv = v + 4v2 + 2 ; v+x dx dv = 4v2 + 2 ; x dx dv dx = ; 2 4v + 2 x dv dx = ; 2 4(v + 1 / 2 ) x ∫ dv = (v + 1 / 2 ) 2 ( ∫ Si y(1) = ( 4dx ; x La solución particular es : ) ) 2 ; 2 1 2 = tan (K ); 2 2 π K= ; 4 2 arctan 2 v = 4 ln x + C ; arctan 2 v = 2 /2; y= 4 ln x + K; 2 ESPOL 2009  4 ln x π  x tan   2 + 4 ; 2   29
  • 30. Ecuaciones Diferenciales x 3) dy = y + x2 − y2 ; dx y(x0 ) = 0; donde x0 > 0; y(1) = /4; v + xv' = v + 1 − v 2 ; x2 − y2 dy y = + ; dx x x xv' = 1 − v 2 ; dv x = 1− v2 ; dx dv dx ; = 2 1− v ; x x2 − y2 dy y ; = + 2 dx x x arcsen(v ) = ln x + C ; y2 dy y = + 1− 2 ; x dx x Se asume : y v= ; x y = xv ; y' = v + xv' ; v = sen(ln x + C ); y = sen(ln x + C ); x y = xsen(ln x + C ); Si y(1) = 1; 1 = sen(C ); π = C; 2 La solución paticular es : π  y = xsen ln x + ; 2  x (ln(x) − ln(y) )dy − ydx = 0; 4) x(ln (x) − ln (y))dy − ydx = 0 ; v + xv ' = − x(ln (y) − ln (x))dy + ydx = 0 ; v (ln (v )) v xv ' = − ; − v; (ln (v )) dv − v (1 + ln( v ) ) x ; = dx (ln (v ))  (ln( v ) )   dx  ∫  v (1 + ln( v ) ) dv = − ∫  x ;       dy y ; =− dx x(ln (y) − ln (x)) dy y ; =− dx   y  x ln      x  Se asume : u = ln( v ); dv du = ; v  u    ∫  (1 + u ) du = − ln x + C ;   y ; x y = xv; y' = v + xv' ; v=  1    ∫ du − ∫  (1 + u ) du = − ln x   + C; u − ln 1 + u = − ln x + C ; ln v − ln 1 + ln( v ) = − ln x + C ; La solución general de forma implícita es: ln y y − ln 1 + ln  = −ln x + C; x x ESPOL 2009 30
  • 31. Ecuaciones Diferenciales Ecuaciones Diferenciales de Coeficientes Lineales 1) dy (2y − x + 5 ) = ; dx (2x − y − 4 ) ( x − 2 y − 5)dx − (2 x − y − 4 )dy = 0 ; a 1b2 ≠ a 2 b1 ; (1)(1) ≠ (− 2 )( −2 ); 1 ≠ 4; Se asume : x = (u + h ); y = (v + k ); dy dv ; = dx du Reemplazando x, y, y' en la ecuación, se obtiene dv 2(v + k ) − (u + h ) + 5 ; = du 2(u + h ) − (v + k ) − 4 dv 2 v − u + 2k − h + 5 = ; du 2 u − v + 2 h − k − 4 2 k − h + 5 = 0 ;  2 h − k − 4 = 0 ; Resolviendo el sistema : k = - 1; h = 3; Entonces : dv 2 v − u ; = du 2 u − v Divivdiendo para u, para poder obtener una ecuación homogénea : 2v −1 dv u ; = du 2 − v u Resolviendo como una ecuación diferencial homogénea : v ; u v = zu ; z= dv dz ; = z+u du du dz 2 z − 1 ; z+u = du 2 − z dz 2 z − 1 u − z; = du 2 − z ESPOL 2009 31
  • 32. Ecuaciones Diferenciales dz 2 z − 1 − 2 z + z 2 ; = du 2−z du (z − 2 )dz ; =− 2 (z − 1) u (z )dz (2 )dz du ∫ (z 2 − 1) − ∫ (z 2 − 1) = ∫ − u ; 1 z−1 ln z 2 − 1 − ln = − ln u + C ; 2 z+1 1 z−1 = − ln u + C ; ln z 2 − 1 − ln 2 z+1 1 z−1 = − ln u + C ; ln (z − 1)(z + 1) − ln 2 z+1 1 1 ln (z − 1) + ln (z + 1) − ln (z − 1) + ln (z + 1) = − ln u + C ; 2 2 1 3 ln (z + 1) − ln (z − 1) = − ln u + C ; 2 2 3 v  1 v  ln  + 1  − ln  − 1  = − ln u + C ; 2 u  2 u  ⇒ v = y − k; v = y + 1; u u = x − h; ⇒ u = x − 3; La solución de forma implícita es : 3  y+1  1 y+1  + 1  − ln  − 1  = − ln x − 3 + C ; ln  2 x−3  2  x−3  ( 2) 3y − 7x + 7 a 1b2 ≠ a 2 b1 ; )dx − (3x − 7y − 3)dy = 0; ( −7 )(7 ) ≠ (− 3)( 3); − 49 ≠ −9 ; Usando : x = (u + h ); y = (v + k ); dy dv ; = dx du dy − 7 x + 3y + 7 ; = dx − 3x + 7 y + 3 ESPOL 2009 32
  • 33. Ecuaciones Diferenciales Reemplazando x, y y y' : dv − 7 (u + h ) + 3(v + k ) + 7 ; = du − 3(u + h ) + 7 (v + k ) + 3 dv − 7 u + 3v − 7 h + 3k + 7 = du − 3u + 7 v − 3h + 7 k + 3  − 7 h + 3k + 7 = 0 ;  − 3 h + 7 k + 3 = 0 ; Resolviendo el sistema : k = 0; h = 1; dv − 7 u + 3 v ; = du − 3u + 7 v 3v −7 + dv u ; = 7v du − 3 + u v z= ; u v = zu ; dz dv = z+u ; du du dz − 7 + 3z = ; z+u du − 3 + 7 z dz − 7 + 3z − z; u = du − 3 + 7 z dz − 7 + 3 z + 3 z − 7 z 2 ; = du − 3 + 7z dz 7 z 2 − 6z + 7 u ; =− du 7z − 3 (7 z − 3 )dz − du ∫ 7 z 2 − 6z + 7 = ∫ u ; u = 7 z 2 − 6 z + 7; du = 14 z- 6; ⇒ 7 7z − 3 = (14 z-6 ) − 3 + 3; 14 7 (14 z- 6)dz − du 14 ∫ 7 z 2 − 6z + 7 = ∫ u ; 7 (14 z- 6)dz ∫ 7 z 2 − 6 z + 7 = − ln u + C ; 14 u ln 7 z 2 − 6 z + 7 = − ln u + C ; 2 ln 7 z 2 − 6 z + 7 = − ln u 2 + K ; 2 v v ln 7  − 6 + 7 = − ln u 2 + K ; u  u 2 y  y  2 ln 7 + 7 = − ln ( x − 1) + K ;  −6 x −1  x −1 La solución de forma implícita es : 2 y C  y  7 ; +7=  −6 x −1 ( x − 1)2  x −1 ESPOL 2009 33
  • 34. Ecuaciones Diferenciales 3) (y − x − 5)y'−(1 − x − y ) = 0; (1-x-y) − (y − x − 5)y' = 0; a1b2 ≠ a 2 b1 ; (− 1)(− 1) ≠ (1)(− 1); 1 ≠ −1; x = (u + h ); y = (v + k ); dy 1 − x − y = ; dx y − x − 5 Reemplazando x,y, y y’ en la ecuación: dv 1-(u + h )-(v + k ) ; = du (v + k ) − (u + h ) − 5 dv − u − v − h − k + 1 = ; du − u + v − h + k − 5 − h − k + 1 = 0 ;  − h + k − 5 = 0 ; Resolviendo el sistema de ecuaciones : h = -2; k = 3; dv − u − v = du − u + v v −1− dv u; = du − 1 + v u v z =  ; u v = zu ; dv dz =z+u ; du du dz − 1 − z ; z+u = du − 1 + z dz − 1 − z u − z; = du − 1 + z dz − 1 − z + z − z 2 ; u = du −1+z ESPOL 2009 34
  • 35. Ecuaciones Diferenciales dz z2 + 1 ; =− du z−1 (z − 1)dz du ∫ (z 2 + 1) = ∫ − u ; 1 ln z 2 + 1 − arctan(z) = − ln u + C ; 2 u 2 1 v v ln   + 1 − arctan  = − ln u + C ; 2 u u La solución implicita de la ecuación diferencial es : 2 1  y−3  y−3 ln   + 1 − arctan  = − ln x + 2 + C ; 2 x+2  x+2 Ecuaciones diferenciales de la forma G(ax+by) XY XY ͩ{ͷY - ͸Y{ Se asume el siguiente cambio de variable Despejando y: Y XY XY ͷY - ͸Y ͸ . ͷ Y ͸ ͷ X . ͸ XY ͸ XY ͩ{ͷY - ͸Y{ XY Se obtiene una ecuación diferencial de la forma: Reemplazando y, y’ en: X ͷ . ͩ{Ͷ{ ͸ XY ͸ X ͷ - ͩ{Ͷ{ ͸ XY ͸ X ͸XY Se obtiene una ecuación diferencial separable dela forma: ͷ - ͩ{Ͷ{ ͸ ESPOL 2009 35
  • 36. Ecuaciones Diferenciales ( )2 − (x + y − 1)2 ; 1. y' = x + y + 1 Se sustituye : si y(0) = 7/4; z = x + y; y = z − x; dy dz = − 1; dx dx y' = (x + y + 1)2 − (x + y − 1)2 ; dz − 1 = (z + 1)2 − (z − 1)2 ; dx dz = z 2 + 2 z + 1 − (z 2 − 2 z + 1) + 1; dx dz = 4z + 1; dx dz ∫ 4z + 1 = ∫ dx; 1 ln 4z + 1 = x + C 1 ; 4 ln 4z + 1 = 4 x + C 2 ; 4z + 1 = ke 4 x ; z = ke 4 x − 1 ; 4 x + y = ke 4 x − y = ke 4 x − Si y(0) = 1 ; 4 1 − x; 4 7 ; 4 7 1 =k− ; 4 4 k = 2; La solución particular es : y = 2e 4 x − 1 − x; 4 ESPOL 2009 36
  • 37. Ecuaciones Diferenciales 2 2. y' = tan (x + y); z = x + y; y = z − x; si y(0) = π ; dy dz = − 1; dx dx y' = tan 2 ( x + y ); dz − 1 = tan 2 (z ); dx dz = 1 + tan 2 (z ); dx dz = sec 2 (z ); dx dz ∫ sec 2 (z) = ∫ dx; ∫ cos (z)dz = x + C ; 2  1 + cos( 2z )  dz = x + C ; 2  z sen( 2 z ) + = x + C; 2 4 x + y sen( 2 x + 2 y ) + = x + C; 2 4 2 x + 2 y + sen( 2 x + 2 y ) = 4 x + K ; ∫  Si y(0) = π ; 2 π + sen( 2 π) = K ; k = 2π; La solución particular es : 2 x + 2 y + sen( 2 x + 2 y ) = 4 x + 2 π ; ESPOL 2009 37
  • 38. Ecuaciones Diferenciales 3. y' = 10x - 2y + 5 − 5; y' = 10x - 2y + 5 − 5; z = 10 x − 2 y ; 10 x z − ; 2 2 dy 1 dz = 5− ; 2 dx dx 1 dz = z + 5 − 5; 5− 2 dx dz 10 − = 2 z + 5 − 10 ; dx dz = 20 − 2 z + 5 ; dx dz ∫ 20 − 2 z + 5 = ∫ dx; u 2 = z + 5; y= 2 udu = dz ; dz 2 udu udu ; =∫ 20 − 2 u 10 − u z+5 udu udu ∫ 10 − u = −∫ u − 10 ; Dividiendo u para u - 10; ∫ 20 − 2 =∫ u 10 ; = 1+ u - 10 u − 10 du udu ; −∫ = − ∫ du − 10 ∫ u − 10 u − 10 udu ∫ 10 − u = −u − 10 ln u − 10 ; dz ∫ 20 − 2 z + 5 = − z + 5 − 10 ln z + 5 − 10 ; Reemplazando las integrales : − z + 5 − 10 ln z + 5 − 10 = x + C ; z = 10 x − 2 y ; La solucion de forma explicita es : − 10 x − 2 y + 5 − 10 ln 10 x − 2 y + 5 − 10 = x + C ; ESPOL 2009 38
  • 39. Ecuaciones Diferenciales 4. (2x + y )dx − (4x + 2y − 1)dy = 0; a1 b2 = a 2 b1 (2 )(− 2 ) = (− 4 )(1) − 4 = −4 ; dy 2x + y = ; dx 2(2 x + y ) − 1 z = 2x + y ; y = z − 2x; dy dz = − 2; dx dx Reemplazando : dz z −2 = ; dx 2z − 1 dz z = + 2; dx 2z − 1 dz z + 2(2 z − 1) = ; dx 2z − 1 (2z − 1)dz = dx ; 5z − 2 1 2z - 1 2 = − ; Dividiendo 5z - 2 5 5(5z − 2 ) 2dz dz ∫ 5 − ∫ 5(5z − 2 ) = ∫ dx ; 1 2 z − ln 5z − 2 = x + C ; 25 5 La solución de forma implícita es : 2 (2 x + y ) − 1 ln 5(2 x + y ) − 2 = x + C ; 5 25 ESPOL 2009 39
  • 40. Ecuaciones Diferenciales Ecuaciones de Primer Orden Aplicaciones 1. Una taza de café caliente que inicialmente se encuentra a 95ºC, se enfría y llega a 80ºC en 5 minutos mientras permanece servida en un cuarto cuya temperatura está a 21ºC. Determine en que momento el café estará a la temperatura ideal de 50ºC. dT = k (T − Ta ) dt dT ∫ T − Ta = ∫ kdt ln (T − Ta ) = kt + C T (t ) = Ce kt + Ta sabemos que la temperatura del cuarto es 21º C ∴ T (t ) = Ce kt + 21 en t = 0 el café está a 95º C ∴ T (0 ) = Ce k (0 ) + 21 = 95 → C = 95 − 21 = 74 T (t ) = 74e kt + 21 en t = 5 min el café está a 80º C ∴  59  ln  ºC 74 T (5) = 74e5 k + 21 = 80 → k =   = −0.0453 5 min − 0.0453t + 21 T (t ) = 74e en t = t1 min el café está a 50º C ∴ T (t1 ) = 74e −0.0453t1  29  ln  74 + 21 = 50 → t1 =   = 20.67 min − 0.0453 2. El Sábado 24 de Febrero del 2007 a las 07h00 A.M. un conserje del básico encuentra el cuerpo de un estudiante de ecuaciones diferenciales en el aula donde rindió su examen el día anterior, que se conserva a temperatura constante de 26° C. En ese momento la temperatura del cuerpo es de 28° C y pasada hora y media la temperatura es de 27.5° C. Considere la temperatura del cuerpo en el momento de la muerte de 37° C y que se ha enfriado según la Ley de Enfriamiento de Newton, cuál fue la hora de la muerte? Ley de enfriamiento de Newton : dT = −K (Tc − Ta ) dt dT : (Variación de la temperatura con respecto al tiempo ) dt Tc: (Temperatura del cuerpo ) Ta: (Temperatura del aula ) ESPOL 2009 40
  • 41. Ecuaciones Diferenciales t : tiempo en horas. Ta = 26° C La temperatura del cuerpo cuando es hallado es 28° C. El tiempo en que la temperatura es de 28° C es t1 . ⇒ T(t1 ) = 28° C Después de una hora y media la temperatura del cuerpo desciende a 27.5° C. El tiempo en que la temperatura es de 27.5° C será entonces : t1 + 1.5. ⇒ T(t 1 + 1.5) = 27.5° C dT = −K (Tc − 26 ); dt dT = −Kdt ⇔ (Tc − 26 ) e ln Tc − 26 = e −Kt + C dT ∫ (T − 26) = ∫ − Kdt ⇔ ln Tc − 26 = −Kt + C c ⇔ Tc − 26 = Ce −Kt ⇒ Tc ( t ) = Ce −Kt + 26; ⇒ Tc ( t ) = Ce −Kt + 26; Si la temperatura antes de morir era de 37° C entonces: T(0) = 37° C; 37 = C + 26 ⇒ C = 11 ⇒ Tc ( t ) = 11e −Kt + 26 Si T(t1 ) = 28° C ⇒ T(t1 ) = 11e −Kt 1 + 26 = 28 ⇒ 11e − Kt1 = 2 ⇒ e −Kt1 = 2 ; 11 1.7047  2  (ecuación 1); ⇒ −kt 1 = ln   ⇒ kt 1 = 1.7047 ⇒ k = t1  11  Si T(t1 + 1.5) = 27.5° C ⇒ T(t1 + 1.5) = 11e −K ( t 1 + 1.5 ) + 26 = 27.5 ⇒ 11e −K (t 1 + 1.5 ) = 1.5 ⇒ e −K ( t 1 + 1.5 ) = 1.5 ; 11 1.9924  1.5  (ecuación 2); ⇒ −k (t 1 + 1.5) = ln   ⇒ k (t 1 + 1.5 ) = 1.9924 ⇒ k = t 1 + 1.5  11  Si se iguala ecuación 1 y 2 : 1.7047 1.9924 = ⇒ (t 1 + 1.5 )1.7047 = 1.9924t 1 ⇒ 1.7047 t 1 + 2.55705 = 1.9924t 1 t1 t 1 + 1.5 2.55705 ⇒ 1.9924t 1 − 1.7047 t 1 = 2.55705 ⇒ t1 = = 8.89 horas 1.9924 − 1.7047 Por lo tanto el estudiante murio 8.89 horas antes de ser encontrado es decir. A las 22h06. ESPOL 2009 41
  • 42. Ecuaciones Diferenciales 3. Supóngase que un alumno de la ESPOL es portador del virus de la gripe y a pesar de ella va a la escuela donde hay 5000 estudiantes. Si se supone que la razón con la que se propaga el virus es proporcional no solo a la cantidad de infectados sino también a al cantidad de no infectados. Determine la cantidad de alumnos infectados a los 6 días después, si se observa que a los 4 días la cantidad de infectados era de 50. x :# de infectados 5000 − x :# de sanos dx = kx(5000 − x ) dt dx ∫ x(5000 − x) = ∫ kdt ⇔ ⇔ 1 x   ln   = kt + C 5000  x − 5000  x   ln   = 5000kt + C  x − 5000  − 5000Ce 5000 kt x(t ) = 1 − Ce 5000 kt en t = 0 x = 1 ∴ x(0 ) = 1 − 5000Ce 0 =1→C = − 1 − Ce 0 4999 e 5000 kt → x(t ) = e 5000 kt 1 en t = 4 x = 50 x(t ) = ∴ x(4 ) = e 20000 k = 50 → k = ln (50 ) 20000 x(t ) = e 0.25 t ln ( 50 ) → x(t ) = 50 0.25 t ∴ x(6 ) = 50 0.25 *6 = 50 1.5 = 353 infectados 4. En un cultivo de levadura la rapidez de cambio es proporcional a la cantidad existente. Si la cantidad de cultivo se duplica en 4 horas, ¿Qué cantidad puede esperarse al cabo de 16 horas, con la misma rapidez de crecimiento? x : cantidad existente dx = kx dt dx ∫ x = ∫ kd ln(x ) = kt + C x(t ) = Ce kt en t = 0 x = x0 x(0 ) = Ce 0 = x0 → C = x0 en t = 4 x = 2x 0 x(4) = x0e 4 k = 2 x0 → k = x(t ) = x0e t ln ( 2 ) 4 ln(2 ) 4 → x(t ) = x0 2 t 4 16 4 x(16) = x0 2 = 2 4 x0 = 32 x0 ESPOL 2009 42
  • 43. Ecuaciones Diferenciales 5. Un objeto que pesa 30Kg se deja caer desde una altura de 40 mt, con una velocidad de 3m/s. supóngase que la resistencia del aire es proporcional a la velocidad del cuerpo. Se sabe que la velocidad límite debe ser 40m/s. Encontrar la expresión de la velocidad en un tiempo t. La expresión para la posición del cuerpo en un tiempo t cualquiera. dv dt dv mg − kv = m dt k m dv m = − dt → ln (kv − mg ) = − t + C → ln (kv − mg ) = − t + C m k kv − mg mg − fr = m ∫ ∫ k   1  −m t 1  −kt Ce + mg  → v(t ) = Ce 30 + 300   k k   en t = 0 , v = 3m/s v (t ) = 1 [Ce0 + 300] = 3 → C − 3k = −300 k en t = ∞ , v = 40 m/s 1 300 = 40 → k = 7.5 ∴ C = −277.5 v(∞ ) = [Ce −∞ + 300] = 40 → k k v(t ) = −37 e −0.25 t + 40 v(0 ) = v (t ) = dx → x(t ) = v(t )dt + C dt x (t ) = ∫ [− 37e ∫ − 0.25 t + 40]dt + C = 148e − 0.25 t + 40 t + C x(t ) = 148e − 0.25 t + 40 t + C en t = 0 , x = 0m x(0 ) = 148e 0 + 40(0 ) + C = 0 → C = −148 x(t ) = 148e − 0.25 t + 40 t − 148 ESPOL 2009 43
  • 44. Ecuaciones Diferenciales 6. La fuerza resistente del agua que opera sobre un bote es proporcional a su velocidad instantánea y es tal que cuando la velocidad es de 20 20m/seg la resistencia es de 40 Newtons. Se conoce que el motor ejerce una fuerza constante de 50Newtons. En la dirección del movimiento. El bote tiene Newtons. una masa de 420 Kg. y el pasajero de 80 Kg Kg. a) Determine la distancia recorrida y la velocidad en l cualquier instante suponiendo que el bote parte del reposo. b) Determine la máxima velocidad a la que puede viajar el bote. Aplicando la segunda ley de Newton se obtiene: . ∑ F = ma x a) Fm: fuerza del motor Fr: Fuerza de resistencia del agua Fm = 50 Newtons Fr = kv Como la velocidad es de 20m/seg y la fuerza de resistencia de 40 Newtons. 40 Newtons Entonces k = k=2 =2 ⇒ 20m/seg ∑F x = ma ⇒ Fm − Fr = ma; dv , k=2 dt dv  500 + 2v = 50 ,  Ecuación dif. separable dt  dv dv dt 500 = 50 − 2v = ⇔ dt 50 − 2v 500 dv dt ⇔ =− 2(v − 25) 500 dv dt t ∫ (v − 25) = − ∫ 250 + C ⇔ ln v-25 = - 250 + C ln v- 25 =e - t +C 250 ⇒ v = 25 + ke - ⇔ v-25 = ke - t t dv dt m: masa total del sistema m = 420kg + 80 kg = 500kg. e - v = 25 − 25e 250 Como v = dx/dt Entonces: dx = 25 − 25e 250 dt t t   − x(t) = ∫  25 − 25e 250  dt = 25t + 25( 250 )e 250 + C     50 − kv = m ⇒ 50 − kv = 500 Si la velocidad inicial es 0 por partir del reposo entonces v( 0 ) = 0 ; 0 = 25 + k ⇒ k = - 25 La ecuación de la velocidad: x(t) = 25t + 25( 250 )e − t 250 +C Si parte del reposo x( 0 ) = 0 ; 0 = 25( 250 ) + C ⇒ C = −25( 250 ) La ecuación del movimiento es: ⇒ x(t) = 25t + 25( 250 )e b) − t 250 − 25( 250 ) La velocidad limite o máxima es : t   vmax = lim 25 − 25e 250  = 25 pies/seg  t →∞    t 250 t 250 ESPOL 2009 44
  • 45. Ecuaciones Diferenciales 7. Un circuito RL tiene una fem de 9 voltios, una resistencia de 30 ohmios, una inductancia de 1 henrio y no tiene corriente inical. Hallar la corriente para t=1/5 segundos. di v = iR + L dt di 9 = 30i + dt di ∫ 30i − 9 = −∫ dt 1 ln (30i − 9 ) = −t + C 30 30i − 9 = −30t + C 1 i (t ) = Ce −30t + 9 30 en t = 0 i = 0 [ ] 1 Ce 0 + 9 → C = 21 30 1 i (t ) = 21e −30t + 9 → i (t ) = 0.7e −30t + 0.3 30 en t = 1 / 5 [ i (0 ) = ] [ ] i (t ) = 0.7e − 6 + 0.3 → i (1 / 5) = 0.301amp 8. Una Fem. de 200e −5 t voltios se conecta en serie con una resistencia de 20 Ohmios y una capacitancia de 0.01 Faradios. Asumiendo que la carga inicial del capacitor es cero. Encuentre la carga y la corriente en cualquier instante de tiempo. dq q  + = fem  Ecuación diferencial para el circuito RC. dt C  R = 20 ohmios R : resistencia ⇒ R q : carga C : capacitancia fem = 200e ⇒ C = 0.01 F - 5t ESPOL 2009 45
  • 46. Ecuaciones Diferenciales dq q + = 20e − 5 t ; dt 0.01 dq ⇒ 20 + 100q = 20e − 5 t ; dt dq  ⇒ + 5q = e −5 t ; Ecuación diferencial lineal. dt  5dt 5t u(t) = e ∫ = e 20 ⇒ q(t) = ⇒ q(t) = e −5t q(t) = e ∫ ∫e e 1 u(t)e −5t dt u(t) − 5t 5t −5t ∫ dt = e −5t dt = e −5t (t + c ) − 5t − 5t (t + c ) = e t + e c Si inicialmente no hay carga en el capacitor, entonces : q(0) = 0; 0=c ⇒ q(t) = e −5t t; ∫ ∫ ⇒ i(t) = q(t)dt = e − 5t tdt ; u = t; ⇒ du = dt; 1 dv = e -5t dt v = − e −5t ; 5 1 − 5t t e dt i(t) = e −5t tdt = − e −5t + 5 5 1 t i(t) = − e −5t − e − 5t + C 25 5 Si la carga inicial es cero, entonces la corriente inicial es cero : i(o) = 0; ∫ ∫ t 1 ⇒ i(t) = − e −5t − e −5t 5 25 ESPOL 2009 46
  • 47. Ecuaciones Diferenciales Casos especiales de ecuaciones diferenciales de segundo orden Ecuaciones diferenciales en la que falta la variable “y”  3x (1 + x )3 − y'  + y' ' = x 2 y' ;     1) dy = y' ; dx dv d 2 y = = y' ' ; dx dx v= Reemplazando en la ecuación :  3 x (1 + x )3 − y'  + y'' = x 2 y'';      3 x (1 + x )3 − v  + v' = x 2 v';     3 x (1 + x ) − v + v'-x 2v' = 0 ; 3 ( ) 3 x (1 + x ) − v + v' 1 − x 2 = 0; 3 ( ) v' 1 − x 2 − v = −3 x (1 + x ) ; 3 − 3 x (1 + x ) v ; v'− = 2 1− x 1 − x2 3 ( ) − u( x ) = e ( ) =e ∫ ( x 2 −1 ) dx ∫ (1− x 2 ) x −1 u( x ) = x +1 dx 1/ 2 (  x −1  v d  x +1  = dx ; x −1 ; x +1 = v x −1   v'−  1 − x2 1+ x  =e 1 x −1 ln 2 x +1 )  =   x − 1 − 3 x (1 + x ) = 1 − x2 x +1 3 ( ) 3 x − 1  − 3 x (1 + x )  x + 1  (1 − x )(1 + x )   ;   3x ; x −1 1− x 3 xdx ; v=∫ 1+ x x −1 u 2 = ( x − 1); x = 1 + u2 ; dx = 2udu; ESPOL 2009 47
  • 48. Ecuaciones Diferenciales ∫ ( ) 3 xdx 3 1 + u 2 (2udu ) =∫ u x −1 ∫ 6(1 + u )du = 6u + 2u 2 ∫ 3 xdx 3 + C; = 6 x −1 + 2 ( x − 1)3 + C ; x −1 v = 6 x −1 + 2 1+ x ( x − 1)3 + C ; x −1 v = 6 1 + x + 2 1 + x ( x − 1) + C 1+ x x −1 v = 6 1 + x + 2 1 + x ( x − 1) + C 1+ x v= x −1 ; dy dx 1+ x dy ; = 6 1 + x + 2 1 + x ( x − 1) + C dx x −1 y = ∫ 6 1 + x dx + ∫ 2 1 + x ( x − 1)dx + C ∫ 1+ x dx; x −1 z 2 = 1 + x; z = 1+ x; 2 zdz = dx; x = z 2 − 1; ( ) x −1 = z 2 − 2 ; ( ) y = 4(1 + x ) − ∫ 2 z z 2 − 2 2 zdz + C ∫ y = 4(1 + x ) − 4 ∫ z 4 − 2 z 2 dz + C ∫ 3/ 2 3/ 2 ( ) (1 + x )dx ; x2 −1 ( x )dx ; dx + C∫ x2 −1 x2 −1 4 8 − z 5 + z 3 + C ln x + x 2 − 1 − C x 2 − 1 + K ; 5 3 3 5 8 4 3/ 2 1+ x − 1 + x + C ln x + x 2 − 1 − C x 2 − 1 + K ; y = 4(1 + x ) + 3 5 3/ 2 y = 4(1 + x ) ( ) ( ) ESPOL 2009 48
  • 49. Ecuaciones Diferenciales 2) x -1 ( y' ) y'+ 2 x =y''; dy = y' ; dx dv d 2 y v' = = = y' ' ; dx dx 2 Reemplazando en la ecuación : v= x -1y' + (y' )2 = y' ' ; x (v )2 −1 x v+ = v'; x v2 ; v'− x −1 v = x Es una E. diferencial de Bernoulli : z = v 1-n ; n = 2; z = v -1 ; dv dz ; = − v −2 dx dx − v − 2 v'−(− v −2 )x −1 v = − v − 2 v2 ; x 1 z'+ x −1z = − ; x −1 x dx u( x ) = e ∫ = x; 1 xz'+ xx −1z = −x ; x d[x.z] = −1; dx xz = − ∫ dx = −x + C ; C ; x C C−x v − 1 = −1 + = ; x x x ; v= C−x dy x x ; = =− dx C − x x−C xdx y = −∫ ; x−C x−C Cdx y = −∫ dx − ∫ ; x−C x−C y = −x − ln x − C + K ; z = −1 + ESPOL 2009 49
  • 50. Ecuaciones Diferenciales Ecuaciones diferenciales en las que falta la variable “ x” Cuando hace falta la variable “x” se hace el siguiente cambio de variable: dy = v; dx dv dv dv dy = =v ; dy dx dy dx 2y 2 y' '+2y (y' )2 = 1; (HACE FALTA X) 3) 2 2y 2 y' ' +2y(y' ) = 1; Reemplazando y' , y' ' en la ecuación : dv 2 2y 2 v + 2y(v ) = 1; dy dv v v −1 ; + = dy y 2 y 2 Ecuacion diferencial de Bernoulli, n = -1. z = v 1 − ( −1 ) ; z = v 2; dv dz dz dv = = 2v ; dy dy dv dy Multiplicando 2v a ambos lados de la ecuación : dv 2v .v 2v .v −1 ; + = dy y 2 y2 dz 2 z 1 + = 2; dy y y 2v 2 u( y ) = e y2 ∫ y dy = y 2; dz 2z y 2 + y2 = 2; dy y y [ ] d y2z = 1; dy y 2 z = ∫ dy = y + C ; y 2 z = y + C; 1 C z= + 2; y y v2 = dy = dx y+C ; y2 ⇒ ⇒ v2 = v= 1 C + ; y y2 y+C ; y y+C entonces separando variables y y dy = dx y+C u2 = y + C ; 2 zdz = dy; y = u2 − C; ESPOL 2009 50
  • 51. Ecuaciones Diferenciales Re emplazando en : ∫ y dy = y+C (u ∫ dx ) − C (2udu ) , entonces x + K = u 2u 3 Entonces : x + K = − 2Cu 3 ∫ dx = ∫ 2 1 Pero u = (y + C) ∫ (u 2 ) − C (2du ), 2 Por lo tanto la solución de la forma x = f(y) es : 3 2 (y + C) x+K = 3 4) y' y 2 2 1 − 2C(y + C) + yy' ' − (y' 2 )2 = 0; dy ; dx dv dv dy dv ; = =v dx dy dx dy v= Reemplazando en la ecuación : y' y 2 + yy' ' −(y' )2 = 0; vy 2 + yv y+ dv − (v )2 = 0 ; dy dv v − = 0; dy y dv v − = −y ; dy y u( y ) = e ∫ −dy y = 1 ; y 1 dv 1 v 1 − = −y ; y dy y y y dy = − y 2 + Cy; dx dy dy dy x= ; = + 2 Cy − y Cy C(C − y) ∫ ∫ ∫ La solución es: 1 1 x = ln y − ln C − y + K; C C 1  d  v  y  = −1; dy 1 v = − ∫ dy ; y 1 v = −y + C; y v = − y 2 + Cy ; ESPOL 2009 51
  • 52. Ecuaciones Diferenciales Ecuaciones diferenciales de coeficientes constantes 1) Resuelva: y' ' +3y' +2y = sen(e x ); ESPOL 2009 52
  • 54. Ecuaciones Diferenciales 2) Resuelva: si y(0)=3/16 ESPOL 2009 , y’(0)=5/16; 54
  • 55. Ecuaciones Diferenciales y' = C 1 e x − C 2 e − x + y(0) = 1 (tan 2 (x) sec(x) + sec 3 (x)) 2 3 ; 16 Re solviendo : 3 = C1 + C2 ; 16 5 y' (0) = 16 5 1 1 = C1 − C2 + 0 +  16 2 8 1 C1 − C2 = ; 4 7 ; 32 −1 ; C2 = 32 7 x 1 − x tan( x) sec( x ) y= e − e + 32 32 2 C1 = ESPOL 2009 55
  • 56. Ecuaciones Diferenciales 3) Resuelva y' ' −5y' +6y y' '−5y'+6 y = 0 ; y = e rx ; = xe x ; y' = re rx ; y' ' = r 2 e rx ; Reemplazando y, y' , y' ' : e rx [r 2 − 5r + 6] = 0 ; r 245r4 6 = 0 ; 1−2 + 3 Ecuación Característica (r − 3)(r − 2 ) = 0; r1 = 3; r2 = 2 ; y1 = e 3x ; y2 = e2x ; y h = C 1e 3 x + C 2 e 2 x ; 14 244 4 3 Solución hom ogénea Encontremos la solución particular : y' '−5y'+6 y = xe x ; y p = x S [a 0 + a 1 x]e αx ; s = 0; α = 1; y p = [a 0 + a 1 x]e x ; y p = a 0 e x + a 1 xe x ; y'p = a 0 e x + a 1 [xe x + e x ]; y' 'p = a 0 e x + a 1 [xe x + 2e x ]; Reemplazando en la ecuación diferencial no homogénea : y' '−5y'+6 y = xe x ; a 0 e x + a 1 [xe x + 2e x ] − 5[a 0 e x + a 1 [xe x + e x ]] + 6[a 0 e x + a 1 xe x ] = xe x ; (2a 0 − 3a1 )e x + 2a1xe x = xe x ; 2a 0 − 3a 1 = 0 ;  2 a 1 = 1 ; Resolviendo el sistema : 3 1 a0 = ; a1 = ; 4 2 x x y p = a 0 e + a 1 xe ; 3 x 1 x e + xe ; 2 4 y = yh + yp ; yp = 3 1 y = C 1e 3 x + C 2 e 2 x + e x + xe x ; 4 2 ESPOL 2009 56
  • 57. Ecuaciones Diferenciales -x 4) Resuelva: y' +2y' +2y = e cosx; y'+2 y'+2 y = 0 ; y = e rx ; y' = re rx ; y' ' = r 2 e rx ; Reemplazando y, y' , y' ' : e rx [r 2 + 2 r + 2 ] = 0 ; r 2 42r4 2 = 0 ; 1 +2 + 3 Ecuación Característica r1 , 2 = − 2 ± 4 − 4( 2 ) 2 β = 1; λ = −1; y1 = e −x = −1 ± i ; cos x ; −x y 2 = e senx ; y h = C 1 e − x cos x + C 2 e − x senx ; 14444 4444 2 3 Solución hom ogénea Encontremos la solución particular : y' '+2 y'+2 y = e − x cos( x ); y p = x S [a 0 cos x + b 0 senx ]e αx ; s = 0; α = -1 ; y p = [a 0 cos x + b 0 senx ]e − x ; y p = a 0 e − x cos x + b 0 e − x senx ; No se puede asumir esta solución particular ya que contiene términos linealmente dependiente con respecto a mi solución homogénea. s=1 y p = x[a 0 e − x cos x + b 0 e − x senx ]; y p = a 0 xe − x cos x + b 0 xe − x senx ; y'p = a 0 [x(− e − x senx − e − x cos x ) + e − x cos x] + b 0 [x(e − x cos x − e − x senx ) + e − x senx ]; y'p = a 0 [− xe − x senx − xe − x cos x + e − x cos x ] + b 0 [xe − x cos x − xe − x senx + e − x senx ]; y' 'p = a 0 [2 xe − x senx − 2 e − x senx − 2e − x cos x ] + b 0 [− 2 xe − x cos x − 2e − x senx + 2e − x cos x]; Reemplazando y simplificando y p , y'p , y' 'p en la ecuación diferencial no homogénea : y' '+2 y'+2 y = e − x cos( x ); a 0 [− 2 e − x senx ] + b 0 [2e − x cos x ] = e − x cos( x ); − 2a 0 = 0; 2 b 0 = 1; a 0 = 0; 1 b0 = ; 2 ESPOL 2009 57
  • 58. Ecuaciones Diferenciales 1 −x xe sen( x ); 2 y = yh + yp ; yp = y = C 1e − x cos x + C 2 e − x senx + 1 −x xe sen( x); 2 y' ' −2y' + y = cosx + 3e x + x 2 − 1; Encontrando la solución homogénea : y' '−2y' + y = 0 ; y = e rx ; y' = re rx ; y' ' = r 2 e rx ; Reemplazando y, y' , y' ' en la ecuación homogénea : e rx [r 2 − 2r + 1] = 0 ; r 2 − 2r + 1 = 0 ; (r − 1)2 = 0 ; r1 , 2 = 1; y1 = ex ; y 2 = xe x ; y h = C 1 e x + C 2 xe x ; Encontrando la solución particular : y' '−2y' + y = cosx + 3e x + x 2 − 1; Encontrando la primera solución particular : y' '−2y' + y = cosx; Ecuación 1. y p 1 = x s [a cos x + bsenx]; s = 0; y p 1 = a cos x + bsenx; y'p 1 = −asenx + b cos x = a[− senx] + b[cos x]; y' 'p 1 = −a cos x − bsenx = a[− cos x] + b[− senx]; Reemplazando y' ' p1 , y' p1 , y p1 en la ecuacion 1; a[2senx] + b[− 2 cos x] = cosx;  2a = 0; Resolviendo  - 2b = 1; 1 y p1 = − senx ; 2 a = 0; ESPOL 2009 1 b=− ; 2 58
  • 59. Ecuaciones Diferenciales Encontrand o la segunda solución particular : y' ' −2y' + y = 3e x ; Ecuación 2. y p 2 = x s [a ]e x ; s = 0; y p 2 = [a]e x ; No se puede asumir esta solución particular , ya que es lienalmente dependiente con respecto a la solución homogénea. s = 1; y p 2 = x[a]e x ; Tampoco se puede asumir esta solución, por la misma razón anterior. s = 2; y p 2 = x 2 [a]e x ; En este caso, esta solución es linealmente independiente, respecto a la solución homogénea y p 2 = ax 2 e x ; [ = a[x e ] y'p 2 = a x 2 e x + 2 xe x ; y' 'p 2 2 x ] + 4 xe x + 2 e x ; Reemplazando y' ' p2 , y'p2 , y p2 en la ecuación 2. y' ' −2y' + y = 3e x 2 ae x = 3e x ; 3 a= ; 2 La segunda solución particular es : y p2 = 3 2 x xe ; 2 Encontrand o la tercera solución particular : y' ' −2y' + y = x 2 - 1; Ecuación 3. [ ] y p 3 = x s a + bx + cx 2 ; s = 0; y p 3 = a + bx + cx 2 ; y' p 3 = b + 2 cx; y' ' p 3 = 2 c; Reemplazando y' ' p3 , y' p3 , y p3 en la ecuación 2. y' ' −2y' + y = x 2 − 1 2 c − 2[b + 2 cx] + [a + bx + cx 2 ] = x 2 − 1; ESPOL 2009 59
  • 60. Ecuaciones Diferenciales [ 2c − 2 b + a ] + [ 2c + b] x + [ c] x 2 = x 2 − 1; 2c − 2 b + a = −1  −4c + b = 0 c = 1  Resolviendo el sistema: c = 1; b = 4; a = 5; La tercera solución particular: yp 3 = 5 + 4x + x 2 ; y p = y p 1 + y p 2 + yp 3 ; 1 3 y p = − sen(x) + x 2 e x + 5 + 4 x + x 2 ; 2 2 La solución general: y = yh + yp ; 1 3 y = C1 e x + C2 xe x − sen(x) + x 2 e x + 5 + 4 x + x 2 ; 2 2 ESPOL 2009 60
  • 61. Ecuaciones Diferenciales Ecuacion diferencial de Euler – Cauchy 1) Demuestre que la ecuación diferencial x 2 y' ' + αxy' + βy = 0, donde α , β ∈ R , se la puede transformar en una ecuación de coeficientes constantes haciendo el cambio de variable x = e z , y luego resuelva: x 2 y' ' +2xy' +4y = 4sen(lnx) + e 2ln(X) ; Si x = e z ; z = ln( x ); dz 1 = ; dx x Ahora : dy dy dz dy 1 ; = = dx dz dx dz x dy 1 dy ; y' = = dx x dz Se necesita luego y' ' : d 2 y d  dy  =  ; dx 2 dx  dx  d 2 y d  dy  dz =   ; dx 2 dz  dx  dx d2y  1 = dx 2  x  d2y  1 = dx 2  x  d 2 y 1 dx dy  dz  ; − dz 2 x 2 dz dz  dx  d 2 y 1 dy  1 x  ; − dz 2 x 2 dz  x  d 2 y  1 d 2 y 1 dy  ; y'' = 2 =  2 2 − 2  x dz dx x dz    Reemplazando en la ecuación diferencial x 2 y' '+αxy'+βy = 0;  1 d 2 y 1 dy   1 dy   + αx x2 2 2 − 2  + βy = 0 ;   x dz x dz   x dz   dy d 2 y dy − + α + βy = 0 ; 2 dz dz dz 2 dy d y + (α − 1) + βy = 0 ; 2 dz dz Resolviendo la ecuación x 2 y' ' +2xy' +4y = 4sen(lnx) + e 2ln(X) ; Encontrando primero la solución homogénea : x 2 y' ' +2xy' +4y = 0; d2y dy + (2 − 1) + 4 y = 0 ; 2 dz dz ESPOL 2009 61
  • 62. Ecuaciones Diferenciales y' '+ y'+4 y = 0 ;   e rz  r 24 r 44  = 0 ; 1+ + 23  Ecuación característica  2 r + r + 4 = 0; 1 15 − 1 ± 1 − 16 i; =− ± 2 2 2  15z   y 1 = e −z / 2 cos  2 ;   r1 , 2 =  15z  y 2 = e − z / 2 sen   2 ;    15z   15z  −z / 2   sen y h = C 1 e −z / 2 cos  2 ;  2  + C2e      15 ln( x )   15 ln( x )  ;  + C 2 xsen y h = C 1 x cos     2 2     Ahora encontremos la solución particular : Como se asume que x = e z y z = ln(x), al reemplazar en la ecuación x 2 y' '+2xy'+4y = 4sen(lnx) + 5e 2ln(X) , se obtiene : y'' + y' + 4 y = 4sen(z ) + 5e 2 z ; Donde se tiene 2 soluciones particulares : y'' + y' + 4 y = 4sen(z ); Ecuación 1. La primera solución tiene la siguiente forma : y p = a cos(z) + bsen(z); y'p = −asen(z) + b cos(z) = a[− sen(z )] + b[cos(z)]; y' 'p = −a cos(z) − bsen(z) = a[− cos(z)] + b[− sen(z)]; Reemplazando y' ' p , y' p , y p en la ecuación 1 : y'' + y' + 4 y = 4sen(z ); Ecuación 1. a[3 cos(z) − sen(z)] + b[3sen(z) + cos(z)] = 4sen(z); 3a + b = 0  − a + 3 b = 4 Resolviendo el sistema se obtiene : 6 2 b= ; a=− ; 5 5 2 6 y p 1 = − cos(z) + sen(z); 5 5 2 6 y p 1 = − cos(ln(x)) + sen(ln(x)); 5 5 Encontrando la segunda la solución particular : y'' + y' + 4 y = 5e 2 z ; Ecuación 2. ESPOL 2009 62
  • 63. Ecuaciones Diferenciales Se asume la siguiente solución : y p2 = ae 2 z ; y' p2 = 2ae 2 z ; y' ' p2 = 4ae 2 z ; Reemplazando y' ' p2 , y' p2 , y p2 en la ecuación 2 : y'' + y' + 4 y = 5e 2 z ; Ecuación 2. 4ae 2 z + 2ae 2 z + 4ae 2 z = 5e 2 z ; 10ae 2 z = 5e 2 z ; 1 a= ; 2 1 y p2 = e 2z ; 2 x2 1 ; y p 2 = e 2 ln( x ) = 2 2 y p = y p1 + y p2 ; x2 6 2 ; y p = − cos(ln(x)) + sen(ln(x)) + 2 5 5 y = yh + yp ;  15 ln( x )  2  15 ln( x)  6 x2  − cos(ln(x )) + sen(ln(x )) +  + C 2 xsen y = C 1 x cos ;  5    2 2 5 2     2 2) Resuelva: ( x − 2 ) y' ' +3( x − 2 )y' + y = ln z Si x - 2 = e ; entonces 2 ( x − 2) − 5ln ( x − 2) + 6; z = ln( x − 1); dz 1 = ; dx x − 2 Ahora : dy dy dz dy 1 = = ; dx dz dx dz x − 2 dy 1 dy = ; y' = dx x − 2 dz Se necesita luego y' ' : d 2 y d  dy  = ;  dx 2 dx  dx  d 2 y d  dy  dz = ;   dx 2 dz  dx  dx d2y  1 d2y 1 dx dy  dz = 2   x − 2 dz 2 − (x − 2 )2 dz dz  dx ; dx   ESPOL 2009 63
  • 64. Ecuaciones Diferenciales dy  1 d2 y  1 d2 y 1 = 2   x − 2 dz 2 − (x − 2 )2 (x − 2 ) dz  x − 2 ; dx   2 2 d y  1 d y dy  1 y'' = 2 =    (x − 2 )2 dz 2 − (x − 2 )2 dz  ; dx   Reemplazando en la ecuación diferencial homog{enea : (x - 2)2 y' '+3(x - 2)y'+ y = 0;  1 d2 y dy  1  1 dy   + 3(x − 2 )  (x − 2 )  −  + y = 0; 2 2 2  (x − 2 ) dz   x − 2 dz   (x − 2 ) dz dy d 2 y dy − +3 + y = 0; 2 dz dz dz dy d2 y + (3 − 1 ) + y = 0; 2 dz dz Resolviendo la ecuación y' '+2y'+ y = 0 ; 2 d2 y dy +2 + y = 0; 2 dz dz y = e rz ; y' = re rz ; y' ' = r 2 e rz ; Reemplazando y, y' , y' ' en la ecuación homogénea :   e rz  r 242r + 1  = 0 ; 1+24 3  Ecuación Característica  2 r + 2r + 1 = 0 ; (r + 1)2 = 0 ; r1 , 2 = −1; y 1 = e −z ; y 2 = ze −z ; y h = C 1e −z + C 2 ze −z ; z = ln (x − 2 ); y h = C 1e −z + C 2 ze −z ; y h = C 1e −ln ( x − 2 ) + C 2 ln (x − 2 )e −ln (x − 2 ) ; C1 C ln (x − 2 ) ; + 2 x−2 x−2 Ahora encontremos la solución particular : yh = Como se asume que x - 2 = e z y z = ln(x - 2), al reemplazar en la ecuación ( x - 2)2 y' '+3( x - 2)y' + y = ln 2 ( x − 2) − 5ln( x − 2) + 6; , se obtiene : y'' + 2 y' + y = z 2 − 5z + 6 ; ESPOL 2009 64
  • 65. Ecuaciones Diferenciales Donde la solución particular tiene la siguiente forma : y p = x S [a + bz + cz 2 ]; s = 0; y p = [a + bz + cz 2 ]; y' p = b + 2 cz; y' 'p = 2 c ; Reemplazando y' ' p , y' p , y p en la ecuación y' '+2y' + y = z 2 − 5z + 6; 2 c + 2(b + 2 cz) + (a + bz + cz 2 ) = z 2 − 5z + 6 ; 2 c + 2 b + a = 6  4c + b = - 5 c = 1  Resolviendo el sistema : c = 1; b = -9 ; a = 22 ; y p = 22 − 9z + z 2 ; y p = 22 − 9 ln( x − 2 ) + ln 2 ( x − 2 ); y = yh + yp ; y= C1 C ln (x − 2 ) + 2 + 22 − 9 ln( x − 2 ) + ln 2 ( x − 2 ); x−2 x−2 ESPOL 2009 65
  • 66. Ecuaciones Diferenciales x 2 y' '+ xy'+9y = 3tan(3ln(x)) ; 3) Si x = e z , entonces z = ln(x); Encontrand o la solución homogénea : x 2 y' ' + xy' +9y = 0; Usando : d2y dy + (α − 1) + βy = 0 ; 2 dz dz Se obtiene : dy d2y + (1 − 1) + 9y = 0; 2 dz dz d2y + 9y = 0; dz 2 y' '+9 y = 0 ; y = e rz ; y' ' = r 2 e rz ; [ ] e rz r 2 + 9 = 0 ; r 2 + 9 = 0; r = ±3i ; y 1 = cos z ; y 2 = senz ; y h = C 1 cos(3z ) + C 2 sen (3z ); y h = C 1 cos(3 ln( x )) + C 2 sen (3 ln( x )); Encontremo s la solución particular : x 2 y' ' + xy' +9y = 3tan(3ln(x) ) ; Reemplazan do z = ln( x ) y x = e z , se obtiene : y'' + 9 y = 3 tan (3z ); g(z) = 3 tan (3z ); yp = u1y1 + u 2 y 2 ; 0 u'1 = sen 3z g(z ) 3 cos 3z W (y 1 , y 2 ) W (y 1 , y 2 ) = y1 y2 y'1 y'2 ; = cos 3z sen 3z − 3sen 3z 3 cos 3z = 3 cos 2 (3z ) + 3sen 2 (3z ); W (y 1 , y 2 ) = 3 u'1 = − 3 tan (3z )sen (3z ) − sen( 3z )sen( 3z ) ; = 3 cos( 3z ) ESPOL 2009 66
  • 67. Ecuaciones Diferenciales sen 2 ( 3z) 1 − cos 2 ( 3z ) ; =− cos( 3z) cos( 3z ) 1 u' 1 = cos( 3z) − ; cos( 3z) u 1 ' = cos( 3z) − sec( 3z ); u' 1 = − u 1 = ∫ (cos( 3z) − sec( 3z))dz sen( 3z) ln sec( 3z) + tg( 3z) ; − 3 3 cos 3z 0 − 3sen 3z 3 tan( 3z) 3 cos(3z ) tan( 3z ) u' 2 = = W (y 1 , y 2 ) 3 cos( 3z)sen( 3z) ; u' 2 = cos( 3z) u' 2 = sen( 3z); 1 u 2 = ∫ sen( 3z)dz = − cos( 3z ) 3 yp = u1y1 + u2 y2 ; u1 =  sen( 3z) ln sec( 3z ) + tg( 3z)  1 yp =  −  cos( 3z) − cos( 3z)sen( 3z); 3 3   3   y = yh + yp ;  sen( 3z) ln sec( 3z) + tg( 3z)  1 y = C 1 cos(3z ) + C 2 sen (3z ) +  −  cos( 3z) − cos( 3z)sen( 3z); 3 3   3    sen( 3 ln x) ln sec(3 ln x) + tg( 3 ln x)  1 y = C 1 cos(3 ln x) + C 2 sen(3 ln x ) +  −  cos(3 ln x) − cos(3 ln x)sen( 3 ln x); 3 3 3   ESPOL 2009 67
  • 68. Ecuaciones Diferenciales 4) Si y 1 = x −1/2 cosx, y 2 = x −1/2 senx forman un conjunto linealmente independiente y 1 son soluciones de x 2 y' ' + xy' + x 2 − y = 0;   4  1 Hallar la solución particular para x 2 y' ' + xy' + x 2 − y = x 3/2 ; si   4    y  = 0;  2 y' ( ) = 0; Como y 1 = x −1/2 cosx, y y 2 = x −1/2 senx son soluciones de 1  x 2 y' ' + xy' + x 2 − y = 0, entonces se obtiene : 4  y h = C 1 x −1/2 cos x + C 2 x −1/2 senx ; 1  Para encontrar la solución de x 2 y' ' + xy' + x 2 − y = x 3 / 2 ; 4  Se aplica variación de parámetros :  x2 x 3 /2 1  x x2 y'' + 2 y' +  2 − 2  y = 2 ; x x 4x  x x2   y'  1  y'' + +  1 − 2  y = x −1/2 ; 4x  x  yp = u1y1 + u 2 y2 ; g(x) = x −1/2 ; 0 u'1 = y2 g( x ) y' 2 W( y 1 , y 2 ) ; ESPOL 2009 68
  • 69. Ecuaciones Diferenciales x −1/2 cos x x −1/2 senx y2 1 1 = − 1/2 senx − x − 3 / 2 cos x x − 1/2 cos x − x − 3 / 2 senx y' 2 − x 2 2 1 1     W( y 1 , y 2 ) = x − 1/2 cos x x − 1/2 cos x − x − 3 / 2 senx − x − 1/2 senx − x − 1/2 senx − x − 3 / 2 cos x ; 2 2     1 1 W( y 1 , y 2 ) = x − 1 cos 2 x − x − 2 senx cos x + x − 1 sen 2 x + x − 2 senx cos x ; 2 2 2 2 −1 −1 −1 W( y 1 , y 2 ) = x (cos x + sen x ) = x (1) = x ; y1 W( y 1 , y 2 ) = y' 1 W( y 1 , y 2 ) = x − 1 ; 0 x −1 / 2 x − 1 /2 u' 1 = x − 1/2 senx 1 cos x − x − 3 / 2 senx x − 1 senx 2 =− = −sen( x); x −1 x −1 u 1 = ∫ − sen( x )dx = cos x ; x − 1 / 2 cos x 0 1 −3 / 2 − 1 /2 −1 / 2 senx − x cos x x −x 2 u' 2 = ; = W( y 1 , y 2 ) x −1 y1 y' 1 0 g( x) x − 1 cos x u' 2 = = cos x ; x −1 u 2 = senx ; y p = (cos x )(x − 1 / 2 cos x ) + (senx )(x − 1 / 2 senx ) y p = x − 1 / 2 (cos 2 x + sen 2 x ) = x − 1 / 2 (1) = x − 1 / 2 ; y p = x −1 / 2 ; y = yh + yp ; y = C 1 x − 1/2 cos x + C 2 x − 1/2 senx + x − 1 / 2 ;  π Si y  = 0 ; y y' ( π ) = 0; 2 y = C 1 x − 1/2 cos x + C 2 x − 1/2 senx + x − 1 / 2 ; 0 = C1 2 (0 ) + C 2 π 2 (1) + π C 2 = −1 ; C2 2 (1) + π 2 ; π 2 = 0; π −3 / 2 1 −3 / 2 1 −3 / 2  − 1 /2   − 1 /2  x y' = C 1 − x senx − x cos x + C 2 x cos x − x senx − ; 2 2 2     1 1 1    1  1 (0 ) − (− 1) + C 2  (− 1) − (0 ) − ; 0 = C 1 − 2π π  2π π 2π π π   π  ESPOL 2009 69
  • 70. Ecuaciones Diferenciales 1  1   1  0 = C1   − C 2  π  − 2π π ;    2π π  1 C1 C = − 2 ; 2π π 2π π π 1 C1 1 ; = + 2π π 2π π π 1 = C 1 + 2 π; C 1 = 1 − 2 π; y = (1 − 2 π )x −1/2 cos x − x − 1/2 senx + x − 1 /2 ; ESPOL 2009 70
  • 71. Ecuaciones Diferenciales Identidad de Abel 1. Resuelva la siguiente ecuación diferencial usando la identidad de Abel: (1 − 2x − x )y' '+2(1 + x )y'−2y = 0; Si y(0) = y' (0) = 1. 2 Si una solución es y 1 = x + 1; Se usará la identidad de abel : W (y 1 , y 2 ) = e ∫ − p(x)dx ; Donde la ecuación diferencial debe tener la siguiente forma : y' ' + p( x )y' + q(x)y = 0; (1 − 2 x − x ) y'' + 2(1 + x) y'2 y = 0; (1 − 2 x − x ) (1 − 2x − x ) (1 − 2 x − x ) 2 2 2 2 W (y 1 , y 2 ) = y1 y'1 y2 ; y'2 W (y 1 , y 2 ) = x + 1 y2 = (x + 1)y'2 − y 2 ; y'2 1 Entonces : 2 ( 1 + x )dx (x + 1)y'2 − y 2 = e ∫ − (1−2 x −x 2 ) ; ( − 2 − 2 x )dx (x + 1)y'2 − y 2 = e ∫ (1−2 x −x 2 ) ; u( x ) = (1 − 2 x − x ); 2 du = (− 2 − 2 x )dx ; 2 (x + 1)y'2 − y 2 = e ln 1−2 x−x ; (x + 1)y'2 − y 2 = 1 − 2 x − x 2 ; y2 1 − 2x − x2 ; y'2 − = x+1 x+1 dx −∫ 1 x +1 u( x ) = e = ; x+1 y2 1 1 − 2x − x2 = y'2 − ; x+1 (x + 1)2 (x + 1)2 2 d  1  1 − 2x − x ; y2  = (x + 1)2 dx  x + 1   (1 − 2x − x 2 )dx ; 1 y2 = ∫ (x + 1)2 x+1 (2 − 1 − 2x − x 2 )dx ; 1 y2 = ∫ x+1 (x + 1)2 ESPOL 2009 71
  • 72. Ecuaciones Diferenciales 2dx 1 (x + 1)2 dx ; y2 = −∫ +∫ 2 (x + 1 ) (x + 1)2 x+1 1 2dx ; y 2 = − ∫ dx + ∫ (x + 1)2 x+1 2 1 ; y 2 = −x − x+1 x+1 2 1 ; y 2 = −x − x+1 x+1 y 2 = − x (x + 1 ) − 2 ; y 2 = −x 2 − x − 2 ; y = C 1 (x + 1) + C 2 (− x 2 − x − 2 ); Si y(0) = 1; 1 = C 1 (1) + C 2 (− 2 ); Si y' (0) = 1; y' = C 1 + C 2 (− 2x − 1) ; 1 = C 1 + C 2 (− 1); C 1 − C 2 = 1  C 1 − 2C 2 = 1 Resolviendo el sistema : 1  1  C2 C1 C1 - 1 1  0 1 0   → - 2 1  1 - 2 1     = 0; = 1 + 2C 2 ; = 1; La solución es : y = x + 1; ESPOL 2009 72
  • 73. Ecuaciones Diferenciales Método de Reducción de Orden xy' ' +( x + 1)y' + y = 0; 2) Resuelva: Si y 1 = e − x ; Usando el método de reducción de orden : Se asume que y 2 = u( x)y 1 ; y 2 = u( x)e − x ; y'2 = −u( x )e −x + u' ( x)e − x ; y' '2 = −[− u( x)e − x + u' ( x )e −x ] + [− u' ( x)e − x + u' ' ( x)e − x ]; y' '2 = u( x)e − x − 2 u' ( x)e − x + u' ' ( x )e −x ; Reemplazando en la ecuación diferencial xy' ' +( x + 1)y' + y = 0, se obtiene : x[u(x)e − x − 2 u'(x)e −x + u''(x)e − x ] + (x + 1)[− u(x)e − x + u'(x)e − x ] + u(x)e − x = 0 ; u' ' ( x )[xe − x ] + u' ( x )[− 2 xe −x + (x + 1)e − x ] + u( x)[xe − x − (x + 1)e −x + e − x ] = 0 ; u' ' ( x )[xe − x ] + u' ( x )[− xe − x + e − x ] + u( x)[xe −x − xe − x − e −x + e −x ] = 0 ; u' ' ( x )[xe − x ] + u' ( x )[− xe − x + e − x ] + u( x)[0] = 0 ; u' ' ( x )[xe − x ] + u' ( x )[− xe − x + e − x ] = 0 ; Falta y : v(x) = u' (x); v' (x) = u' ' (x); Reemplazando v(x) y v' (x) en la ecuación diferencial : u''(x)[xe −x ] + u'(x)[− xe −x + e − x ] = 0 ; v'(x)[xe −x ] + v(x)[− xe − x + e −x ] = 0 ; dv − x [xe ] = v(x)[xe −x − e −x ]; dx dv  1 = v(x)1 −  ; dx  x dv  1 ∫ v(x) = ∫ 1 − x dx;   ln v( x ) = x − ln x ; ex v( x ) = ; x ex u' ( x) = ; x ESPOL 2009 73
  • 74. Ecuaciones Diferenciales e x dx u( x ) = ∫ ; x +∞ x n−1 u( x ) = ∫ ∑ dx; n =0 n!  1 + ∞ x n−1  u( x ) = ∫  + ∑ dx;  x n=1 n!  +∞ xn u( x ) = ln x + ∑ ; n=1 (n )n! y 2 = u( x ) y1 ; +∞  x n  −x y 2 = ln x + ∑ e ; n =1 (n )n!   La solución es : +∞  xn  y = C1e − x + C 2 ln x + ∑ ; n =1 (n )n!   ESPOL 2009 74
  • 75. Ecuaciones Diferenciales Ecuación homogénea de orden superior 1. Las raíces de la ecuación auxiliar, que corresponden a una cierta ecuación diferencial homogénea de orden 10, con coeficientes constantes, son: 4, 4, 4, 4, 2+3i, 2-3i, 2+3i, 2-3i, 2+3i, 2-3i, Escriba la solución general. Se tienen 4 raíces reales iguales y un par complejo conjugado 3 veces entonces : ( ) ( ) ( y ( x ) = e 4 x C1 + C 2 x + C 3 x 2 + C 4 x 3 + e 2 x cos(3 x ) C 5 + C 6 x + C 7 x 2 + e 2 x sen(3 x ) C8 + C 9 x + C10 x 2 2. y' ' '−6y' '+12y'−8y = 0 φ (m ) = m 3 − 6 m 2 + 12 m − 8 = 0 1 −6 12 2 1 −8 −8 8 4 −4 2 0 φ (m ) = (m − 2 )(m 2 − 4 m + 4 ) = 0 φ (m ) = (m − 2 )3 = 0 → m 1 = m 2 = m 3 = 2 ( y (x ) = e 2 x C 1 + C 2 x + C 3 x 2 ) d 5y + 32y = 0 3. dx 5 φ(m) = m + 32 = 0 → mk = 2e 5 iπ +2πki 5 ; k = 0,1,2,3,4 iπ  π   π  m0, 4 = 2e 5 = 2 cos  + i sen   = 1.618± 1.175i    5   5 m1,5 = 2e i 3π 5   3π   3π   = 2 cos  + i sen   = −0.618± 1.902 i    5   5 m3 = 2eiπ = 2(cos(π ) + i sen(π )) = −2 y(x) = (C1 cos(1.175x) + C2 sen(1.175x))e1.618x + (C3 cos(1.902x) + C4 sen(1.902x))e−0.618x + C5 e −2 x (D − 2D + 5 ) y = 0 φ (m ) = (m − 2m + 5) = 0 φ (m ) = (m − 2m + 5)(m − 2m + 5) = 0 2 2 4. 2 2 2 2 2 ± 4 − 4.1.5 2 ± − 16 = = 1 ± 2i 2 2 = 1 ± 2i m1, 2 = m3, 4 y ( x ) = e x cos(2 x )(C1 + C 2 x ) + e x sen(2 x )(C 3 + C 4 x ) ESPOL 2009 75 )
  • 76. Ecuaciones Diferenciales Ecuaciones de Orden Superior Ecuación no homogénea de orden superior 1. y' ' ' +3y' ' +2y' = x 2 + 4x + 8 y (x ) = y c (x ) + y p (x ) Encuentro la solución complement aria : y ' ' '+ 3 y ' '+ 2 y ' = 0 → φ (m ) = m 3 + 3 m 2 + 2 m = 0 φ (m ) = m (m 2 + 3 m + 2 ) = 0 φ (m ) = m (m + 1)(m + 2 ) = 0 m1 = 0 , m 2 = − 1, m 3 = − 2 → y c ( x ) = C 1 + C 2 e − x + C 3 e − 2 x Encuentro la solución particular : ( g (x ) = x 2 + 4 x + 8 → y p ( x ) = x s Ax 2 + Bx + C ) s = 0 → y p ( x ) = Ax 2 + Bx + C pero no es linealment e independie nte con y c ( x ) ( ) s = 1 → y p ( x ) = x Ax 2 + Bx + C = Ax 3 + Bx 2 + Cx si es l .i. con y c ( x ) y p ( x ) = Ax 3 + Bx 2 + Cx y p ' ( x ) = 3 Ax 2 + 2 Bx + C y p ' ' ( x ) = 6 Ax + 2 B y p ' ' ' (x ) = 6 A y p ' ' '+3 y p ' '+2 y p ' = x 2 + 4 x + 8 ( ) 6 A + 3(6 Ax + 2 B ) + 2 3 Ax 2 + 2 Bx + C = x 2 + 4 x + 8 (6 A)x 2 + (18 A + 4 B )x + (6 A + 6 B + 2C ) = x 2 + 4 x + 8 1  6A = 1 → A =  6  4 − 18 A 1  18 A + 4 B = 4 → B = →B=  4 4  6 A + 6 B + 2C = 8 → C = 8 − 6 A + 6 B → C = 11  2 4  Por lo que decimos : 1 3 1 2 11 x + x + x 6 4 4 Solución general : y p (x ) = y ( x ) = C1 + C 2 e − x + C 3 e −2 x + 1 3 1 2 11 x + x + x 6 4 4 ESPOL 2009 76
  • 77. Ecuaciones Diferenciales 2. y' ' ' − y' ' −4y' +4y = 2x 2 − 4x − 1 + 2x 2 e 2x + 5xe 2x + e 2x y (x ) = y c (x ) + y p (x ) Encuentro la solución complement aria : y ' ' '− y ' '− 4 y '+ 4 y = 0 → φ (m ) = m 3 − m 2 − 4 m + 4 = 0 φ (m ) = m 2 (m − 1) − 4 (m − 1) = 0 φ (m ) = (m − 1)(m 2 − 4 ) = (m − 1)(m − 2 )(m + 2 ) m1 = 1, m 2 = 2 , m 3 = − 2 → y c ( x ) = C1e x + C 2 e 2 x + C 3 e − 2 x Encuentro la solución particular : g (x ) = g 1 ( x ) + g 2 ( x ) ( g 1 ( x ) = 2 x 2 − 4 x − 1 → y p ( x ) = x s Ax 2 + Bx + C ) s = 0 → y p (x ) = Ax 2 + Bx + C si es l .i. con y c ( x ) y p ( x ) = Ax 2 + Bx + C y p ' ( x ) = 2 Ax + B y p ' ' (x ) = 2 A y p ' ' ' (x ) = 0 y p ' ' '− y p ' '− 4 y p '+ 4 y p = 2 x 2 − 4 x − 1 ( ) 0 − 2 A − 4 (2 Ax + B ) + 4 Ax 2 + Bx + C = 2 x 2 − 4 x − 1 (4 A )x 2 + (− 8 A + 4 B )x + (− 2 A − 4 B + 4C ) = 2 x 2 − 4 x − 1 1  4A = 2 → A =  2  − 4 + 8A  − 8 A + 4 B = −4 → B = →B=0  4   − 2 A − 4 B + 4C = − 1 → C = − 1 + 2 A + 4 B → C = 0  4  Por lo que decimos : 1 y p1 (x ) = x 2 2 ( g 2 ( x ) = 2 x 2 e 2 x + 5 xe 2 x + e 2 x → y p ( x ) = x s e 2 x Ax 2 + Bx + C ( ) ) s = 0 → y p (x ) = e 2 x Ax 2 + Bx + C pero no es linealment e independie nte con y c ( x ) ( ) ( ) s = 1 → y p ( x ) = xe 2 x Ax 2 + Bx + C = e 2 x Ax 3 + Bx 2 + Cx si es l .i. con y c ( x ) ( ) ' ( x ) = e (2 Ax + (3 A + 2 B )x + (2 B + 2 C )x + C ) ' ' ( x ) = e (4 Ax + (12 A + 4 B )x + (6 A + 8 B + 4C )x + (2 B + 4 C )) ' ' ' ( x ) = e (8 Ax + (36 A + 8 B )x + (36 A + 24 B + 8C )x + (6 A + 12 B + 12 C )) y p ( x ) = e 2 x Ax 3 + Bx 2 + Cx yp yp yp 2x 2x 2x 3 2 3 3 2 2 y p ' ' '− y p ' '−4 y p '+4 y p = 2 x 2 e 2 x + 5 xe 2 x + e 2 x ( ) e 2 x (12 A)x 2 + (30 A + 8 B )x + (6 A + 10 B + 4C ) = 2 x 2 e 2 x + 5 xe 2 x + e 2 x ESPOL 2009 77
  • 78. Ecuaciones Diferenciales 1  12 A = 2 → A =  6  5 − 30 A  →B=0 30 A + 8 B = 5 → B =  8  6 A + 10 B + 4C = 1 → C = 1 − 6 A − 10 B → C = 0  4  1 y p2 (x ) = x 3 e 2 x 6 1 1 y ( x ) = C1 e x + C 2 e 2 x + C 3 e − 2 x + x 2 + x 3 e 2 x 2 6 ( 3. y'''+y'= csc x) y (x ) = y c (x ) + y p (x ) Encuentro la solución complement aria : y ' ' '+ y ' = 0 → φ (m ) = m 3 + m = 0 φ (m ) = m (m 2 + 1) = 0 m1 = 0 , m 2 = i , m 3 = − i → y c ( x ) = C1 + C 2 cos (x ) + C 3 sen ( x ) Encuentro la solución particular : y p ( x ) = u1 y1 + u 2 y 2 + u 3 y 3 1 W (1, cos ( x ), sen ( x )) = 0 0 cos ( x ) sen ( x ) − sen ( x ) cos (x ) = 1 cos 2 ( x ) + sen 2 ( x ) = 1 − cos ( x ) − sen ( x ) ( ) 0 cos ( x ) sen ( x ) 0 − sen ( x ) cos ( x ) csc ( x ) − cos (x ) − sen ( x )   x  u1 ' = = csc ( x )(1) → u1 = ∫ csc ( x )dx = ln  tan      1  2   0 sen (x ) 0 cos ( x ) csc ( x ) − sen ( x ) u2 ' = = − csc (x ) cos ( x ) → u 2 = − ∫ csc ( x ) cos ( x )dx = ln (csc ( x )) 1 1 cos ( x ) 0 0 − sen ( x ) 0 0 − cos ( x ) csc ( x ) u3 ' = = − csc ( x )sen ( x ) → u 3 = − ∫ 1dx = − x 1   x  y p = ln  tan    (1) + ln (csc ( x ))(cos ( x )) + (− x )sen ( x )    2   1 0 0   x  y p ( x ) = ln  tan    + cos ( x ) ln (csc ( x )) − x sen ( x )    2     x  y ( x ) = C1 + C 2 cos ( x ) + C 3 sen ( x ) + ln  tan    + cos ( x ) ln (csc ( x )) − x sen ( x )    2   ESPOL 2009 78
  • 79. Ecuaciones Diferenciales ( 4. y''' = xln x) y (x ) = y c (x ) + y p (x ) Encuentro la solución complement aria : y ' ' ' = 0 → φ (m ) = m 3 = 0 φ (m ) = m 3 = 0 m1 = 0 , m 2 = 0 , m 3 = 0 → y c ( x ) = C 1 + C 2 x + C 3 x 2 Encuentro la solución particular : y p ( x ) = u 1 y1 + u 2 y 2 + u 3 y 3 1 W (1, cos ( x ), sen ( x )) = 0 0 u1 ' = = x2 1 u2 '= x2 2x 2 0 x 0 1 x ln ( x ) 0 0 0 x2 2x = 1 2x 2 − x 2 = x 2 2 ( ( ) x ln (x ) x 2 → u1 = x2 ) ∫ x ln (x )dx = 1 x2   ln ( x ) −  2  2 x2 0 0 2x x ln ( x ) 2 x x 1 0 2 1 x 1 0 0 x ln ( x ) x ln ( x ).2 x → u 2 = − 2 ∫ ln ( x )dx = − 2 x (ln ( x ) − 1) x2 0 0 0 =− ln ( x ) ln 2 ( x ) dx = ∫ x 2 x2 2 2  ln ( x )  2 1 x  yp =  ln ( x ) −  (1) + (− 2 x (ln ( x ) − 1))( x ) +    2 x 2  2   2 2 x x 2 ln 2 ( x ) − 6 ln ( x ) + 7 no es l .i. ∴ y p = 2 ln 2 ( x ) − 6 ln ( x ) yp = 4 4 Solución general : u3 ' = = x ln ( x ) → u3 = x2 ( y (x ) = C1 + C 2 x + C 3 x 2 + ) ( ) x2 2 ln 2 ( x ) − 6 ln ( x ) 4 ( ) ESPOL 2009 79
  • 80. Ecuaciones Diferenciales Ecuación de Euler de orden n d 3y d 2y dy − x 2 2 − 6x + 18y = 0 3 dx dx dx La resolveremos por dos métodos : 1° Método : 1. x 3 asumo y = x r como solución entonces la escución se reduce a : x 3 r (r − 1)(r − 2)x r −3 − x 2 r (r − 1)x r −2 − 6 xrx r −1 + 18 x r = 0 [r (r − 1)(r − 2) − r (r − 1) − 6r + 18]x r = 0 [r (r − 1)(r − 2) − r (r − 1) − 6r + 18] = 0 r (r − 1)(r − 3) − 6(r − 3) = 0 (r − 3)(r 2 − r − 6) = 0 (r − 3)2 (r + 2) = 0 r1 = r2 = 3 r3 = −2 y ( x ) = (C1 + C 2 ln x )x 3 + C 3 x −2 2° Método : aplicando el cambio x = e t → t = ln x se obtiene : D(D − 1)(D − 2 ) − D(D − 1) − 6 D + 18 = 0 D 3 − 4 D 2 − 3D + 18 = 0 (D − 3)2 (D + 2) = 0 y ' ' '−4 y ' '−3 y '+18 y = 0 ecuación en t φ (m ) = (m − 3)2 (m + 2) = 0 → m1 = 3 m2 = 3 m 3 = −2 y (t ) = C1e 3t + C 2 te 3t + C 3 e −2t y ( x ) = (C1 + C 2 ln x )x 3 + C 3 x −2 d 3y d 2y dy + 2x 2 2 − 10x − 8y = 0 3 dx dx dx asumo y = x r como solución entonces la escución se reduce a : 2. x 3 x 3 r (r − 1)(r − 2)x r −3 + 2 x 2 r (r − 1)x r −2 − 10 xrx r −1 − 8 x r = 0 [r (r − 1)(r − 2) + 2r (r − 1) − 10r − 8]x r [r 2 (r − 1) − 2(5r + 4)] = 0 =0 r 3 − r 2 − 10r − 8 = 0 (r − 4)(r + 1)(r + 2) = 0 r1 = 4 r2 = −1 r3 = −2 y ( x ) = C1 x 4 + C 2 x −1 + C 3 x − 2 ESPOL 2009 80
  • 81. Ecuaciones Diferenciales d 3y d 2y dy − 4x 2 2 + 8x − 8y = 4lnx 3 dx dx dx aplicando el cambio x = e t → t = ln x se obtiene : Encuentro la solución complementaria : D(D − 1)(D − 2) − 4 D(D − 1) + 8D − 8 = 0 D(D − 1)(D − 2) − 4 D(D − 1) + 8(D − 1) = 0 (D − 1)(D(D − 2) − 4 D + 8) = 0 3. x 3 (D − 1)(D 2 − 6 D + 8) = 0 (D − 1)(D − 2)(D − 4) = 0 → y' ' '−7 y' '+14 y '−8 y = 0 ecuación en t φ (m ) = (m − 1)(m − 2)(m − 4) = 0 → m1 = 1 m2 = 2 m3 = 4 y c (t ) = C1e t + C 2 e 2t + C 3 e 4t → y c ( x ) = C1 x + C 2 x 2 + C 3 x 4 Encuentro la solución particular : y ' ' '−7 y ' '+14 y '−8 y = 4t y p = t s ( At + B ) s = 0 → y p = At + B si es linealmente independiente con y c y p = At + B yp '= A y p ''= y p '''= 0 Re emplazando : 0 − 7(0) + 14( A) − 8( At + B ) = 4t (− 8 A)t + (14 A − 8B ) = 4t   − 8A = 4  14 A − 8B = 0  1 2 → y (t ) = − 1 t + 7 → y (x ) = − 1 ln x + 7 p p 7 2 8 2 8 B= 8 1 7 y ( x ) = C1 x + C 2 x 2 + C 3 x 4 − ln x + 2 8 A=− ESPOL 2009 81
  • 82. Ecuaciones Diferenciales d 3y d 2y dy − x 2 2 + 2x − 2y = x 3 3 dx dx dx r asumo y = x como solución entonces la escución se reduce a : 4. x 3 x 3 r (r − 1)(r − 2)x r −3 − x 2 r (r − 1)x r −2 + 2 xrx r −1 − 2 x r = 0 [r (r − 1)(r − 2) − r (r − 1) + 2r − 2]x r = 0 [r (r − 1)(r − 2) − r (r − 1) + 2(r − 1)] = 0 (r − 1)(r (r − 2) − r + 2) = 0 (r − 1)(r (r − 2) − (r − 2)) = 0 (r − 1)2 (r − 2) = 0 r1 = r2 = 1 r3 = 2 y c = (C1 + C 2 ln x )x + C 3 x 2 encuentro la solución particular : y p ( x ) = u1 y1 + u 2 y 2 + u 3 y 3 x ln x x 2 ln x + 1 2 x x ln x = 1 ln x + 1 2 x = x −1 − 1 −1 x 2 x x −1 0 2 x ( W x, x ln x, x 2 u1 ' = ) 0 x ln x x 2 0 ln x + 1 2 x x −1 1 2 x = (2 x )(x ln x ) − (ln x + 1)(x 2 ) → u x 1 x2 2 =x = ∫ x(ln ( x ) − 1)dx = x2  3  ln ( x ) −  2 2  x 0 x2 u2 ' = 1 0 2x 0 1 2 =− (x )(2 x ) − x 2 x x x ln x 0 1 ln x + 1 0 x −1 x → u 2 = − ∫ xdx = − x2 2 x(ln x + 1) − x ln x → u 3 = ∫ 1dx = x x x x2  x2 3 yp = ln ( x ) − ( x ) − ( x ln x ) + ( x )x 2  2  2 2 u3 ' = 0 1 = x3 4 Solución general : yp = y ( x ) = (C1 + C 2 ln x )x + C 3 x 2 + x3 4 ESPOL 2009 82
  • 83. Ecuaciones Diferenciales Ecuaciones de segundo orden de coeficientes variables Solución en serie alrededor de un punto ordinario 1. (x 2 − 1) (x 2 d 2y dy + 3x + xy = 0, 2 dx dx +∞ y (0 ) = 4; y' (0 ) = 6 +∞ +∞ − 1 ∑ C n n(n − 1)x n − 2 + 3 x ∑ C n nx n −1 + x ∑ C n x n = 0 ) n=2 n =1 n =0 +∞ +∞ +∞ n=2 n=2 n =1 +∞ +∞ n=2 n =0 +∞ ∑ C n n(n − 1)x n − ∑ C n n(n − 1)x n − 2 + 3∑ C n nx n + ∑ C n x n +1 = 0 n =0 +∞ +∞ n =1 n =1 ∑ C n n(n − 1)x n − ∑ C n + 2 (n + 2)(n + 1)x n + 3∑ C n nx n + ∑ C n −1x n = 0 +∞ − 2C2 − 6C3 x + 3C1 x + C0 x + ∑ [C n n(n + 2 ) −C n + 2 (n + 2 )(n + 1) +C n −1 ]x n = 0 n=2 − 2C2 = 0 → C2 = 0 − 6C3 + 3C1 + C0 = 0 → C3 = C1 C0 + 2 6 C n n(n + 2 ) −C n + 2 (n + 2 )(n + 1) +C n −1= 0 → C n + 2 = C n n(n + 2 ) +C n −1 ;n≥2 (n + 2)(n + 1) C 2 2(2 + 2 ) +C 1 8C 2 +C 1 C1 = = (2 + 2)(2 + 1) 12 12 C 3(3 + 2 ) +C 2 15C 3+C 2 3C1 C0 = = + n = 3 → C5 = 3 (3 + 2)(3 + 1) 20 8 8 n = 2 → C4 = +∞ y ( x ) = ∑ Cn x n = C0 + C1 x + C2 x 2 + C3 x 3 + .... n =0  x3 x5    x3 x 4 3x5 + + ... → y (0 ) = C0 = 4 y ( x ) = C0 1 + + + ... + C1  x + + 6 8 2 12 8         3 x 2 x3 15 x 4 x 2 5x 4 y ' ( x ) = C0  x + + + ... + C1 1 + + + + ... → y ' (0 ) = C1 = 6 2 8 2 3 8     4 5 11 x 11x + + ... y (x ) = 4 + 6 x + x3 + 3 3 4 ESPOL 2009 83
  • 84. Ecuaciones Diferenciales 2. y' ' − xy' = e − x +∞ ∑ C n(n − 1)x alrededor de x 0 = 0 +∞ n−2 n n=2 − x ∑ C n nx n =1 +∞ ∑ C n(n − 1)x n n=2 n xn − ∑ C n nx = ∑ (− 1) n! n=0 n =1 +∞ n−2 xn = ∑ (− 1) n! n =0 +∞ n −1 +∞ n n xn ∑ Cn+ 2 (n + 2)(n + 1)x − ∑ C n nx = ∑ (− 1) n! n =0 n =0 n =1 +∞ +∞ +∞ n n n +∞ n = 1 + ∑ (− 1) n =1 n =1 2C 2 + ∑ (C n + 2 (n + 2 )(n + 1) − C n n )x n 2C 2 = 1 → C 2 = xn n! 1 2 C n + 2 (n + 2 )(n + 1) − C n n = n = 1 → C 3 = C1 +∞ (− 1)n n! (− 1) n n ≥1 + (n + 2)(n + 1) n!(n + 2)(n + 1) n → C n+2 = C n (− 1)1 → C = C1 − 1 1 + 3 (1 + 2)(1 + 1) 1!(1 + 2)(1 + 1) 6 6 2 n = 2 → C4 = C2 C (− 1) 2 1 1 + = 2 + → C4 = (2 + 2)(2 + 1) 2!(2 + 2)(2 + 1) 6 24 8 3C C (− 1)3 3 1 1 n = 3 → C5 = C3 = 3 − → C4 = 1 − + (3 + 2 )(3 + 1) 3!(3 + 2)(3 + 1) 20 120 40 30 +∞ y ( x ) = ∑ C n x n = C 0 + C1 x + C 2 x 2 + C 3 x 3 + ..... n=0 1 2  C1 1  3 1 4  C1 1  5 x +  −  x + x +  −  x + ...... 2 8  6 6  40 30  3 5 2 3  x   x x x x4 x5 + − x+ + + ....   + − + ....  y ( x ) = C 0 + C1   6 40 6 8 30   2   y ( x ) = C 0 + C1 x + ESPOL 2009 84
  • 85. Ecuaciones Diferenciales 3) Resolver la siguiente ecuación diferencial alrededor del punto ˲" Ŵ. Determine las soluciones homogéneas de esta ecuación diferencial en términos de series indicando a que función converge cada una de ellas. (Sugerencia: para encontrar la solución particular use el método de variación de parámetros). ŵ {˲ $ . ŵ{˳ - Ÿ˲˳ - Ŷ˳ ˲ Desarrollo. ˜{˲{ ˜JJ ˬJ ˮIJˮJ ˲ Se asume: ˳ ( ŵ ˲ ˥JˮJJI˥J ˜{Ŵ{ {˲ $ . ŵ{˳ - Ÿ˲˳ - Ŷ˳ {˲ $ . ŵ{ ˲ Ŵ Ŵ ˥J ˯J J˯JˮJ JJˤ˩JIJ˩J ˳ I {˲{ ($ ( ˳Ȋ I {˲ . ˲ { (# J˥JJ ˲ I {J{{˲{ I {J{{J . ŵ{{˲{ Ŵ # .ŵ Ŵ ˳ȊȊ $ Primero se obtendrá las soluciones homogéneas. Se reemplaza y, y’, y’’ en la ecuación: {˲ $ . ŵ{˳ - Ÿ˲˳ - Ŷ˳ Ŵ {˲ $ . ŵ{ ($ I {J{{J . ŵ{{˲{ $ - Ÿ˲ (# I {J{{˲{ Luego se introduce los coeficientes dentro de las sumatorias ($ I {J{{J . ŵ{{˲{ . Ŵ ($ I {J{{J . ŵ{{˲{ $ - (# # -Ŷ ( I {˲{ ŸI {J{{˲{ - ( Ŵ ŶI {˲{ Se igualan las patencias de x de todas la sumatorias, en este caso a la que más se repite que en este caso es n: ($ I {J{{J . ŵ{{˲{ . Ŵ ($ I {J{{J . ŵ{{˲{ $ - (# ŸI {J{{˲{ - ( ŶI {˲{ Para la m=n–2 Si n = 2, entonces m = 0 Pero n = m + 2 Luego m = n ESPOL 2009 85
  • 86. Ecuaciones Diferenciales ($ I {J{{J . ŵ{{˲{ . - ( ( ŶI {˲{ I $ {J Ŵ - Ŷ{{J - ŵ{{˲{ - (# ŸI {J{{˲{ Se igualan los subíndices de todas las sumatorias al mayor, en este caso n=2. ($ I {J{{J . ŵ{{˲{ . ŶI$ . źI% ˲ . - ($ $ {J ŸI {J{{˲{ - ŶI - ŶI# ˲ - .ŶI$ . źI% ˲ - ŸI# ˲ - ŶI - ŶI# ˲ - ($ I {I {J{{J . ŵ{ . I ($ $ {J - Ŷ{{J - ŵ{{˲{ - ŸI# ˲ ($ ŶI {˲{ Ŵ - Ŷ{{J - ŵ{ - ŸI {J{ - ŶI {{˲{ Se igualan los coeficientes: .ŶI$ - ŶI Ŵ ˥JˮJJI˥J J˥ ˮ˩˥J˥ J˯˥ I$ I .źI% ˲ - źI# ˲ Ŵ ˥JˮJJI˥J J˥ ˮ˩˥J˥ J˯˥ I% I# I {J{{J . ŵ{ . I $ {J - Ŷ{{J - ŵ{ - ŸI {J{ - ŶI Ŵ La fórmula de recurrencia es: I {J{{J . ŵ{ - ŸI {J{ - ŶI J4Ŷ I $ {J - Ŷ{{J - ŵ{ {J$ . J - ŸJ - Ŷ{ {J$ - ŷJ - Ŷ{ {J$ - ŷJ - Ŷ{ I $ I I I {J - Ŷ{{J - ŵ{ {J - Ŷ{{J - ŵ{ {J - Ŷ{{J - ŵ{ {J - Ŷ{{J - ŵ{ I I {J - Ŷ{{J - ŵ{ Por lo tanto: I $ I J4Ŷ Encontrando los coeficientes: ˟˩ J ˟˩ J ˟˩ J ˟˩ J ˟˩ J ˟˩ J Volviendo a la solución: ˳{˲{ ( I ˲ Ŷ ŷ Ÿ Ź ź Ż ˥JˮJJI˥J I ˥JˮJJI˥J I' ˥JˮJJI˥J I ˥JˮJJI˥J I ˥JˮJJI˥J I ˥JˮJJI˥J I I$ I% I I' I I Ŵ I I# I I# I I I - I# ˲ - I$ ˲ $ - I% ˲ % - I ˲ - I' ˲ ' - I ˲ - ˳{˲{ I - I# ˲ - I ˲ $ - I# ˲ % - I ˲ - I# ˲ ' - I ˲ La solución homogénea: ˳{˲{ I ŵ - ˲ $ -˲ - ˲ - - ˲ $ - G { { - I# ˲ - ˲ % - ˲ ' - - ˲ $ # - G { { ESPOL 2009 86
  • 87. Ecuaciones Diferenciales ŵ F - I# ˲{ŵ - ˲ $ - ˲ - - ˲ $ - { ŵ . ˲$ ˲ ŵ ŵ F - I# Ә ә ˳I J˯˥ ŵ - ˲ - ˲$ - ˲% ˳ {I{ I ŵ . ˲$ ŵ.˲ ŵ . ˲$ Ahora se encuentra la solución particular ˳ I Normalizando la ecuación diferencial {˲ $ . ŵ{˳ - Ÿ˲˳ - Ŷ˳ ˳ - Ŷ˳ Ÿ˲˳ - $ $ . ŵ{ {˲ . ŵ{ {˲ Usando el método de variación de parámetros: ˳ ˯# ˳# - ˯$ ˳$ ŵ . ŵ{ ˲{˲ $ ˳# ˳$ }˳ Ȋ ˳ Ȋ} # $ ŵ ˲ ŵ . ˲$ ŵ . ˲$ Ӷ Ӷ Ŷ˲ ŵ - ˲$ {ŵ . ˲ $ {$ {ŵ . ˲ $ {$ Encontrando el wronskiano: ˣ{˳# ˳$ { ˣ{˳# ˳$ { ˖JJˤ˥ ˯# ˯# ˖JJˤ˥ ˯$ ˳# Ŵ ˳$ ŵ ˳$ Ȋ ˲{˲ $ . ŵ{ ˣ{˳# ˳$ { ŵ {ŵ . ˲ $ {$ ŵ {ŵ . ˲ $ {$ Ŵ ŵ ˳# Ȋ ˲{˲ $ . ŵ{ ˣ{˳# ˳$ { ŵ ˲ ŵ . ˲$ Ӷ ŵ ŵ - ˲$ Ӷ $ . ŵ{ {ŵ . ˲ $ {$ ˲{˲ ŵ {ŵ . ˲ $ {$ ˥JˮJJI˥J ˯# ŵ ŵ . ˲$ Ӷ Ŷ˲ {ŵ . ˲ $ {$ . ˳ La solución general es: ˳{˲{ I , se obtiene: ŵ {ŵ . ˲ $ {$ Ŵ Ŵ Ӷ ŵ . ŵ{ ˲{˲ $ ŵ {ŵ . ˲ $ {$ ŵ ˥JˮJJI˥J ˯$ ˲ Por lo tanto a solución particular es: ˯$ # .Ž {˲{ ˲ ŵ ˲{ŵ . ˲ $ {$ ŵ {ŵ . ˲ $ {$ . ˳ ˯# ˳# - ˯$ ˳$ ŵ ˲ ˲ F . Ž {˲{ $ ŵ.˲ ŵ . ˲$ ˲ ŵ ˲ ŵ F - I# Ә ә-˲ F . Ž {˲{ $ $ $ ŵ.˲ ŵ.˲ ŵ . ˲$ ŵ.˲ Este es un solucionario de problemas de Ecuaciones Diferenciales correspondiente a la Primera Evaluación, donde constan ejercicios tipo examen. Esta obra ha sido elaborada por Roberto Cabrera y Christian de La Rosa, ex – estudiante de la ESPOL, con el auspicio de la directiva A.E.F.I.E.C. de los años 2006, 2007, 2008. Modificado y corregido dos veces por Roberto Cabrera. ESPOL 2009 87