SlideShare uma empresa Scribd logo
1 de 38
ANÁLISIS DE ESTABILIDAD DE
          TALUDES
4.1 FORMAS DE INESTABILIDAD:
Los fenómenos de inestabilidad mpás frecuentes observados en escombreras corresponden
alos tipos siguientes:
- Deslizamientos superficiales, típicos de escombros sin cohesión. Rápidos y
        bajos vólumenes.
- Deslizamientos profundos, de tipo aproximadamente circular o mixto, con tramos
    paralelos a un contorno base. Materiales con rozamiento y cohesión. El movimiento
    típico es un abombamiento al pie de los taludes.

Las causa de inestabilidad suelen ser:
   • Sobrecargas
   • Socavaciones
   • Erosión interna.
   • Presiones intersticiales por ascenso de nivel freático.
   • Existen además fenómenos de fluencia plástica.
4.2. FORMAS DE ROTURA:
Las formas de reales de superficie de rotura son diversas y depende de:
- La anisotropía del suelo
- La heterogeneidad de los materiales
- Las presiones intersticiales.
    Entre las principales superficies de rotura tenemos:
a) Planas:
    Cuando la estratigrafía presenta alternancias de capas muy diferentes, o cuando la
    longitud de la línea de deslizamiento es muy grande en relación con el espesor de los
    estratos.
b) Circular:
    Se produce en depósitos en los que los materiales presentan una propiedades
    geotécnicas homogéneas.
c) No Circular:
    Es una superficie de rotura mixta que combina una sección circular y un deslizamiento.
    Se presenta en materiales con características diferentes.
d) En Cuña:
    Típica en los casos en que la base de apoyo no es lo suficiente resistente para soportar
    el peso de los estériles
- Terrenos homogéneos
- Materiales con Angulo de
  fricción y cohesión
- Hay abombamiento en el
  pie
- Fracturación
- Fallas que interceptan
  el talud
- Intercalación de estratos
  de diferente resistencia
-Diaclasas
-Base de apoyo poco
 resistente
4.3 CLASIFICACIÓN DE LOS MÉTODOS DE CÁLCULO DE ESTABILIDAD

    a) Métodos de cálculo de deformaciones.
       Consideran una ley de comportamiento del material que permite las deformaciones
       y tensiones en los distintos puntos del cuerpo. Su estudio mediante el método de
       elementos finitos u otros numéricos.
    b) Métodos de equilibrio límite.
-   Son los más utilizados, se basan en las leyes de la estática para determinar el estado de
    equilibrio de una masa potencialmente inestable.
-   Los métodos de E.L están contrastados con la práctica.
-   La estabilidad de un talud se cuantifica por medio del Factor de seguridad F, definido
    por:

                      FS = F resist.

                              F Desliz.
-   En la obtención del factor de seguridad se le supone constante en toda la superficie de
    deslizamiento.
-   Siguen la ley lineal de coulomb:


                       t = c + otgø

Donde:

T = Tensión tangencial máxima en un punto de la superficie de deslizamiento.
C = Cohesión de la superficie de deslizamiento.
O = Tensión normal a la superficie de deslizamiento en el punto considerado.
Ø = Angulo de rozamiento interno de la superficie de deslizamiento.

-   Cuando la superficie de rotura no es conocida (caso más frecuente) se calculan los
    factores de seguridad correspondientes a un cierto número de superficies y se define
    como factor de seguridad de talud el mínimo obtenido.
-   Trabajan con tensiones efectivas.
-   Se seleccionan diversas superficies de rotura hasta llegar a la más critica para el talud
    considerado, que será la que dé un menor coeficiente de seguridad.
-   Estos métodos se clasifican en:

a) Método Exactos:
- Aplicados a roturas planas y curvas.
4.4 DESCRIPCIÓN DE LOS MÉTODOS

4.4.1 MÉTODO DE HOEK Y BRAY.
- Es un método gráfico válido para superficies de rotura circulares.
- Los paso son:
    a) Se elige el tipo de escenario que es probable que se presente sobre la estructura a
       analizare.
    b) Se calcula el valor adimensional:

                  C

               Y*H*tagø

Donde:
T = densidad del material
H = altura del talud
C = cohesión aparente
Ø = ángulo de rozamiento interno.
   c) En los ábacos se sigue el radio del valor encontrado anteriormente hasta que corte
       a la curva que corresponde el ángulo del talud.
   d) Se busca sobre los ejes vertical y horizontal los valores de tagø/FS Y Thfs, a partir
      de los cuales se calcula el valor de FS, más conveniente.
Ejemplo.
Una escombrera de estériles de carbón con nivel freático que surge a ¼ de la altura del
talud. Los parámetros reintentes son: C = 40 KN/m2 , T = 18 KN/m3y ø = 22°.
Hallar el factor de seguridad para H = 50 m y un ángulo de talud de 25°.

                 C            = 0.11

               Y*H*tagø

Con el ábaco número 3 se obtiene los siguientes resultados:

       Tgø = 0.4y       C              = 0.044

       FS             yHFS

El factor de seguridad del talud es 1.01.
4.4.2. MÉTODO PARA ROTURA PLANAR.
- Para hablar propiamente de rotura planar, se deben cumplir dos condiciones:

a) Los rumbos o trazas horizontales del plano del talud y del plano de deslizamiento deben
   ser paralelos, formando entre sí un ángulo máximo de 20°.
b) Los límites laterales de la masa deslizante ha de producir una resistencia al
   deslizamiento despreciable.
- El factor de seguridad es:



    Donde:
     C = Cohesión efectiva en la superficie de deslizamiento.
    Ø = Ángulo de rozamiento interno en la superficie de deslizamiento.
     A = Área de la superficie de deslizamiento, de ancho unidad.
     W = peso de la masa deslizante, de ancho unidad.
     U = Ángulo que forma el plano de deslizamiento con la horizontal.
     U = Resultante de las presiones intersticiales sobre el plano de deslizamiento.
     8 = Ángulo que forma la grieta de tracción con la vertical.
     V = Resultante de las presiones intersticiales sobre la grieta de tracción.
     G = Aceleración de la gravedad.
- Fracturación
- Fallas que interceptan
  el talud
- Intercalación de estratos
  de diferente resistencia
La formula es aplicable al caso en que no se considera la ación del terremoto haciendo
a V = a H= 0 y al caso en que el terreno este seco totalmente U= V = 0.
Si realizamos las siguientes simplificaciones:
- El talud a estudiar es un plano de inclinación Ø. La superficie del terreno que queda
    encima del talud es un plano horizontal.
- No se considera el efecto sísmico.
- La grieta de tracción es vertical.
- La distribución es triangular en las presiones intersticiales que actúan sobre la base de la
    masa deslizante y sobre la grieta de tracción. El valor máximo se da en la intersección
    entre las dos superficies.

Obtendremos las siguientes simplificaciones para la ecuación N² 1:

               A=     H–Z

                      SinUp
Donde:
H = Altura del talud.
Z = Profundidad al límite superior del talud.
Zw =Altura de agua en la grieta de tracción.
T = Peso especifíco de la masa deslizante.
Tw = Peso especifíco del agua

La ecuación (1) puede escribirse en función de los parámetros adimensionales de la forma
siguiente:
Donde:
Ejemplo.
Sea una escombrera con talud que se ajusta al esquema de la fig. N² 35 a con los siguientes
valores geométricos:

H = 36m ; Øt = 60° ; Up = 30° ; z = 18 m ; Zw = 9m.

Las características de la discontinuidad que constituye el plano de deslizamiento son:

C = 2 Tn/ m² y Ø = 35° .
El peso del coeficiente del terreno es Y = 2.5 Tn/m³. Hallar el coeficiente de seguridad.

Calculemos Z/h, reemplazamos los valores tenemos:
Z/ h = 0.50
Z/ z = 0.50
Tw/ t = 0.40 (t w = 1 Tn/m³)
Zw. Z/z . H = 0.25
Calculamos R en (6), obteniendo:
R = 0.4 * 0.25 = 0.10
Hallando P, S y Q en 3,7 y 4, tenemos:
P = 1.00
S = 0.125
Q = 0.36
El factor de seguridad, lo vamos a obtener de la ecuación N° 2:
Ui< Uti
Fig. N° 45: Descomposición vectorial del peso de la cuña
Fig. N° 46: Obtención de Na y Nb en una sección de la
cuña por un plano perpendicular a la línea de intersección
Si sumamos para todas las franjas, tendremos:




Donde:

Mi = cosai (1 + tanaitanØi)
                      Fs

-   Esta ecuación es la que se usa para obtener el factor de seguridad.
-   Como proceso Fs, aparece de modo implícito ha de obtenerse mediante un proceso
    iterativo
-   La simplificación asumida por Bishop hace que este método no cumpla el equilibrio de
    las fuerzas horizontales y es estrictamente cierta si las fuerzas x fueran nulas o si se
    cumple

Ø = Constante
A = constante.
Y estará tanto más alejada de la realidad cuanto mayor sea la variación de estos dos
ángulos.
b) Método de Spencer.

-   La hipótesis de trabajo es que las fuerzas interfranjas están igualmente inclinadas
    respecto a la horizontal Xi = 8Ei.
-   Estableciendo el equilibrio de fuerzas horizontales, obtendremos:

               Ti cosai – NiSenai= - ( Ei – Ei - 1)

Equilibrio de fuerzas verticales:

               Ti senai + Nicosai = Wi – (Xi – Xi-1) = Wi – 8 (Ei – Ei-1)

Tomando momentos:




de la relación de Mohr – colomb:
                Ti = Ci bi + (Ni - Uibi)tanØi
                                Fs
Resolviendo el sistema de 3n ecuaciones con 3n incógnitas, obtendremos un sistema de dos
ecuaciones implícitas en Fs y 8 de la forma:




Donde:
c) Método de Fellenius.

-   La hipótesis es que la resultante de las fuerzas que actúan las caras de las rebanadas es
    paralela a la base de las franjas:
-   Tomando momentos con respecto al centro del circulo:




Estableciendo equilibrio de fuerzas según la dirección Ni, tenemos:

Ni = Wi cosai

De la expresión de Mohr y Coulomb, sumando para todas las franjas y sustituyendo los
valores de      iNi, Ti, de las ecuaciones anteriores, se obtiene el coeficiente de
seguridad, el cual será igual a :
Estabilidad de taludes

Mais conteúdo relacionado

Mais procurados

Consolidación unidimensional de suelos
Consolidación unidimensional de suelosConsolidación unidimensional de suelos
Consolidación unidimensional de suelosLuis Palma
 
Libro de ejercicios resueltos de mecánica de suelos i
Libro de ejercicios resueltos de mecánica de suelos iLibro de ejercicios resueltos de mecánica de suelos i
Libro de ejercicios resueltos de mecánica de suelos iYesy Gonzales
 
Resumen de la norma e 050
Resumen de la norma e 050Resumen de la norma e 050
Resumen de la norma e 050RICHARD CULQUE
 
compactaciones de los suelos
compactaciones de los sueloscompactaciones de los suelos
compactaciones de los suelosEdison Barros
 
Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...
Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...
Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...Emilio Castillo
 
Solucionario de los exámenes de mecánica de suelos II
Solucionario de los exámenes de mecánica de suelos IISolucionario de los exámenes de mecánica de suelos II
Solucionario de los exámenes de mecánica de suelos IISandro Daniel Venero Soncco
 
Ensayo de compactación -Mecánica de Suelos
Ensayo de compactación -Mecánica de SuelosEnsayo de compactación -Mecánica de Suelos
Ensayo de compactación -Mecánica de SuelosLeidy Mena Ruiz
 
Ejercicios de consolidacion
Ejercicios de consolidacionEjercicios de consolidacion
Ejercicios de consolidacionBeli Belizinha C
 
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADOInforme triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADOSANDYSANTOSARRIERTA
 
Informe de corte directo n.t.p 339.171
Informe de corte  directo n.t.p 339.171Informe de corte  directo n.t.p 339.171
Informe de corte directo n.t.p 339.171Yoner Chávez
 
DENSIDAD IN SITU-MÉTODO DEL CONO DE ARENA
DENSIDAD IN SITU-MÉTODO DEL CONO DE ARENADENSIDAD IN SITU-MÉTODO DEL CONO DE ARENA
DENSIDAD IN SITU-MÉTODO DEL CONO DE ARENAedumic
 
Informe del-ensayo-del-cono-de-arena-densidad-en-campo
Informe del-ensayo-del-cono-de-arena-densidad-en-campoInforme del-ensayo-del-cono-de-arena-densidad-en-campo
Informe del-ensayo-del-cono-de-arena-densidad-en-campoAnghelo Salazar Tello
 
8 ava clase resistencia al esfuerzo cortante diapos (1)
8 ava clase   resistencia al esfuerzo cortante diapos (1)8 ava clase   resistencia al esfuerzo cortante diapos (1)
8 ava clase resistencia al esfuerzo cortante diapos (1)Luisses Huaman Fernadez
 

Mais procurados (20)

Terreno de fundacion 2
Terreno de fundacion 2Terreno de fundacion 2
Terreno de fundacion 2
 
Consolidación unidimensional de suelos
Consolidación unidimensional de suelosConsolidación unidimensional de suelos
Consolidación unidimensional de suelos
 
Libro de ejercicios resueltos de mecánica de suelos i
Libro de ejercicios resueltos de mecánica de suelos iLibro de ejercicios resueltos de mecánica de suelos i
Libro de ejercicios resueltos de mecánica de suelos i
 
Resumen de la norma e 050
Resumen de la norma e 050Resumen de la norma e 050
Resumen de la norma e 050
 
compactaciones de los suelos
compactaciones de los sueloscompactaciones de los suelos
compactaciones de los suelos
 
Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...
Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...
Módulo 2: ESFUERZOS Y DEFORMACIONES EN PAVIMENTOS ASFÁLTICOS - FERNANDO SÁNCH...
 
Solucionario de los exámenes de mecánica de suelos II
Solucionario de los exámenes de mecánica de suelos IISolucionario de los exámenes de mecánica de suelos II
Solucionario de los exámenes de mecánica de suelos II
 
Ensayo de compactación -Mecánica de Suelos
Ensayo de compactación -Mecánica de SuelosEnsayo de compactación -Mecánica de Suelos
Ensayo de compactación -Mecánica de Suelos
 
Ejercicios de consolidacion
Ejercicios de consolidacionEjercicios de consolidacion
Ejercicios de consolidacion
 
PROCTOR MODIFICADO
PROCTOR MODIFICADOPROCTOR MODIFICADO
PROCTOR MODIFICADO
 
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADOInforme triaxial  geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
Informe triaxial geotecnia-VIII- ENSAYO TRIAXIAL NO CONSOLIDADO NO DRENADO
 
Pilotes presentacion
Pilotes presentacionPilotes presentacion
Pilotes presentacion
 
Informe de corte directo n.t.p 339.171
Informe de corte  directo n.t.p 339.171Informe de corte  directo n.t.p 339.171
Informe de corte directo n.t.p 339.171
 
DENSIDAD IN SITU-MÉTODO DEL CONO DE ARENA
DENSIDAD IN SITU-MÉTODO DEL CONO DE ARENADENSIDAD IN SITU-MÉTODO DEL CONO DE ARENA
DENSIDAD IN SITU-MÉTODO DEL CONO DE ARENA
 
Mecánica de Suelos I : Análisis de estabilidad de taludes
Mecánica de Suelos I : Análisis de estabilidad de taludesMecánica de Suelos I : Análisis de estabilidad de taludes
Mecánica de Suelos I : Análisis de estabilidad de taludes
 
Suelos de-fundacion-expo
Suelos de-fundacion-expoSuelos de-fundacion-expo
Suelos de-fundacion-expo
 
Informe del-ensayo-del-cono-de-arena-densidad-en-campo
Informe del-ensayo-del-cono-de-arena-densidad-en-campoInforme del-ensayo-del-cono-de-arena-densidad-en-campo
Informe del-ensayo-del-cono-de-arena-densidad-en-campo
 
8 ava clase resistencia al esfuerzo cortante diapos (1)
8 ava clase   resistencia al esfuerzo cortante diapos (1)8 ava clase   resistencia al esfuerzo cortante diapos (1)
8 ava clase resistencia al esfuerzo cortante diapos (1)
 
CAPACIDAD DE CARGA-ING. DE CIMENTACIONES
CAPACIDAD DE CARGA-ING. DE CIMENTACIONESCAPACIDAD DE CARGA-ING. DE CIMENTACIONES
CAPACIDAD DE CARGA-ING. DE CIMENTACIONES
 
SUELOS 1
SUELOS 1SUELOS 1
SUELOS 1
 

Semelhante a Estabilidad de taludes

Metodos de analisis de estabilidad de taludes
Metodos  de analisis de estabilidad de taludesMetodos  de analisis de estabilidad de taludes
Metodos de analisis de estabilidad de taludesCamilo Diaz Garcia
 
Esfuerzo cortante del suelos converted
Esfuerzo cortante  del suelos convertedEsfuerzo cortante  del suelos converted
Esfuerzo cortante del suelos convertedRichardLarino
 
Tema 5 estabilidad de talud
Tema 5 estabilidad de taludTema 5 estabilidad de talud
Tema 5 estabilidad de taludMiguelQuispe76
 
Material didactico de mecanica de suelos vi
Material didactico de mecanica de suelos viMaterial didactico de mecanica de suelos vi
Material didactico de mecanica de suelos viJose Luis Victorio
 
Capítulo 5 Taludes.pptx
Capítulo 5 Taludes.pptxCapítulo 5 Taludes.pptx
Capítulo 5 Taludes.pptxAngeloMoreira13
 
CALCULO PARA ESTABILIDAD DE TALUDES..pptx
CALCULO PARA ESTABILIDAD DE TALUDES..pptxCALCULO PARA ESTABILIDAD DE TALUDES..pptx
CALCULO PARA ESTABILIDAD DE TALUDES..pptxDanielGarcia480931
 
bloque 2 geotecnia.pdf
bloque 2 geotecnia.pdfbloque 2 geotecnia.pdf
bloque 2 geotecnia.pdfMauroCoronel10
 
S2C2: centro de masa, esfuerzo, deformación
S2C2: centro de masa, esfuerzo, deformaciónS2C2: centro de masa, esfuerzo, deformación
S2C2: centro de masa, esfuerzo, deformaciónTareas 911
 
Física: Semana 2 Sesión 1
Física: Semana 2 Sesión 1Física: Semana 2 Sesión 1
Física: Semana 2 Sesión 1guestd088a7
 
Cuarto laboratorio compresión_triaxial
Cuarto laboratorio compresión_triaxialCuarto laboratorio compresión_triaxial
Cuarto laboratorio compresión_triaxialLiszardo Estrella
 
Solicitación por Flexión Pura - Resolución Ejercicio N° 4.pptx
Solicitación por Flexión Pura - Resolución Ejercicio N° 4.pptxSolicitación por Flexión Pura - Resolución Ejercicio N° 4.pptx
Solicitación por Flexión Pura - Resolución Ejercicio N° 4.pptxgabrielpujol59
 
Fisica 1 Laboratorio - ley de hooke
Fisica 1 Laboratorio - ley de hooke Fisica 1 Laboratorio - ley de hooke
Fisica 1 Laboratorio - ley de hooke Joe Arroyo Suárez
 
terzaghi y ecuacion diferencial.pdf
terzaghi y ecuacion diferencial.pdfterzaghi y ecuacion diferencial.pdf
terzaghi y ecuacion diferencial.pdfAlisonPanchi
 

Semelhante a Estabilidad de taludes (20)

Metodos de analisis de estabilidad de taludes
Metodos  de analisis de estabilidad de taludesMetodos  de analisis de estabilidad de taludes
Metodos de analisis de estabilidad de taludes
 
Esfuerzo cortante del suelos converted
Esfuerzo cortante  del suelos convertedEsfuerzo cortante  del suelos converted
Esfuerzo cortante del suelos converted
 
Estabilidad de taludes spencer
Estabilidad de taludes spencerEstabilidad de taludes spencer
Estabilidad de taludes spencer
 
Estabilidad de taludes (2)
Estabilidad de taludes (2)Estabilidad de taludes (2)
Estabilidad de taludes (2)
 
Tema 5 estabilidad de talud
Tema 5 estabilidad de taludTema 5 estabilidad de talud
Tema 5 estabilidad de talud
 
Material didactico de mecanica de suelos vi
Material didactico de mecanica de suelos viMaterial didactico de mecanica de suelos vi
Material didactico de mecanica de suelos vi
 
Capítulo 5 Taludes.pptx
Capítulo 5 Taludes.pptxCapítulo 5 Taludes.pptx
Capítulo 5 Taludes.pptx
 
CALCULO PARA ESTABILIDAD DE TALUDES..pptx
CALCULO PARA ESTABILIDAD DE TALUDES..pptxCALCULO PARA ESTABILIDAD DE TALUDES..pptx
CALCULO PARA ESTABILIDAD DE TALUDES..pptx
 
Teoria de-la-elasticidad
Teoria de-la-elasticidadTeoria de-la-elasticidad
Teoria de-la-elasticidad
 
Momento de inercia
Momento de inercia Momento de inercia
Momento de inercia
 
bloque 2 geotecnia.pdf
bloque 2 geotecnia.pdfbloque 2 geotecnia.pdf
bloque 2 geotecnia.pdf
 
DJSDAJSDL
DJSDAJSDLDJSDAJSDL
DJSDAJSDL
 
Friccion estatica1
Friccion estatica1Friccion estatica1
Friccion estatica1
 
S2C2: centro de masa, esfuerzo, deformación
S2C2: centro de masa, esfuerzo, deformaciónS2C2: centro de masa, esfuerzo, deformación
S2C2: centro de masa, esfuerzo, deformación
 
Física: Semana 2 Sesión 1
Física: Semana 2 Sesión 1Física: Semana 2 Sesión 1
Física: Semana 2 Sesión 1
 
Cuarto laboratorio compresión_triaxial
Cuarto laboratorio compresión_triaxialCuarto laboratorio compresión_triaxial
Cuarto laboratorio compresión_triaxial
 
Diapositiva
DiapositivaDiapositiva
Diapositiva
 
Solicitación por Flexión Pura - Resolución Ejercicio N° 4.pptx
Solicitación por Flexión Pura - Resolución Ejercicio N° 4.pptxSolicitación por Flexión Pura - Resolución Ejercicio N° 4.pptx
Solicitación por Flexión Pura - Resolución Ejercicio N° 4.pptx
 
Fisica 1 Laboratorio - ley de hooke
Fisica 1 Laboratorio - ley de hooke Fisica 1 Laboratorio - ley de hooke
Fisica 1 Laboratorio - ley de hooke
 
terzaghi y ecuacion diferencial.pdf
terzaghi y ecuacion diferencial.pdfterzaghi y ecuacion diferencial.pdf
terzaghi y ecuacion diferencial.pdf
 

Mais de Jose Luis Vega Farfan

Mais de Jose Luis Vega Farfan (10)

Control de polvo
Control de polvo Control de polvo
Control de polvo
 
Costo propiedad operacion de equipo minero
Costo propiedad operacion de equipo mineroCosto propiedad operacion de equipo minero
Costo propiedad operacion de equipo minero
 
Criterios de acortamiento de la duración de un (2)
Criterios de acortamiento de la duración de un (2)Criterios de acortamiento de la duración de un (2)
Criterios de acortamiento de la duración de un (2)
 
Tecnicas de programacion
Tecnicas de programacionTecnicas de programacion
Tecnicas de programacion
 
Tecnica de Reemplazamiento de equipos mineros
Tecnica de Reemplazamiento de equipos minerosTecnica de Reemplazamiento de equipos mineros
Tecnica de Reemplazamiento de equipos mineros
 
Control de proyectos mineros
Control de proyectos minerosControl de proyectos mineros
Control de proyectos mineros
 
Parte 2 matriz 2013
Parte 2 matriz 2013Parte 2 matriz 2013
Parte 2 matriz 2013
 
Parte 1 identificacion y valoracion de impactos (parte i) 2013
Parte 1 identificacion  y valoracion de impactos (parte i) 2013Parte 1 identificacion  y valoracion de impactos (parte i) 2013
Parte 1 identificacion y valoracion de impactos (parte i) 2013
 
Capii eia en vial
Capii eia en vialCapii eia en vial
Capii eia en vial
 
Capítulo i introducción 2012 defi
Capítulo i introducción 2012 defiCapítulo i introducción 2012 defi
Capítulo i introducción 2012 defi
 

Último

Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónLourdes Feria
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñotapirjackluis
 
Estrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxEstrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxdkmeza
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxlupitavic
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...JonathanCovena1
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaDecaunlz
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAJAVIER SOLIS NOYOLA
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfFrancisco158360
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfPaolaRopero2
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfMaritzaRetamozoVera
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxYadi Campos
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxMaritzaRetamozoVera
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxzulyvero07
 
plande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfplande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfenelcielosiempre
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMarjorie Burga
 

Último (20)

Estrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcciónEstrategia de prompts, primeras ideas para su construcción
Estrategia de prompts, primeras ideas para su construcción
 
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niñoproyecto de mayo inicial 5 añitos aprender es bueno para tu niño
proyecto de mayo inicial 5 añitos aprender es bueno para tu niño
 
Estrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxEstrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptx
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
Unidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la InvestigaciónUnidad 3 | Metodología de la Investigación
Unidad 3 | Metodología de la Investigación
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLAACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
ACERTIJO DE POSICIÓN DE CORREDORES EN LA OLIMPIADA. Por JAVIER SOLIS NOYOLA
 
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdfCurso = Metodos Tecnicas y Modelos de Enseñanza.pdf
Curso = Metodos Tecnicas y Modelos de Enseñanza.pdf
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
Medición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptxMedición del Movimiento Online 2024.pptx
Medición del Movimiento Online 2024.pptx
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdfEjercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
Ejercicios de PROBLEMAS PAEV 6 GRADO 2024.pdf
 
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptxSEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
SEXTO SEGUNDO PERIODO EMPRENDIMIENTO.pptx
 
Sesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docxSesión de aprendizaje Planifica Textos argumentativo.docx
Sesión de aprendizaje Planifica Textos argumentativo.docx
 
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptxACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
ACUERDO MINISTERIAL 078-ORGANISMOS ESCOLARES..pptx
 
plande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdfplande accion dl aula de innovación pedagogica 2024.pdf
plande accion dl aula de innovación pedagogica 2024.pdf
 
MAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grandeMAYO 1 PROYECTO día de la madre el amor más grande
MAYO 1 PROYECTO día de la madre el amor más grande
 

Estabilidad de taludes

  • 2. 4.1 FORMAS DE INESTABILIDAD: Los fenómenos de inestabilidad mpás frecuentes observados en escombreras corresponden alos tipos siguientes: - Deslizamientos superficiales, típicos de escombros sin cohesión. Rápidos y bajos vólumenes. - Deslizamientos profundos, de tipo aproximadamente circular o mixto, con tramos paralelos a un contorno base. Materiales con rozamiento y cohesión. El movimiento típico es un abombamiento al pie de los taludes. Las causa de inestabilidad suelen ser: • Sobrecargas • Socavaciones • Erosión interna. • Presiones intersticiales por ascenso de nivel freático. • Existen además fenómenos de fluencia plástica.
  • 3.
  • 4.
  • 5.
  • 6. 4.2. FORMAS DE ROTURA: Las formas de reales de superficie de rotura son diversas y depende de: - La anisotropía del suelo - La heterogeneidad de los materiales - Las presiones intersticiales. Entre las principales superficies de rotura tenemos: a) Planas: Cuando la estratigrafía presenta alternancias de capas muy diferentes, o cuando la longitud de la línea de deslizamiento es muy grande en relación con el espesor de los estratos. b) Circular: Se produce en depósitos en los que los materiales presentan una propiedades geotécnicas homogéneas. c) No Circular: Es una superficie de rotura mixta que combina una sección circular y un deslizamiento. Se presenta en materiales con características diferentes. d) En Cuña: Típica en los casos en que la base de apoyo no es lo suficiente resistente para soportar el peso de los estériles
  • 7. - Terrenos homogéneos - Materiales con Angulo de fricción y cohesión - Hay abombamiento en el pie
  • 8. - Fracturación - Fallas que interceptan el talud - Intercalación de estratos de diferente resistencia
  • 9. -Diaclasas -Base de apoyo poco resistente
  • 10. 4.3 CLASIFICACIÓN DE LOS MÉTODOS DE CÁLCULO DE ESTABILIDAD a) Métodos de cálculo de deformaciones. Consideran una ley de comportamiento del material que permite las deformaciones y tensiones en los distintos puntos del cuerpo. Su estudio mediante el método de elementos finitos u otros numéricos. b) Métodos de equilibrio límite. - Son los más utilizados, se basan en las leyes de la estática para determinar el estado de equilibrio de una masa potencialmente inestable. - Los métodos de E.L están contrastados con la práctica. - La estabilidad de un talud se cuantifica por medio del Factor de seguridad F, definido por: FS = F resist. F Desliz.
  • 11. - En la obtención del factor de seguridad se le supone constante en toda la superficie de deslizamiento. - Siguen la ley lineal de coulomb: t = c + otgø Donde: T = Tensión tangencial máxima en un punto de la superficie de deslizamiento. C = Cohesión de la superficie de deslizamiento. O = Tensión normal a la superficie de deslizamiento en el punto considerado. Ø = Angulo de rozamiento interno de la superficie de deslizamiento. - Cuando la superficie de rotura no es conocida (caso más frecuente) se calculan los factores de seguridad correspondientes a un cierto número de superficies y se define como factor de seguridad de talud el mínimo obtenido. - Trabajan con tensiones efectivas. - Se seleccionan diversas superficies de rotura hasta llegar a la más critica para el talud considerado, que será la que dé un menor coeficiente de seguridad. - Estos métodos se clasifican en: a) Método Exactos: - Aplicados a roturas planas y curvas.
  • 12.
  • 13.
  • 14.
  • 15. 4.4 DESCRIPCIÓN DE LOS MÉTODOS 4.4.1 MÉTODO DE HOEK Y BRAY. - Es un método gráfico válido para superficies de rotura circulares. - Los paso son: a) Se elige el tipo de escenario que es probable que se presente sobre la estructura a analizare. b) Se calcula el valor adimensional: C Y*H*tagø Donde: T = densidad del material H = altura del talud C = cohesión aparente Ø = ángulo de rozamiento interno. c) En los ábacos se sigue el radio del valor encontrado anteriormente hasta que corte a la curva que corresponde el ángulo del talud. d) Se busca sobre los ejes vertical y horizontal los valores de tagø/FS Y Thfs, a partir de los cuales se calcula el valor de FS, más conveniente.
  • 16. Ejemplo. Una escombrera de estériles de carbón con nivel freático que surge a ¼ de la altura del talud. Los parámetros reintentes son: C = 40 KN/m2 , T = 18 KN/m3y ø = 22°. Hallar el factor de seguridad para H = 50 m y un ángulo de talud de 25°. C = 0.11 Y*H*tagø Con el ábaco número 3 se obtiene los siguientes resultados: Tgø = 0.4y C = 0.044 FS yHFS El factor de seguridad del talud es 1.01.
  • 17.
  • 18.
  • 19.
  • 20. 4.4.2. MÉTODO PARA ROTURA PLANAR. - Para hablar propiamente de rotura planar, se deben cumplir dos condiciones: a) Los rumbos o trazas horizontales del plano del talud y del plano de deslizamiento deben ser paralelos, formando entre sí un ángulo máximo de 20°. b) Los límites laterales de la masa deslizante ha de producir una resistencia al deslizamiento despreciable. - El factor de seguridad es: Donde: C = Cohesión efectiva en la superficie de deslizamiento. Ø = Ángulo de rozamiento interno en la superficie de deslizamiento. A = Área de la superficie de deslizamiento, de ancho unidad. W = peso de la masa deslizante, de ancho unidad. U = Ángulo que forma el plano de deslizamiento con la horizontal. U = Resultante de las presiones intersticiales sobre el plano de deslizamiento. 8 = Ángulo que forma la grieta de tracción con la vertical. V = Resultante de las presiones intersticiales sobre la grieta de tracción. G = Aceleración de la gravedad.
  • 21. - Fracturación - Fallas que interceptan el talud - Intercalación de estratos de diferente resistencia
  • 22. La formula es aplicable al caso en que no se considera la ación del terremoto haciendo a V = a H= 0 y al caso en que el terreno este seco totalmente U= V = 0. Si realizamos las siguientes simplificaciones: - El talud a estudiar es un plano de inclinación Ø. La superficie del terreno que queda encima del talud es un plano horizontal. - No se considera el efecto sísmico. - La grieta de tracción es vertical. - La distribución es triangular en las presiones intersticiales que actúan sobre la base de la masa deslizante y sobre la grieta de tracción. El valor máximo se da en la intersección entre las dos superficies. Obtendremos las siguientes simplificaciones para la ecuación N² 1: A= H–Z SinUp
  • 23.
  • 24.
  • 25. Donde: H = Altura del talud. Z = Profundidad al límite superior del talud. Zw =Altura de agua en la grieta de tracción. T = Peso especifíco de la masa deslizante. Tw = Peso especifíco del agua La ecuación (1) puede escribirse en función de los parámetros adimensionales de la forma siguiente:
  • 27. Ejemplo. Sea una escombrera con talud que se ajusta al esquema de la fig. N² 35 a con los siguientes valores geométricos: H = 36m ; Øt = 60° ; Up = 30° ; z = 18 m ; Zw = 9m. Las características de la discontinuidad que constituye el plano de deslizamiento son: C = 2 Tn/ m² y Ø = 35° . El peso del coeficiente del terreno es Y = 2.5 Tn/m³. Hallar el coeficiente de seguridad. Calculemos Z/h, reemplazamos los valores tenemos: Z/ h = 0.50 Z/ z = 0.50 Tw/ t = 0.40 (t w = 1 Tn/m³) Zw. Z/z . H = 0.25 Calculamos R en (6), obteniendo: R = 0.4 * 0.25 = 0.10 Hallando P, S y Q en 3,7 y 4, tenemos: P = 1.00 S = 0.125 Q = 0.36 El factor de seguridad, lo vamos a obtener de la ecuación N° 2:
  • 29.
  • 30.
  • 31.
  • 32. Fig. N° 45: Descomposición vectorial del peso de la cuña
  • 33. Fig. N° 46: Obtención de Na y Nb en una sección de la cuña por un plano perpendicular a la línea de intersección
  • 34. Si sumamos para todas las franjas, tendremos: Donde: Mi = cosai (1 + tanaitanØi) Fs - Esta ecuación es la que se usa para obtener el factor de seguridad. - Como proceso Fs, aparece de modo implícito ha de obtenerse mediante un proceso iterativo - La simplificación asumida por Bishop hace que este método no cumpla el equilibrio de las fuerzas horizontales y es estrictamente cierta si las fuerzas x fueran nulas o si se cumple Ø = Constante A = constante. Y estará tanto más alejada de la realidad cuanto mayor sea la variación de estos dos ángulos.
  • 35. b) Método de Spencer. - La hipótesis de trabajo es que las fuerzas interfranjas están igualmente inclinadas respecto a la horizontal Xi = 8Ei. - Estableciendo el equilibrio de fuerzas horizontales, obtendremos: Ti cosai – NiSenai= - ( Ei – Ei - 1) Equilibrio de fuerzas verticales: Ti senai + Nicosai = Wi – (Xi – Xi-1) = Wi – 8 (Ei – Ei-1) Tomando momentos: de la relación de Mohr – colomb: Ti = Ci bi + (Ni - Uibi)tanØi Fs
  • 36. Resolviendo el sistema de 3n ecuaciones con 3n incógnitas, obtendremos un sistema de dos ecuaciones implícitas en Fs y 8 de la forma: Donde:
  • 37. c) Método de Fellenius. - La hipótesis es que la resultante de las fuerzas que actúan las caras de las rebanadas es paralela a la base de las franjas: - Tomando momentos con respecto al centro del circulo: Estableciendo equilibrio de fuerzas según la dirección Ni, tenemos: Ni = Wi cosai De la expresión de Mohr y Coulomb, sumando para todas las franjas y sustituyendo los valores de iNi, Ti, de las ecuaciones anteriores, se obtiene el coeficiente de seguridad, el cual será igual a :