SlideShare uma empresa Scribd logo
1 de 164
Baixar para ler offline
Outline
  Delaunay Mesh and its Generalization
Control of Error in Numerical Simulation
                             Conclusions




      Generalization of Delaunay Meshes
            for the Error Control
          in Numerical Simulations

                             Julien Dompierre

          Department of Mathematics and Computer Science
                        Laurentian University


                      Sudbury, October 2, 2009



                       Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 1
Outline
            Delaunay Mesh and its Generalization
                                                     General Framework
          Control of Error in Numerical Simulation
                                       Conclusions


Outline
  1   Outline
        General Framework
  2   Delaunay Mesh and its Generalization
        Vorono¨ Diagrams and Delaunay Meshes
              ı
        Vorono¨ Diagrams and Delaunay Meshes in Nature
              ı
        Generalization of the Notion of Distance
        Construction of Adapted Anisotropic Meshes
  3   Control of Error in Numerical Simulation
        Interpolation Error
        Approximation Error
        Impact of Mesh Adaptation on Numerical Simulation
        Applications of Spatial Discretization Control
  4   Conclusions
                                 Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 2
Outline
            Delaunay Mesh and its Generalization
                                                     General Framework
          Control of Error in Numerical Simulation
                                       Conclusions


Outline
  1   Outline
        General Framework
  2   Delaunay Mesh and its Generalization
        Vorono¨ Diagrams and Delaunay Meshes
              ı
        Vorono¨ Diagrams and Delaunay Meshes in Nature
              ı
        Generalization of the Notion of Distance
        Construction of Adapted Anisotropic Meshes
  3   Control of Error in Numerical Simulation
        Interpolation Error
        Approximation Error
        Impact of Mesh Adaptation on Numerical Simulation
        Applications of Spatial Discretization Control
  4   Conclusions
                                 Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 3
Outline
          Delaunay Mesh and its Generalization
                                                   General Framework
        Control of Error in Numerical Simulation
                                     Conclusions


General Framework of Numerical Simulation



      CAD System                      Mesh Generator                   Solver



                      CAD Model                            Mesh                     Solution



                                                                       Adaptor




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 4
Outline
         Delaunay Mesh and its Generalization
                                                  General Framework
       Control of Error in Numerical Simulation
                                    Conclusions


General Framework with Feedback



     CAD System                      Mesh Generator                   Solver



                     CAD Model                            Mesh                     Solution



                                                                      Adaptor




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 5
Outline
         Delaunay Mesh and its Generalization
                                                  General Framework
       Control of Error in Numerical Simulation
                                    Conclusions


Mesh Adaptation Loop




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 6
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                           ı
            Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                           ı
          Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                       Conclusions   Construction of Adapted Anisotropic Meshes


Outline
  1   Outline
        General Framework
  2   Delaunay Mesh and its Generalization
        Vorono¨ Diagrams and Delaunay Meshes
              ı
        Vorono¨ Diagrams and Delaunay Meshes in Nature
              ı
        Generalization of the Notion of Distance
        Construction of Adapted Anisotropic Meshes
  3   Control of Error in Numerical Simulation
        Interpolation Error
        Approximation Error
        Impact of Mesh Adaptation on Numerical Simulation
        Applications of Spatial Discretization Control
  4   Conclusions
                                 Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 7
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                         ı
          Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                         ı
        Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                     Conclusions   Construction of Adapted Anisotropic Meshes


Lesson on Voronoi Diagram




  The Voronoi diagrams are partitions of space based on the
  notion of distance.




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 8
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


Voronoi Diagram



                                  Georgy Fedoseevich Vorono¨ April 28,
                                                               ı.
                                  1868, Ukraine – November 20, 1908,
                                  Warsaw.      Nouvelles applications des
                                  param`tres continus ` la th´orie des
                                         e                a       e
                                  formes quadratiques. Recherches sur les
                                  parall´llo`des primitifs. Journal Reine
                                        e e
                                  Angew. Math, Vol 134, 1908.




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 9
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                         ı
          Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                         ı
        Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                     Conclusions   Construction of Adapted Anisotropic Meshes


The Perpendicular Bisector


                                         Let S1 and S2 be two ver-
                             P           tices in I 2 .
                                                   R      The perpendi-
      d(P, S1 )
    S1                                   cular bisector M(S1 , S2 ) is the
                               d(P, S2 ) locus of points equidistant to
                                         S1 and S2 .      M(S1 , S2 ) =
                                                 2
                                   S2    {P ∈ I | d(P, S1 ) = d(P, S2 )},
                                                R
                                         where d(·, ·) is the Euclidean
                  M                      distance between two points of
                                         space.




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 10
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


A Set of Vertices


  Let S = {Si }i=1,...,N be a set of N vertices.


                                     S2             S11
                             S9                                 S10

                     S5           S6           S4         S8

                           S1
                                          S7         S12             S3




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 11
Outline        Vorono¨ Diagrams and Delaunay Meshes
                                                               ı
           Delaunay Mesh and its Generalization          Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                               ı
         Control of Error in Numerical Simulation        Generalization of the Notion of Distance
                                      Conclusions        Construction of Adapted Anisotropic Meshes


The Voronoi Cell

  Definition: The Voronoi cell C(Si ) associated to the vertex Si is
  the locus of points of space which are closer to Si than any other
  vertex:

             C(Si ) = {P ∈ I 2 | d(P, Si ) ≤ d(P, Sj ), ∀j = i}.
                           R



                                                          C(Si )
                                                    Si




                                Julien Dompierre         Delaunay Mesh, Error Control and Numerical Simulation 12
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


The Voronoi Diagram

  The set of Voronoi cells associated with all the vertices of the set
  of vertices is called the Voronoi diagram.




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 13
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                         ı
          Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                         ı
        Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                     Conclusions   Construction of Adapted Anisotropic Meshes


Properties of the Voronoi Diagram




      The Voronoi cells are polygons in 2D, polyhedra in 3D and
      n-polytopes in nD.
      The Voronoi cells are convex.
      The Voronoi cells cover space without overlapping.




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 14
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                         ı
          Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                         ı
        Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                     Conclusions   Construction of Adapted Anisotropic Meshes


What to Retain




  The Voronoi diagrams are partitions of space into cells based
  on the notion of distance.




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 15
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                         ı
          Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                         ı
        Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                     Conclusions   Construction of Adapted Anisotropic Meshes


Lesson on Delaunay Triangulation




  A Delaunay triangulation of a set of vertices is a
  triangulation also based on the notion of distance.




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 16
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


Delaunay Triangulation




                                  Boris Nikolaevich Delone or Delau-
                                  nay. 15 mars 1890, Saint Petersbourg
                                  — 1980. Sur la sph`re vide. A la
                                                        e           `
                                  m´moire de Georges Voronoi, Bulletin of
                                    e
                                  the Academy of Sciences of the USSR,
                                  Vol. 7, pp. 793–800, 1934.




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 17
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                         ı
          Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                         ı
        Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                     Conclusions   Construction of Adapted Anisotropic Meshes


A Set of Vertices




                                    S2             S11
                            S9                                 S10

                    S5           S6           S4         S8

                          S1
                                         S7         S12             S3




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 18
Outline         Vorono¨ Diagrams and Delaunay Meshes
                                                                ı
           Delaunay Mesh and its Generalization           Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                                ı
         Control of Error in Numerical Simulation         Generalization of the Notion of Distance
                                      Conclusions         Construction of Adapted Anisotropic Meshes


Triangulation of a Set of Vertices


  The same set of vertices can be triangulated in many different
  fashions.




                                                    ...




                                Julien Dompierre          Delaunay Mesh, Error Control and Numerical Simulation 19
Outline         Vorono¨ Diagrams and Delaunay Meshes
                                                               ı
          Delaunay Mesh and its Generalization           Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                               ı
        Control of Error in Numerical Simulation         Generalization of the Notion of Distance
                                     Conclusions         Construction of Adapted Anisotropic Meshes


Triangulation of a Set of Vertices



                                                   ...




                                                   ...




                               Julien Dompierre          Delaunay Mesh, Error Control and Numerical Simulation 20
Outline         Vorono¨ Diagrams and Delaunay Meshes
                                                               ı
          Delaunay Mesh and its Generalization           Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                               ı
        Control of Error in Numerical Simulation         Generalization of the Notion of Distance
                                     Conclusions         Construction of Adapted Anisotropic Meshes


Triangulation of a Set of Vertices



                                                   ...




                                                   ...




                               Julien Dompierre          Delaunay Mesh, Error Control and Numerical Simulation 21
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Delaunay Triangulation


  Among all these fashions, there is one (or maybe many)
  triangulation of the convex hull of the set of vertices that is said to
  be a Delaunay triangulation.




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 22
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Empty Sphere Criterion of Delaunay


  Empty sphere criterion: A simplex K satisfies the empty sphere
  criterion if the open circumscribed ball of the simplex K is empty
  (ie, does not contain any other vertex of the triangulation).

                                    K



                                                               K




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 23
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Violation of the Empty Sphere Criterion


  A simplex K does not satisfy the empty sphere criterion if the
  opened circumscribed ball of simplex K is not empty (ie, it
  contains at least one vertex of the triangulation).

                                                             K

                                      K




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 24
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Delaunay Triangulation


  Delaunay Triangulation: If all the simplices K of a triangulation
  T satisfy the empty sphere criterion, then the triangulation is said
  to be a Delaunay triangulation.




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 25
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


Delaunay Algorithm


     The circumscribed                            S3
     sphere of a simplex has
     to be computed.                                                                    S2
                                                                        ρout
     This amounts to
     computing the center of                                    C
     a simplex.
     The center is the point
     at equal distance to all
                                                                          d
     the vertices of the
     simplex.
                                                          S1
                                                                                 P

                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 26
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


Delaunay Algorithm
     How can we know if a
     point P violates the
     empty sphere criterion                       S3
     for a simplex K ?
                                                                                        S2
     The distance d
                                                                        ρout
     between the point P
     and the center C has to                                    C
     be computed.
     If the distance d is
     greater than the radius                                              d
     ρ, the point P is not in
     the circumscribed
     sphere of the simplex                                S1
                                                                                 P
     K.
                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 27
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Duality Delaunay-Vorono¨
                       ı

  The Vorono¨ diagram is the dual of the Delaunay triangulation and
              ı
  vice versa.




  Delaunay triangulations have many regularity properties.
                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 28
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                         ı
          Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                         ı
        Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                     Conclusions   Construction of Adapted Anisotropic Meshes


What to Retain




  The Voronoi diagram of a set of vertices is a partition of
  space into cells based on the notion of distance.

  A Delaunay triangulation of a set of vertices is a
  triangulation also based on the notion of distance.




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 29
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                           ı
            Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                           ı
          Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                       Conclusions   Construction of Adapted Anisotropic Meshes


Outline
  1   Outline
        General Framework
  2   Delaunay Mesh and its Generalization
        Vorono¨ Diagrams and Delaunay Meshes
              ı
        Vorono¨ Diagrams and Delaunay Meshes in Nature
              ı
        Generalization of the Notion of Distance
        Construction of Adapted Anisotropic Meshes
  3   Control of Error in Numerical Simulation
        Interpolation Error
        Approximation Error
        Impact of Mesh Adaptation on Numerical Simulation
        Applications of Spatial Discretization Control
  4   Conclusions
                                 Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 30
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                         ı
          Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                         ı
        Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                     Conclusions   Construction of Adapted Anisotropic Meshes


Vorono¨ and Delaunay in Nature
      ı




  Vorono¨ diagrams and Delaunay triangulations are not just a
         ı
  mathematician’s whim, they represent structures that can be found
  in nature.




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 31
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


Giraffe Hair Coat




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 32
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


A Turtle




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 33
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


A Pineapple




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 34
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


The Devil’s Tower




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 35
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                       ı
        Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                       ı
      Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                   Conclusions   Construction of Adapted Anisotropic Meshes


Dry Mud




                             Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 36
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                         ı
          Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                         ı
        Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                     Conclusions   Construction of Adapted Anisotropic Meshes


Bee Cells




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 37
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                       ı
        Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                       ı
      Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                   Conclusions   Construction of Adapted Anisotropic Meshes


Dragonfly Wings




                             Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 38
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


Fly Eyes




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 39
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                       ı
        Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                       ı
      Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                   Conclusions   Construction of Adapted Anisotropic Meshes


Pop Corn




                             Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 40
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


Carbon Nanotubes




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 41
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


Soap Bubbles




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 42
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                       ı
        Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                       ı
      Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                   Conclusions   Construction of Adapted Anisotropic Meshes


A Geodesic Dome




                             Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 43
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


Biosph`re de Montr´al
      e           e




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 44
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                         ı
          Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                         ı
        Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                     Conclusions   Construction of Adapted Anisotropic Meshes


Streets of Paris




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 45
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


Roads in France




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 46
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


Roads in France




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 47
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                           ı
            Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                           ı
          Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                       Conclusions   Construction of Adapted Anisotropic Meshes


Outline
  1   Outline
        General Framework
  2   Delaunay Mesh and its Generalization
        Vorono¨ Diagrams and Delaunay Meshes
              ı
        Vorono¨ Diagrams and Delaunay Meshes in Nature
              ı
        Generalization of the Notion of Distance
        Construction of Adapted Anisotropic Meshes
  3   Control of Error in Numerical Simulation
        Interpolation Error
        Approximation Error
        Impact of Mesh Adaptation on Numerical Simulation
        Applications of Spatial Discretization Control
  4   Conclusions
                                 Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 48
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                           ı
            Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                           ı
          Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                       Conclusions   Construction of Adapted Anisotropic Meshes


The Key Point of this Lecture


       For a given set of vertices, the Vorono¨ diagram and the
                                              ı
       Delaunay triangulation are partitions of space based on the
       notion of distance.
       The notion of distance can be generalized.
       And so, the notions of Vorono¨ diagram and Delaunay
                                      ı
       triangulation can be generalized.


  J. Dompierre, M.-G. Vallet, P. Labb´ and F. Guibault. “An Analysis of Simplex
                                     e
  Shape Measures for Anisotropic Meshes”. Computer Methods in Applied
  Mechanics and Engineering. vol. 194, p. 4895–4914, 2005



                                 Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 49
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                           ı
            Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                           ı
          Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                       Conclusions   Construction of Adapted Anisotropic Meshes


The Key Point of this Lecture


       For a given set of vertices, the Vorono¨ diagram and the
                                              ı
       Delaunay triangulation are partitions of space based on the
       notion of distance.
       The notion of distance can be generalized.
       And so, the notions of Vorono¨ diagram and Delaunay
                                      ı
       triangulation can be generalized.


  J. Dompierre, M.-G. Vallet, P. Labb´ and F. Guibault. “An Analysis of Simplex
                                     e
  Shape Measures for Anisotropic Meshes”. Computer Methods in Applied
  Mechanics and Engineering. vol. 194, p. 4895–4914, 2005



                                 Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 49
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                           ı
            Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                           ı
          Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                       Conclusions   Construction of Adapted Anisotropic Meshes


The Key Point of this Lecture


       For a given set of vertices, the Vorono¨ diagram and the
                                              ı
       Delaunay triangulation are partitions of space based on the
       notion of distance.
       The notion of distance can be generalized.
       And so, the notions of Vorono¨ diagram and Delaunay
                                      ı
       triangulation can be generalized.


  J. Dompierre, M.-G. Vallet, P. Labb´ and F. Guibault. “An Analysis of Simplex
                                     e
  Shape Measures for Anisotropic Meshes”. Computer Methods in Applied
  Mechanics and Engineering. vol. 194, p. 4895–4914, 2005



                                 Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 49
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


Nikolai Ivanovich Lobachevsky




                                        Nikolai              Ivanovich
                                        LOBACHEVSKY, 1 d´cembre e
                                        1792, Nizhny Novgorod — 24
                                        f´vrier 1856, Kazan.
                                         e




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 50
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


J´nos Bolyai
 a




                                          ´
                                        Janos BOLYAI, 15 d´cembre 1802
                                                              e
                                        ` Kolozsv´r, Empire Austrichien
                                        a         a
                                        (Cluj, Roumanie) — 27 janvier 1860
                                        ` Marosv´s´rhely, Empire Austrichien
                                        a        aa
                                        (Tirgu-Mures, Roumanie).




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 51
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                       ı
        Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                       ı
      Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                   Conclusions   Construction of Adapted Anisotropic Meshes


Bernhard RIEMANN




                                 Georg Friedrich Bernhard RIE-
                                 MANN, 7 septembre 1826, Hanovre
                                                              ¨
                                 — 20 juillet 1866, Selasca. Uber die
                                 Hypothesen welche der Geometrie zu
                                 Grunde liegen. 10 juin 1854.




                             Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 52
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                         ı
          Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                         ı
        Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                     Conclusions   Construction of Adapted Anisotropic Meshes


Non Euclidean Geometry



  Riemann has generalized Euclidean geometry in the plane to
  Riemannian geometry on a surface.

  He has defined the distance between two points on a surface as the
  length of the shortest path between these two points (geodesic).

  He has introduced the Riemannian metric that defines the
  curvature of space.




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 53
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Definition of a Metric


  If S is any set, then the function

                                        d : S×S → I
                                                  R

  is called a metric on S if it satisfies
   (i) d(A, B) ≥ 0 for all A, B in S;
  (ii) d(A, B) = 0 if and only if A = B;
  (iii) d(A, B) = d(B, A) for all A, B in S;
  (iv) d(A, B) ≤ d(A, C ) + d(C , B) for all A, B, C in S.




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 54
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


The Euclidean Distance is a Metric



  In the previous definition of a metric, let the set S be I 2 , the
                                                          R
  function

                d : I 2 ×I 2 → I
                    R R        R
              xA        x
                   × B       →   (xB − xA )2 + (yB − yA )2
              yA        yB

  is a metric on I 2 .
                 R




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 55
Outline      Vorono¨ Diagrams and Delaunay Meshes
                                                             ı
           Delaunay Mesh and its Generalization        Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                             ı
         Control of Error in Numerical Simulation      Generalization of the Notion of Distance
                                      Conclusions      Construction of Adapted Anisotropic Meshes


The Scalar Product is a Metric


  Let a vectorial space with its scalar product ·, · . Then the norm
  of the scalar product of the difference of two elements of the
  vectorial space is a metric.

                        d(A, B) =                   B −A ,
                                                                        1/2
                                        =           B − A, B − A              ,
                                                    − − 1/2
                                                     → →
                                        =           AB, AB    ,
                                                     − T−
                                                      → →
                                        =            AB AB.




                                Julien Dompierre       Delaunay Mesh, Error Control and Numerical Simulation 56
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


The Scalar Product is a Metric


  If the vectorial space is I 2 , then the norm of the scalar product of
                            R
             − →
  the vector AB is the Euclidean distance.

                                                         1/2           − T−
                                                                        → →
            d(A, B) =                B − A, B − A              =       AB AB,
                                                        T
                                           xB − x A            xB − x A
                             =                                          ,
                                           yB − y A            yB − y A

                             =         (xB − xA )2 + (yB − yA )2 .




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 57
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                         ı
          Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                         ı
        Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                     Conclusions   Construction of Adapted Anisotropic Meshes


Metric Tensor



  A metric tensor M is a symmetric positive definite matrix

                                          m11 m12
                           M=                               in 2D,
                                          m12 m22
                                       
                            m11 m12 m13
                      M =  m12 m22 m23  in 3D.
                            m13 m23 m33




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 58
Outline    Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
          Delaunay Mesh and its Generalization      Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
        Control of Error in Numerical Simulation    Generalization of the Notion of Distance
                                     Conclusions    Construction of Adapted Anisotropic Meshes


Metric Length


                 −→
  The length LM (AB) of an edge between vertices A and B in the
  metric M is given by
                            −→                     − − 1/2
                                                    → →
                        LM (AB) =                  AB, AB M ,
                                                   −→    −→
                                          =        AB, M AB 1/2 ,
                                                    − T
                                                     →     −→
                                          =         AB M AB.




                               Julien Dompierre     Delaunay Mesh, Error Control and Numerical Simulation 59
Outline         Vorono¨ Diagrams and Delaunay Meshes
                                                              ı
         Delaunay Mesh and its Generalization           Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                              ı
       Control of Error in Numerical Simulation         Generalization of the Notion of Distance
                                    Conclusions         Construction of Adapted Anisotropic Meshes


Euclidean Length with M = I




         −→                 −→    −→              1/2           − T
                                                                 →   −→
     LM (AB) =              AB, M AB                    =       AB M AB,
                                                        T
                                   xB − x A                    1 0              xB − x A
                    =                                                                            ,
                                   yB − y A                    0 1              yB − y A
         −→
     LE (AB) =                (xB − xA )2 + (yB − yA )2 .




                              Julien Dompierre          Delaunay Mesh, Error Control and Numerical Simulation 60
Outline         Vorono¨ Diagrams and Delaunay Meshes
                                                              ı
         Delaunay Mesh and its Generalization           Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                              ı
       Control of Error in Numerical Simulation         Generalization of the Notion of Distance
                                    Conclusions         Construction of Adapted Anisotropic Meshes

                                                  αβ
Metric Length with M =                            βγ




        −→                 −→    −→               1/2          − T
                                                                →   −→
    LM (AB) =              AB, M AB                     =      AB M AB,
                                                        T
                                  xB − x A                     α β              xB − x A
                   =                                                                             ,
                                  yB − y A                     β γ              yB − y A
        −→
    LM (AB) =               α(xB − xA )2 + 2β(xB − xA )(yB − yA )
                                                                     1/2
                                          +γ(yB − yA )2                    .




                              Julien Dompierre          Delaunay Mesh, Error Control and Numerical Simulation 61
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Length in a Variable Metric


  In the general sense, the metric tensor M is not constant but
  varies continuously for every point of space. The length of a
  parameterized curve γ(t) = {(x(t), y (t), z(t)) , t ∈ [0, 1]} is
  evaluated in the metric
                                       1
                LM (γ) =                   (γ ′ (t))T M (γ(t)) γ ′ (t) dt,
                                   0

  where γ(t) is a point of the curve and γ ′ (t) is the tangent vector
  of the curve at that point. LM (γ) is always bigger or equal to the
  geodesic between the end points of the curve.



                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 62
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                         ı
          Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                         ı
        Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                     Conclusions   Construction of Adapted Anisotropic Meshes


Area and Volume in a Metric


  Area of the triangle K in a metric M:

                           AM (K ) =               det(M) dA.
                                               K



  Volume of the tetrahedron K in a metric M:

                           VM (K ) =               det(M) dV .
                                               K




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 63
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Example of a Metric Tensor Field


  This analytical test case is defined in George and Borouchaki
  (1997).

  The domain is a [0, 7] × [0, 9] rectangle.

  This test case has an anisotropic Riemannian metric defined by :
                                    −2
                                   h1 (x, y )     0
                    M=                         −2                        ,...
                                       0      h2 (x, y )




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 64
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Example of a Metric Tensor Field



  . . . where h1 (x, y ) is given by:
                            
                             1 − 19x/40
                                                          if x ∈ [0, 2],
                            
                             (2x−7)/3
                             20                           if x ∈ ]2, 3.5],
              h1 (x, y ) =
                             5(7−2x)/3
                                                          if x ∈ ]3.5, 5],
                            
                             1 4 x−5 4
                            
                               5 + 5   2                   if x ∈ ]5, 7], . . .




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 65
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                           ı
            Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                           ı
          Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                       Conclusions   Construction of Adapted Anisotropic Meshes


Example of a Metric Tensor Field



  . . . and h2 (x, y ) is given by:
                             
                              1 − 19y /40
                                                            if y ∈ [0, 2],
                             
                              (2y −9)/5
                              20
                                                            if y ∈ ]2, 4.5],
               h2 (x, y ) =       (9−2y )/5
                              5
                             
                                                             if y ∈ ]4.5, 7],
                             
                              1 4 y −7
                                                        4
                              +                             if y ∈ ]7, 9].
                                5    5     2




                                 Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 66
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


Metric and Delaunay Mesh




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 67
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


What to Retain


     What appears to everybody to be a skewed triangle
     could be an equilateral triangle in the corresponding
     skewed space.
     An adpated mesh is a only a regular uniform (probably
     Delaunay) mesh in a skewed space.
     Question 1: From where the Riemannian metric tensor
     come from?
     Question 2: How to build a regular uniform mesh in a
     skewed space?



                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 68
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                           ı
            Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                           ı
          Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                       Conclusions   Construction of Adapted Anisotropic Meshes


Outline
  1   Outline
        General Framework
  2   Delaunay Mesh and its Generalization
        Vorono¨ Diagrams and Delaunay Meshes
              ı
        Vorono¨ Diagrams and Delaunay Meshes in Nature
              ı
        Generalization of the Notion of Distance
        Construction of Adapted Anisotropic Meshes
  3   Control of Error in Numerical Simulation
        Interpolation Error
        Approximation Error
        Impact of Mesh Adaptation on Numerical Simulation
        Applications of Spatial Discretization Control
  4   Conclusions
                                 Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 69
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                         ı
          Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                         ı
        Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                     Conclusions   Construction of Adapted Anisotropic Meshes


Lesson on Mesh Adaptation



  Mesh adaptation is an optimisation problem.

  The optimal mesh usually does not exist.

  Our algorithm is a metaheuristic closed to simulated
  annealing that converges iteratively towards a better mesh.




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 70
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Le crit`re de Delaunay n’est pas un g´n´rateur de maillage
       e                             e e

  Le crit`re de Delaunay permet de relier des sommets pour former
         e
  une triangulation.

  Le crit`re de Delaunay peut “assez facilement” se g´n´raliser ` une
         e                                           e e        a
  m´trique riemannienne.
    e

  Mais, le crit`re n’indique pas combien de sommets il faut g´n´rer
               e                                             e e
  ni o` il faut les g´n´rer.
      u              e e

  Associer un g´n´rateur de sommets ` un algorithme de Delaunay
               e e                    a
  est une approche constructive de la g´n´ration de maillage
                                       e e
  (approche gloutonne, sans retour arri`re).
                                       e


                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 71
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Maillage unitaire

  Un maillage de Delaunay dans la m´trique n’est pas
                                     e
  n´cessairement de la bonne taille.
   e

  On veut plus qu’un maillage de Delaunay dans la m´trique, on en
                                                        e
  veut un de la bonne taille, ie, dont les arˆtes ont une longueur
                                             e
  unitaire avec la m´trique riemannienne.
                    e

  On ne peut pas y arriver de fa¸on directe, mais par des
                                c
  modifications successives.

  Dans la boucle d’adaptation, pour que ca marche bien, le solveur
                                          ¸
  doit converger, le mailleur doit converger, et la boucle compl`te
                                                                e
  solveur-mailleur doit converger.

                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 72
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


La g´n´ration d’un maillage unitaire est un probl`me
    e e                                          e
d’optimisation

  Les degr´s de libert´ sont le nombre et la position des sommets,
           e          e
  ainsi que la connectivit´ entre eux.
                          e

  Le probl`me a une partie continue (la position des sommets) et
          e
  une partie combinatoire (le nombre de sommets et la connectivit´).
                                                                 e
  On consid`re que c’est probablement un probl`me NP-Complet.
            e                                   e

  On approche le maillage optimal avec une m´taheuristique qui
                                                e
  s’apparente ` du recuit-simul´ qui explore l’espace des maillages
              a                e
  possibles.


                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 73
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


M´thode des voisinages
 e

  Soit M l’ensemble des maillages conformes et simpliciaux qui
  discr´tisent un domaine. On veut construire une suite de maillages
        e
  mi ∈ M telle que mi+1 est un maillage dans le voisinage de mi et
  telle que la suite converge vers un maillage optimal.

  Un maillage mi+1 est voisin du maillage mi si mi+1 peut-ˆtre
                                                           e
  obtenu de mi ` l’aide d’une transformation ´l´mentaire et locale.
               a                             ee

  Les op´rateurs de voisinage sont l’ajout ou la suppression d’un
        e
  sommet, la reconnection entre les sommets avec le retournement
  d’un arˆte ou d’une face triangulaire, ou encore le d´placement
         e                                             e
  d’un sommet.


                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 74
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                         ı
          Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                         ı
        Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                     Conclusions   Construction of Adapted Anisotropic Meshes


Ajout d’un sommet




  Le raffinement consiste ` ajouter un sommet au milieu d’une arˆte
                         a                                    e
  trop longue et ` couper en deux les faces et les t´tra`dres
                 a                                  e e
  adjacents.



                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 75
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Omission d’un sommet




  Le maillage peut ˆtre d´raffin´ en enlevant les arˆtes trop courtes.
                     e    e     e                    e
  Les ´l´ments autour de l’arˆte sont d´truits et les deux sommets de
       ee                     e        e
  l’arˆte ne font plus qu’un.
      e




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 76
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Retournement de faces




  Chaque face interne est entour´e de deux t´tra`dres. Cette face
                                 e          e e
  peut ˆtre retourn´e en une arˆte entour´e de trois t´tra`dres.
       e           e           e         e            e e




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 77
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                           ı
            Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                           ı
          Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                       Conclusions   Construction of Adapted Anisotropic Meshes


Retournement d’arˆtes
                 e


                           S4    S3                                       S4   S3

                      S5                                             S5
      A                                              A
                                                 B                                             B

                                      S2                                            S2


                           S1                                             S1


  Une arˆte AB entour´e de n t´tra`dres peut ˆtre retourn´e en n − 2
         e             e       e e             e         e
  triangles qui donnent 2(n − 2) t´tra`dres avec les sommets A et B.
                                  e e
  Quand n augmente, le nombre de configurations retourn´ese
  augmente exponentiellement.




                                 Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 78
Outline        Vorono¨ Diagrams and Delaunay Meshes
                                                               ı
           Delaunay Mesh and its Generalization          Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                               ı
         Control of Error in Numerical Simulation        Generalization of the Notion of Distance
                                      Conclusions        Construction of Adapted Anisotropic Meshes


D´placement d’un sommet
 e

                                   x4                              x3
                                                    k3
                                     k4
                                           x               k2
                           x5      k5
                                                                        x2
                                                    k1
                                           k6
                                   x6                     x1


  Les sommets sont d´plac´s au “centre” de leurs voisins.
                      e    e
  Le “centre” doit ˆtre ´valu´e avec la m´trique riemannienne.
                    e e      e           e
  C’est la seule m´thode disponible pour adapter des maillages
                  e
  structur´s.
          e
                                Julien Dompierre         Delaunay Mesh, Error Control and Numerical Simulation 79
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                           ı
            Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                           ı
          Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                       Conclusions   Construction of Adapted Anisotropic Meshes


Fonction coˆt
           u

  Pour piloter le processus d’optimisation, il faut d´finir une fonction
                                                     e
  coˆt. Pour un simplexe donn´, cette fonction mesure la conformit´
    u                            e                                    e
  en taille et en forme entre le simplexe et la m´trique riemannienne.
                                                  e

  P. Labb´, J. Dompierre, M.-G. Vallet, F. Guibault et J.-Y. Tr´panier. “A
         e                                                     e
  Universal Measure of the Conformity of a Mesh with Respect to an Anisotropic
  Metric Field”. International Journal for Numerical Methods in Engineering.
  vol 61, p. 2675–2695, 2004.

  Y. Sirois, J. Dompierre, M.-G. Vallet et F. Guibault. “Measuring the conformity
  of non-simplicial elements to an anisotropic metric field”, International Journal
  for Numerical Methods in Engineering. vol 64, p. 1944–1958, 2005.



                                 Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 80
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


Georg Friedrich Bernhard RIEMANN




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 81
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Best Grid, 8 ICNGG




  “Best Grid” ` la session poster
               a
  de la 8th International Confer-
  ence on Numerical Grid Gen-
  eration in Computational Field
  Simulations, juin 2002, Hon-
  olulu, Hawa¨I.




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 82
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Meshing Mæstro, 11 IMR




  “Meshing Mæstro” ` la session
                      a
  poster de la 11th International
  Meshing Roundtable, septem-
  bre 2002, Ithaca, New York.


                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 83
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                          ı
           Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                          ı
         Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                      Conclusions   Construction of Adapted Anisotropic Meshes


Adaptation de maillages anisotropes




  En 3D, il reste du travail.
       L’espace n’est pas pavable par des t´tra`dres r´guliers.
                                           e e        e
       L’int´gration ` la CAO est cruciale.
            e        a
       L’algorithme doit ˆtre robuste.
                         e
       Le temps de calcul devient contraignant.




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 84
Outline   Vorono¨ Diagrams and Delaunay Meshes
                                                        ı
         Delaunay Mesh and its Generalization     Vorono¨ Diagrams and Delaunay Meshes in Nature
                                                        ı
       Control of Error in Numerical Simulation   Generalization of the Notion of Distance
                                    Conclusions   Construction of Adapted Anisotropic Meshes


What to Retain



     We want more than just a Delaunay mesh in the
     Riemannian metric. We want a Delaunay UNIT mesh in
     the Riemannian metric.
     Mesh adaptation is a optimisation problem with a
     discrete part and a continuous part.
     Our algorithm is a metaheuristic that converges
     iteratively towards a better mesh by succesive local
     modifications.




                              Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 85
Outline   Interpolation Error
            Delaunay Mesh and its Generalization     Approximation Error
          Control of Error in Numerical Simulation   Impact of Mesh Adaptation on Numerical Simulation
                                       Conclusions   Applications of Spatial Discretization Control


Outline
  1   Outline
        General Framework
  2   Delaunay Mesh and its Generalization
        Vorono¨ Diagrams and Delaunay Meshes
              ı
        Vorono¨ Diagrams and Delaunay Meshes in Nature
              ı
        Generalization of the Notion of Distance
        Construction of Adapted Anisotropic Meshes
  3   Control of Error in Numerical Simulation
        Interpolation Error
        Approximation Error
        Impact of Mesh Adaptation on Numerical Simulation
        Applications of Spatial Discretization Control
  4   Conclusions
                                 Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 86
Outline   Interpolation Error
          Delaunay Mesh and its Generalization     Approximation Error
        Control of Error in Numerical Simulation   Impact of Mesh Adaptation on Numerical Simulation
                                     Conclusions   Applications of Spatial Discretization Control


Lesson on Interpolation Error




  For piecewise linear functions, the interpolation error is
  controlled by second order derivatives.




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 87
Outline   Interpolation Error
           Delaunay Mesh and its Generalization     Approximation Error
         Control of Error in Numerical Simulation   Impact of Mesh Adaptation on Numerical Simulation
                                      Conclusions   Applications of Spatial Discretization Control


L’erreur d’interpolation

                                      u




      a                                                           b
  Soit u la solution exacte d’un probl`me dans l’intervalle [a, b].
                                      e



                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 88
Outline   Interpolation Error
           Delaunay Mesh and its Generalization     Approximation Error
         Control of Error in Numerical Simulation   Impact of Mesh Adaptation on Numerical Simulation
                                      Conclusions   Applications of Spatial Discretization Control


Discr´tisation du domaine
     e

                                      u




     a                          Th                                                          b
  Soit Th une triangulation du domaine.



                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 89
Outline   Interpolation Error
           Delaunay Mesh and its Generalization     Approximation Error
         Control of Error in Numerical Simulation   Impact of Mesh Adaptation on Numerical Simulation
                                      Conclusions   Applications of Spatial Discretization Control


La solution interpol´e Πh u
                    e

                                      u




                                                    Πh u




     a                            Th                             b
  Soit Πh u, la solution u interpol´e sur l’ensemble des fonctions de
                                    e
  base lin´aires d´finies sur la triangulation Th .
          e       e


                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 90
Outline   Interpolation Error
           Delaunay Mesh and its Generalization     Approximation Error
         Control of Error in Numerical Simulation   Impact of Mesh Adaptation on Numerical Simulation
                                      Conclusions   Applications of Spatial Discretization Control


L’erreur d’interpolation u − Πh u

                                      u




                                                    Πh u




     a                           Th                           b
  L’erreur d’interpolation u − Πh u est la diff´rence entre la
                                                e
  solution exacte u et la solution interpol´e Πh u.
                                           e


                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 91
Outline   Interpolation Error
           Delaunay Mesh and its Generalization     Approximation Error
         Control of Error in Numerical Simulation   Impact of Mesh Adaptation on Numerical Simulation
                                      Conclusions   Applications of Spatial Discretization Control


L’erreur d’interpolation u − Πh u

                                      u




                                                    Πh u




     a                           Th                          b
  L’erreur d’interpolation u − Πh u pour des fonctions de base
  lin´aires est domin´e par la d´riv´e seconde.
     e               e          e e


                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 92
Outline   Interpolation Error
           Delaunay Mesh and its Generalization     Approximation Error
         Control of Error in Numerical Simulation   Impact of Mesh Adaptation on Numerical Simulation
                                      Conclusions   Applications of Spatial Discretization Control


Maillage optimal

                                 u



                                                    Πh u




     a                          Th                              b
  Pour un nombre donn´ de sommets, le maillage qui minimise
                          e
  l’erreur d’interpolation u − Πh u est celui qui concentre les
  sommets l` o` la courbure est forte.
              a u

                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 93
Outline   Interpolation Error
           Delaunay Mesh and its Generalization     Approximation Error
         Control of Error in Numerical Simulation   Impact of Mesh Adaptation on Numerical Simulation
                                      Conclusions   Applications of Spatial Discretization Control


Erreur d’interpolation en 2D et 3D



  En 2D, les d´riv´es secondes de la solution u forment une matrice
              e e
  hessienne
                         ∂ 2 u/∂x 2 ∂ 2 u/∂x∂y
                                                  .
                        ∂ 2 u/∂y ∂x ∂ 2 u/∂y 2
  Si on rend la matrice hessienne d´finie positive, elle devient un
                                    e
  tenseur m´trique.
            e
  On d´finit ainsi un estimateur d’erreur anisotrope, qui ouvre la voie
        e
  ` l’adaptation de maillage anisotrope.
  a




                                Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 94
Outline   Interpolation Error
            Delaunay Mesh and its Generalization     Approximation Error
          Control of Error in Numerical Simulation   Impact of Mesh Adaptation on Numerical Simulation
                                       Conclusions   Applications of Spatial Discretization Control


Exemple analytique

  Le domaine Ω est le carr´ [0, 1]×[0, 1]. Le probl`me est d´fini
                          e                        e        e
  comme suit:
                       −∆u + k 2 u = 0 dans Ω
                                  u = g sur ∂Ω,
  o` la condition de Dirichlet g est d´finie de telle sorte que la
   u                                  e
  solution analytique est donn´e par
                               e

                                      u = e −kx + e −ky .

  Cette solution a des couches limites pour de grandes valeurs de k.

  F. Guibault, P. Labb´ et J. Dompierre. “Adaptivity Works! Controling the
                      e
  Interpolation Error in 3D”. Fifth World Congress on Computational Mechanics,
  Vienna University of Technology, 2002.

                                 Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 95
Outline   Interpolation Error
          Delaunay Mesh and its Generalization     Approximation Error
        Control of Error in Numerical Simulation   Impact of Mesh Adaptation on Numerical Simulation
                                     Conclusions   Applications of Spatial Discretization Control


Solution analytique




                           u = e −kx + e −ky ,           k = 100.

                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 96
Outline   Interpolation Error
          Delaunay Mesh and its Generalization     Approximation Error
        Control of Error in Numerical Simulation   Impact of Mesh Adaptation on Numerical Simulation
                                     Conclusions   Applications of Spatial Discretization Control


Maillages adapt´s
               e




      Gauche: Maillage uniforme de 268 sommets.
      Centre: Maillage adapt´ isotrope de 268 sommets.
                            e
      Droite: Maillage adapt´ anisotrope de 260 sommets.
                            e


                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 97
Outline                  Interpolation Error
          Delaunay Mesh and its Generalization                    Approximation Error
        Control of Error in Numerical Simulation                  Impact of Mesh Adaptation on Numerical Simulation
                                     Conclusions                  Applications of Spatial Discretization Control


Erreur d’interpolation
                                                1

                                               0.1

                                              0.01




                           Total L2 error
                                             0.001

                                            0.0001

                                            1e-05

                                            1e-06
                                                        0.01                  0.1
                                                                1/sqrt(N)




      L’erreur d’interpolation en norme L2 converge en O(h2 ).
      Pour obtenir une erreur de 0.001, il faudrait
           200 ´l´ments avec un maillage adapt´ anisotrope,
               ee                             e
           2000 ´l´ments avec un maillage adapt´ isotrope,
                ee                              e
           20000 ´l´ments avec un maillage uniforme.
                  ee

                                             Julien Dompierre     Delaunay Mesh, Error Control and Numerical Simulation 98
Outline   Interpolation Error
          Delaunay Mesh and its Generalization     Approximation Error
        Control of Error in Numerical Simulation   Impact of Mesh Adaptation on Numerical Simulation
                                     Conclusions   Applications of Spatial Discretization Control


What to Retain



  For piecewise linear functions, the interpolation error of a
  function u is dominated by second order derivatives.

  The hessian matrix is used to defined the metric tensor for
  mesh adaptation.

  Adapted anisotropic meshes minimize the interpolation error
  for a given number of nodes.




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 99
Outline   Interpolation Error
            Delaunay Mesh and its Generalization     Approximation Error
          Control of Error in Numerical Simulation   Impact of Mesh Adaptation on Numerical Simulation
                                       Conclusions   Applications of Spatial Discretization Control


Outline
  1   Outline
        General Framework
  2   Delaunay Mesh and its Generalization
        Vorono¨ Diagrams and Delaunay Meshes
              ı
        Vorono¨ Diagrams and Delaunay Meshes in Nature
              ı
        Generalization of the Notion of Distance
        Construction of Adapted Anisotropic Meshes
  3   Control of Error in Numerical Simulation
        Interpolation Error
        Approximation Error
        Impact of Mesh Adaptation on Numerical Simulation
        Applications of Spatial Discretization Control
  4   Conclusions
                                 Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 100
Outline   Interpolation Error
          Delaunay Mesh and its Generalization     Approximation Error
        Control of Error in Numerical Simulation   Impact of Mesh Adaptation on Numerical Simulation
                                     Conclusions   Applications of Spatial Discretization Control


Lesson on Approximation Error




  The approximation error is bounded by the interpolation
  error.




                               Julien Dompierre    Delaunay Mesh, Error Control and Numerical Simulation 101
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations
Generalization of Delaunay Meshes for the Error Control in Numerical Simulations

Mais conteúdo relacionado

Destaque

Organic electronic
Organic electronicOrganic electronic
Organic electronicAzurah Razak
 
Wet & dry batteries
Wet & dry batteriesWet & dry batteries
Wet & dry batteriesmunibz04
 
Estadísticas (por: carlitosrangel)
Estadísticas (por: carlitosrangel)Estadísticas (por: carlitosrangel)
Estadísticas (por: carlitosrangel)Carlos Rangel
 
Webinar : ezpublish pour vos projets e-tourisme
Webinar : ezpublish pour vos projets e-tourismeWebinar : ezpublish pour vos projets e-tourisme
Webinar : ezpublish pour vos projets e-tourismeKaliop-slide
 
Tour Du Monde Images En 3 D Vvvvv
Tour Du Monde Images En 3 D VvvvvTour Du Monde Images En 3 D Vvvvv
Tour Du Monde Images En 3 D Vvvvvdgwest7
 
Doc lock tile
Doc lock tileDoc lock tile
Doc lock tileseoetic
 
Webinar e-tourisme : Créer une expérience utilisateur riche grâce à eZ Publish
Webinar e-tourisme : Créer une expérience utilisateur riche grâce à eZ PublishWebinar e-tourisme : Créer une expérience utilisateur riche grâce à eZ Publish
Webinar e-tourisme : Créer une expérience utilisateur riche grâce à eZ PublishKaliop-slide
 
Chimie 11
Chimie 11Chimie 11
Chimie 11Azgoro
 
Optimisez vos flux commerciaux avec la marketing automation
Optimisez vos flux commerciaux avec la marketing automationOptimisez vos flux commerciaux avec la marketing automation
Optimisez vos flux commerciaux avec la marketing automationKaliop-slide
 
Objectif zéro déchet séminaire energie
Objectif zéro déchet séminaire energieObjectif zéro déchet séminaire energie
Objectif zéro déchet séminaire energiecleantechtahiti
 
Our oxygénothérapie et nébulisation
Our oxygénothérapie et nébulisationOur oxygénothérapie et nébulisation
Our oxygénothérapie et nébulisationSoumaya Lazzem
 
Acr et dsa 2011
Acr et dsa 2011Acr et dsa 2011
Acr et dsa 2011esf3
 
circulation embryonnaire
circulation embryonnairecirculation embryonnaire
circulation embryonnairenoraeah med
 

Destaque (17)

Organic electronic
Organic electronicOrganic electronic
Organic electronic
 
Um cinquentão na academia
Um cinquentão na academiaUm cinquentão na academia
Um cinquentão na academia
 
Wet & dry batteries
Wet & dry batteriesWet & dry batteries
Wet & dry batteries
 
Estadísticas (por: carlitosrangel)
Estadísticas (por: carlitosrangel)Estadísticas (por: carlitosrangel)
Estadísticas (por: carlitosrangel)
 
Webinar : ezpublish pour vos projets e-tourisme
Webinar : ezpublish pour vos projets e-tourismeWebinar : ezpublish pour vos projets e-tourisme
Webinar : ezpublish pour vos projets e-tourisme
 
Tour Du Monde Images En 3 D Vvvvv
Tour Du Monde Images En 3 D VvvvvTour Du Monde Images En 3 D Vvvvv
Tour Du Monde Images En 3 D Vvvvv
 
Doc lock tile
Doc lock tileDoc lock tile
Doc lock tile
 
Webinar e-tourisme : Créer une expérience utilisateur riche grâce à eZ Publish
Webinar e-tourisme : Créer une expérience utilisateur riche grâce à eZ PublishWebinar e-tourisme : Créer une expérience utilisateur riche grâce à eZ Publish
Webinar e-tourisme : Créer une expérience utilisateur riche grâce à eZ Publish
 
Plongee technique semaine sciences
Plongee technique semaine sciencesPlongee technique semaine sciences
Plongee technique semaine sciences
 
Chimie 11
Chimie 11Chimie 11
Chimie 11
 
Optimisez vos flux commerciaux avec la marketing automation
Optimisez vos flux commerciaux avec la marketing automationOptimisez vos flux commerciaux avec la marketing automation
Optimisez vos flux commerciaux avec la marketing automation
 
Tpe mars
Tpe marsTpe mars
Tpe mars
 
Objectif zéro déchet séminaire energie
Objectif zéro déchet séminaire energieObjectif zéro déchet séminaire energie
Objectif zéro déchet séminaire energie
 
Our oxygénothérapie et nébulisation
Our oxygénothérapie et nébulisationOur oxygénothérapie et nébulisation
Our oxygénothérapie et nébulisation
 
Acr et dsa 2011
Acr et dsa 2011Acr et dsa 2011
Acr et dsa 2011
 
Les Vins Blancs
Les Vins BlancsLes Vins Blancs
Les Vins Blancs
 
circulation embryonnaire
circulation embryonnairecirculation embryonnaire
circulation embryonnaire
 

Generalization of Delaunay Meshes for the Error Control in Numerical Simulations

  • 1. Outline Delaunay Mesh and its Generalization Control of Error in Numerical Simulation Conclusions Generalization of Delaunay Meshes for the Error Control in Numerical Simulations Julien Dompierre Department of Mathematics and Computer Science Laurentian University Sudbury, October 2, 2009 Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 1
  • 2. Outline Delaunay Mesh and its Generalization General Framework Control of Error in Numerical Simulation Conclusions Outline 1 Outline General Framework 2 Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes ı Vorono¨ Diagrams and Delaunay Meshes in Nature ı Generalization of the Notion of Distance Construction of Adapted Anisotropic Meshes 3 Control of Error in Numerical Simulation Interpolation Error Approximation Error Impact of Mesh Adaptation on Numerical Simulation Applications of Spatial Discretization Control 4 Conclusions Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 2
  • 3. Outline Delaunay Mesh and its Generalization General Framework Control of Error in Numerical Simulation Conclusions Outline 1 Outline General Framework 2 Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes ı Vorono¨ Diagrams and Delaunay Meshes in Nature ı Generalization of the Notion of Distance Construction of Adapted Anisotropic Meshes 3 Control of Error in Numerical Simulation Interpolation Error Approximation Error Impact of Mesh Adaptation on Numerical Simulation Applications of Spatial Discretization Control 4 Conclusions Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 3
  • 4. Outline Delaunay Mesh and its Generalization General Framework Control of Error in Numerical Simulation Conclusions General Framework of Numerical Simulation CAD System Mesh Generator Solver CAD Model Mesh Solution Adaptor Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 4
  • 5. Outline Delaunay Mesh and its Generalization General Framework Control of Error in Numerical Simulation Conclusions General Framework with Feedback CAD System Mesh Generator Solver CAD Model Mesh Solution Adaptor Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 5
  • 6. Outline Delaunay Mesh and its Generalization General Framework Control of Error in Numerical Simulation Conclusions Mesh Adaptation Loop Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 6
  • 7. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Outline 1 Outline General Framework 2 Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes ı Vorono¨ Diagrams and Delaunay Meshes in Nature ı Generalization of the Notion of Distance Construction of Adapted Anisotropic Meshes 3 Control of Error in Numerical Simulation Interpolation Error Approximation Error Impact of Mesh Adaptation on Numerical Simulation Applications of Spatial Discretization Control 4 Conclusions Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 7
  • 8. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Lesson on Voronoi Diagram The Voronoi diagrams are partitions of space based on the notion of distance. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 8
  • 9. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Voronoi Diagram Georgy Fedoseevich Vorono¨ April 28, ı. 1868, Ukraine – November 20, 1908, Warsaw. Nouvelles applications des param`tres continus ` la th´orie des e a e formes quadratiques. Recherches sur les parall´llo`des primitifs. Journal Reine e e Angew. Math, Vol 134, 1908. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 9
  • 10. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes The Perpendicular Bisector Let S1 and S2 be two ver- P tices in I 2 . R The perpendi- d(P, S1 ) S1 cular bisector M(S1 , S2 ) is the d(P, S2 ) locus of points equidistant to S1 and S2 . M(S1 , S2 ) = 2 S2 {P ∈ I | d(P, S1 ) = d(P, S2 )}, R where d(·, ·) is the Euclidean M distance between two points of space. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 10
  • 11. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes A Set of Vertices Let S = {Si }i=1,...,N be a set of N vertices. S2 S11 S9 S10 S5 S6 S4 S8 S1 S7 S12 S3 Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 11
  • 12. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes The Voronoi Cell Definition: The Voronoi cell C(Si ) associated to the vertex Si is the locus of points of space which are closer to Si than any other vertex: C(Si ) = {P ∈ I 2 | d(P, Si ) ≤ d(P, Sj ), ∀j = i}. R C(Si ) Si Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 12
  • 13. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes The Voronoi Diagram The set of Voronoi cells associated with all the vertices of the set of vertices is called the Voronoi diagram. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 13
  • 14. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Properties of the Voronoi Diagram The Voronoi cells are polygons in 2D, polyhedra in 3D and n-polytopes in nD. The Voronoi cells are convex. The Voronoi cells cover space without overlapping. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 14
  • 15. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes What to Retain The Voronoi diagrams are partitions of space into cells based on the notion of distance. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 15
  • 16. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Lesson on Delaunay Triangulation A Delaunay triangulation of a set of vertices is a triangulation also based on the notion of distance. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 16
  • 17. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Delaunay Triangulation Boris Nikolaevich Delone or Delau- nay. 15 mars 1890, Saint Petersbourg — 1980. Sur la sph`re vide. A la e ` m´moire de Georges Voronoi, Bulletin of e the Academy of Sciences of the USSR, Vol. 7, pp. 793–800, 1934. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 17
  • 18. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes A Set of Vertices S2 S11 S9 S10 S5 S6 S4 S8 S1 S7 S12 S3 Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 18
  • 19. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Triangulation of a Set of Vertices The same set of vertices can be triangulated in many different fashions. ... Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 19
  • 20. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Triangulation of a Set of Vertices ... ... Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 20
  • 21. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Triangulation of a Set of Vertices ... ... Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 21
  • 22. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Delaunay Triangulation Among all these fashions, there is one (or maybe many) triangulation of the convex hull of the set of vertices that is said to be a Delaunay triangulation. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 22
  • 23. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Empty Sphere Criterion of Delaunay Empty sphere criterion: A simplex K satisfies the empty sphere criterion if the open circumscribed ball of the simplex K is empty (ie, does not contain any other vertex of the triangulation). K K Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 23
  • 24. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Violation of the Empty Sphere Criterion A simplex K does not satisfy the empty sphere criterion if the opened circumscribed ball of simplex K is not empty (ie, it contains at least one vertex of the triangulation). K K Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 24
  • 25. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Delaunay Triangulation Delaunay Triangulation: If all the simplices K of a triangulation T satisfy the empty sphere criterion, then the triangulation is said to be a Delaunay triangulation. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 25
  • 26. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Delaunay Algorithm The circumscribed S3 sphere of a simplex has to be computed. S2 ρout This amounts to computing the center of C a simplex. The center is the point at equal distance to all d the vertices of the simplex. S1 P Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 26
  • 27. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Delaunay Algorithm How can we know if a point P violates the empty sphere criterion S3 for a simplex K ? S2 The distance d ρout between the point P and the center C has to C be computed. If the distance d is greater than the radius d ρ, the point P is not in the circumscribed sphere of the simplex S1 P K. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 27
  • 28. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Duality Delaunay-Vorono¨ ı The Vorono¨ diagram is the dual of the Delaunay triangulation and ı vice versa. Delaunay triangulations have many regularity properties. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 28
  • 29. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes What to Retain The Voronoi diagram of a set of vertices is a partition of space into cells based on the notion of distance. A Delaunay triangulation of a set of vertices is a triangulation also based on the notion of distance. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 29
  • 30. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Outline 1 Outline General Framework 2 Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes ı Vorono¨ Diagrams and Delaunay Meshes in Nature ı Generalization of the Notion of Distance Construction of Adapted Anisotropic Meshes 3 Control of Error in Numerical Simulation Interpolation Error Approximation Error Impact of Mesh Adaptation on Numerical Simulation Applications of Spatial Discretization Control 4 Conclusions Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 30
  • 31. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Vorono¨ and Delaunay in Nature ı Vorono¨ diagrams and Delaunay triangulations are not just a ı mathematician’s whim, they represent structures that can be found in nature. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 31
  • 32. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Giraffe Hair Coat Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 32
  • 33. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes A Turtle Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 33
  • 34. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes A Pineapple Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 34
  • 35. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes The Devil’s Tower Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 35
  • 36. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Dry Mud Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 36
  • 37. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Bee Cells Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 37
  • 38. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Dragonfly Wings Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 38
  • 39. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Fly Eyes Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 39
  • 40. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Pop Corn Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 40
  • 41. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Carbon Nanotubes Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 41
  • 42. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Soap Bubbles Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 42
  • 43. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes A Geodesic Dome Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 43
  • 44. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Biosph`re de Montr´al e e Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 44
  • 45. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Streets of Paris Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 45
  • 46. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Roads in France Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 46
  • 47. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Roads in France Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 47
  • 48. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Outline 1 Outline General Framework 2 Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes ı Vorono¨ Diagrams and Delaunay Meshes in Nature ı Generalization of the Notion of Distance Construction of Adapted Anisotropic Meshes 3 Control of Error in Numerical Simulation Interpolation Error Approximation Error Impact of Mesh Adaptation on Numerical Simulation Applications of Spatial Discretization Control 4 Conclusions Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 48
  • 49. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes The Key Point of this Lecture For a given set of vertices, the Vorono¨ diagram and the ı Delaunay triangulation are partitions of space based on the notion of distance. The notion of distance can be generalized. And so, the notions of Vorono¨ diagram and Delaunay ı triangulation can be generalized. J. Dompierre, M.-G. Vallet, P. Labb´ and F. Guibault. “An Analysis of Simplex e Shape Measures for Anisotropic Meshes”. Computer Methods in Applied Mechanics and Engineering. vol. 194, p. 4895–4914, 2005 Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 49
  • 50. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes The Key Point of this Lecture For a given set of vertices, the Vorono¨ diagram and the ı Delaunay triangulation are partitions of space based on the notion of distance. The notion of distance can be generalized. And so, the notions of Vorono¨ diagram and Delaunay ı triangulation can be generalized. J. Dompierre, M.-G. Vallet, P. Labb´ and F. Guibault. “An Analysis of Simplex e Shape Measures for Anisotropic Meshes”. Computer Methods in Applied Mechanics and Engineering. vol. 194, p. 4895–4914, 2005 Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 49
  • 51. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes The Key Point of this Lecture For a given set of vertices, the Vorono¨ diagram and the ı Delaunay triangulation are partitions of space based on the notion of distance. The notion of distance can be generalized. And so, the notions of Vorono¨ diagram and Delaunay ı triangulation can be generalized. J. Dompierre, M.-G. Vallet, P. Labb´ and F. Guibault. “An Analysis of Simplex e Shape Measures for Anisotropic Meshes”. Computer Methods in Applied Mechanics and Engineering. vol. 194, p. 4895–4914, 2005 Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 49
  • 52. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Nikolai Ivanovich Lobachevsky Nikolai Ivanovich LOBACHEVSKY, 1 d´cembre e 1792, Nizhny Novgorod — 24 f´vrier 1856, Kazan. e Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 50
  • 53. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes J´nos Bolyai a ´ Janos BOLYAI, 15 d´cembre 1802 e ` Kolozsv´r, Empire Austrichien a a (Cluj, Roumanie) — 27 janvier 1860 ` Marosv´s´rhely, Empire Austrichien a aa (Tirgu-Mures, Roumanie). Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 51
  • 54. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Bernhard RIEMANN Georg Friedrich Bernhard RIE- MANN, 7 septembre 1826, Hanovre ¨ — 20 juillet 1866, Selasca. Uber die Hypothesen welche der Geometrie zu Grunde liegen. 10 juin 1854. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 52
  • 55. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Non Euclidean Geometry Riemann has generalized Euclidean geometry in the plane to Riemannian geometry on a surface. He has defined the distance between two points on a surface as the length of the shortest path between these two points (geodesic). He has introduced the Riemannian metric that defines the curvature of space. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 53
  • 56. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Definition of a Metric If S is any set, then the function d : S×S → I R is called a metric on S if it satisfies (i) d(A, B) ≥ 0 for all A, B in S; (ii) d(A, B) = 0 if and only if A = B; (iii) d(A, B) = d(B, A) for all A, B in S; (iv) d(A, B) ≤ d(A, C ) + d(C , B) for all A, B, C in S. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 54
  • 57. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes The Euclidean Distance is a Metric In the previous definition of a metric, let the set S be I 2 , the R function d : I 2 ×I 2 → I R R R xA x × B → (xB − xA )2 + (yB − yA )2 yA yB is a metric on I 2 . R Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 55
  • 58. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes The Scalar Product is a Metric Let a vectorial space with its scalar product ·, · . Then the norm of the scalar product of the difference of two elements of the vectorial space is a metric. d(A, B) = B −A , 1/2 = B − A, B − A , − − 1/2 → → = AB, AB , − T− → → = AB AB. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 56
  • 59. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes The Scalar Product is a Metric If the vectorial space is I 2 , then the norm of the scalar product of R − → the vector AB is the Euclidean distance. 1/2 − T− → → d(A, B) = B − A, B − A = AB AB, T xB − x A xB − x A = , yB − y A yB − y A = (xB − xA )2 + (yB − yA )2 . Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 57
  • 60. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Metric Tensor A metric tensor M is a symmetric positive definite matrix m11 m12 M= in 2D, m12 m22   m11 m12 m13 M =  m12 m22 m23  in 3D. m13 m23 m33 Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 58
  • 61. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Metric Length −→ The length LM (AB) of an edge between vertices A and B in the metric M is given by −→ − − 1/2 → → LM (AB) = AB, AB M , −→ −→ = AB, M AB 1/2 , − T → −→ = AB M AB. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 59
  • 62. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Euclidean Length with M = I −→ −→ −→ 1/2 − T → −→ LM (AB) = AB, M AB = AB M AB, T xB − x A 1 0 xB − x A = , yB − y A 0 1 yB − y A −→ LE (AB) = (xB − xA )2 + (yB − yA )2 . Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 60
  • 63. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes αβ Metric Length with M = βγ −→ −→ −→ 1/2 − T → −→ LM (AB) = AB, M AB = AB M AB, T xB − x A α β xB − x A = , yB − y A β γ yB − y A −→ LM (AB) = α(xB − xA )2 + 2β(xB − xA )(yB − yA ) 1/2 +γ(yB − yA )2 . Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 61
  • 64. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Length in a Variable Metric In the general sense, the metric tensor M is not constant but varies continuously for every point of space. The length of a parameterized curve γ(t) = {(x(t), y (t), z(t)) , t ∈ [0, 1]} is evaluated in the metric 1 LM (γ) = (γ ′ (t))T M (γ(t)) γ ′ (t) dt, 0 where γ(t) is a point of the curve and γ ′ (t) is the tangent vector of the curve at that point. LM (γ) is always bigger or equal to the geodesic between the end points of the curve. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 62
  • 65. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Area and Volume in a Metric Area of the triangle K in a metric M: AM (K ) = det(M) dA. K Volume of the tetrahedron K in a metric M: VM (K ) = det(M) dV . K Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 63
  • 66. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Example of a Metric Tensor Field This analytical test case is defined in George and Borouchaki (1997). The domain is a [0, 7] × [0, 9] rectangle. This test case has an anisotropic Riemannian metric defined by : −2 h1 (x, y ) 0 M= −2 ,... 0 h2 (x, y ) Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 64
  • 67. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Example of a Metric Tensor Field . . . where h1 (x, y ) is given by:   1 − 19x/40  if x ∈ [0, 2],   (2x−7)/3  20 if x ∈ ]2, 3.5], h1 (x, y ) =  5(7−2x)/3  if x ∈ ]3.5, 5],   1 4 x−5 4  5 + 5 2 if x ∈ ]5, 7], . . . Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 65
  • 68. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Example of a Metric Tensor Field . . . and h2 (x, y ) is given by:   1 − 19y /40  if y ∈ [0, 2],   (2y −9)/5  20  if y ∈ ]2, 4.5], h2 (x, y ) = (9−2y )/5  5  if y ∈ ]4.5, 7],   1 4 y −7  4  + if y ∈ ]7, 9]. 5 5 2 Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 66
  • 69. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Metric and Delaunay Mesh Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 67
  • 70. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes What to Retain What appears to everybody to be a skewed triangle could be an equilateral triangle in the corresponding skewed space. An adpated mesh is a only a regular uniform (probably Delaunay) mesh in a skewed space. Question 1: From where the Riemannian metric tensor come from? Question 2: How to build a regular uniform mesh in a skewed space? Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 68
  • 71. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Outline 1 Outline General Framework 2 Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes ı Vorono¨ Diagrams and Delaunay Meshes in Nature ı Generalization of the Notion of Distance Construction of Adapted Anisotropic Meshes 3 Control of Error in Numerical Simulation Interpolation Error Approximation Error Impact of Mesh Adaptation on Numerical Simulation Applications of Spatial Discretization Control 4 Conclusions Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 69
  • 72. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Lesson on Mesh Adaptation Mesh adaptation is an optimisation problem. The optimal mesh usually does not exist. Our algorithm is a metaheuristic closed to simulated annealing that converges iteratively towards a better mesh. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 70
  • 73. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Le crit`re de Delaunay n’est pas un g´n´rateur de maillage e e e Le crit`re de Delaunay permet de relier des sommets pour former e une triangulation. Le crit`re de Delaunay peut “assez facilement” se g´n´raliser ` une e e e a m´trique riemannienne. e Mais, le crit`re n’indique pas combien de sommets il faut g´n´rer e e e ni o` il faut les g´n´rer. u e e Associer un g´n´rateur de sommets ` un algorithme de Delaunay e e a est une approche constructive de la g´n´ration de maillage e e (approche gloutonne, sans retour arri`re). e Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 71
  • 74. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Maillage unitaire Un maillage de Delaunay dans la m´trique n’est pas e n´cessairement de la bonne taille. e On veut plus qu’un maillage de Delaunay dans la m´trique, on en e veut un de la bonne taille, ie, dont les arˆtes ont une longueur e unitaire avec la m´trique riemannienne. e On ne peut pas y arriver de fa¸on directe, mais par des c modifications successives. Dans la boucle d’adaptation, pour que ca marche bien, le solveur ¸ doit converger, le mailleur doit converger, et la boucle compl`te e solveur-mailleur doit converger. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 72
  • 75. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes La g´n´ration d’un maillage unitaire est un probl`me e e e d’optimisation Les degr´s de libert´ sont le nombre et la position des sommets, e e ainsi que la connectivit´ entre eux. e Le probl`me a une partie continue (la position des sommets) et e une partie combinatoire (le nombre de sommets et la connectivit´). e On consid`re que c’est probablement un probl`me NP-Complet. e e On approche le maillage optimal avec une m´taheuristique qui e s’apparente ` du recuit-simul´ qui explore l’espace des maillages a e possibles. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 73
  • 76. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes M´thode des voisinages e Soit M l’ensemble des maillages conformes et simpliciaux qui discr´tisent un domaine. On veut construire une suite de maillages e mi ∈ M telle que mi+1 est un maillage dans le voisinage de mi et telle que la suite converge vers un maillage optimal. Un maillage mi+1 est voisin du maillage mi si mi+1 peut-ˆtre e obtenu de mi ` l’aide d’une transformation ´l´mentaire et locale. a ee Les op´rateurs de voisinage sont l’ajout ou la suppression d’un e sommet, la reconnection entre les sommets avec le retournement d’un arˆte ou d’une face triangulaire, ou encore le d´placement e e d’un sommet. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 74
  • 77. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Ajout d’un sommet Le raffinement consiste ` ajouter un sommet au milieu d’une arˆte a e trop longue et ` couper en deux les faces et les t´tra`dres a e e adjacents. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 75
  • 78. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Omission d’un sommet Le maillage peut ˆtre d´raffin´ en enlevant les arˆtes trop courtes. e e e e Les ´l´ments autour de l’arˆte sont d´truits et les deux sommets de ee e e l’arˆte ne font plus qu’un. e Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 76
  • 79. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Retournement de faces Chaque face interne est entour´e de deux t´tra`dres. Cette face e e e peut ˆtre retourn´e en une arˆte entour´e de trois t´tra`dres. e e e e e e Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 77
  • 80. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Retournement d’arˆtes e S4 S3 S4 S3 S5 S5 A A B B S2 S2 S1 S1 Une arˆte AB entour´e de n t´tra`dres peut ˆtre retourn´e en n − 2 e e e e e e triangles qui donnent 2(n − 2) t´tra`dres avec les sommets A et B. e e Quand n augmente, le nombre de configurations retourn´ese augmente exponentiellement. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 78
  • 81. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes D´placement d’un sommet e x4 x3 k3 k4 x k2 x5 k5 x2 k1 k6 x6 x1 Les sommets sont d´plac´s au “centre” de leurs voisins. e e Le “centre” doit ˆtre ´valu´e avec la m´trique riemannienne. e e e e C’est la seule m´thode disponible pour adapter des maillages e structur´s. e Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 79
  • 82. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Fonction coˆt u Pour piloter le processus d’optimisation, il faut d´finir une fonction e coˆt. Pour un simplexe donn´, cette fonction mesure la conformit´ u e e en taille et en forme entre le simplexe et la m´trique riemannienne. e P. Labb´, J. Dompierre, M.-G. Vallet, F. Guibault et J.-Y. Tr´panier. “A e e Universal Measure of the Conformity of a Mesh with Respect to an Anisotropic Metric Field”. International Journal for Numerical Methods in Engineering. vol 61, p. 2675–2695, 2004. Y. Sirois, J. Dompierre, M.-G. Vallet et F. Guibault. “Measuring the conformity of non-simplicial elements to an anisotropic metric field”, International Journal for Numerical Methods in Engineering. vol 64, p. 1944–1958, 2005. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 80
  • 83. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Georg Friedrich Bernhard RIEMANN Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 81
  • 84. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Best Grid, 8 ICNGG “Best Grid” ` la session poster a de la 8th International Confer- ence on Numerical Grid Gen- eration in Computational Field Simulations, juin 2002, Hon- olulu, Hawa¨I. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 82
  • 85. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Meshing Mæstro, 11 IMR “Meshing Mæstro” ` la session a poster de la 11th International Meshing Roundtable, septem- bre 2002, Ithaca, New York. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 83
  • 86. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes Adaptation de maillages anisotropes En 3D, il reste du travail. L’espace n’est pas pavable par des t´tra`dres r´guliers. e e e L’int´gration ` la CAO est cruciale. e a L’algorithme doit ˆtre robuste. e Le temps de calcul devient contraignant. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 84
  • 87. Outline Vorono¨ Diagrams and Delaunay Meshes ı Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes in Nature ı Control of Error in Numerical Simulation Generalization of the Notion of Distance Conclusions Construction of Adapted Anisotropic Meshes What to Retain We want more than just a Delaunay mesh in the Riemannian metric. We want a Delaunay UNIT mesh in the Riemannian metric. Mesh adaptation is a optimisation problem with a discrete part and a continuous part. Our algorithm is a metaheuristic that converges iteratively towards a better mesh by succesive local modifications. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 85
  • 88. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control Outline 1 Outline General Framework 2 Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes ı Vorono¨ Diagrams and Delaunay Meshes in Nature ı Generalization of the Notion of Distance Construction of Adapted Anisotropic Meshes 3 Control of Error in Numerical Simulation Interpolation Error Approximation Error Impact of Mesh Adaptation on Numerical Simulation Applications of Spatial Discretization Control 4 Conclusions Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 86
  • 89. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control Lesson on Interpolation Error For piecewise linear functions, the interpolation error is controlled by second order derivatives. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 87
  • 90. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control L’erreur d’interpolation u a b Soit u la solution exacte d’un probl`me dans l’intervalle [a, b]. e Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 88
  • 91. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control Discr´tisation du domaine e u a Th b Soit Th une triangulation du domaine. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 89
  • 92. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control La solution interpol´e Πh u e u Πh u a Th b Soit Πh u, la solution u interpol´e sur l’ensemble des fonctions de e base lin´aires d´finies sur la triangulation Th . e e Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 90
  • 93. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control L’erreur d’interpolation u − Πh u u Πh u a Th b L’erreur d’interpolation u − Πh u est la diff´rence entre la e solution exacte u et la solution interpol´e Πh u. e Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 91
  • 94. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control L’erreur d’interpolation u − Πh u u Πh u a Th b L’erreur d’interpolation u − Πh u pour des fonctions de base lin´aires est domin´e par la d´riv´e seconde. e e e e Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 92
  • 95. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control Maillage optimal u Πh u a Th b Pour un nombre donn´ de sommets, le maillage qui minimise e l’erreur d’interpolation u − Πh u est celui qui concentre les sommets l` o` la courbure est forte. a u Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 93
  • 96. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control Erreur d’interpolation en 2D et 3D En 2D, les d´riv´es secondes de la solution u forment une matrice e e hessienne ∂ 2 u/∂x 2 ∂ 2 u/∂x∂y . ∂ 2 u/∂y ∂x ∂ 2 u/∂y 2 Si on rend la matrice hessienne d´finie positive, elle devient un e tenseur m´trique. e On d´finit ainsi un estimateur d’erreur anisotrope, qui ouvre la voie e ` l’adaptation de maillage anisotrope. a Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 94
  • 97. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control Exemple analytique Le domaine Ω est le carr´ [0, 1]×[0, 1]. Le probl`me est d´fini e e e comme suit: −∆u + k 2 u = 0 dans Ω u = g sur ∂Ω, o` la condition de Dirichlet g est d´finie de telle sorte que la u e solution analytique est donn´e par e u = e −kx + e −ky . Cette solution a des couches limites pour de grandes valeurs de k. F. Guibault, P. Labb´ et J. Dompierre. “Adaptivity Works! Controling the e Interpolation Error in 3D”. Fifth World Congress on Computational Mechanics, Vienna University of Technology, 2002. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 95
  • 98. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control Solution analytique u = e −kx + e −ky , k = 100. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 96
  • 99. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control Maillages adapt´s e Gauche: Maillage uniforme de 268 sommets. Centre: Maillage adapt´ isotrope de 268 sommets. e Droite: Maillage adapt´ anisotrope de 260 sommets. e Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 97
  • 100. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control Erreur d’interpolation 1 0.1 0.01 Total L2 error 0.001 0.0001 1e-05 1e-06 0.01 0.1 1/sqrt(N) L’erreur d’interpolation en norme L2 converge en O(h2 ). Pour obtenir une erreur de 0.001, il faudrait 200 ´l´ments avec un maillage adapt´ anisotrope, ee e 2000 ´l´ments avec un maillage adapt´ isotrope, ee e 20000 ´l´ments avec un maillage uniforme. ee Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 98
  • 101. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control What to Retain For piecewise linear functions, the interpolation error of a function u is dominated by second order derivatives. The hessian matrix is used to defined the metric tensor for mesh adaptation. Adapted anisotropic meshes minimize the interpolation error for a given number of nodes. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 99
  • 102. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control Outline 1 Outline General Framework 2 Delaunay Mesh and its Generalization Vorono¨ Diagrams and Delaunay Meshes ı Vorono¨ Diagrams and Delaunay Meshes in Nature ı Generalization of the Notion of Distance Construction of Adapted Anisotropic Meshes 3 Control of Error in Numerical Simulation Interpolation Error Approximation Error Impact of Mesh Adaptation on Numerical Simulation Applications of Spatial Discretization Control 4 Conclusions Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 100
  • 103. Outline Interpolation Error Delaunay Mesh and its Generalization Approximation Error Control of Error in Numerical Simulation Impact of Mesh Adaptation on Numerical Simulation Conclusions Applications of Spatial Discretization Control Lesson on Approximation Error The approximation error is bounded by the interpolation error. Julien Dompierre Delaunay Mesh, Error Control and Numerical Simulation 101