CURSO DE INFORMÁTICA EDUCATIVA I
TAREFA DE EXECUÇÃO
ALUNA : JULIANA CRISTINA GOMES.


Relembrando os conceitos de semelhança de
triângulos. Compreender o conceito de razões
trigonométricas nos triângulos r...
Na aula anterior, antes deste assunto ser
abordado, o professor deve pedir que os alunos
não se esqueçam de trazer os mate...


1) Neste primeiro momento,o professor irá mostrar aos
alunos o blog com as atividades a serem
desenvolvidas, explicando...
Você já percebeu que uma folha de papel A4 tem 4 ângulos retos?
Observe as Figuras 1 e 2 a seguir, e veja como é possível,...
momento, tenha cuidado ao realizar o corte.As dicas a seguir
podem auxiliá-lo nessa tarefa.

Dica 1: Apertando com
uma rég...
Atividade 2
 Construindo Triângulos Retângulos Semelhantes
2. Pegue dois dos três triângulos que você recortou. Faça
do-b...
Mais uma dica para esse momento:
Separe os dois novos triângulos obtidos no item
anterior e o triângulo feito na Atividade 1.
Observe-os.
Agora, você pode parar e ter um momento de reflexão
com seus alunos. Deixe-os livres para observarem os
três triângulos. S...


Nesse item os alunos devem comparar os ângulos dos
três triângulos. Essa comparação pode ser feita
sobrepondo os triâng...
Ajude seus alunos a perceberem que os triângulos são semelhantes. Mostre para eles
a imagem abaixo. Certamente ela vai aux...


Se os alunos não perceberem sozinhos que os três
triângulos são semelhantes, isso pode indicar que
eles não dominam o c...




O professor vai apresentar as teorias e as definições
sobre Triângulo retângulo e sobre razões
trigonométricas, e co...


7. Separe os três triângulos retângulos semelhantes obtidos na atividade anterior.
Posicione-os como indicado na ima-ge...
5,647
3,123

Igual
aproximadamente
Igual
aproximadamente

5,65
3,12
10. Agora é momento da observação. Observe os valores dos
senos dos ângulos β. O que você percebe?

______________________...




O professor vai apresentar o software Geogebra e ensinar
como será feita as construções destes triângulos retângulos...
1. Após ter iniciado o programa GeoGebra, vamos deixar a tela
com o formato ideal para a execução de nosso trabalho. Para
...
FIGURA 4
FIGURA 5
FIGURA 7

FIGURA 7






Ao fazer esse movimento, você observará uma
linha, acompa-nhando o cursor no seu
deslocamento, como indicado na F...
FIGURA 9






Caro aluno, caso não tenha conseguido um ângulo reto
no vértice B, você deve clicar duas vezes no vértice C.
Feit...
FIGURA 1
FIGURA 17


Nas atividades 2 e 3, seu aluno deve apenas utilizar
as ferramentas do GeoGebra para determi-nar as
medidas dos ângulos...


Terminar de preencher as tabelas com o calculo do
seno, coseno e tangente. O professor irá propor uma
discussão para re...
1. Preencha a tabela abaixo com as medidas
encontradas na atividade 3. Use uma
calculadora para fazer as contas.


É importante que vocês alunos façam o preenchimento correto da
tabela. Primeiro, eles devem preencher as primeiras célu...




Nesta etapa ensinaremos aos os alunos a
transformar o calculadora do computador em uma
calculadora cientifica, já qu...
..Abra a calculadora;
..Clique em “Iniciar”, em seguida, em “Todos os
Programas” e, finalmente, em “Acessórios”;
.Clique n...
sen (63º) ≌ 0,89
cos (63º) ≌ 0,45
tg (63º) ≌ 1,96
Nesta etapa ainda com o Geogbra entra em discussão com aos
alunos os problemas abaixo em dupla, encontrando
as Razões Trig...
2. Compare os resultados encontrados com os valores obtidos por seus
colegas e responda:
a) Estes valores são aproximadame...
Nesta última etapa esperamos que os alunos reflita sobre tudo
que fizemos durante os roteiros. Esperamos que eles
percebam...




http://www.slideshare.net/luisadr/projetoexecucao-luis-alberto-20-out-2012-vf.
Grande parte deste material foi retir...
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar
Próximos SlideShares
Carregando em…5
×

https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar

247 visualizações

Publicada em

Publicada em: Design
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
247
No SlideShare
0
A partir de incorporações
0
Número de incorporações
1
Ações
Compartilhamentos
0
Downloads
2
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

https://wwww.slideshare.net/julianacristina568089/edit_myinformaticar

  1. 1. CURSO DE INFORMÁTICA EDUCATIVA I TAREFA DE EXECUÇÃO ALUNA : JULIANA CRISTINA GOMES.
  2. 2.  Relembrando os conceitos de semelhança de triângulos. Compreender o conceito de razões trigonométricas nos triângulos retângulos e as suas principais propriedades. Percebendo que os valores das razões trigonométricas dependem exclusivamente do ângulo e calculando experimentalmente as razões trigonométricas para os ângulos notáveis.
  3. 3. Na aula anterior, antes deste assunto ser abordado, o professor deve pedir que os alunos não se esqueçam de trazer os materiais necessários para o cumprimento das atividades das próximas aulas, que serão feitos em sala: Tesoura, folha de papel A4 branco ou colorido, borracha, calculadora, lápis, régua de 30 cm e transferidor. Todo esse material o aluno pode trazer de casa, dos que eles já possuem.
  4. 4.  1) Neste primeiro momento,o professor irá mostrar aos alunos o blog com as atividades a serem desenvolvidas, explicando assim um pouco das atividades a serem desenvolvidas pelos alunos, o professor deve propor aos alunos a construção de três triângulos idênticos, com materiais que eles trouxeram de casa, depois que a construção tiver pronta, o aluno irá compare e nomear os ângulos dos triângulos. Para isso você pode utilizar o transferidor ou sobrepor os triângulos e ainda irão medir o lado desses triângulos. Com essas atividades mais para frente com toda a observação do alunos na realização das atividades, os alunos poderão determinar o valor aproximado das razões trigonométricas correspondente.
  5. 5. Você já percebeu que uma folha de papel A4 tem 4 ângulos retos? Observe as Figuras 1 e 2 a seguir, e veja como é possível, com um único traço, desenhar um triângulo retângulo, a partir de um re-tângulo com 4 ângulos retos. FIGURA 1 FIGURA 2
  6. 6. momento, tenha cuidado ao realizar o corte.As dicas a seguir podem auxiliá-lo nessa tarefa. Dica 1: Apertando com uma régua, deixe bem marcada a linha de corte Dica 2: Inicie o corte sempre pelo local de maior apoio do papel com a régua. Corte uma folha por vez.
  7. 7. Atividade 2  Construindo Triângulos Retângulos Semelhantes 2. Pegue dois dos três triângulos que você recortou. Faça do-bras como as indicadas na Figura Em seguida, com o auxílio de uma régua, faça um corte na marca da dobra. Você deve obter dois novos triângulos. 
  8. 8. Mais uma dica para esse momento:
  9. 9. Separe os dois novos triângulos obtidos no item anterior e o triângulo feito na Atividade 1. Observe-os.
  10. 10. Agora, você pode parar e ter um momento de reflexão com seus alunos. Deixe-os livres para observarem os três triângulos. Se eles compreenderam bem as noções de semelhança estudadas no 9º ano, eles poderão, sozinhos, perceber que os três triângulos são semelhantes. Não deixe de questionar sobre qual é o argumento que justifica esta conclusão. Se a resposta não chegar de forma imediata, propomos, nos próximos itens, algumas perguntas para orientar a chegada a essa conclusão.
  11. 11.  Nesse item os alunos devem comparar os ângulos dos três triângulos. Essa comparação pode ser feita sobrepondo os triângulos ou com o auxílio de um transferidor. Como em todo processo de medição, podem ocorrer pequenas diferenças devido à imprecisão do instrumento ou ao próprio ato de medir. Então, esteja atento a esse detalhe e não deixe de explicar isso aos seus alunos. Não podemos esquecer de valorizar qualquer participação de seus alunos, mesmo que algumas vezes aparentem ser incoerentes e inconsistentes. Esta atitude é essencial em qualquer processo interativo de aprendizagem, gerando maior confiança e um pouco mais de motivação entre os alunos.
  12. 12. Ajude seus alunos a perceberem que os triângulos são semelhantes. Mostre para eles a imagem abaixo. Certamente ela vai auxiliá-lo.
  13. 13.  Se os alunos não perceberem sozinhos que os três triângulos são semelhantes, isso pode indicar que eles não dominam o conceito de semelhança. Nesse caso, sugerimos que você retome esse assunto e, em seguida, mostre que a maneira pela qual esses triângulos foram construídos – a dobra gera uma paralela a um dos lados- garante que os três ângulos desses triângulos sejam congruentes e portanto, podemos afirmar que os triângulos são semelhantes. Mais uma vez chamamos atenção para a importância de se dobrar adequadamente os triângulos, pois disso depende a obtenção dos triângulos semelhantes.
  14. 14.   O professor vai apresentar as teorias e as definições sobre Triângulo retângulo e sobre razões trigonométricas, e com as medidas dos lados, com os ângulos nomeados, os alunos irão identificar o cateto oposto, o cateto adjacente e a hipotesa desses triângulos, os alunos irão preencher a tabela adquirindo o conhecimento e calculo do seno, coseno e da tangente, desses triângulos. Atividade 3
  15. 15.  7. Separe os três triângulos retângulos semelhantes obtidos na atividade anterior. Posicione-os como indicado na ima-gem a seguir e, para organizar o que faremos nos itens a seguir, numere-os. 8. Indique por β1 β2 β3 os ângulos mais à esquerda de cada um dos triângulos
  16. 16. 5,647 3,123 Igual aproximadamente Igual aproximadamente 5,65 3,12
  17. 17. 10. Agora é momento da observação. Observe os valores dos senos dos ângulos β. O que você percebe? ____________________________________________________________________. 11. E com os valores dos cossenos? É possível perceber alguma semelhança? Qual? ____________________________________________________________________. 12. E com os valores das tangentes? É possível perceber alguma semelhança? Qual? ____________________________________________________________________. 13. Será que o tamanho do triângulo influencia no valor das razões trigonométricas? A que conclusão seus colegas chegaram? Discuta com eles e veja se vocês chegaram às mesmas conclusões. Registre a seguir. ____________________________________________________________________.
  18. 18.   O professor vai apresentar o software Geogebra e ensinar como será feita as construções destes triângulos retângulos, a achar o lado e o ângulo destes triângulos, para realizar o calculo do seno, do coseno e da tangente desses triângulos com o Geogebra. Olá queridos alunos, nesta atividade usaremos o software GeoGebra, para construir triângulos retângulos, medir os seus ângulos internos e cal-cular a medida de seus lados. Com estas infor-mações iniciais, determinaremos, também, o valor aproximado das razões trigonométricas asso-ciadas, comparando-as com os valores de senos e cossenos, obtidos a partir de uma calculadora científica. Finalmente, utilizaremos este processo para determinar, de forma aproximada, as ra-zões trigonométricas dos ângulos notáveis.
  19. 19. 1. Após ter iniciado o programa GeoGebra, vamos deixar a tela com o formato ideal para a execução de nosso trabalho. Para isto, faça um clique com o mouse, seguindo a sequên-cia dada nas imagens 1, 2 e 3. FIGURA 1
  20. 20. FIGURA 4
  21. 21. FIGURA 5
  22. 22. FIGURA 7 FIGURA 7
  23. 23.    Ao fazer esse movimento, você observará uma linha, acompa-nhando o cursor no seu deslocamento, como indicado na Figura 7. 5. Agora, seguindo a malha na direção perpendicular a do segmento AB, escolha um ponto para ser o ponto C. Não se esqueça: apenas um clique é necessário! Ao mover o cursor, você verá o triângulo sendo formado, como indicado na Figura 8.
  24. 24. FIGURA 9
  25. 25.    Caro aluno, caso não tenha conseguido um ângulo reto no vértice B, você deve clicar duas vezes no vértice C. Feito isto, em seguida aparece­rá uma janela “Redefinir” (veja Figura 14). Logo, dê um “OK”. Posteriormente, posicione o cursor sobre o ponto C e deixe apertado o botão esquerdo do mouse, levando-o até alguma posição que gere um ângulo reto e, em seguida, solte-o. Você observará que o vértice C movimentase, segundo a direção do cursor (veja Figura 15). Desta forma, você poderá corrigir seu triângulo ou mudá-lo totalmente.
  26. 26. FIGURA 1
  27. 27. FIGURA 17
  28. 28.  Nas atividades 2 e 3, seu aluno deve apenas utilizar as ferramentas do GeoGebra para determi-nar as medidas dos ângulos e lados do triângulo construído. Seu papel será o de orientador. Perceba se seu aluno está fazendo corretamente as sugestões das atividades e, caso tenha um aluno mais esperto, peça que ele ajude seus colegas.
  29. 29.  Terminar de preencher as tabelas com o calculo do seno, coseno e tangente. O professor irá propor uma discussão para retirar todas as dúvidas dos alunos acerca do conteúdo. O professor irá auxiliar os alunos para preencher as tabelas dos exemplos e Com as medidas do lados desse triângulo e dos ângulos, os alunos deveram encontrar as razões trigonométricas, deveram coletar os dados e preencher a tabela, com o uso da calculadora fazer as contas.
  30. 30. 1. Preencha a tabela abaixo com as medidas encontradas na atividade 3. Use uma calculadora para fazer as contas.
  31. 31.  É importante que vocês alunos façam o preenchimento correto da tabela. Primeiro, eles devem preencher as primeiras células das duas colunas da direita de acordo com o seu triângu-lo. Depois disso, estarão aptos a preencher as outras linhas. Cuidado, pois essa é uma “tabela dupla”, onde os alunos deverão preencher primeiro as infor-mações relativas a um ângulo e, em seguida, as mesmas informações relativas ao outro ângulo. É interessante também orientá-los para escreve-rem o símbolo da razão trigonométrica, seguido do ângulo correspondente, como por exemplo, sen(43º). Não deixe de fazer isso, pois, em ge-ral, os alunos não entendem que não podemos falar só seno ou cosseno, é preciso mencionar o ângulo associado. Como você deve ter percebido, a orientação des-sa atividade será bem trabalhosa, afinal, cada aluno gerará o seu triângulo. Não deixe de acompanhar o passo a passo de seus alunos
  32. 32.   Nesta etapa ensinaremos aos os alunos a transformar o calculadora do computador em uma calculadora cientifica, já que nos próximos itens, precisaremos de uma calculadora cien-tífica. Você sabe transformar a calculadora de seu computador numa calculadora científica? Para os próximos itens, precisaremos de uma calculadora cien-tífica. Você sabe transformar a calculadora de seu computador numa calculadora científica?
  33. 33. ..Abra a calculadora; ..Clique em “Iniciar”, em seguida, em “Todos os Programas” e, finalmente, em “Acessórios”; .Clique no botão “Exibir” e selecione a opção “Científica”. Repare que a calculadora apresenta mais botões. Você deverá utilizar os botões “sin”, “cos” e “tan” para seno, cosseno e tangente, res-pectivamente. Qualquer dúvida, peça ajuda ao seu professor.
  34. 34. sen (63º) ≌ 0,89 cos (63º) ≌ 0,45 tg (63º) ≌ 1,96
  35. 35. Nesta etapa ainda com o Geogbra entra em discussão com aos alunos os problemas abaixo em dupla, encontrando as Razões Trigonométricas dos Ângulos Notáveis: 1. Seguindo as dicas dadas na atividade 2, construa a partir de seu triângulo (utilizando a opção redefinição) um outro de ângulos agudos 30º e 60º. Depois preencheremos as tabelas a seguir. Atividade 5 Encontrando as Razões Trigonométricas dos Ângulos Notáveis
  36. 36. 2. Compare os resultados encontrados com os valores obtidos por seus colegas e responda: a) Estes valores são aproximadamente idênticos? __________________________________________________________. b) As razões trigonométricas independem do tamanho do tri-ângulo? __________________________________________________________. c) As razões trigonométricas dependem de que valor? __________________________________________________________. d) Então, qual é a relação de comparação que deve existir entre dois triângulos retângulos, para que os seus ângulos correspondentes tenham as mesmas razões trigonométricas? _________________________________________________________.
  37. 37. Nesta última etapa esperamos que os alunos reflita sobre tudo que fizemos durante os roteiros. Esperamos que eles percebam que os valores obtidos das diversas maneiras podem ser consi-derados iguais, uma vez que as razões trigono-métricas dependem apenas do ângulo e não do triângulo que utilizamos para obtê-las. Ou seja, esperamos que essa sequência de atividades aju-de aos alunos a compreenderem que em triângulos semelhantes os senos, cossenos e tangentes de ângulos correspondentes são iguais.Nesta etapa também será realizada uma avaliação, que o professor vai aplicar aos alunos para ajudar a verificar o que os alunos realmente entenderam e quais eles ainda apresentam dúvidas, para que o professor volte e tire as dúvidas dos alunos, onde há dúvidas.
  38. 38.   http://www.slideshare.net/luisadr/projetoexecucao-luis-alberto-20-out-2012-vf. Grande parte deste material foi retirado do material fornecido pelo curso de formação continuada no site da cecierj.

×