SlideShare a Scribd company logo
1 of 78
UNIVERSIDAD DE GUANAJUATO.
PRACTICAS 4.
SORGHUM CROP.
TEACHER HECTOR GORDON.
STUDENT JOSE MARINO ARAUJO
MENDOZA.
• Sorghum (Sorghum bicolor L. moench) was probably
initially domesticated in central Africa, in the region
of Etiopia and Sudan.
• Subsecuently, cultivation of sorghum spread
througout Africa and Asia and finally to the
Americas and Australia.
• Today it is one of the world’s major food crops,
particular in Areas of high temperature and low rain
fall.
• Its used for human consumption and to feed
different kinds of livestocks such as birds, pigs and
cows.
Sorghum Taxonomy.
• Kingdom-Plantae.
• Subkingdom-Tracheobionta.
• Superdivision-Spermatophyta.
• Class-Liliopsida.
• Subclass-Commelinidae.
• Order-Cyperales.
• Family-Poaceae (Grass).
• Genus-Sorghum.
• Species-Sorghum bicolor.
• Subspecies-Sorghum bicolor ssp. Arundinaceum-common wild
sorghum.
• Subspecies- Sorghum bicolor ssp. Bicolor-grain sorghum.
• Subspecies-Sorghum bicolor ssp. drummondii-sudan grass.
• Species-Sorghum almum –columbus grass.
• Species-Sorghum helepense-johnson grass.
• Species-Sorghum propiquum-sorghum.
• Sorghum can reach a height from 1-2 metters, it has
flowers in panicles, and seeds of 3 mm with a
circular or egg form, wich it depends of the variety,
with a color the one can be black, red or yellow.
• Its roots can growth 2 metters depending of the soil
and water available to the crop.
• It has flowers with stamens and pistils, but in Sudan
have been found dioicious varietys.
• Area estilar- stylar area.
• Endosperma corneo- corneous endosperm.
• Endosperma harinoso- flowry endosperm.
• Escutelo- scutellum.
• Embrión- embryo.
• Epicarpio- epicarp.
• Mesocarpio- mesocarp.
Sorghum.
• 1. Day length: Day length neutral &
photosensitive types
• 2. Rainfall: 600 –1,500mm
• 3. Altitude: 900 –1,700m
• 4. Temperature: 23 –32oC
• 5. Soil Type: Light, well –drained loams
• Sensitive to acidic soils
• 6. Root systems: Extensive & Deep rooted
• 7. Photosynthetic Activity : Efficient
As a crop for climate change
adaptation
• 1.Moderate input requirements .
• 2.Easy to grow
• 3.Fast growth rate
• 4.Highly responsive to Improved management
• 5.Drought tolerance
• 6.Widely adapted
• 7.Easily extract nutrients from poor soils
• 8.Fit well in many Tillage systems, crop
Diversification programs and cropping patterns
• Sorghum is the third grain most used in the world to
feed human population, 75% of the world sorghums
produccion is destinated for human consumption.
• In places like India, Africa and China , sorghum
provides 70% of the calories of the human diet.
• Sorghum is used to make meals like binder
sausages, flour, milkshakes, beer and also to
produce alcohol an many more uses in construccion
and in the industry.
Sorghum the rich food
• Carbohydrates 70% High
• Protein 8 –15%
• Mean = 9% Average
• Fat 3.4% Average
• Vitamin A 21 RE Average
• Ash 1.5% Low
• Phosphorus 368mg High
• Iron 5.7mg Average
• Calcium 21mg Average
• Potassium 220mg Average
• Amino Acid Profile Poor
• Micro Nutrients Excellent
ESSENTIAL AMINO ACIDS CONTAINED
IN SORGHUM, CORN AND WHEAT.
AVERAGE COMPOSITION OF MAJOR
CONSTITUENTS
Main sorghum producer countries.
Main sorghum importers countries
Main sorghum exporters countries
Sorghum in Mexico.
• The national production in mexico in sorghum
crops is: 46.4% in irrigated crops and 53.6% in
temporary crops.
• The sorghum’s crops surface in 2007 in Mexico
was 1.87 millions of has. Wich is 12.35 of the
national surface for the agriculture.
Main sorghum producer states in
Mexico.
• Tamaulipas 60%.
• Guanajuato 21%.
• Sinaloa 10%.
• Michoacan 8%.
• Nayarit 5%.
• The rest of the states 16%.
SORGHUM’S
MANAGEMENT.
EMERGENCE. When the plant first breaks through the
soil surface (generally occurs 3 to 10 days after
planting).
• Depth and date of planting greatly affect
emergence rate. During this period, growth
depends on the seed for nutrients and food
reserves.
• Planting should be timed so that germination
and early growth occur during warm
temperatures and so flowering will occur
before the hottest period of summer. The
time required for emergence is impacted by
soil temperature, moisture conditions, depth
of planting, and vigor of the seed.
• Cool, wet conditions during this time may
favor disease organisms that seriously
damage stands. Seed should be treated with
a fungicide before planting.
• Weed control should be considered.
Producers have pre-plant, pre-emergent,
and/or post-emergent herbicides available
for use. Herbicides are generally used due to
the problems encountered with hoeing or
cultivation of large fields. This is very
apparent in years with above average rainfall,
when mechanical practices are limited by wet
soil conditions.
• Three-Leaf Stage Leaves are counted
when the collar of the leaf can be seen
without tearing the plant apart. The collar is
the area where the leaf blade and leaf sheath
attach.
• It is important that the date of planting be late
enough so that sorghum can grow rapidly during
the three-leaf stage.
• While the plant's growth rate depends largely
on temperature, this stage usually will occur
about 10 days after emergence.
• Since the plant is quite small, relatively slow
growth and poor weed control can seriously
reduce yield.
• As the growing point is still below the soil
surface, much of the leaf area can be removed
(by hail or insects) without killing the plant.
However, sorghum does not recover as
vigorously as corn.
• Five-Leaf Stage Approximately 3 weeks after
it emerges a sorghum plant has 5 leaves fully
expanded; its root system is developing
rapidly and roots produced at the lower
nodes may push the lower leaf off the plant.
This usually does not cause difficulty in
identifying the five-leaf stage because the
lower leaf has a rounded tip and the second
leaf is pointed (Figure 1).
• The growing point is still below the soil
surface so leaf loss will not necessarily kill
the plant. Regrowth is more vigorous than at
the three-leaf stage but still less vigorous
than corn.
• During the five-leaf stage the potential for
the plant to develop is determined.
• Weed competition, nutrient and water stress,
or other problems such as insect damage at
the five-leaf stage, can seriously reduce yields
if they are not corrected.
• The plant enters its "grand period of growth"
in the five-leaf stage. Dry matter accumulates
at nearly a constant rate until maturity, if
growing conditions are satisfactory.
• Growing Point Differentiation About 30 days
after sorghum emerges.
• About one-third of the total leaf area has
fully developed; 7 to 10 leaves depending on
maturity class. The lower 1 to 3 leaves may
have been lost.
• Growth and nutrient uptake are rapid during
the growing point differentiation stage.
Adequate supplies of nutrients and water are
necessary to provide maximum growth.
• Growing point changes from vegetative (leaf
producing) to reproductive (head producing).
The total number of leaves has been
determined and potential head size will soon
be determined.
• Sorghum plants are now quite competitive
which helps maintain good weed control the
remainder of the growing season.
• Time from planting to growing point
differentiation generally is about one-third of
the time from planting to physiological
maturity (maximum dry weight).
• Flag Leaf Stage Following growing point
differentiation, rapid culm elongation and
rapid leaf development occur simultaneously
until the flag leaf (final leaf) is visible in the
whorl.
• Most leaves are fully expanded except the
final 3 to 4 leaves.
• About 80 percent of the total leaf area is present.
Light interception is approaching maximum.
• The lower 2 to 5 leaves have been lost. Any reference
to leaf number from now on should be from the top,
counting the flag leaf as leaf number 1.
• Growth and nutrient uptake continue at a rapid rate.
While only about one-fifth of the total growth has
occurred, nutrient uptake is far greater with more
than 40 percent of the potassium already being taken
up. Adequate supplies of nutrients and water are
necessary to provide maximum growth.
• The head is developing.
• Sorghum plants are now quite competitive which
helps maintain good weed control the remainder of
the growing season
Boot Stage .
• All leaves are now fully expanded,
providing maximum leaf area and light
interception. The head has now developed to
nearly full size and is enclosed in the flag-leaf
sheath.
• Rapid growth and nutrient uptake are
continuing.
• Severe moisture stress or herbicide injury
during the Boot Stage may prevent the head
from exerting completely from the flag-leaf
sheath. This prevents complete pollination at
flowering time.
• Except for the peduncle (see Figure 1) culm
elongation is essentially complete.
• Peduncle elongation is beginning and will
result in exertion of the head from the flag-
leaf sheath.
• Potential head size has been determined.
• Half-Bloom Stage
• Half-bloom is usually defined as when one-
half of the plants in a field or area are in
some stage of bloom. However, because an
individual sorghum head flowers from the tip
downward over 4 to 9 days, half-bloom on an
individual plant is when the flowering has
progressed half-way down the head.
• Time required from planting to half-bloom
depends on the maturity of the hybrid and
environmental conditions; however, it usually
represents two-thirds of the time from planting
to physiological maturity.
• Following the boot stage the peduncle grows
rapidly extending the head through the flag-leaf
sheath. Even in combine sorghums, the
peduncle is not reduced in length as is the rest
of the stalk. Although height of combine-
sorghum plants has been reduced, heads are
well above the leaves, which makes combining
easier.
• At half-bloom approximately one-half of the
total dry weight of the plant has been
produced. However, nutrient uptake has
reached nearly 70, 60, and 80 percent of total
for N, P2O5, and K2O, respectively.
• At this time grain formation begins;
therefore, any limitation in plant size, leaf
area, or plant numbers can no longer be
corrected
• If environmental conditions are favorable,
the sorghum yield can still be increased by
increasing the seed weight.
• Sever moisture stress can result in "blasting"
and poor head filling.
• As mentioned earlier hybrid maturity and
planting date should be chosen so flowering
will not occur when severe hot, dry weather
is normal.
• Soft-Dough Stage Between half-bloom and soft-
dough the grain fills rapidly; almost half of its dry
weight is accumulated in this period.
• The stalk weight increases slightly following half-
bloom; then, because grain is forming rapidly, the
stalk loses weight. The loss in stalk weight may
account for as much as 10 percent of the grain
weight.
• Final yield depends on the rate that dry
matter accumulates in the grain and the
length of time that it accumulates.
• As long as the hybrid is able to mature before
frost, the dry matter accumulation will be
high if environmental conditions are
favorable.
• The selection of later maturing grain sorghum
hybrids has an advantage over early maturing
varieties if: 1) the hybrid can mature before
frost and 2) flowering does not coincide with
severe moisture stress.
• Dry matter accumulation rates do not vary
much among hybrids.
• Nitrogen and Phosphorus uptake is still rapid
and Potassium uptake is close to 90 percent
and starting to decline.
• Lower leaves are still being lost with 8 to 12
functional leaves remaining.
• Hard-Dough Stage By hard-dough stage, about
three-fourths of the grain dry weight has
accumulated. Nutrient uptake is essentially
complete.
• Severe moisture stress or a freeze before the grain
matures will result in light, chaffy grain.
• The stalk has declined to its lowest weight.
Additional leaves may have been lost.
• Physiological Maturity
• Maximum total dry weight of the plant has
occurred. The time from flowering to
physiological maturity varies with hybrid and
environmental conditions; however, it
represents about one-third of the total time
from planting.
• Grain moisture content at physiological
maturity is usually between 25 and 35
percent, but varies with hybrid and growing
conditions.
• If temperature and moisture conditions are
favorable, branches may start to grow from
several of the upper nodes (places where
leaves attach).
• Physiological maturity can be determined by the
dark spot on the opposite side of the kernel from
the embryo. The kernel on the left is physiologically
mature; the one on the right is not.
• To reap maximum yields of silage or high-moisture
grain, harvest as near to physiological maturity as
possible.
• The plant will not reach physiological maturity
and proper moisture content for normal harvest
at the same time.
• The time required between physiological
maturity and a grain moisture suitable for
harvest depends on the hybrid and weather
conditions.
• Stalk weight may increase slightly near
physiological maturity.
• After physiological maturity, the remaining
functional leaves may stay green or die and
brown rapidly.
• Nutrient uptake is basically complete.
The plants swoing can go from 85,000
to 150,000 plants by ha. Depending on
the seed that the producer’s choose.
Diseases caused by bacteria.
• Bacterial leaf stripe.- pathogen Pseudomonas
rubrisubalbicans
• symptoms: irregularly shaped, dark red
lesions on leaves and leaf sheaths.
• Control suggested.- crop rotation, destruction
of crop residue and planting resistant cultivars
or hybrids.
Bacterial leaf spot.
• Pathogen Pseudomonas syringae.
• Initial symptoms consist en water soacked
spots on the lower leaves, within a short
period these irregular, elliptic lesions assume
a reddish hue.
• Control : crop rotation, destruction of infested
debris and selection of seed from disease- free
plants.
Bacterial soft rot.
• Pathogen Erwinia crysanthemi pv.
Chrysantemi.
• Symptoms .-necrotic or heavily pigmented
stripes or blotches on upper leaves; stalk and
leaf tissue rotted in whorls.
Diseases caused by fungi.
• Seedling diseases .-damage weathered or
moldy seed .
• Pathogens. Pythium spp. Fusarium spp.
Aspergillus spp. Rizoctonia spp. Phoma spp.
• Control.- captan, thiram, metalaxyl and fosetyl
Al. wich are systemic products.
Leaf anthracnose .
• Pathogen.-Glomerella graminicola.
• Control.- the use of resistant cultivars.
Gray leaf spot.
• Pathogen C. sorghi Ell &Ev.
• Control.- Use of tolerant or resistant cultivars,
crop rotation and sanitation to reduce
surface residue and kill surviving crop plants.
Panicle and grain anthracnose.
• Pathogen.- Colletotrichum graminicola.
• Control.- the destruction of primary
inoculum, use po pathogen free-seed or seed
treated with fungicides.
Storage molds .
• Symptoms of damage for a fungal colonization
include discoloration in grain(darkening) of the
embryo or germ and molding, heating and
mustiness of the grain.
• Causal organisms and mycotoxins: Aspergillus
spp. Penicillium spp. A.restrictus. A glaucus.
Control.- the most comun method is prevention
by drying or cooling the grain at wich fungi
cannot grow (moisture less than 13% and
temperature below 5 Celcius degrees).
Diseases caused by viruses and virus
like organisms.
• Barley yellow dwarf virus.- attack S. bicolor.-
no symptoms shown. Transmited by an aphid.
• Panicum mosaic virus.- S.bicolor.- symptoms:
fain. Smaal clorotic lesion.- by a mechanical
transmition.
• Rice stripe virus.-S. halapense.- symptoms.-
chlorosis,chlorotic strip.- transmite by
leafhopper.
• Maize rough dwarf virus.- S.bicolor.-
chlorosis – transmited by
planthopper.
• Maize mosaic virus.- S.bicolor.
chlorotic striping. Transmited by
planthopper.
• Control.- cultural practices that
minimize the virus source.
Nematodes.
Symptoms:
• Root knots or galls.
• Root lesions.
• Abnormal or reduced root development.
Control.
• Quarantine and sanitization.
• Cultural practices (crop rotation).
• Physical treatments (steam sterilization or hot
water dips).
• Biological control (fungi, bacteria, insects and
predacious nematodes).
• Use of resistant cultivars.
• Chemical control(insecticide-nematicides like
carbamates and organophosphates).
Beneficial microorganisms.
• Vesicular-arbuscular mycorrhizae (VAM).
Endogenaceae.
• Glomus.
• Gigaspora.
• Acaulospora.
• Sclerocystis.
Insect pests.
Soil insects.
• White grub Phylophaga crinite (Burmeister).
• Cut worm larvae.
• Some species of climbing or army cutworms.
• Diabrotica undecimpunctata howardi Barber.
Foliage feeders.
•Greenbug Schizaphis graminum (Rondani).
•The corn leaf aphid Rhopalopsiphum maidis (Fitch).
•The sugar cane aphid Melanaphis sachari (Zehntner).
•The yellow sugar cane aphid Sipha flava Forbes.
•Shoot bug Peregrinus maidis (Ashmead).
•The spittlebug Poophiluscostalis Walker.
•The chinch bug Blissusleucopterus (Say).
•Spider mites Oligonycus spp.
Stem feeders.
• Pink borer Sesamia inferens Walker.
• Sugar cane borer Diatraea spp.
• Maize stalk borer Busseola fusca Fuller.
Head feeders.
• Larvae of sorghum midge Contarinia
sorghicola (Coquillett).
• Larvae of cornearworm Heliothis zea (Boddie).
• Young larvae of sorghum webworm Nola
sorghiella
THANKS FOR YOUR TIME AND
ATENTION..

More Related Content

What's hot

Barley floral biology and seed production
Barley floral biology and seed productionBarley floral biology and seed production
Barley floral biology and seed productionSummer
 
Production technology of spinach
Production technology of spinachProduction technology of spinach
Production technology of spinachpavanknaik
 
Seed production technology of wheat
Seed production technology of wheatSeed production technology of wheat
Seed production technology of wheatMohammad Safar Noori
 
scope &; importance of fruit and plantation crop in india.docx
scope &; importance of fruit and plantation crop in india.docxscope &; importance of fruit and plantation crop in india.docx
scope &; importance of fruit and plantation crop in india.docxRakesh Pattnaik
 
Barley Crop production
Barley Crop productionBarley Crop production
Barley Crop productionShubham Garg
 
Production technology of onion and garlic
Production technology of onion and garlicProduction technology of onion and garlic
Production technology of onion and garlicRakesh Rajput
 
Presentation on green gram
Presentation on green gramPresentation on green gram
Presentation on green gramAnkush Singh
 
Cucumber production technology
Cucumber production technologyCucumber production technology
Cucumber production technologyAnanda Murthy H C
 
Seed processing and it's steps
Seed processing and it's stepsSeed processing and it's steps
Seed processing and it's stepsAnshul Phaugat
 
Sunflower cultivation
Sunflower cultivationSunflower cultivation
Sunflower cultivationPrince Verma
 
Crop Production Technology-II Lentils.pptx
Crop Production Technology-II Lentils.pptxCrop Production Technology-II Lentils.pptx
Crop Production Technology-II Lentils.pptxNabanitaBarman3
 
Green gram (vigna radiata)
Green gram (vigna radiata)Green gram (vigna radiata)
Green gram (vigna radiata)KRATIKA SINGHAM
 
Physiological disorder of cole crops.pptx
Physiological disorder of cole crops.pptxPhysiological disorder of cole crops.pptx
Physiological disorder of cole crops.pptxDr. Aradhana Sen
 
Three line system of hybrid seed production
Three line system of hybrid seed productionThree line system of hybrid seed production
Three line system of hybrid seed productionmuruganjey
 
Hybrid seed production of rice
Hybrid seed production of rice Hybrid seed production of rice
Hybrid seed production of rice NSStudents
 

What's hot (20)

Barley floral biology and seed production
Barley floral biology and seed productionBarley floral biology and seed production
Barley floral biology and seed production
 
Production technology of spinach
Production technology of spinachProduction technology of spinach
Production technology of spinach
 
Seed tech ppt. mustard
Seed tech ppt. mustard Seed tech ppt. mustard
Seed tech ppt. mustard
 
Seed production technology of wheat
Seed production technology of wheatSeed production technology of wheat
Seed production technology of wheat
 
scope &; importance of fruit and plantation crop in india.docx
scope &; importance of fruit and plantation crop in india.docxscope &; importance of fruit and plantation crop in india.docx
scope &; importance of fruit and plantation crop in india.docx
 
Maize
MaizeMaize
Maize
 
Barley Crop production
Barley Crop productionBarley Crop production
Barley Crop production
 
Strawberry cultivation
Strawberry cultivationStrawberry cultivation
Strawberry cultivation
 
Production technology of onion and garlic
Production technology of onion and garlicProduction technology of onion and garlic
Production technology of onion and garlic
 
Presentation on green gram
Presentation on green gramPresentation on green gram
Presentation on green gram
 
Cucumber production technology
Cucumber production technologyCucumber production technology
Cucumber production technology
 
Seed processing and it's steps
Seed processing and it's stepsSeed processing and it's steps
Seed processing and it's steps
 
Sunflower cultivation
Sunflower cultivationSunflower cultivation
Sunflower cultivation
 
Crop Production Technology-II Lentils.pptx
Crop Production Technology-II Lentils.pptxCrop Production Technology-II Lentils.pptx
Crop Production Technology-II Lentils.pptx
 
Green gram (vigna radiata)
Green gram (vigna radiata)Green gram (vigna radiata)
Green gram (vigna radiata)
 
Physiological disorder of cole crops.pptx
Physiological disorder of cole crops.pptxPhysiological disorder of cole crops.pptx
Physiological disorder of cole crops.pptx
 
Three line system of hybrid seed production
Three line system of hybrid seed productionThree line system of hybrid seed production
Three line system of hybrid seed production
 
Sugarcane
SugarcaneSugarcane
Sugarcane
 
Pigeonpea
PigeonpeaPigeonpea
Pigeonpea
 
Hybrid seed production of rice
Hybrid seed production of rice Hybrid seed production of rice
Hybrid seed production of rice
 

Similar to Sorghum crop

Similar to Sorghum crop (20)

Rice
RiceRice
Rice
 
Maize report
Maize reportMaize report
Maize report
 
maize crop production
maize crop productionmaize crop production
maize crop production
 
(HT-213)FRENCH BEAN.pptx
(HT-213)FRENCH BEAN.pptx(HT-213)FRENCH BEAN.pptx
(HT-213)FRENCH BEAN.pptx
 
Maize
MaizeMaize
Maize
 
B.sc. agri i po h unit 5.3 cultivation practices of phalsa
B.sc. agri i po h unit 5.3 cultivation practices of phalsaB.sc. agri i po h unit 5.3 cultivation practices of phalsa
B.sc. agri i po h unit 5.3 cultivation practices of phalsa
 
2012 sesame producer_guide_13_feb
2012 sesame producer_guide_13_feb2012 sesame producer_guide_13_feb
2012 sesame producer_guide_13_feb
 
Wheat Rusts Management Strategies.pptx
Wheat Rusts Management Strategies.pptxWheat Rusts Management Strategies.pptx
Wheat Rusts Management Strategies.pptx
 
Physiology of minor milletes
Physiology of minor milletesPhysiology of minor milletes
Physiology of minor milletes
 
Cotton botanical aspects
Cotton botanical aspectsCotton botanical aspects
Cotton botanical aspects
 
Sugarcane cotton cultivation
Sugarcane cotton cultivationSugarcane cotton cultivation
Sugarcane cotton cultivation
 
Manual For Maize Production
Manual For Maize ProductionManual For Maize Production
Manual For Maize Production
 
Sorghum_seed_production
Sorghum_seed_productionSorghum_seed_production
Sorghum_seed_production
 
Cultivation of-citrus-nursery
Cultivation of-citrus-nurseryCultivation of-citrus-nursery
Cultivation of-citrus-nursery
 
Cultivation Of Citrus Nursery
Cultivation Of Citrus NurseryCultivation Of Citrus Nursery
Cultivation Of Citrus Nursery
 
Pearlmillet crop production technology
Pearlmillet crop production technologyPearlmillet crop production technology
Pearlmillet crop production technology
 
groundnut slide.pptx
groundnut slide.pptxgroundnut slide.pptx
groundnut slide.pptx
 
Phalsa
PhalsaPhalsa
Phalsa
 
sorghum crop production technology AGRON 211
sorghum crop production technology  AGRON 211sorghum crop production technology  AGRON 211
sorghum crop production technology AGRON 211
 
CUCURBITS BY ATUL-1.pptx
CUCURBITS BY ATUL-1.pptxCUCURBITS BY ATUL-1.pptx
CUCURBITS BY ATUL-1.pptx
 

Recently uploaded

Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Scriptwesley chun
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure servicePooja Nehwal
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Paola De la Torre
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonetsnaman860154
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...Neo4j
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Drew Madelung
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesSinan KOZAK
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘RTylerCroy
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Miguel Araújo
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsRoshan Dwivedi
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking MenDelhi Call girls
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024The Digital Insurer
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdfhans926745
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024The Digital Insurer
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking MenDelhi Call girls
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 

Recently uploaded (20)

Automating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps ScriptAutomating Google Workspace (GWS) & more with Apps Script
Automating Google Workspace (GWS) & more with Apps Script
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure serviceWhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
WhatsApp 9892124323 ✓Call Girls In Kalyan ( Mumbai ) secure service
 
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law DevelopmentsTrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
TrustArc Webinar - Stay Ahead of US State Data Privacy Law Developments
 
Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101Salesforce Community Group Quito, Salesforce 101
Salesforce Community Group Quito, Salesforce 101
 
How to convert PDF to text with Nanonets
How to convert PDF to text with NanonetsHow to convert PDF to text with Nanonets
How to convert PDF to text with Nanonets
 
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...Workshop - Best of Both Worlds_ Combine  KG and Vector search for  enhanced R...
Workshop - Best of Both Worlds_ Combine KG and Vector search for enhanced R...
 
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
Strategies for Unlocking Knowledge Management in Microsoft 365 in the Copilot...
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Unblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen FramesUnblocking The Main Thread Solving ANRs and Frozen Frames
Unblocking The Main Thread Solving ANRs and Frozen Frames
 
🐬 The future of MySQL is Postgres 🐘
🐬  The future of MySQL is Postgres   🐘🐬  The future of MySQL is Postgres   🐘
🐬 The future of MySQL is Postgres 🐘
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
Mastering MySQL Database Architecture: Deep Dive into MySQL Shell and MySQL R...
 
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live StreamsTop 5 Benefits OF Using Muvi Live Paywall For Live Streams
Top 5 Benefits OF Using Muvi Live Paywall For Live Streams
 
08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men08448380779 Call Girls In Friends Colony Women Seeking Men
08448380779 Call Girls In Friends Colony Women Seeking Men
 
Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024Partners Life - Insurer Innovation Award 2024
Partners Life - Insurer Innovation Award 2024
 
[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf[2024]Digital Global Overview Report 2024 Meltwater.pdf
[2024]Digital Global Overview Report 2024 Meltwater.pdf
 
Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024Axa Assurance Maroc - Insurer Innovation Award 2024
Axa Assurance Maroc - Insurer Innovation Award 2024
 
08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men08448380779 Call Girls In Civil Lines Women Seeking Men
08448380779 Call Girls In Civil Lines Women Seeking Men
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 

Sorghum crop

  • 1. UNIVERSIDAD DE GUANAJUATO. PRACTICAS 4. SORGHUM CROP. TEACHER HECTOR GORDON. STUDENT JOSE MARINO ARAUJO MENDOZA.
  • 2. • Sorghum (Sorghum bicolor L. moench) was probably initially domesticated in central Africa, in the region of Etiopia and Sudan. • Subsecuently, cultivation of sorghum spread througout Africa and Asia and finally to the Americas and Australia. • Today it is one of the world’s major food crops, particular in Areas of high temperature and low rain fall. • Its used for human consumption and to feed different kinds of livestocks such as birds, pigs and cows.
  • 3. Sorghum Taxonomy. • Kingdom-Plantae. • Subkingdom-Tracheobionta. • Superdivision-Spermatophyta. • Class-Liliopsida. • Subclass-Commelinidae. • Order-Cyperales. • Family-Poaceae (Grass). • Genus-Sorghum. • Species-Sorghum bicolor. • Subspecies-Sorghum bicolor ssp. Arundinaceum-common wild sorghum. • Subspecies- Sorghum bicolor ssp. Bicolor-grain sorghum. • Subspecies-Sorghum bicolor ssp. drummondii-sudan grass. • Species-Sorghum almum –columbus grass. • Species-Sorghum helepense-johnson grass. • Species-Sorghum propiquum-sorghum.
  • 4. • Sorghum can reach a height from 1-2 metters, it has flowers in panicles, and seeds of 3 mm with a circular or egg form, wich it depends of the variety, with a color the one can be black, red or yellow. • Its roots can growth 2 metters depending of the soil and water available to the crop. • It has flowers with stamens and pistils, but in Sudan have been found dioicious varietys.
  • 5.
  • 6. • Area estilar- stylar area. • Endosperma corneo- corneous endosperm. • Endosperma harinoso- flowry endosperm. • Escutelo- scutellum. • Embrión- embryo. • Epicarpio- epicarp. • Mesocarpio- mesocarp.
  • 7.
  • 8. Sorghum. • 1. Day length: Day length neutral & photosensitive types • 2. Rainfall: 600 –1,500mm • 3. Altitude: 900 –1,700m • 4. Temperature: 23 –32oC • 5. Soil Type: Light, well –drained loams • Sensitive to acidic soils • 6. Root systems: Extensive & Deep rooted • 7. Photosynthetic Activity : Efficient
  • 9. As a crop for climate change adaptation • 1.Moderate input requirements . • 2.Easy to grow • 3.Fast growth rate • 4.Highly responsive to Improved management • 5.Drought tolerance • 6.Widely adapted • 7.Easily extract nutrients from poor soils • 8.Fit well in many Tillage systems, crop Diversification programs and cropping patterns
  • 10. • Sorghum is the third grain most used in the world to feed human population, 75% of the world sorghums produccion is destinated for human consumption. • In places like India, Africa and China , sorghum provides 70% of the calories of the human diet. • Sorghum is used to make meals like binder sausages, flour, milkshakes, beer and also to produce alcohol an many more uses in construccion and in the industry.
  • 11. Sorghum the rich food • Carbohydrates 70% High • Protein 8 –15% • Mean = 9% Average • Fat 3.4% Average • Vitamin A 21 RE Average • Ash 1.5% Low • Phosphorus 368mg High • Iron 5.7mg Average • Calcium 21mg Average • Potassium 220mg Average • Amino Acid Profile Poor • Micro Nutrients Excellent
  • 12. ESSENTIAL AMINO ACIDS CONTAINED IN SORGHUM, CORN AND WHEAT.
  • 13. AVERAGE COMPOSITION OF MAJOR CONSTITUENTS
  • 14. Main sorghum producer countries.
  • 17. Sorghum in Mexico. • The national production in mexico in sorghum crops is: 46.4% in irrigated crops and 53.6% in temporary crops. • The sorghum’s crops surface in 2007 in Mexico was 1.87 millions of has. Wich is 12.35 of the national surface for the agriculture.
  • 18. Main sorghum producer states in Mexico. • Tamaulipas 60%. • Guanajuato 21%. • Sinaloa 10%. • Michoacan 8%. • Nayarit 5%. • The rest of the states 16%.
  • 20. EMERGENCE. When the plant first breaks through the soil surface (generally occurs 3 to 10 days after planting). • Depth and date of planting greatly affect emergence rate. During this period, growth depends on the seed for nutrients and food reserves.
  • 21. • Planting should be timed so that germination and early growth occur during warm temperatures and so flowering will occur before the hottest period of summer. The time required for emergence is impacted by soil temperature, moisture conditions, depth of planting, and vigor of the seed. • Cool, wet conditions during this time may favor disease organisms that seriously damage stands. Seed should be treated with a fungicide before planting.
  • 22. • Weed control should be considered. Producers have pre-plant, pre-emergent, and/or post-emergent herbicides available for use. Herbicides are generally used due to the problems encountered with hoeing or cultivation of large fields. This is very apparent in years with above average rainfall, when mechanical practices are limited by wet soil conditions.
  • 23. • Three-Leaf Stage Leaves are counted when the collar of the leaf can be seen without tearing the plant apart. The collar is the area where the leaf blade and leaf sheath attach.
  • 24. • It is important that the date of planting be late enough so that sorghum can grow rapidly during the three-leaf stage. • While the plant's growth rate depends largely on temperature, this stage usually will occur about 10 days after emergence. • Since the plant is quite small, relatively slow growth and poor weed control can seriously reduce yield. • As the growing point is still below the soil surface, much of the leaf area can be removed (by hail or insects) without killing the plant. However, sorghum does not recover as vigorously as corn.
  • 25. • Five-Leaf Stage Approximately 3 weeks after it emerges a sorghum plant has 5 leaves fully expanded; its root system is developing rapidly and roots produced at the lower nodes may push the lower leaf off the plant. This usually does not cause difficulty in identifying the five-leaf stage because the lower leaf has a rounded tip and the second leaf is pointed (Figure 1).
  • 26. • The growing point is still below the soil surface so leaf loss will not necessarily kill the plant. Regrowth is more vigorous than at the three-leaf stage but still less vigorous than corn. • During the five-leaf stage the potential for the plant to develop is determined.
  • 27. • Weed competition, nutrient and water stress, or other problems such as insect damage at the five-leaf stage, can seriously reduce yields if they are not corrected. • The plant enters its "grand period of growth" in the five-leaf stage. Dry matter accumulates at nearly a constant rate until maturity, if growing conditions are satisfactory.
  • 28. • Growing Point Differentiation About 30 days after sorghum emerges. • About one-third of the total leaf area has fully developed; 7 to 10 leaves depending on maturity class. The lower 1 to 3 leaves may have been lost.
  • 29. • Growth and nutrient uptake are rapid during the growing point differentiation stage. Adequate supplies of nutrients and water are necessary to provide maximum growth. • Growing point changes from vegetative (leaf producing) to reproductive (head producing). The total number of leaves has been determined and potential head size will soon be determined.
  • 30. • Sorghum plants are now quite competitive which helps maintain good weed control the remainder of the growing season. • Time from planting to growing point differentiation generally is about one-third of the time from planting to physiological maturity (maximum dry weight).
  • 31. • Flag Leaf Stage Following growing point differentiation, rapid culm elongation and rapid leaf development occur simultaneously until the flag leaf (final leaf) is visible in the whorl. • Most leaves are fully expanded except the final 3 to 4 leaves.
  • 32. • About 80 percent of the total leaf area is present. Light interception is approaching maximum. • The lower 2 to 5 leaves have been lost. Any reference to leaf number from now on should be from the top, counting the flag leaf as leaf number 1. • Growth and nutrient uptake continue at a rapid rate. While only about one-fifth of the total growth has occurred, nutrient uptake is far greater with more than 40 percent of the potassium already being taken up. Adequate supplies of nutrients and water are necessary to provide maximum growth. • The head is developing. • Sorghum plants are now quite competitive which helps maintain good weed control the remainder of the growing season
  • 33. Boot Stage . • All leaves are now fully expanded, providing maximum leaf area and light interception. The head has now developed to nearly full size and is enclosed in the flag-leaf sheath.
  • 34. • Rapid growth and nutrient uptake are continuing. • Severe moisture stress or herbicide injury during the Boot Stage may prevent the head from exerting completely from the flag-leaf sheath. This prevents complete pollination at flowering time. • Except for the peduncle (see Figure 1) culm elongation is essentially complete. • Peduncle elongation is beginning and will result in exertion of the head from the flag- leaf sheath. • Potential head size has been determined.
  • 35. • Half-Bloom Stage • Half-bloom is usually defined as when one- half of the plants in a field or area are in some stage of bloom. However, because an individual sorghum head flowers from the tip downward over 4 to 9 days, half-bloom on an individual plant is when the flowering has progressed half-way down the head.
  • 36. • Time required from planting to half-bloom depends on the maturity of the hybrid and environmental conditions; however, it usually represents two-thirds of the time from planting to physiological maturity. • Following the boot stage the peduncle grows rapidly extending the head through the flag-leaf sheath. Even in combine sorghums, the peduncle is not reduced in length as is the rest of the stalk. Although height of combine- sorghum plants has been reduced, heads are well above the leaves, which makes combining easier.
  • 37. • At half-bloom approximately one-half of the total dry weight of the plant has been produced. However, nutrient uptake has reached nearly 70, 60, and 80 percent of total for N, P2O5, and K2O, respectively. • At this time grain formation begins; therefore, any limitation in plant size, leaf area, or plant numbers can no longer be corrected • If environmental conditions are favorable, the sorghum yield can still be increased by increasing the seed weight.
  • 38. • Sever moisture stress can result in "blasting" and poor head filling. • As mentioned earlier hybrid maturity and planting date should be chosen so flowering will not occur when severe hot, dry weather is normal.
  • 39. • Soft-Dough Stage Between half-bloom and soft- dough the grain fills rapidly; almost half of its dry weight is accumulated in this period. • The stalk weight increases slightly following half- bloom; then, because grain is forming rapidly, the stalk loses weight. The loss in stalk weight may account for as much as 10 percent of the grain weight.
  • 40. • Final yield depends on the rate that dry matter accumulates in the grain and the length of time that it accumulates. • As long as the hybrid is able to mature before frost, the dry matter accumulation will be high if environmental conditions are favorable. • The selection of later maturing grain sorghum hybrids has an advantage over early maturing varieties if: 1) the hybrid can mature before frost and 2) flowering does not coincide with severe moisture stress.
  • 41. • Dry matter accumulation rates do not vary much among hybrids. • Nitrogen and Phosphorus uptake is still rapid and Potassium uptake is close to 90 percent and starting to decline. • Lower leaves are still being lost with 8 to 12 functional leaves remaining.
  • 42. • Hard-Dough Stage By hard-dough stage, about three-fourths of the grain dry weight has accumulated. Nutrient uptake is essentially complete. • Severe moisture stress or a freeze before the grain matures will result in light, chaffy grain. • The stalk has declined to its lowest weight. Additional leaves may have been lost.
  • 43. • Physiological Maturity • Maximum total dry weight of the plant has occurred. The time from flowering to physiological maturity varies with hybrid and environmental conditions; however, it represents about one-third of the total time from planting.
  • 44. • Grain moisture content at physiological maturity is usually between 25 and 35 percent, but varies with hybrid and growing conditions. • If temperature and moisture conditions are favorable, branches may start to grow from several of the upper nodes (places where leaves attach).
  • 45. • Physiological maturity can be determined by the dark spot on the opposite side of the kernel from the embryo. The kernel on the left is physiologically mature; the one on the right is not. • To reap maximum yields of silage or high-moisture grain, harvest as near to physiological maturity as possible.
  • 46. • The plant will not reach physiological maturity and proper moisture content for normal harvest at the same time. • The time required between physiological maturity and a grain moisture suitable for harvest depends on the hybrid and weather conditions. • Stalk weight may increase slightly near physiological maturity. • After physiological maturity, the remaining functional leaves may stay green or die and brown rapidly. • Nutrient uptake is basically complete.
  • 47. The plants swoing can go from 85,000 to 150,000 plants by ha. Depending on the seed that the producer’s choose.
  • 48. Diseases caused by bacteria. • Bacterial leaf stripe.- pathogen Pseudomonas rubrisubalbicans • symptoms: irregularly shaped, dark red lesions on leaves and leaf sheaths. • Control suggested.- crop rotation, destruction of crop residue and planting resistant cultivars or hybrids.
  • 49.
  • 50. Bacterial leaf spot. • Pathogen Pseudomonas syringae. • Initial symptoms consist en water soacked spots on the lower leaves, within a short period these irregular, elliptic lesions assume a reddish hue. • Control : crop rotation, destruction of infested debris and selection of seed from disease- free plants.
  • 51.
  • 52. Bacterial soft rot. • Pathogen Erwinia crysanthemi pv. Chrysantemi. • Symptoms .-necrotic or heavily pigmented stripes or blotches on upper leaves; stalk and leaf tissue rotted in whorls.
  • 53.
  • 54. Diseases caused by fungi. • Seedling diseases .-damage weathered or moldy seed . • Pathogens. Pythium spp. Fusarium spp. Aspergillus spp. Rizoctonia spp. Phoma spp. • Control.- captan, thiram, metalaxyl and fosetyl Al. wich are systemic products.
  • 55.
  • 56. Leaf anthracnose . • Pathogen.-Glomerella graminicola. • Control.- the use of resistant cultivars.
  • 57. Gray leaf spot. • Pathogen C. sorghi Ell &Ev. • Control.- Use of tolerant or resistant cultivars, crop rotation and sanitation to reduce surface residue and kill surviving crop plants.
  • 58. Panicle and grain anthracnose. • Pathogen.- Colletotrichum graminicola. • Control.- the destruction of primary inoculum, use po pathogen free-seed or seed treated with fungicides.
  • 59.
  • 60. Storage molds . • Symptoms of damage for a fungal colonization include discoloration in grain(darkening) of the embryo or germ and molding, heating and mustiness of the grain. • Causal organisms and mycotoxins: Aspergillus spp. Penicillium spp. A.restrictus. A glaucus. Control.- the most comun method is prevention by drying or cooling the grain at wich fungi cannot grow (moisture less than 13% and temperature below 5 Celcius degrees).
  • 61.
  • 62. Diseases caused by viruses and virus like organisms. • Barley yellow dwarf virus.- attack S. bicolor.- no symptoms shown. Transmited by an aphid. • Panicum mosaic virus.- S.bicolor.- symptoms: fain. Smaal clorotic lesion.- by a mechanical transmition. • Rice stripe virus.-S. halapense.- symptoms.- chlorosis,chlorotic strip.- transmite by leafhopper.
  • 63. • Maize rough dwarf virus.- S.bicolor.- chlorosis – transmited by planthopper. • Maize mosaic virus.- S.bicolor. chlorotic striping. Transmited by planthopper. • Control.- cultural practices that minimize the virus source.
  • 64.
  • 65. Nematodes. Symptoms: • Root knots or galls. • Root lesions. • Abnormal or reduced root development.
  • 66.
  • 67. Control. • Quarantine and sanitization. • Cultural practices (crop rotation). • Physical treatments (steam sterilization or hot water dips). • Biological control (fungi, bacteria, insects and predacious nematodes). • Use of resistant cultivars. • Chemical control(insecticide-nematicides like carbamates and organophosphates).
  • 68. Beneficial microorganisms. • Vesicular-arbuscular mycorrhizae (VAM). Endogenaceae. • Glomus. • Gigaspora. • Acaulospora. • Sclerocystis.
  • 70. Soil insects. • White grub Phylophaga crinite (Burmeister). • Cut worm larvae. • Some species of climbing or army cutworms. • Diabrotica undecimpunctata howardi Barber.
  • 71.
  • 72. Foliage feeders. •Greenbug Schizaphis graminum (Rondani). •The corn leaf aphid Rhopalopsiphum maidis (Fitch). •The sugar cane aphid Melanaphis sachari (Zehntner). •The yellow sugar cane aphid Sipha flava Forbes. •Shoot bug Peregrinus maidis (Ashmead). •The spittlebug Poophiluscostalis Walker. •The chinch bug Blissusleucopterus (Say). •Spider mites Oligonycus spp.
  • 73.
  • 74. Stem feeders. • Pink borer Sesamia inferens Walker. • Sugar cane borer Diatraea spp. • Maize stalk borer Busseola fusca Fuller.
  • 75.
  • 76. Head feeders. • Larvae of sorghum midge Contarinia sorghicola (Coquillett). • Larvae of cornearworm Heliothis zea (Boddie). • Young larvae of sorghum webworm Nola sorghiella
  • 77.
  • 78. THANKS FOR YOUR TIME AND ATENTION..