SlideShare a Scribd company logo
1 of 6
Download to read offline
GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L12101, doi:10.1029/2008GL034061, 2008
  Click
  Here
    for
 Full
Article

Geometric modulation: A more effective method of steerable ELF/VLF
wave generation with continuous HF heating of the lower ionosphere
M. B. Cohen,1 U. S. Inan,1 and M. A. Golkowski1
Received 19 March 2008; revised 23 April 2008; accepted 8 May 2008; published 18 June 2008.
[1] ELF/VLF radio waves (300 Hz– 30 kHz) are difficult                    [4] The ionospheric observatories near Arecibo, Puerto
to generate with practical antennae, because of their                   Rico [Ferraro et al., 1982], and Jicamarca, Peru [Lunnen et
extraordinarily long (10 – 1000 km) wavelengths, and the                al., 1984], generated weak (<1 fT) ELF signals utilizing the
lossy nature of the Earth’s surface at these frequencies.               equatorial dynamo current. High latitude facilities utilizing
ELF/VLF waves have been successfully generated via                      the auroral electrojet have generated stronger (>1 pT) ELF/
amplitude modulated (AM) HF (2 –10 MHz) heating of                      VLF signals. The HIPAS facility near Fairbanks, Alaska,
the lower ionosphere. Through the temperature-dependent                 utilizes a 150 kW transmitter array operating at 2.85 MHz
conductivity of the lower ionospheric plasma, a patch of                [e.g., Villasen et al., 1996]. The 1 MW radiated EISCAT
                                                                                      ˜or
the ionospheric current becomes a large radiating                       facility near Tromsø, Norway, has performed ELF/VLF
‘antenna’. We implement a new method of ELF/VLF                         experiments [e.g., Stubbe et al., 1982], including an HF
wave generation, herein named ‘geometric modulation’,                   beam steering ability utilized by Rietveld et al. [1984] to
involving scanning the HF heating beam in a geometric                   observe electrojet spatial structure.
pattern without modulating its power. Utilizing results                   [5] More recently, the High Frequency Active Auroral
from the upgraded 3.6 MW radiated HAARP HF antenna                      Research Program (HAARP) phased-array HF facility near
array, we show that geometric modulation can enhance ELF/               Gakona, Alaska (62° 220N, 145° 90W), has generated ELF
VLF wave generation by up to $11 dB over the conventional               signals observed as far as 4400 km [Moore et al., 2007], as
AM method. Geometric modulation also allows directional                 well as in the geomagnetic conjugate region [Inan et al.,
launching of the signal into the Earth-ionosphere waveguide,            2004; M. Golkowski et al., Magnetospheric amplification
forming an unprecedented steerable large-element ELF/VLF                and emission triggering by ELF/VLF waves injected by the
ionospheric phased array. Citation: Cohen, M. B., U. S. Inan,           3.6 MW HAARP ionospheric heater, submitted to Journal
and M. A. Golowski (2008), Geometric modulation: A more                 of Geophysical Research, 2008]. In 2007, an upgrade of
effective method of steerable ELF/VLF wave generation with              HAARP was completed, increasing its HF radiated power
continuous HF heating of the lower ionosphere, Geophys. Res. Lett.,     from 960 kW to 3.6 MW [Cohen et al., 2008]. The
35, L12101, doi:10.1029/2008GL034061.                                   generation of ELF/VLF waves via HF heating is strongly
                                                                        affected by D-region electron density and auroral electrojet
1. Introduction                                                         strength, however, HF heating parameter choice (frequency,
                                                                        beam direction, power, etc.) is quite important.
  [2] The generation of radio waves of Extremely Low                      [6] Papadopoulos et al. [1990] suggest a so-called ‘beam
Frequency and Very Low Frequency (ELF/VLF, 0.3 –                        painting’ technique, i.e., moving a high-power HF beam
30 kHz) has long been a challenge for scientists and                    over a large area during the heating period at a rate faster
engineers. With wavelengths of $10– 1000 km, acceptably                 than the electrons cool followed by HF OFF period to
efficient radiating antennae require similar length scales.             complete the AM cycle., though here we report a technique
This problem is exacerbated by the good conductivity of the             in which the beam moves at rates (a few kHz) substantially
Earth’s surface at these frequencies ($10À4 S/m), so that a             slower than the 10s of ms cooling rates [Barr et al., 1999],
horizontal radiating antenna along the ground suffers the               with a continuously ON beam. Papadopoulos et al. [1994]
hindrance of an image current just below the ground plane.              and Borisov et al. [1996] also theorized ELF/VLF injection
  [3] ELF/VLF frequencies have important scientific and                 into the EIW and magnetosphere via Cerenkov radiation
practical uses, due to the efficient propagation of ELF/VLF             from a source moving along a line at speeds near or above
signals in the Earth-ionosphere waveguide (EIW). ELF/                   the phase velocity of propagating waves.
VLF waves impact the physical processes at play in the                    [7] Efforts to generate an ELF/VLF directional array
ionosphere and magnetosphere (see Barr et al. [2000] for a              have been very limited. Barr et al. [1987] alternate the
review) and can be an effective diagnostic tool. HF heating             HF beam between two regions using the Tromsø facility,
of the lower ionosphere in the presence of natural currents             with half the ELF/VLF cycle at each. The observations
constitutes one of the few effective means of ELF/VLF                   resembled those of an array with two antiphase elements.
wave generation, and thus has remained a subject of active              Werner and Ferraro [1987] theoretically investigated iono-
research since the first demonstration by Getmantsev et al.             spheric ELF/VLF arrays.
[1974].                                                                   [8] In this paper, we implement a new technique, hereafter
                                                                        referred to as ‘geometric modulation’ (and abbreviated GM),
   1
    STAR Laboratory, Department of Electrical Engineering, Stanford     in which the beam scans in a geometric pattern at ELF/VLF
University, Stanford, California, USA.                                  rates, with no power modulation. The period of traversing the
                                                                        geometric pattern dictates the fundamental ELF/VLF modu-
Copyright 2008 by the American Geophysical Union.                       lation frequency, so that ON-OFF modulation is achieved
0094-8276/08/2008GL034061$05.00

                                                                 L12101                                                        1 of 6
L12101                    COHEN ET AL.: ELF/VLF WAVES WITH GEOMETRIC MODULATION                                      L12101




Figure 1. (top) Receiver locations. Chistochina (62° 370N, 144° 370W, 37 km from HAARP), Kodiak (57° 520N, 152°
530W, 661 km from HAARP), and Juneau (58° 350N, 134° 540W, 704 km from HAARP), and directions shown compared to
geomagnetic south. (bottom) The observed response of amplitude modulation, north-south line-sweep, and circle-sweep,
measured at the indicated nine frequencies between 1 kHz and 6.25 kHz, at (a) Chistochina, (b) Kodiak, and (c) Juneau.

through beam motion, not power modulation. We demon-           located at a direction from HAARP $21° west of geomag-
strate experimentally that GM enhances ELF/VLF ampli-          netic south, while Juneau is located at a direction from
tudes from modulated HF heating by as much as 7 –11 dB,        HAARP $10° south of geomagnetic east. Figure 1, top
particularly above 3 kHz, and at longer (hundreds of km)       panel, shows the locations of HAARP and the three receivers.
distances from HAARP. We demonstrate that GM allows the           [11] The four modulation schemes discussed here are
directing of the signal in the EIW.                            summarized in Figure 2, top panel. For amplitude modula-
                                                               tion (AM), we utilize 50% duty cycle, 100% depth square
2. Experimental Setup                                          wave modulation. Three types of GM ‘sweep’ schemes are
                                                               introduced, each of which is compared to a typical AM
  [9] ELF/VLF data are taken with the so-called AWE-           scheme. The GM schemes are herein labeled line-sweep,
SOME. These broadband, high-sensitivity (typically femto-      where the heating beam scans back and forth along a
teslas) ELF/VLF receivers consist of two orthogonal air-core   chosen azimuth, completing a full back-forth scan (in this
loop antennae, measuring the two horizontal components of      case ±15°) in one ELF/VLF period); sawtooth-sweep,
the magnetic field between 350 Hz and 47 kHz. Data is          where the heating beam scans along one chosen azimuth,
synchronized to GPS with inherent 200 ns accuracy. The         completing one sweep across the path in one ELF/VLF
receivers include RFI-suppression filtering at the input to    period and starting back at the initial end; and circle-sweep,
reject HF signals.                                             where the heated beam follows a circular pattern with some
  [10] We utilize data from three receiver sites in Alaska.    radius (in this case 15°). In these experiments, we utilize an
Chistochina, located quite close ($37 km) to HAARP, and        HF carrier frequency of 3.25 MHz, with X-mode polariza-
Kodiak and Juneau, at longer distances ($700 km). Kodiak is    tion, and with ERP of $575 MW.

                                                          2 of 6
L12101                    COHEN ET AL.: ELF/VLF WAVES WITH GEOMETRIC MODULATION                                   L12101




Figure 2. Experimental setup. (top) Modulation schemes, amplitude modulation, and geometric modulation with the CW
beam moving in a pattern at ELF/VLF frequencies. Circle, line and sawtooth sweeps are shown. (bottom) Transmitted
formats and Sample spectrograms. FORMAT1 includes AM, a geomagnetic north-south line-sweep (LNS), and a
counterclockwise circle-sweep (CCW). FORMAT2 also includes sawtooth-sweeps north-to-south (SNS) and east-to-west
(SEW), and a clockwise circle-sweep (CW).

   [12] In a typical experiment, a frequency-time transmis-    single-frequency 3-second pulses (1 kHz, 1.667 kHz, 2 kHz,
sion format is repeated for many minutes. We discuss two       2.5 kHz, 4.167 kHz), for each of three modulation schemes:
particular formats designed to evaluate the effectiveness of   AM, line-sweep (in the geomagnetic north-south azimuth),
AM and GM. Each format consists of a pattern of pulses,        and circle-sweep (with counterclockwise rotational sense,
generated by each different modulation scheme for direct       viewed from below). FORMAT2 includes the same modu-
comparison. These 45– 60 second long formats are repeated      lation schemes as in FORMAT1, but also adds sawtooth-
for periods of $1 hour, and the received signal amplitudes     sweeps in both the geomagnetic north-to-south, and east-to-
are averaged to minimize the effect of ionospheric varia-      west azimuth, and an additional circle-sweep with clockwise
tions. While each format is transmitted at several different   rotational sense. FORMAT2 utilizes 2-second pulses with
times, the comparative effectiveness of each modulation        different ELF/VLF frequencies, (1.25 kHz, 2.5 kHz,
schemes is found to be consistent whenever SNR is suffi-       3.125 kHz, 5 kHz, 6.25 kHz).
cient (>10 dB) at all three receiver sites.                      [14] We rotate the data from each site to align with the
   [13] The two transmission formats utilized, herein named    great circle path from HAARP to receiver, and separately
FORMAT1 and FORMAT2, are illustrated in the lower plots        integrate the radial and azimuthal magnetic field ampli-
of Figure 2, along with sample spectrograms. The received      tudes of each received pulse over its length, to provide a
data show harmonics of the ELF/VLF frequencies from            single horizontal magnetic field measurement. We then
nonlinearities in the HF heating, though here we consider      average these phasor quantities over the many (typically
only the fundamental frequency. FORMAT1 consists of five       60) repetitions of the format. Comparative noise measure-

                                                          3 of 6
L12101                    COHEN ET AL.: ELF/VLF WAVES WITH GEOMETRIC MODULATION                                  L12101




Figure 3. The frequency response of the two counterclockwise (CCW) and clockwise (CW) circle-sweeps, at (a)
Chistochina, (b) Kodiak, and (c) Juneau, at five frequencies between 1.25 kHz and 6.25 kHz. (d– f) The frequency response
of north-to-south (NS) and east-to-west (EW) sawtooth-sweeps.

ments are obtained by repeating the same procedure where      by 7 – 11 dB. In addition, above 3 kHz at Kodiak, the line-
no signal was transmitted, and are found to be and            sweep produces amplitudes up to 5 dB higher than AM.
between À70 dB-pT and À75 dB-pT at Chistochina and               [17] From 3 kHz to 6.25 kHz, the decease in amplitude
Kodiak, and between À75 dB-pT À80 dB-pT at Juneau.            with increasing ELF/VLF frequency common to all three
                                                              modulation schemes at all three sites results from a
3. Observations                                               combination of the conductivity modulation, waveguide
                                                              resonance (i.e., reflections between the Earth and iono-
  [15] Figure 1, bottom plots, shows the frequency depen-     sphere observed nearby), and waveguide propagation (i.e.
dent ELF/VLF amplitude measured at each of the three          guiding along the EIW to longer distances), all of which
sites and for each of the three modulation schemes            are frequency dependent. At Chistochina (i.e. close to
(labeled AM, LNS, and CCW) that were included in              HAARP), where resonance effects dominate over propa-
FORMAT1 and FORMAT2. We combine the results from              gation effects [Stubbe et al., 1982], the amplitude of AM
the two formats after normalizing by the intensity of the     decreases with increasing ELF/VLF frequency faster than
2.5 kHz pulse, which is common to both. GM schemes are        that of GM, so that GM schemes become increasingly
shown with solid lines, while AM is shown as a dashed         advantageous, up to 6.25 kHz. However, at Kodiak and
line. Error bars shown are based on the noise levels          Juneau, where propagation effects dominate over reso-
described above, though are small enough to be not visible    nance effects, the three schemes have the same depen-
for the stronger signals. FORMAT1 was transmitted on          dence on increasing ELF/VLF frequency between 3 kHz
28 August 2007, from 1600– 1700 UT, and FORMAT2 on            and 6.25 kHz.
20 September 2007, from 1717 – 1818 UT, both during              [18] GM inherently delivers 3 dB more HF power into the
ionospheric daytime and during periods of weak geomag-        ionosphere compared to AM, yet provides a 7 – 11 dB
netic activity with kp below 3.                               enhancement, and is therefore more efficient by 4 – 8 dB,
  [16] At Chistochina, AM produces higher ELF/VLF field       likely as a result of more efficient phasing of the heated
amplitude compared to the circle-sweep by 2 – 4 dB, and to    region and utilization of the heating duty cycle. Further-
the line-sweep by 5 –8 dB for signals below 3 kHz. Above      more, since amplitudes of ELF/VLF signals generated via
3 kHz, however, circle-sweep produces higher amplitudes       modulated HF heating as observed on the ground are
than AM by 1 –5 dB. At the longer distances, GM appears       roughly proportional to total HF power delivered to the
to provide a more distinct advantage, although specifically   ionosphere [Barr and Stubbe, 1991], with some variations
below $2 kHz, comparison of these schemes is complicated      resulting from a saturation mechanism at these power levels
by the fact that the signal propagates below the EIW cutoff   [Moore et al., 2006], the 7 – 11 dB enhancement exceeds the
frequency ($1.8 kHz), and so signal levels for the three      6 dB enhancement that would be expected by simply
modulation schemes cannot be unequivocably distinguished      doubling the power of HAARP. This represents a significant
from measurement error. However, above 3 kHz, the circle-     achievement given that ELF/VLF generation via modulated
sweep leads to higher amplitude signals compared to AM        HF heating has efficiencies near 0.001% [Moore et al.,

                                                         4 of 6
L12101                     COHEN ET AL.: ELF/VLF WAVES WITH GEOMETRIC MODULATION                                                   L12101

2007], and especially since a similar increase of ELF/VLF        $135 km, the inter-element phase shift is therefore 2p/20,
radiated amplitudes through an array power or size upgrade       and the inter-element spacing is $135/20 km. Since the
would require another long and costly upgrade.                   sawtooth-sweep appears to direct radiation along its azimuth,
  [19] Above 3 kHz, the line-sweep and AM have different         it acts similar to an end-fire array, which may work best at
relative effectiveness at Kodiak and Juneau (roughly equal       directing the radiated signal when the phase shift between
distances from HAARP). The line-sweep is along the               adjacent elements is comparable to the phase difference of
geomagnetic north-south azimuth, i.e., generally toward          propagating waves in that direction. In addition to the circle
Kodiak and orthogonal to the HAARP-Juneau path. At               and sawtooth-sweep, other configurations of beam locations
Kodiak, the line-sweep generates stronger ELF/VLF than           will create more general types of radiation patterns, for
AM by 3 – 5 dB, whereas at Juneau, the north-south line-         instance, four corners of a square. In general, full control of
sweep produces 3 – 4 dB weaker ELF/VLF amplitudes than           the phasing can be exercised via an arbitrary pattern of beam
AM. These results suggest that the line-sweep may prefer-        directions and dwell times in the order of the desired phasing,
entially direct radiation roughly along the azimuth of the       including a large number of beam positions spaced by
sweep, effectively acting as a directed antenna in addition to   arbitrary distances, which would be generalizable extension
the 5 – 10 dB stronger radiation in the direction roughly        of the two-element array presented by Barr et al. [1987].
orthogonal to the electrojet current direction [Cohen et al.,
2008].                                                           4. Conclusion
  [20] FORMAT2 includes sawtooth-sweeps with two or-
thogonal azimuths, and circle-sweeps with both rotational          [24] A novel method of ELF/VLF wave generation via
senses. The frequency response for different modulation          HF heating is implemented, herein named ‘geometric mod-
schemes are shown in Figure 3, with measurements at the          ulation’ (GM), whereby the HF heating beam is scanned
five ELF/VLF frequencies included in FORMAT2.                    along a geometric pattern with constant power. We have
  [21] The two circular sweep rotational senses produce          described three particular forms of GM, where the beam
amplitudes that are within a few dB, however the ampli-          scans at a constant radius (circle-sweep), back and forth
tudes of the two sawtooth-sweeps are very strong functions       along an azimuth (line-sweep), or one way along an azimuth
of direction from HAARP. For instance, the two sawtooth-         (sawtooth-sweep).
sweep azimuths (north-to-south and east-to-west) impact            [25] Near HAARP, GM is less effective than AM below
ELF/VLF amplitudes at Kodiak and Juneau by as much as            2 kHz, but more effective above 3 kHz. For long distance
14 dB, and up to 5 dB at Chistochina, and are higher when        observations, GM consistently produces substantially stron-
the sawtooth-sweep azimuth is pointed roughly toward the         ger signals than AM for ELF/VLF frequencies above 3 kHz,
receiver. However, since Kodiak and Juneau are not pre-          by as much as 7 –11 dB. In addition, GM can lead to the
cisely along the geomagnetic east and south directions from      creation of an unprecedented ELF phased array, capable of
HAARP (being 21° and 10° off in bearing, respectively),          directed radiation at different azimuths within the EIW.
they are also not precisely along the sawtooth-sweep             Furthermore, additional improvements in both the resultant
azimuth, either. It is therefore possible that an even larger    ELF/VLF amplitudes and the effective array directivity may
than 14 dB enhancement may be realized if the sawtooth-          yet be realized with further theoretical and experimental
sweep azimuth is oriented directly toward a receiver.            optimization.
  [22] Rietveld et al. [1984] perform experiments in which
the AM heating beam is moved slowly along a line in the            [26] Acknowledgments. We acknowledge support from HAARP,
                                                                 Office of Naval Research (ONR), Air Force Research Laboratory, and
north-south azimuth, and show that signal amplitudes at a        Defense Advanced Research Programs Agency, via ONR grant
nearby receiver may vary due to the spatial structure of the     N0001405C0308 to Stanford University. We thank Mike McCarrick for
auroral electrojet. At least some of the 11 dB improved          operation of the HAARP array.
ELF/VLF amplitude associated with GM may therefore be
due to such spatial structure, with the sweeps simply            References
including regions with a stronger electrojet. However, this      Barr, R., and P. Stubbe (1991), ELF radiation from the Tromsø ‘‘super
                                                                   heater’’ facility, Geophys. Res. Lett., 18(6), 1035 – 1038.
possibility is inconsistent with the signal amplitude’s          Barr, R., M. T. Rietveld, P. Stubbe, and H. Kopka (1987), Ionospheric
dependence on the sawtooth-sweep azimuth, and therefore            heater beam scanning: A mobile source of ELF radiation, Radio Sci.,
cannot be the dominant explanation for the larger ELF/             22(6), 1076 – 1083.
                                                                 Barr, R., P. Stubbe, and M. T. Rietveld (1999), ELF wave generation in
VLF amplitudes observed.                                           the ionosphere using pulse modulated HF heating, Ann. Geophys., 17,
  [23] It thus appears that the directionality associated with     759 – 769.
the sawtooth-sweep arises at least in part from the effective    Barr, R., D. Llanwyn Jones, and C. J. Rodger (2000), ELF and VLF radio
creation of an ELF phased array, producing constructive and        waves, J. Atmos. Sol. Terr. Phys., 62, 1689 – 1718.
                                                                 Borisov, M., A. Gurevich, and K. Papadopoulos (1996), Direct Cerenkov
destructive interference as a function of direction. The phase     excitation of waveguide modes by a mobile ionospheric heater, Radio
of each element within the array is determined by the phase        Sci., 31(4), 859 – 867.
within the ELF/VLF cycle at which the beam begins to heat        Cohen, M. B., M. Golkowski, and U. S. Inan (2008), Orientation of the
                                                                   HAARP ELF ionospheric dipole and the auroral electrojet, Geophys. Res.
that area. For instance, in the circle-sweep, the beam takes a     Lett., 35, L02806, doi:10.1029/2007GL032424.
full ELF/VLF period to traverse the circle, hence the circle-    Ferraro, A. J., et al. (1982), VLF/ELF radiation from dynamo current system
sweep can be treated as having a progressive phase variation       modulated by powerful HF signals, J. Atmos. Terr. Phys., 44, 1113 – 1122.
                                                                 Getmantsev, G. G., et al. (1974), Combination frequencies in the interaction
of 2p around the circle. In the sawtooth-sweep in FORMAT 2,        between high-power short-wave radiation and ionospheric plasma, Sov.
the number of distinct phases is simply the number of beam         Phys. JETP Lett., 20, 101 – 102, Engl. Transl.
positions in the modulation scheme, i.e., 20 for the circle-     Inan, U. S., M. Golkowski, D. L. Carpenter, N. Reddell, R. C. Moore, T. F.
sweeps in FORMAT2. Since the circumference of the circle is        Bell, E. Paschal, P. Kossey, E. Kennedy, and S. Z. Meth (2004), Multi-
                                                                   hop whistler-mode ELF/VLF signals and triggered emissions excited by

                                                            5 of 6
L12101                           COHEN ET AL.: ELF/VLF WAVES WITH GEOMETRIC MODULATION                                                          L12101

  the HAARP HF heater, Geophys. Res. Lett., 31, L24805, doi:10.1029/          Rietveld, M. T., R. Barr, H. Kopka, E. Nielsen, P. Stubbe, and R. L.
  2004GL021647.                                                                 Dowden (1984), Ionospheric heater beam scanning: A new technique
Lunnen, R. J., et al. (1984), Detection of radiation from a heated and          for ELF studies of the auroral ionosphere, Radio Sci., 19(4), 1069 – 1077.
  modulated equatorial electrojet current system, Nature, 311, 135 – 1354.    Stubbe, P., H. Kopka, and M. T. Rietveld (1982), ELF and VLF wave
Moore, R. C., U. S. Inan, and T. F. Bell (2006), Observations of amplitude      generation by modulated HF heating of the current carrying lower iono-
  saturation in ELF/VLF wave generation by modulated HF heating of the          sphere, J. Atmos. Terr. Phys., 44, 1123 – 1135.
  auroral electrojet, Geophys. Res. Lett., 33, L12106, doi:10.1029/           Villasenor, J., A. Y. Wong, B. Song, J. Pau, M. McCarrick, and D. Sentman
                                                                                     ˜
  2006GL025934.                                                                 (1996), Comparison of ELF/VLF generation modes in the ionosphere by
Moore, R. C., U. S. Inan, T. F. Bell, and E. J. Kennedy (2007), ELF waves       the HIPAS heater array, Radio Sci., 31(1), 211 – 226.
  generated by modulated HF heating of the auroral electrojet and observed    Werner, D. H., and A. J. Ferraro (1987), Steerable ELF/VLF radiation
  at a ground distance of $4400 km, J. Geophys. Res., 112, A05309,              produced by an array of ionospheric dipoles generated from HF heating,
  doi:10.1029/2006JA012063.                                                     IEEE Trans. Antennas Propag., 9, 1022 – 1030.
Papadopoulos, K., C. L. Chang, P. Vitello, and A. Drobot (1990), On the
  efficiency of ionospheric ELF generation, Radio Sci., 25(6), 1131 – 1320.   ÀÀÀÀÀÀÀÀÀÀÀ
                                                                              ÀÀÀÀÀÀÀÀÀÀÀ
Papadopoulos, K., H. B. Zhou, and C. L. Chang (1994), Cerenkov excita-         M. B. Cohen, M. A. Golkowski, and U. S. Inan, STAR Laboratory,
  tion of whistler/helicon waves by ionospheric HF heating, Geophys. Res.     Department of Electrical Engineering, Stanford University, 350 Serra Mall,
  Lett., 21(17), 1767 – 1770.                                                 Room 356, Stanford, CA, 94305, USA. (mcohen@stanford.edu)




                                                                         6 of 6

More Related Content

What's hot

Antennas and Wave Propagation
Antennas and Wave Propagation Antennas and Wave Propagation
Antennas and Wave Propagation VenkataRatnam14
 
Investigation of Anomalous Thrust from a Partially Loaded Resonant Cavity
Investigation of Anomalous Thrust from a Partially Loaded Resonant CavityInvestigation of Anomalous Thrust from a Partially Loaded Resonant Cavity
Investigation of Anomalous Thrust from a Partially Loaded Resonant CavityBrian Kraft
 
N 3-lecture notes-antennas-dr.serkanaksoy
N 3-lecture notes-antennas-dr.serkanaksoyN 3-lecture notes-antennas-dr.serkanaksoy
N 3-lecture notes-antennas-dr.serkanaksoy15010192
 
Investigation of Anomalous Thrust and Proposal for Future Experimentation
Investigation of Anomalous Thrust and Proposal for Future ExperimentationInvestigation of Anomalous Thrust and Proposal for Future Experimentation
Investigation of Anomalous Thrust and Proposal for Future ExperimentationBrian Kraft
 
Lecture2 antennas and propagation
Lecture2 antennas and propagationLecture2 antennas and propagation
Lecture2 antennas and propagationYahya Alzidi
 
Line of-sight propagation by najmul hoque munshi
Line of-sight propagation by najmul hoque munshiLine of-sight propagation by najmul hoque munshi
Line of-sight propagation by najmul hoque munshiNajmulHoqueMunshi
 
Chap 02 antenna &amp; wave propagation
Chap 02 antenna &amp; wave propagation Chap 02 antenna &amp; wave propagation
Chap 02 antenna &amp; wave propagation EngkaderAMuse
 
Evidence for the charge-excess contribution in air shower radio emission obse...
Evidence for the charge-excess contribution in air shower radio emission obse...Evidence for the charge-excess contribution in air shower radio emission obse...
Evidence for the charge-excess contribution in air shower radio emission obse...Ahmed Ammar Rebai PhD
 
Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}
Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}
Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}guest3f9c6b
 
2008 Kontogeorgos&Al
2008 Kontogeorgos&Al2008 Kontogeorgos&Al
2008 Kontogeorgos&Alpetousis
 
Electrical resistivity and electromagnetic method for detection of water bear...
Electrical resistivity and electromagnetic method for detection of water bear...Electrical resistivity and electromagnetic method for detection of water bear...
Electrical resistivity and electromagnetic method for detection of water bear...shubham shukla
 
Space Radiation & It's Effects On Space Systems & Astronauts Technical Traini...
Space Radiation & It's Effects On Space Systems & Astronauts Technical Traini...Space Radiation & It's Effects On Space Systems & Astronauts Technical Traini...
Space Radiation & It's Effects On Space Systems & Astronauts Technical Traini...Jim Jenkins
 

What's hot (17)

Antennas and Wave Propagation
Antennas and Wave Propagation Antennas and Wave Propagation
Antennas and Wave Propagation
 
Investigation of Anomalous Thrust from a Partially Loaded Resonant Cavity
Investigation of Anomalous Thrust from a Partially Loaded Resonant CavityInvestigation of Anomalous Thrust from a Partially Loaded Resonant Cavity
Investigation of Anomalous Thrust from a Partially Loaded Resonant Cavity
 
N 3-lecture notes-antennas-dr.serkanaksoy
N 3-lecture notes-antennas-dr.serkanaksoyN 3-lecture notes-antennas-dr.serkanaksoy
N 3-lecture notes-antennas-dr.serkanaksoy
 
Investigation of Anomalous Thrust and Proposal for Future Experimentation
Investigation of Anomalous Thrust and Proposal for Future ExperimentationInvestigation of Anomalous Thrust and Proposal for Future Experimentation
Investigation of Anomalous Thrust and Proposal for Future Experimentation
 
Lecture2 antennas and propagation
Lecture2 antennas and propagationLecture2 antennas and propagation
Lecture2 antennas and propagation
 
Line of-sight propagation by najmul hoque munshi
Line of-sight propagation by najmul hoque munshiLine of-sight propagation by najmul hoque munshi
Line of-sight propagation by najmul hoque munshi
 
Chap 02 antenna &amp; wave propagation
Chap 02 antenna &amp; wave propagation Chap 02 antenna &amp; wave propagation
Chap 02 antenna &amp; wave propagation
 
3 basic antenas1
3 basic antenas13 basic antenas1
3 basic antenas1
 
Chapter#5
Chapter#5Chapter#5
Chapter#5
 
Evidence for the charge-excess contribution in air shower radio emission obse...
Evidence for the charge-excess contribution in air shower radio emission obse...Evidence for the charge-excess contribution in air shower radio emission obse...
Evidence for the charge-excess contribution in air shower radio emission obse...
 
Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}
Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}
Antennas And Wave Propagation Jntu Model Paper{Www.Studentyogi.Com}
 
2008 Kontogeorgos&Al
2008 Kontogeorgos&Al2008 Kontogeorgos&Al
2008 Kontogeorgos&Al
 
Basic antenas
Basic antenasBasic antenas
Basic antenas
 
Electrical resistivity and electromagnetic method for detection of water bear...
Electrical resistivity and electromagnetic method for detection of water bear...Electrical resistivity and electromagnetic method for detection of water bear...
Electrical resistivity and electromagnetic method for detection of water bear...
 
Nmr spectroscopy
Nmr spectroscopyNmr spectroscopy
Nmr spectroscopy
 
Seg e
Seg eSeg e
Seg e
 
Space Radiation & It's Effects On Space Systems & Astronauts Technical Traini...
Space Radiation & It's Effects On Space Systems & Astronauts Technical Traini...Space Radiation & It's Effects On Space Systems & Astronauts Technical Traini...
Space Radiation & It's Effects On Space Systems & Astronauts Technical Traini...
 

Viewers also liked

Qeg user-manual-3-25-14
Qeg user-manual-3-25-14Qeg user-manual-3-25-14
Qeg user-manual-3-25-14John Hutchison
 
Lightwater book ufo amazeing
Lightwater book ufo amazeing Lightwater book ufo amazeing
Lightwater book ufo amazeing John Hutchison
 
Devereux anomalouslight STRANGE SOUNDS
Devereux anomalouslight STRANGE  SOUNDS Devereux anomalouslight STRANGE  SOUNDS
Devereux anomalouslight STRANGE SOUNDS John Hutchison
 
Steve 2012 09-11 15.03.33
Steve 2012 09-11 15.03.33Steve 2012 09-11 15.03.33
Steve 2012 09-11 15.03.33John Hutchison
 
Ccm ck#2721 gryphon prod
Ccm ck#2721 gryphon prodCcm ck#2721 gryphon prod
Ccm ck#2721 gryphon prodJohn Hutchison
 
Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)John Hutchison
 
Excello 602-mill-manual (1)
Excello 602-mill-manual (1)Excello 602-mill-manual (1)
Excello 602-mill-manual (1)John Hutchison
 
Hutchison effect more info
Hutchison effect   more infoHutchison effect   more info
Hutchison effect more infoJohn Hutchison
 
The hutchison effect file
The hutchison effect fileThe hutchison effect file
The hutchison effect fileJohn Hutchison
 
Agent agreement john hutchison revised
Agent agreement john hutchison revisedAgent agreement john hutchison revised
Agent agreement john hutchison revisedJohn Hutchison
 
De mees-gravitomagnetism-and-coriolis-gravity-2011-a4
De mees-gravitomagnetism-and-coriolis-gravity-2011-a4De mees-gravitomagnetism-and-coriolis-gravity-2011-a4
De mees-gravitomagnetism-and-coriolis-gravity-2011-a4John Hutchison
 
KI Measurement Program Starter Kit v3.1
KI Measurement Program Starter Kit v3.1KI Measurement Program Starter Kit v3.1
KI Measurement Program Starter Kit v3.1Tim Kasse
 
Tcmcentral.com patterns asthma
Tcmcentral.com patterns asthmaTcmcentral.com patterns asthma
Tcmcentral.com patterns asthmaJohn Hutchison
 
hutchison effect scientists
hutchison effect scientists hutchison effect scientists
hutchison effect scientists John Hutchison
 
Hype vs. Reality: The AI Explainer
Hype vs. Reality: The AI ExplainerHype vs. Reality: The AI Explainer
Hype vs. Reality: The AI ExplainerLuminary Labs
 

Viewers also liked (17)

Key to et_messages
Key to et_messagesKey to et_messages
Key to et_messages
 
Qeg user-manual-3-25-14
Qeg user-manual-3-25-14Qeg user-manual-3-25-14
Qeg user-manual-3-25-14
 
Lightwater book ufo amazeing
Lightwater book ufo amazeing Lightwater book ufo amazeing
Lightwater book ufo amazeing
 
Devereux anomalouslight STRANGE SOUNDS
Devereux anomalouslight STRANGE  SOUNDS Devereux anomalouslight STRANGE  SOUNDS
Devereux anomalouslight STRANGE SOUNDS
 
Steve 2012 09-11 15.03.33
Steve 2012 09-11 15.03.33Steve 2012 09-11 15.03.33
Steve 2012 09-11 15.03.33
 
SPIRAL UFO REPORT
SPIRAL UFO REPORTSPIRAL UFO REPORT
SPIRAL UFO REPORT
 
Ccm ck#2721 gryphon prod
Ccm ck#2721 gryphon prodCcm ck#2721 gryphon prod
Ccm ck#2721 gryphon prod
 
Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)
 
Excello 602-mill-manual (1)
Excello 602-mill-manual (1)Excello 602-mill-manual (1)
Excello 602-mill-manual (1)
 
Hutchison effect more info
Hutchison effect   more infoHutchison effect   more info
Hutchison effect more info
 
The hutchison effect file
The hutchison effect fileThe hutchison effect file
The hutchison effect file
 
Agent agreement john hutchison revised
Agent agreement john hutchison revisedAgent agreement john hutchison revised
Agent agreement john hutchison revised
 
De mees-gravitomagnetism-and-coriolis-gravity-2011-a4
De mees-gravitomagnetism-and-coriolis-gravity-2011-a4De mees-gravitomagnetism-and-coriolis-gravity-2011-a4
De mees-gravitomagnetism-and-coriolis-gravity-2011-a4
 
KI Measurement Program Starter Kit v3.1
KI Measurement Program Starter Kit v3.1KI Measurement Program Starter Kit v3.1
KI Measurement Program Starter Kit v3.1
 
Tcmcentral.com patterns asthma
Tcmcentral.com patterns asthmaTcmcentral.com patterns asthma
Tcmcentral.com patterns asthma
 
hutchison effect scientists
hutchison effect scientists hutchison effect scientists
hutchison effect scientists
 
Hype vs. Reality: The AI Explainer
Hype vs. Reality: The AI ExplainerHype vs. Reality: The AI Explainer
Hype vs. Reality: The AI Explainer
 

Similar to 2008 03

Jensen_et_al-2003-Radio_Science
Jensen_et_al-2003-Radio_ScienceJensen_et_al-2003-Radio_Science
Jensen_et_al-2003-Radio_ScienceEmmanuel ROCHE
 
Dr. ravindra pratap patel Technical report 20th indian antarctic expedition, ...
Dr. ravindra pratap patel Technical report 20th indian antarctic expedition, ...Dr. ravindra pratap patel Technical report 20th indian antarctic expedition, ...
Dr. ravindra pratap patel Technical report 20th indian antarctic expedition, ...RavindrapratappatelP
 
On the electrophonic generation of audio frequency sound by meteors
On the electrophonic generation of audio frequency sound by meteorsOn the electrophonic generation of audio frequency sound by meteors
On the electrophonic generation of audio frequency sound by meteorsSérgio Sacani
 
Some recent results of the CODALEMA experiment
Some recent results of the CODALEMA experimentSome recent results of the CODALEMA experiment
Some recent results of the CODALEMA experimentAhmed Ammar Rebai PhD
 
Some possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experimentSome possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experimentAhmed Ammar Rebai PhD
 
Electron bunching in the optimal operating regime of a carcinotrode
Electron bunching in the optimal operating regime of a carcinotrodeElectron bunching in the optimal operating regime of a carcinotrode
Electron bunching in the optimal operating regime of a carcinotrodeVictor Solntsev
 
Antenna wrt frequency
Antenna wrt frequencyAntenna wrt frequency
Antenna wrt frequencyAJAL A J
 
Monitoring of ulf (ultra low-frequency) geomagnetic
Monitoring of ulf (ultra low-frequency) geomagneticMonitoring of ulf (ultra low-frequency) geomagnetic
Monitoring of ulf (ultra low-frequency) geomagneticoilandgas24
 
Application of Very Low Frequency- Electromagnetic (VLF-EM) Method to Map Fra...
Application of Very Low Frequency- Electromagnetic (VLF-EM) Method to Map Fra...Application of Very Low Frequency- Electromagnetic (VLF-EM) Method to Map Fra...
Application of Very Low Frequency- Electromagnetic (VLF-EM) Method to Map Fra...theijes
 
Determination of Radio Frequency Attenuation Signals of Ajilete FM (92.1MHz) ...
Determination of Radio Frequency Attenuation Signals of Ajilete FM (92.1MHz) ...Determination of Radio Frequency Attenuation Signals of Ajilete FM (92.1MHz) ...
Determination of Radio Frequency Attenuation Signals of Ajilete FM (92.1MHz) ...IJOEAR Agriculture Research Journal
 
Electromagnetic waves BY- Rahul singh
Electromagnetic waves  BY- Rahul singh Electromagnetic waves  BY- Rahul singh
Electromagnetic waves BY- Rahul singh Rahul Singh
 
Earthqquake detection usinf fm radio wave
Earthqquake detection usinf fm radio waveEarthqquake detection usinf fm radio wave
Earthqquake detection usinf fm radio waveSamridhi Mantri
 
H-mode-like confinement formation in the RF discharge plasma in the Uragan-3M...
H-mode-like confinement formation in the RF discharge plasma in the Uragan-3M...H-mode-like confinement formation in the RF discharge plasma in the Uragan-3M...
H-mode-like confinement formation in the RF discharge plasma in the Uragan-3M...Aleksey Beletskii
 

Similar to 2008 03 (20)

Crabtree_2012
Crabtree_2012Crabtree_2012
Crabtree_2012
 
Antenna PPT.pptx
Antenna PPT.pptxAntenna PPT.pptx
Antenna PPT.pptx
 
Jensen_et_al-2003-Radio_Science
Jensen_et_al-2003-Radio_ScienceJensen_et_al-2003-Radio_Science
Jensen_et_al-2003-Radio_Science
 
Dr. ravindra pratap patel Technical report 20th indian antarctic expedition, ...
Dr. ravindra pratap patel Technical report 20th indian antarctic expedition, ...Dr. ravindra pratap patel Technical report 20th indian antarctic expedition, ...
Dr. ravindra pratap patel Technical report 20th indian antarctic expedition, ...
 
On the electrophonic generation of audio frequency sound by meteors
On the electrophonic generation of audio frequency sound by meteorsOn the electrophonic generation of audio frequency sound by meteors
On the electrophonic generation of audio frequency sound by meteors
 
lec-antennas.ppt
lec-antennas.pptlec-antennas.ppt
lec-antennas.ppt
 
lec-antennas.ppt
lec-antennas.pptlec-antennas.ppt
lec-antennas.ppt
 
H010145157
H010145157H010145157
H010145157
 
Some recent results of the CODALEMA experiment
Some recent results of the CODALEMA experimentSome recent results of the CODALEMA experiment
Some recent results of the CODALEMA experiment
 
Aa18195 11
Aa18195 11Aa18195 11
Aa18195 11
 
Some possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experimentSome possible interpretations from data of the CODALEMA experiment
Some possible interpretations from data of the CODALEMA experiment
 
Electron bunching in the optimal operating regime of a carcinotrode
Electron bunching in the optimal operating regime of a carcinotrodeElectron bunching in the optimal operating regime of a carcinotrode
Electron bunching in the optimal operating regime of a carcinotrode
 
Antenna wrt frequency
Antenna wrt frequencyAntenna wrt frequency
Antenna wrt frequency
 
Basic antenna
Basic antennaBasic antenna
Basic antenna
 
Monitoring of ulf (ultra low-frequency) geomagnetic
Monitoring of ulf (ultra low-frequency) geomagneticMonitoring of ulf (ultra low-frequency) geomagnetic
Monitoring of ulf (ultra low-frequency) geomagnetic
 
Application of Very Low Frequency- Electromagnetic (VLF-EM) Method to Map Fra...
Application of Very Low Frequency- Electromagnetic (VLF-EM) Method to Map Fra...Application of Very Low Frequency- Electromagnetic (VLF-EM) Method to Map Fra...
Application of Very Low Frequency- Electromagnetic (VLF-EM) Method to Map Fra...
 
Determination of Radio Frequency Attenuation Signals of Ajilete FM (92.1MHz) ...
Determination of Radio Frequency Attenuation Signals of Ajilete FM (92.1MHz) ...Determination of Radio Frequency Attenuation Signals of Ajilete FM (92.1MHz) ...
Determination of Radio Frequency Attenuation Signals of Ajilete FM (92.1MHz) ...
 
Electromagnetic waves BY- Rahul singh
Electromagnetic waves  BY- Rahul singh Electromagnetic waves  BY- Rahul singh
Electromagnetic waves BY- Rahul singh
 
Earthqquake detection usinf fm radio wave
Earthqquake detection usinf fm radio waveEarthqquake detection usinf fm radio wave
Earthqquake detection usinf fm radio wave
 
H-mode-like confinement formation in the RF discharge plasma in the Uragan-3M...
H-mode-like confinement formation in the RF discharge plasma in the Uragan-3M...H-mode-like confinement formation in the RF discharge plasma in the Uragan-3M...
H-mode-like confinement formation in the RF discharge plasma in the Uragan-3M...
 

More from John Hutchison

hutchison effect scammer site info
hutchison effect scammer site infohutchison effect scammer site info
hutchison effect scammer site infoJohn Hutchison
 
Adrianstonecom scammer
Adrianstonecom scammer Adrianstonecom scammer
Adrianstonecom scammer John Hutchison
 
hutchison effect scam website
hutchison effect scam website hutchison effect scam website
hutchison effect scam website John Hutchison
 
Miracle in the gulf of mexico
Miracle in the gulf of mexicoMiracle in the gulf of mexico
Miracle in the gulf of mexicoJohn Hutchison
 
Yin darkfield microscope pics word part 2 copy (4)
Yin darkfield microscope pics word part 2   copy (4)Yin darkfield microscope pics word part 2   copy (4)
Yin darkfield microscope pics word part 2 copy (4)John Hutchison
 
Gravitomagnetism successes (3) (1)
Gravitomagnetism successes (3) (1)Gravitomagnetism successes (3) (1)
Gravitomagnetism successes (3) (1)John Hutchison
 
Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)John Hutchison
 
Gravitomagnetism successes (3)
Gravitomagnetism successes (3)Gravitomagnetism successes (3)
Gravitomagnetism successes (3)John Hutchison
 
antigravity free energy
antigravity free energy antigravity free energy
antigravity free energy John Hutchison
 
antigravity free energy
antigravity free energy antigravity free energy
antigravity free energy John Hutchison
 
antigravity free energy
antigravity free energy antigravity free energy
antigravity free energy John Hutchison
 
ANTOINE GAZDA INVENTOR
ANTOINE GAZDA INVENTOR ANTOINE GAZDA INVENTOR
ANTOINE GAZDA INVENTOR John Hutchison
 
earthquake detection and x energy oil detection and hutchison effect
earthquake detection and  x energy oil detection and  hutchison effect  earthquake detection and  x energy oil detection and  hutchison effect
earthquake detection and x energy oil detection and hutchison effect John Hutchison
 
154522243 united-nations-inter-agency-small-arms-control-standards-development
154522243 united-nations-inter-agency-small-arms-control-standards-development154522243 united-nations-inter-agency-small-arms-control-standards-development
154522243 united-nations-inter-agency-small-arms-control-standards-developmentJohn Hutchison
 
Future strategic-issues-and-warfare
Future strategic-issues-and-warfareFuture strategic-issues-and-warfare
Future strategic-issues-and-warfareJohn Hutchison
 
Hutchison effect more info (1)
Hutchison effect   more info (1)Hutchison effect   more info (1)
Hutchison effect more info (1)John Hutchison
 
The hutchison effect file (1)
The hutchison effect file (1)The hutchison effect file (1)
The hutchison effect file (1)John Hutchison
 

More from John Hutchison (20)

hutchison effect scammer site info
hutchison effect scammer site infohutchison effect scammer site info
hutchison effect scammer site info
 
Adrianstonecom scammer
Adrianstonecom scammer Adrianstonecom scammer
Adrianstonecom scammer
 
hutchison effect scam website
hutchison effect scam website hutchison effect scam website
hutchison effect scam website
 
Miracle in the gulf of mexico
Miracle in the gulf of mexicoMiracle in the gulf of mexico
Miracle in the gulf of mexico
 
11042016145707 0001
11042016145707 000111042016145707 0001
11042016145707 0001
 
Yin darkfield microscope pics word part 2 copy (4)
Yin darkfield microscope pics word part 2   copy (4)Yin darkfield microscope pics word part 2   copy (4)
Yin darkfield microscope pics word part 2 copy (4)
 
ANTIRADIATION
ANTIRADIATIONANTIRADIATION
ANTIRADIATION
 
Gravitomagnetism successes (3) (1)
Gravitomagnetism successes (3) (1)Gravitomagnetism successes (3) (1)
Gravitomagnetism successes (3) (1)
 
Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)Analytic description of cosmic phenomena using the heaviside field (2)
Analytic description of cosmic phenomena using the heaviside field (2)
 
Gravitomagnetism successes (3)
Gravitomagnetism successes (3)Gravitomagnetism successes (3)
Gravitomagnetism successes (3)
 
antigravity free energy
antigravity free energy antigravity free energy
antigravity free energy
 
antigravity free energy
antigravity free energy antigravity free energy
antigravity free energy
 
Podkletnov 0169
Podkletnov 0169Podkletnov 0169
Podkletnov 0169
 
antigravity free energy
antigravity free energy antigravity free energy
antigravity free energy
 
ANTOINE GAZDA INVENTOR
ANTOINE GAZDA INVENTOR ANTOINE GAZDA INVENTOR
ANTOINE GAZDA INVENTOR
 
earthquake detection and x energy oil detection and hutchison effect
earthquake detection and  x energy oil detection and  hutchison effect  earthquake detection and  x energy oil detection and  hutchison effect
earthquake detection and x energy oil detection and hutchison effect
 
154522243 united-nations-inter-agency-small-arms-control-standards-development
154522243 united-nations-inter-agency-small-arms-control-standards-development154522243 united-nations-inter-agency-small-arms-control-standards-development
154522243 united-nations-inter-agency-small-arms-control-standards-development
 
Future strategic-issues-and-warfare
Future strategic-issues-and-warfareFuture strategic-issues-and-warfare
Future strategic-issues-and-warfare
 
Hutchison effect more info (1)
Hutchison effect   more info (1)Hutchison effect   more info (1)
Hutchison effect more info (1)
 
The hutchison effect file (1)
The hutchison effect file (1)The hutchison effect file (1)
The hutchison effect file (1)
 

Recently uploaded

Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxLoriGlavin3
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfAlex Barbosa Coqueiro
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024Lorenzo Miniero
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfLoriGlavin3
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxLoriGlavin3
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Mattias Andersson
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 

Recently uploaded (20)

Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptxPasskey Providers and Enabling Portability: FIDO Paris Seminar.pptx
Passkey Providers and Enabling Portability: FIDO Paris Seminar.pptx
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Unraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdfUnraveling Multimodality with Large Language Models.pdf
Unraveling Multimodality with Large Language Models.pdf
 
SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024SIP trunking in Janus @ Kamailio World 2024
SIP trunking in Janus @ Kamailio World 2024
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Moving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdfMoving Beyond Passwords: FIDO Paris Seminar.pdf
Moving Beyond Passwords: FIDO Paris Seminar.pdf
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptxDigital Identity is Under Attack: FIDO Paris Seminar.pptx
Digital Identity is Under Attack: FIDO Paris Seminar.pptx
 
Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?Are Multi-Cloud and Serverless Good or Bad?
Are Multi-Cloud and Serverless Good or Bad?
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 

2008 03

  • 1. GEOPHYSICAL RESEARCH LETTERS, VOL. 35, L12101, doi:10.1029/2008GL034061, 2008 Click Here for Full Article Geometric modulation: A more effective method of steerable ELF/VLF wave generation with continuous HF heating of the lower ionosphere M. B. Cohen,1 U. S. Inan,1 and M. A. Golkowski1 Received 19 March 2008; revised 23 April 2008; accepted 8 May 2008; published 18 June 2008. [1] ELF/VLF radio waves (300 Hz– 30 kHz) are difficult [4] The ionospheric observatories near Arecibo, Puerto to generate with practical antennae, because of their Rico [Ferraro et al., 1982], and Jicamarca, Peru [Lunnen et extraordinarily long (10 – 1000 km) wavelengths, and the al., 1984], generated weak (<1 fT) ELF signals utilizing the lossy nature of the Earth’s surface at these frequencies. equatorial dynamo current. High latitude facilities utilizing ELF/VLF waves have been successfully generated via the auroral electrojet have generated stronger (>1 pT) ELF/ amplitude modulated (AM) HF (2 –10 MHz) heating of VLF signals. The HIPAS facility near Fairbanks, Alaska, the lower ionosphere. Through the temperature-dependent utilizes a 150 kW transmitter array operating at 2.85 MHz conductivity of the lower ionospheric plasma, a patch of [e.g., Villasen et al., 1996]. The 1 MW radiated EISCAT ˜or the ionospheric current becomes a large radiating facility near Tromsø, Norway, has performed ELF/VLF ‘antenna’. We implement a new method of ELF/VLF experiments [e.g., Stubbe et al., 1982], including an HF wave generation, herein named ‘geometric modulation’, beam steering ability utilized by Rietveld et al. [1984] to involving scanning the HF heating beam in a geometric observe electrojet spatial structure. pattern without modulating its power. Utilizing results [5] More recently, the High Frequency Active Auroral from the upgraded 3.6 MW radiated HAARP HF antenna Research Program (HAARP) phased-array HF facility near array, we show that geometric modulation can enhance ELF/ Gakona, Alaska (62° 220N, 145° 90W), has generated ELF VLF wave generation by up to $11 dB over the conventional signals observed as far as 4400 km [Moore et al., 2007], as AM method. Geometric modulation also allows directional well as in the geomagnetic conjugate region [Inan et al., launching of the signal into the Earth-ionosphere waveguide, 2004; M. Golkowski et al., Magnetospheric amplification forming an unprecedented steerable large-element ELF/VLF and emission triggering by ELF/VLF waves injected by the ionospheric phased array. Citation: Cohen, M. B., U. S. Inan, 3.6 MW HAARP ionospheric heater, submitted to Journal and M. A. Golowski (2008), Geometric modulation: A more of Geophysical Research, 2008]. In 2007, an upgrade of effective method of steerable ELF/VLF wave generation with HAARP was completed, increasing its HF radiated power continuous HF heating of the lower ionosphere, Geophys. Res. Lett., from 960 kW to 3.6 MW [Cohen et al., 2008]. The 35, L12101, doi:10.1029/2008GL034061. generation of ELF/VLF waves via HF heating is strongly affected by D-region electron density and auroral electrojet 1. Introduction strength, however, HF heating parameter choice (frequency, beam direction, power, etc.) is quite important. [2] The generation of radio waves of Extremely Low [6] Papadopoulos et al. [1990] suggest a so-called ‘beam Frequency and Very Low Frequency (ELF/VLF, 0.3 – painting’ technique, i.e., moving a high-power HF beam 30 kHz) has long been a challenge for scientists and over a large area during the heating period at a rate faster engineers. With wavelengths of $10– 1000 km, acceptably than the electrons cool followed by HF OFF period to efficient radiating antennae require similar length scales. complete the AM cycle., though here we report a technique This problem is exacerbated by the good conductivity of the in which the beam moves at rates (a few kHz) substantially Earth’s surface at these frequencies ($10À4 S/m), so that a slower than the 10s of ms cooling rates [Barr et al., 1999], horizontal radiating antenna along the ground suffers the with a continuously ON beam. Papadopoulos et al. [1994] hindrance of an image current just below the ground plane. and Borisov et al. [1996] also theorized ELF/VLF injection [3] ELF/VLF frequencies have important scientific and into the EIW and magnetosphere via Cerenkov radiation practical uses, due to the efficient propagation of ELF/VLF from a source moving along a line at speeds near or above signals in the Earth-ionosphere waveguide (EIW). ELF/ the phase velocity of propagating waves. VLF waves impact the physical processes at play in the [7] Efforts to generate an ELF/VLF directional array ionosphere and magnetosphere (see Barr et al. [2000] for a have been very limited. Barr et al. [1987] alternate the review) and can be an effective diagnostic tool. HF heating HF beam between two regions using the Tromsø facility, of the lower ionosphere in the presence of natural currents with half the ELF/VLF cycle at each. The observations constitutes one of the few effective means of ELF/VLF resembled those of an array with two antiphase elements. wave generation, and thus has remained a subject of active Werner and Ferraro [1987] theoretically investigated iono- research since the first demonstration by Getmantsev et al. spheric ELF/VLF arrays. [1974]. [8] In this paper, we implement a new technique, hereafter referred to as ‘geometric modulation’ (and abbreviated GM), 1 STAR Laboratory, Department of Electrical Engineering, Stanford in which the beam scans in a geometric pattern at ELF/VLF University, Stanford, California, USA. rates, with no power modulation. The period of traversing the geometric pattern dictates the fundamental ELF/VLF modu- Copyright 2008 by the American Geophysical Union. lation frequency, so that ON-OFF modulation is achieved 0094-8276/08/2008GL034061$05.00 L12101 1 of 6
  • 2. L12101 COHEN ET AL.: ELF/VLF WAVES WITH GEOMETRIC MODULATION L12101 Figure 1. (top) Receiver locations. Chistochina (62° 370N, 144° 370W, 37 km from HAARP), Kodiak (57° 520N, 152° 530W, 661 km from HAARP), and Juneau (58° 350N, 134° 540W, 704 km from HAARP), and directions shown compared to geomagnetic south. (bottom) The observed response of amplitude modulation, north-south line-sweep, and circle-sweep, measured at the indicated nine frequencies between 1 kHz and 6.25 kHz, at (a) Chistochina, (b) Kodiak, and (c) Juneau. through beam motion, not power modulation. We demon- located at a direction from HAARP $21° west of geomag- strate experimentally that GM enhances ELF/VLF ampli- netic south, while Juneau is located at a direction from tudes from modulated HF heating by as much as 7 –11 dB, HAARP $10° south of geomagnetic east. Figure 1, top particularly above 3 kHz, and at longer (hundreds of km) panel, shows the locations of HAARP and the three receivers. distances from HAARP. We demonstrate that GM allows the [11] The four modulation schemes discussed here are directing of the signal in the EIW. summarized in Figure 2, top panel. For amplitude modula- tion (AM), we utilize 50% duty cycle, 100% depth square 2. Experimental Setup wave modulation. Three types of GM ‘sweep’ schemes are introduced, each of which is compared to a typical AM [9] ELF/VLF data are taken with the so-called AWE- scheme. The GM schemes are herein labeled line-sweep, SOME. These broadband, high-sensitivity (typically femto- where the heating beam scans back and forth along a teslas) ELF/VLF receivers consist of two orthogonal air-core chosen azimuth, completing a full back-forth scan (in this loop antennae, measuring the two horizontal components of case ±15°) in one ELF/VLF period); sawtooth-sweep, the magnetic field between 350 Hz and 47 kHz. Data is where the heating beam scans along one chosen azimuth, synchronized to GPS with inherent 200 ns accuracy. The completing one sweep across the path in one ELF/VLF receivers include RFI-suppression filtering at the input to period and starting back at the initial end; and circle-sweep, reject HF signals. where the heated beam follows a circular pattern with some [10] We utilize data from three receiver sites in Alaska. radius (in this case 15°). In these experiments, we utilize an Chistochina, located quite close ($37 km) to HAARP, and HF carrier frequency of 3.25 MHz, with X-mode polariza- Kodiak and Juneau, at longer distances ($700 km). Kodiak is tion, and with ERP of $575 MW. 2 of 6
  • 3. L12101 COHEN ET AL.: ELF/VLF WAVES WITH GEOMETRIC MODULATION L12101 Figure 2. Experimental setup. (top) Modulation schemes, amplitude modulation, and geometric modulation with the CW beam moving in a pattern at ELF/VLF frequencies. Circle, line and sawtooth sweeps are shown. (bottom) Transmitted formats and Sample spectrograms. FORMAT1 includes AM, a geomagnetic north-south line-sweep (LNS), and a counterclockwise circle-sweep (CCW). FORMAT2 also includes sawtooth-sweeps north-to-south (SNS) and east-to-west (SEW), and a clockwise circle-sweep (CW). [12] In a typical experiment, a frequency-time transmis- single-frequency 3-second pulses (1 kHz, 1.667 kHz, 2 kHz, sion format is repeated for many minutes. We discuss two 2.5 kHz, 4.167 kHz), for each of three modulation schemes: particular formats designed to evaluate the effectiveness of AM, line-sweep (in the geomagnetic north-south azimuth), AM and GM. Each format consists of a pattern of pulses, and circle-sweep (with counterclockwise rotational sense, generated by each different modulation scheme for direct viewed from below). FORMAT2 includes the same modu- comparison. These 45– 60 second long formats are repeated lation schemes as in FORMAT1, but also adds sawtooth- for periods of $1 hour, and the received signal amplitudes sweeps in both the geomagnetic north-to-south, and east-to- are averaged to minimize the effect of ionospheric varia- west azimuth, and an additional circle-sweep with clockwise tions. While each format is transmitted at several different rotational sense. FORMAT2 utilizes 2-second pulses with times, the comparative effectiveness of each modulation different ELF/VLF frequencies, (1.25 kHz, 2.5 kHz, schemes is found to be consistent whenever SNR is suffi- 3.125 kHz, 5 kHz, 6.25 kHz). cient (>10 dB) at all three receiver sites. [14] We rotate the data from each site to align with the [13] The two transmission formats utilized, herein named great circle path from HAARP to receiver, and separately FORMAT1 and FORMAT2, are illustrated in the lower plots integrate the radial and azimuthal magnetic field ampli- of Figure 2, along with sample spectrograms. The received tudes of each received pulse over its length, to provide a data show harmonics of the ELF/VLF frequencies from single horizontal magnetic field measurement. We then nonlinearities in the HF heating, though here we consider average these phasor quantities over the many (typically only the fundamental frequency. FORMAT1 consists of five 60) repetitions of the format. Comparative noise measure- 3 of 6
  • 4. L12101 COHEN ET AL.: ELF/VLF WAVES WITH GEOMETRIC MODULATION L12101 Figure 3. The frequency response of the two counterclockwise (CCW) and clockwise (CW) circle-sweeps, at (a) Chistochina, (b) Kodiak, and (c) Juneau, at five frequencies between 1.25 kHz and 6.25 kHz. (d– f) The frequency response of north-to-south (NS) and east-to-west (EW) sawtooth-sweeps. ments are obtained by repeating the same procedure where by 7 – 11 dB. In addition, above 3 kHz at Kodiak, the line- no signal was transmitted, and are found to be and sweep produces amplitudes up to 5 dB higher than AM. between À70 dB-pT and À75 dB-pT at Chistochina and [17] From 3 kHz to 6.25 kHz, the decease in amplitude Kodiak, and between À75 dB-pT À80 dB-pT at Juneau. with increasing ELF/VLF frequency common to all three modulation schemes at all three sites results from a 3. Observations combination of the conductivity modulation, waveguide resonance (i.e., reflections between the Earth and iono- [15] Figure 1, bottom plots, shows the frequency depen- sphere observed nearby), and waveguide propagation (i.e. dent ELF/VLF amplitude measured at each of the three guiding along the EIW to longer distances), all of which sites and for each of the three modulation schemes are frequency dependent. At Chistochina (i.e. close to (labeled AM, LNS, and CCW) that were included in HAARP), where resonance effects dominate over propa- FORMAT1 and FORMAT2. We combine the results from gation effects [Stubbe et al., 1982], the amplitude of AM the two formats after normalizing by the intensity of the decreases with increasing ELF/VLF frequency faster than 2.5 kHz pulse, which is common to both. GM schemes are that of GM, so that GM schemes become increasingly shown with solid lines, while AM is shown as a dashed advantageous, up to 6.25 kHz. However, at Kodiak and line. Error bars shown are based on the noise levels Juneau, where propagation effects dominate over reso- described above, though are small enough to be not visible nance effects, the three schemes have the same depen- for the stronger signals. FORMAT1 was transmitted on dence on increasing ELF/VLF frequency between 3 kHz 28 August 2007, from 1600– 1700 UT, and FORMAT2 on and 6.25 kHz. 20 September 2007, from 1717 – 1818 UT, both during [18] GM inherently delivers 3 dB more HF power into the ionospheric daytime and during periods of weak geomag- ionosphere compared to AM, yet provides a 7 – 11 dB netic activity with kp below 3. enhancement, and is therefore more efficient by 4 – 8 dB, [16] At Chistochina, AM produces higher ELF/VLF field likely as a result of more efficient phasing of the heated amplitude compared to the circle-sweep by 2 – 4 dB, and to region and utilization of the heating duty cycle. Further- the line-sweep by 5 –8 dB for signals below 3 kHz. Above more, since amplitudes of ELF/VLF signals generated via 3 kHz, however, circle-sweep produces higher amplitudes modulated HF heating as observed on the ground are than AM by 1 –5 dB. At the longer distances, GM appears roughly proportional to total HF power delivered to the to provide a more distinct advantage, although specifically ionosphere [Barr and Stubbe, 1991], with some variations below $2 kHz, comparison of these schemes is complicated resulting from a saturation mechanism at these power levels by the fact that the signal propagates below the EIW cutoff [Moore et al., 2006], the 7 – 11 dB enhancement exceeds the frequency ($1.8 kHz), and so signal levels for the three 6 dB enhancement that would be expected by simply modulation schemes cannot be unequivocably distinguished doubling the power of HAARP. This represents a significant from measurement error. However, above 3 kHz, the circle- achievement given that ELF/VLF generation via modulated sweep leads to higher amplitude signals compared to AM HF heating has efficiencies near 0.001% [Moore et al., 4 of 6
  • 5. L12101 COHEN ET AL.: ELF/VLF WAVES WITH GEOMETRIC MODULATION L12101 2007], and especially since a similar increase of ELF/VLF $135 km, the inter-element phase shift is therefore 2p/20, radiated amplitudes through an array power or size upgrade and the inter-element spacing is $135/20 km. Since the would require another long and costly upgrade. sawtooth-sweep appears to direct radiation along its azimuth, [19] Above 3 kHz, the line-sweep and AM have different it acts similar to an end-fire array, which may work best at relative effectiveness at Kodiak and Juneau (roughly equal directing the radiated signal when the phase shift between distances from HAARP). The line-sweep is along the adjacent elements is comparable to the phase difference of geomagnetic north-south azimuth, i.e., generally toward propagating waves in that direction. In addition to the circle Kodiak and orthogonal to the HAARP-Juneau path. At and sawtooth-sweep, other configurations of beam locations Kodiak, the line-sweep generates stronger ELF/VLF than will create more general types of radiation patterns, for AM by 3 – 5 dB, whereas at Juneau, the north-south line- instance, four corners of a square. In general, full control of sweep produces 3 – 4 dB weaker ELF/VLF amplitudes than the phasing can be exercised via an arbitrary pattern of beam AM. These results suggest that the line-sweep may prefer- directions and dwell times in the order of the desired phasing, entially direct radiation roughly along the azimuth of the including a large number of beam positions spaced by sweep, effectively acting as a directed antenna in addition to arbitrary distances, which would be generalizable extension the 5 – 10 dB stronger radiation in the direction roughly of the two-element array presented by Barr et al. [1987]. orthogonal to the electrojet current direction [Cohen et al., 2008]. 4. Conclusion [20] FORMAT2 includes sawtooth-sweeps with two or- thogonal azimuths, and circle-sweeps with both rotational [24] A novel method of ELF/VLF wave generation via senses. The frequency response for different modulation HF heating is implemented, herein named ‘geometric mod- schemes are shown in Figure 3, with measurements at the ulation’ (GM), whereby the HF heating beam is scanned five ELF/VLF frequencies included in FORMAT2. along a geometric pattern with constant power. We have [21] The two circular sweep rotational senses produce described three particular forms of GM, where the beam amplitudes that are within a few dB, however the ampli- scans at a constant radius (circle-sweep), back and forth tudes of the two sawtooth-sweeps are very strong functions along an azimuth (line-sweep), or one way along an azimuth of direction from HAARP. For instance, the two sawtooth- (sawtooth-sweep). sweep azimuths (north-to-south and east-to-west) impact [25] Near HAARP, GM is less effective than AM below ELF/VLF amplitudes at Kodiak and Juneau by as much as 2 kHz, but more effective above 3 kHz. For long distance 14 dB, and up to 5 dB at Chistochina, and are higher when observations, GM consistently produces substantially stron- the sawtooth-sweep azimuth is pointed roughly toward the ger signals than AM for ELF/VLF frequencies above 3 kHz, receiver. However, since Kodiak and Juneau are not pre- by as much as 7 –11 dB. In addition, GM can lead to the cisely along the geomagnetic east and south directions from creation of an unprecedented ELF phased array, capable of HAARP (being 21° and 10° off in bearing, respectively), directed radiation at different azimuths within the EIW. they are also not precisely along the sawtooth-sweep Furthermore, additional improvements in both the resultant azimuth, either. It is therefore possible that an even larger ELF/VLF amplitudes and the effective array directivity may than 14 dB enhancement may be realized if the sawtooth- yet be realized with further theoretical and experimental sweep azimuth is oriented directly toward a receiver. optimization. [22] Rietveld et al. [1984] perform experiments in which the AM heating beam is moved slowly along a line in the [26] Acknowledgments. We acknowledge support from HAARP, Office of Naval Research (ONR), Air Force Research Laboratory, and north-south azimuth, and show that signal amplitudes at a Defense Advanced Research Programs Agency, via ONR grant nearby receiver may vary due to the spatial structure of the N0001405C0308 to Stanford University. We thank Mike McCarrick for auroral electrojet. At least some of the 11 dB improved operation of the HAARP array. ELF/VLF amplitude associated with GM may therefore be due to such spatial structure, with the sweeps simply References including regions with a stronger electrojet. However, this Barr, R., and P. Stubbe (1991), ELF radiation from the Tromsø ‘‘super heater’’ facility, Geophys. Res. Lett., 18(6), 1035 – 1038. possibility is inconsistent with the signal amplitude’s Barr, R., M. T. Rietveld, P. Stubbe, and H. Kopka (1987), Ionospheric dependence on the sawtooth-sweep azimuth, and therefore heater beam scanning: A mobile source of ELF radiation, Radio Sci., cannot be the dominant explanation for the larger ELF/ 22(6), 1076 – 1083. Barr, R., P. Stubbe, and M. T. Rietveld (1999), ELF wave generation in VLF amplitudes observed. the ionosphere using pulse modulated HF heating, Ann. Geophys., 17, [23] It thus appears that the directionality associated with 759 – 769. the sawtooth-sweep arises at least in part from the effective Barr, R., D. Llanwyn Jones, and C. J. Rodger (2000), ELF and VLF radio creation of an ELF phased array, producing constructive and waves, J. Atmos. Sol. Terr. Phys., 62, 1689 – 1718. Borisov, M., A. Gurevich, and K. Papadopoulos (1996), Direct Cerenkov destructive interference as a function of direction. The phase excitation of waveguide modes by a mobile ionospheric heater, Radio of each element within the array is determined by the phase Sci., 31(4), 859 – 867. within the ELF/VLF cycle at which the beam begins to heat Cohen, M. B., M. Golkowski, and U. S. Inan (2008), Orientation of the HAARP ELF ionospheric dipole and the auroral electrojet, Geophys. Res. that area. For instance, in the circle-sweep, the beam takes a Lett., 35, L02806, doi:10.1029/2007GL032424. full ELF/VLF period to traverse the circle, hence the circle- Ferraro, A. J., et al. (1982), VLF/ELF radiation from dynamo current system sweep can be treated as having a progressive phase variation modulated by powerful HF signals, J. Atmos. Terr. Phys., 44, 1113 – 1122. Getmantsev, G. G., et al. (1974), Combination frequencies in the interaction of 2p around the circle. In the sawtooth-sweep in FORMAT 2, between high-power short-wave radiation and ionospheric plasma, Sov. the number of distinct phases is simply the number of beam Phys. JETP Lett., 20, 101 – 102, Engl. Transl. positions in the modulation scheme, i.e., 20 for the circle- Inan, U. S., M. Golkowski, D. L. Carpenter, N. Reddell, R. C. Moore, T. F. sweeps in FORMAT2. Since the circumference of the circle is Bell, E. Paschal, P. Kossey, E. Kennedy, and S. Z. Meth (2004), Multi- hop whistler-mode ELF/VLF signals and triggered emissions excited by 5 of 6
  • 6. L12101 COHEN ET AL.: ELF/VLF WAVES WITH GEOMETRIC MODULATION L12101 the HAARP HF heater, Geophys. Res. Lett., 31, L24805, doi:10.1029/ Rietveld, M. T., R. Barr, H. Kopka, E. Nielsen, P. Stubbe, and R. L. 2004GL021647. Dowden (1984), Ionospheric heater beam scanning: A new technique Lunnen, R. J., et al. (1984), Detection of radiation from a heated and for ELF studies of the auroral ionosphere, Radio Sci., 19(4), 1069 – 1077. modulated equatorial electrojet current system, Nature, 311, 135 – 1354. Stubbe, P., H. Kopka, and M. T. Rietveld (1982), ELF and VLF wave Moore, R. C., U. S. Inan, and T. F. Bell (2006), Observations of amplitude generation by modulated HF heating of the current carrying lower iono- saturation in ELF/VLF wave generation by modulated HF heating of the sphere, J. Atmos. Terr. Phys., 44, 1123 – 1135. auroral electrojet, Geophys. Res. Lett., 33, L12106, doi:10.1029/ Villasenor, J., A. Y. Wong, B. Song, J. Pau, M. McCarrick, and D. Sentman ˜ 2006GL025934. (1996), Comparison of ELF/VLF generation modes in the ionosphere by Moore, R. C., U. S. Inan, T. F. Bell, and E. J. Kennedy (2007), ELF waves the HIPAS heater array, Radio Sci., 31(1), 211 – 226. generated by modulated HF heating of the auroral electrojet and observed Werner, D. H., and A. J. Ferraro (1987), Steerable ELF/VLF radiation at a ground distance of $4400 km, J. Geophys. Res., 112, A05309, produced by an array of ionospheric dipoles generated from HF heating, doi:10.1029/2006JA012063. IEEE Trans. Antennas Propag., 9, 1022 – 1030. Papadopoulos, K., C. L. Chang, P. Vitello, and A. Drobot (1990), On the efficiency of ionospheric ELF generation, Radio Sci., 25(6), 1131 – 1320. ÀÀÀÀÀÀÀÀÀÀÀ ÀÀÀÀÀÀÀÀÀÀÀ Papadopoulos, K., H. B. Zhou, and C. L. Chang (1994), Cerenkov excita- M. B. Cohen, M. A. Golkowski, and U. S. Inan, STAR Laboratory, tion of whistler/helicon waves by ionospheric HF heating, Geophys. Res. Department of Electrical Engineering, Stanford University, 350 Serra Mall, Lett., 21(17), 1767 – 1770. Room 356, Stanford, CA, 94305, USA. (mcohen@stanford.edu) 6 of 6