Teoria do campo cristalino

490 visualizações

Publicada em

Teoria do campo cristalino para complexo de coordenação - Química

Publicada em: Ciências
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
490
No SlideShare
0
A partir de incorporações
0
Número de incorporações
8
Ações
Compartilhamentos
0
Downloads
13
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Teoria do campo cristalino

  1. 1. Até então... ¾ A TCC apresenta um modelo conceitual simples para o fenômeno de formação de compostos de coordenação que pode ser empregrada ainda para interpretar propriedades magnéticas, spectroscópicas e termoquímicas através dos valores encontrados para O. Problemas e Limitações: • Trata os ligantes como pontos de carga ou dipolos, não levando em consideração o enlace de seus orbitais com os do centro metálico. • Não fornece uma explicação sobre qual a razão da ordem em que os ligantes estão dispostos na série espectroquímica. Teoria do Campo Ligante - TCL ¾ A TCL consiste então na aplicação da teoria dos orbitais moleculares (já comum para moléculas mais simples e não metálicas como o O2, por exemplo) à compostos de coordenação. ¾ Foi proposta por J. S. Griffith e L. E. Orgel em 1957 pela combinação das idéais da Teoria do Campo Cristalino e da Teoria dos Orbitais Moleculares aplicados em complexos. Pricipal evidência: O Efeito Nefelauxético Indica, indiretamente, que existem elétrons sendo compartilhados entre os orbitais metálicos e dos ligantes, pois experimentalmente verifica-se que a repulsão elétron- eletron em um complexo é menor quando comparada ao respectivo íon livre. Explicação: As repulsões elétron-elétron caem devido a expansão da nuvem eletrônica, pois orbitais atômicos (menores) dão lugar a formação de orbitais moleculares (maiores). Efeito Nefelauxético = “Expansão da Nuvem Eletrônica” Evidência experimental: O espectro de RPE do complexo K2[IrCl6] O desdobramento hiperfino observado no espectro ao lado resulta do acoplamento dos momentos magnéticos de spin dos ligantes com os momentos magnéticos dos spins eletrônicos do metal. Para que tal acoplamento ocorra, o espaço ocupado por estes elétrons deve ser comum tanto para o ligante quanto para o complexo, por isso um orbital molecular. Revisão: Orbitais moleculares Para a formação de uma molécula diatômica simples (H2, por exemplo) a combinação linear de funções de onda Ψ± = χA ± χB fornece duas soluções possíveis: Ψ+ = χA + χ B Ψ- = χA - χ B - interferência construtiva dos orbitais - interferência destrutiva dos orbitais Ψ+ = χA + χ B Ψ- = χA - χ B χA χ B
  2. 2. Probabilidade: Orbitais moleculares do H2 <A <B <A + <% _<A + <%_ OM ligantes A B A - % _A - %_ OM anti-ligantes O diagrama de orbitais moleculares E energia χ BχA Ψ+ Ψ- Onde χA e χB são os orbitais atômicos e Ψ+ e Ψ- são os orbitais ligante e anti-ligante, respectivamente. O diagrama de orbital molecular do H2 E energia Ha Hb Obs.: Em alguns casos é possível a geração de orbitais moleculares com a mesma energia de um orbital atômico. Este orbital é dito não- ligante. Diagrama de OM da molécula de flúor (F2). E energia 2σu* 1σg 9F: 1s2 2s2 2p5 2πg* 1πu 4σu* 3σg 2s 2p 2s 2p 1σg 2σu 3σg 1πu 2πg 4σu Um modelo simples (TLV): A formação do BeH2 4Be2+ - 1s2 1H1- - 1s2 1s2 2p0 Estado fundamental 2s0 orbitais híbridos do tipo sp Em termos de orbitais moleculares temos: σ σ*E sp 2p Be2+ H- σ σ* não ligante
  3. 3. Orbitais Moleculares de Compostos Octaédricos ¾ Para aplicarmos a TOM em complexos podemos utilizar o método das combinações lineares de simetria adaptada (em inglês SALCs). Parte I – Interação Metal-Ligante do tipo σ (sigma) ¾ Considere a formação de um complexo octaédrico nos quais cada ligante (L) possui uma ligação simples com o centro metálico em questão. Neste caso os orbitais do átomo central se dividem em 04 (quatro) grupos distintos: ¾ Com a formação de um complexo, 06 (seis) combinações lineares de simetria adaptada compatíveis (mesma paridade) são detectadas: a1g: σx + σ-x + σy + σ-y + σz + σ-z s t1u: σx - σ-x px t1u: σy - σ-y py t1u: σz - σ-z pz eg: σx + σ-x - σy - σ-y dx2-y2 ¾ Note que os orbitais triplamente degenerados t2g do centro metálico (dxy, dxz, dyz) estão entre os eixos cartesianos e, por isso, não interagem construtivamente para a formação de combinações lineares. eg: 2σz + 2σ-z - σx - σ-x - σy - σ-y dz2 A Construção do Diagrama de Orbitais Moleculares – Complexos Oh Energia a1g a1g* 4s (a1g) 4p (t1u) 3d (eg + t2g) Orbitais dos ligantes (a1g + t1u + eg) t2g t1u t1u* eg eg* o t2g eg* O mesmo da TCC!!!
  4. 4. Exemplo 1: O complexo [Co(NH3)6]3+ Energia t1u a1g t1u* t2g a1g* eg 4s (a1g) 4p (t1u) 3d (eg + t2g) Orbitais dos ligantes (a1g + t1u + eg) eg* t2g eg* o Co3+ (d6) Exemplo 2: O complexo [CoF6]3- Energia t1u a1g t1u* t2g a1g* eg 4s (a1g) 4p (t1u) 3d (eg + t2g) Orbitais dos ligantes (a1g + t1u + eg) eg* t2g eg* o Co3+ (d6) Parte II – Interação Metal-Ligante do tipo π (pi) ¾ Três tipos de orbitais presentes em ligantes são aptos (simetria e energias compatíveis) para efetuarem ligações π com os orbitais d do centro metálico: ¾ Como a ligação π ocorre entre eixos cartesianos, neste caso os orbitais metálicos t2g (dxy, dxz, dyz) terão condições de interagir com orbitais de simetria adequada presentes nos ligantes. ¾ São aqueles que possuem orbitais de simetria π entorno do eixo de ligação M–L já preenchidos por elétrons. Os íons Cl-, Br-, OH-, O2- e H2O são exemplos típicos. Ligantes do tipo π-doadores (ou π-básicos) o eg* t2g t2g* ¾ Os elétrons π dos ligantes são depositados nos OM t2g ligantes, enquanto os elétrons d do centro metálico irão ocupar o nível energético dos OM t2g anti-ligantes, fazendo com que o valor de O seja reduzido. π Energia o t2g eg* t2g Metal Ligante
  5. 5. Exemplo 3: A ligação π-básica no complexo [CoF6]3- Energia o t2g eg* eg* o t2g t2g t2g* ¾ São aqueles que possuem orbitais de simetria π entorno do eixo de ligação M–L vazios e, desta forma, podem receber elétrons provenientes do metal. Compostos tais como CO, CN-, N2, R2S e PR3 são exemplos típicos destes ligantes. Ligantes do tipo π-aceptores (ou π-ácidos) o eg* t2g t2g* ¾ Como o OMs t2g* possui energia elevada (maior caráter de ligante) são os OMs t2g que irão acomodar os elétrons oriundos do metal (maior caráter metálico). Neste caso o valor de O será então acrescido. π Energia eg* o t2g t2g Metal Ligante Exemplo 4: A ligação π-ácida no complexo [Mn(CO)6]+ Energia o eg* o t2g t2g t2g eg* t2g* A Série Espectroquímica e a Teoria do Campo Ligante I- Br- S2- SCN- Cl- NO3 - , F- HO- ox2- OH2 NCS- CH3CN NH3 en bpy phen NO2 - PR3 CN- CO Ligantes de “campo fraco” Ligantes de “campo forte” ¾ Agora é possível notar que ligantes π-básicos são tipicamente fracos, pois reduzem a magnitude de O, enquanto ligantes π-ácidos são tipicamente de campo forte, pois o valor de O é acrescido após o enlace entre os orbitais metálicos e os orbitais do ligante. Aumento do O π-básicos π-básicos fracos σ típicos π-ácidos I-, Cl-, Br-, F- OH2 NH3 PR3, CO
  6. 6. Resumo: Ligações σ e π em complexos Evidências Experimentais da ligação π em complexos ¾ Uma técnica analítica bastante útil para detectarmos a presença de ligações π em complexos é a espectroscopia na região do infravermelho (IV). O infravermelho no espectro eletromagnético... Infravermelho e a localização de funções orgânicas...
  7. 7. ¾ A absorção de radiação infravermelha pela tripla ligação do ligante CO isolado é em 2143 cm-1, entretanto é detectado significativas variações deste valor em diferentes carbonil-complexos. Ligações π em carbonil-complexos Composto Frequência (cm-1) [Mn(CO)6]+ 2090 [Cr(CO)6] 2000 [V(CO)6]- 1860 [Ni(CO)4] 2060 [Co(CO)4]- 1860 [Fe(CO)4]2- 1790 ¾ Considere as duas séries de compostos isoeletrônicos descritos abaixo: Nox do metal Elétrons d π ¾ Os resultados indicam que quanto mais elevado o nox do metal (maior deficiência eletrônica) menor é sua capacidade de efetuar a chamada retrodoação eletrônica. A situação inversa também é observada. ¾ Desta forma é possível, através da técnica de IV, inferir sobre a ordem de ligação do sistema M–C–O de maneira indireta. Sem retrodoação; CO com maior caráter de tripla; νC-O no IV Com retrodoação CO com maior caráter de dupla νC-O no IV Competição de ligantes por elétrons π ¾ Considere dois complexos octaédricos com o seguinte arranjo espacial de ligantes: ¾ No caso (a) a retrodoação irá ocorrer em ambos os sentidos ao longo de um eixo OC–M–CO, pois temos o mesmo ligante com mesmas características π-aceptoras. ππ ¾ No caso (b) a retrodoação irá ocorrer de maneira desigual ao longo de um eixo OC–M–L se o ligante L não for um forte π-aceptor. ππ ¾ O processo todo pode ser explicado pela análise das seguintes formas canônicas: Se o ligante L for CO, ambas as formas canônicas (a) e (b) irão contribuir para o híbrido de ressonância (50% de retrodoação para cada ligante). Caso L não seja um forte pi-aceptor, a forma canônica (b) será a preponderante.
  8. 8. Exemplo 1: Análise de uma série de compostos de carbonil-molibdênio no IV. Composto Frequência (cm-1) ν1 C–O ν2 C–O Diferença [Mo(PCl3)3(CO)3] 1989 2041 52 [Mo(P Cl2)3(CO)3] 1943 2016 73 [Mo(P 2Cl)3(CO)3] 1885 1977 92 [Mo(P 3)3(CO)3] 1835 1949 114 [Mo(py)3(CO)3] 1746 1888 142 [Mo(dien)(CO)3] 1723 1883 160 ¾ Através destes números, é possível verificar o grande poder π-aceptor das fosfinas, pois estas competem fortemente pelos elétrons π do metal, logo a ordem de ligação CO não é demasiadamente reduzida. ¾ Como o ligante dien (típico σ-doador) não compete pelos elétrons π do metal, a ordem de ligação CO é significativamente reduzida via retro-doação. ¾ Juntamente com outros exemplos, foi possível montar uma série de ligantes de acordo suas capacidades π-aceptoras: NO CO RNC PCl3 PCl2OR PCl2R PBr2R PCl(OR)2 PClR2 P(OR)3 PR3 SR2 RCN o-phen alquil-aminas, éteres, álcoois Fortes π-aceptores Fracos π-aceptores ¾ Nota-se claramente o efeito de vários fatores na composição da lista acima, dentre estes, a eletronegatividade se destaca, juntamente com o efeitos eletrônicos doadores e retiradores. Exemplo 2: Análise estrutral de uma série de compostos de carbonil-cromo. Ligação (pm) [Cr(P 3)(CO)5] [Cr(PO 3)(CO)5] trans-[Cr(PO 3)2(CO)4] Cr–P 242,2 230,9 225,2 Cr–C (trans ao P) 184,4 186,1 - Cr–C (trans ao CO) 188,0 189,6 187,8 C–O (trans ao P) 115,4 113,6 - C–O (trans ao CO) 114,7 113,1 114,0 ¾ A ligação Cr–P é menor para o complexo fosfito indicando maior retrodoação para o cromo, uma vez que o ligante fosfito é possui um maior poder π-aceptor que os ligantes fosfino. Resumo: Diagrama OM para Complexos Octaédricos com ligações σ e π.
  9. 9. Orbitais Moleculares de Compostos Tetraédricos ¾ A TOM também pode ser aplicada em complexos tetraédricos via método das combinações lineares de simetria adaptada (em inglês SALCs). ¾ Considere a formação de um complexo tetraédrico nos quais cada ligante (L) possui uma ligação simples com o centro metálico em questão. Neste caso os orbitais do átomo central se dividem em 04 (quatro) grupos distintos: Parte I – Interação Metal-Ligante do tipo σ (sigma) Orbitais metálicos Simetria Degenerescência s a1 1 dx2-y2, dz2 e 2 dxy, dxz, dyz t2 3 ¾ Com a formação de um complexo, 04 (quatro) combinações lineares de simetria adaptada compatíveis (mesma paridade) são detectadas:

×