SlideShare uma empresa Scribd logo
1 de 6
TRIGONOMETRY<br />Trigonometry (from Greek trigōnon quot;
trianglequot;
 + metron quot;
measurequot;
[1] or from Sanskrit trikon quot;
trianglequot;
 + miti quot;
measurementquot;
 = trikonmiti[2]) is a branch of mathematics that studies triangles and the relationships between their sides and the angles between sides. Trigonometry defines the trigonometric functions, which describe those relationships and have applicability to cyclical phenomena, such as waves. The field evolved during the third century BC as a branch of geometry used extensively for astronomical studies.[3]<br />Trigonometry is usually taught in middle and secondary schools either as a separate course or as part of a precalculus curriculum. It has applications in both pure mathematics and applied mathematics, where it is essential in many branches of science and technology. A branch of trigonometry, called spherical trigonometry, studies triangles on spheres, and is important in astronomy and navigation.<br />History<br />The first trigonometric table was apparently compiled by Hipparchus, who is now consequently known as quot;
the father of trigonometry.quot;
[4]<br />Ancient Egyptian and Babylonian mathematicians lacked the concept of an angle measure, but they studied the ratios of the sides of similar triangles and discovered some properties of these ratios. The ancient Nubians used a similar methodology.[5] The ancient Greeks transformed trigonometry into an ordered science.[6]<br />Ancient Greek mathematicians such as Euclid and Archimedes studied the properties of the chord of an angle and proved theorems that are equivalent to modern trigonometric formulae, although they presented them geometrically rather than algebraically. Claudius Ptolemy expanded upon Hipparchus' Chords in a Circle in his Almagest.[7] The modern sine function was first defined in the Surya Siddhanta, and its properties were further documented by the 5th century Indian mathematician and astronomer Aryabhata.[8] These Greek and Indian works were translated and expanded by medieval Islamic mathematicians. By the 10th century, Islamic mathematicians were using all six trigonometric functions, had tabulated their values, and were applying them to problems in spherical geometry. At about the same time, Chinese mathematicians developed trigonometry independently, although it was not a major field of study for them. Knowledge of trigonometric functions and methods reached Europe via Latin translations of the works of Persian and Arabic astronomers such as Al Battani and Nasir al-Din al-Tusi.[9] One of the earliest works on trigonometry by a European mathematician is De Triangulis by the 15th century German mathematician Regiomontanus. Trigonometry was still so little known in 16th century Europe that Nicolaus Copernicus devoted two chapters of De revolutionibus orbium coelestium to explaining its basic concepts.<br />Driven by the demands of navigation and the growing need for accurate maps of large areas, trigonometry grew to be a major branch of mathematics.[10] Bartholomaeus Pitiscus was the first to use the word, publishing his Trigonometria in 1595.[11] Gemma Frisius described for the first time the method of triangulation still used today in surveying. It was Leonhard Euler who fully incorporated complex numbers into trigonometry. The works of James Gregory in the 17th century and Colin Maclaurin in the 18th century were influential in the development of trigonometric series.[12] Also in the 18th century, Brook Taylor defined the general Taylor series.[13]<br />Overview<br />In this right triangle: sin A = a/c; cos A = b/c; tan A = a/b.<br />If one angle of a triangle is 90 degrees and one of the other angles is known, the third is thereby fixed, because the three angles of any triangle add up to 180 degrees. The two acute angles therefore add up to 90 degrees: they are complementary angles. The shape of a triangle is completely determined, except for similarity, by the angles. Once the angles are known, the ratios of the sides are determined, regardless of the overall size of the triangle. If the length of one of the sides is known, the other two are determined. These ratios are given by the following trigonometric functions of the known angle A, where a, b and c refer to the lengths of the sides in the accompanying figure:<br />Sine function (sin), defined as the ratio of the side opposite the angle to the hypotenuse.<br />Cosine function (cos), defined as the ratio of the adjacent leg to the hypotenuse.<br />Tangent function (tan), defined as the ratio of the opposite leg to the adjacent leg.<br />The hypotenuse is the side opposite to the 90 degree angle in a right triangle; it is the longest side of the triangle, and one of the two sides adjacent to angle A. The adjacent leg is the other side that is adjacent to angle A. The opposite side is the side that is opposite to angle A. The terms perpendicular and base are sometimes used for the opposite and adjacent sides respectively. Many people find it easy to remember what sides of the right triangle are equal to sine, cosine, or tangent, by memorizing the word SOH-CAH-TOA (see below under Mnemonics).<br />The reciprocals of these functions are named the cosecant (csc or cosec), secant (sec), and cotangent (cot), respectively. The inverse functions are called the arcsine, arccosine, and arctangent, respectively. There are arithmetic relations between these functions, which are known as trigonometric identities. The cosine, cotangent, and cosecant are so named because they are respectively the sine, tangent, and secant of the complementary angle abbreviated to quot;
co-quot;
.<br />With these functions one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines. These laws can be used to compute the remaining angles and sides of any triangle as soon as two sides and their included angle or two angles and a side or three sides are known. These laws are useful in all branches of geometry, since every polygon may be described as a finite combination of triangles.<br />Extending the definitions<br />The above definitions apply to angles between 0 and 90 degrees (0 and π/2 radians) only. Using the unit circle, one can extend them to all positive and negative arguments (see trigonometric function). The trigonometric functions are periodic, with a period of 360 degrees or 2π radians. That means their values repeat at those intervals. The tangent and cotangent functions also have a shorter period, of 180 degrees or π radians.<br />The trigonometric functions can be defined in other ways besides the geometrical definitions above, using tools from calculus and infinite series. With these definitions the trigonometric functions can be defined for complex numbers. The complex exponential function is particularly useful.<br />ex + iy = ex(cosy + isiny).<br />See Euler's and De Moivre's formulas.<br />Mnemonics<br />A common use of mnemonics is to remember facts and relationships in trigonometry. For example, the sine, cosine, and tangent ratios in a right triangle can be remembered by representing them as strings of letters, as in SOH-CAH-TOA:<br />Sine = Opposite ÷ Hypotenuse<br />Cosine = Adjacent ÷ Hypotenuse<br />Tangent = Opposite ÷ Adjacent<br />One way to remember the letters is to sound them out phonetically (i.e. quot;
SOH-CAH-TO-Aquot;
). HYPERLINK quot;
http://en.wikipedia.org/wiki/Trigonometryquot;
  quot;
cite_note-13quot;
 [14] Another method is to expand the letters into a phrase, such as quot;
Some Old Horses Chew Apples Happily Throughout Old Agequot;
.[15]<br />Calculating trigonometric functions<br />Main article: Generating trigonometric tables<br />Trigonometric functions were among the earliest uses for mathematical tables. Such tables were incorporated into mathematics textbooks and students were taught to look up values and how to interpolate between the values listed to get higher accuracy. Slide rules had special scales for trigonometric functions.<br />Today scientific calculators have buttons for calculating the main trigonometric functions (sin, cos, tan and sometimes cis) and their inverses. Most allow a choice of angle measurement methods: degrees, radians and, sometimes, grad. Most computer programming languages provide function libraries that include the trigonometric functions. The floating point unit hardware incorporated into the microprocessor chips used in most personal computers have built-in instructions for calculating trigonometric functions.<br />Applications of trigonometry<br />There are an enormous number of uses of trigonometry and trigonometric functions. For instance, the technique of triangulation is used in astronomy to measure the distance to nearby stars, in geography to measure distances between landmarks, and in satellite navigation systems. The sine and cosine functions are fundamental to the theory of periodic functions such as those that describe sound and light waves.<br />Fields that use trigonometry or trigonometric functions include astronomy (especially for locating apparent positions of celestial objects, in which spherical trigonometry is essential) and hence navigation (on the oceans, in aircraft, and in space), music theory, acoustics, optics, analysis of financial markets, electronics, probability theory, statistics, biology, medical imaging (CAT scans and ultrasound), pharmacy, chemistry, number theory (and hence cryptology), seismology, meteorology, oceanography, many physical sciences, land surveying and geodesy, architecture, phonetics, economics, electrical engineering, mechanical engineering, civil engineering, computer graphics, cartography, crystallography and game development.<br />Standard Identities<br />Identities are those equations that hold true for any value.<br />Angle Transformation Formulas<br />Common formulas<br />Certain equations involving trigonometric functions are true for all angles and are known as trigonometric identities. Some identities equate an expression to a different expression involving the same angles. These are listed in List of trigonometric identities. Triangle identities that relate the sides and angles of a given triangle are listed below.<br />In the following identities, A, B and C are the angles of a triangle and a, b and c are the lengths of sides of the triangle opposite the respective angles.<br />Law of sines<br />The law of sines (also known as the quot;
sine rulequot;
) for an arbitrary triangle states:<br />where R is the radius of the circumscribed circle of the triangle:<br />Another law involving sines can be used to calculate the area of a triangle. Given two sides and the angle between the sides, the area of the triangle is:<br />Law of cosines<br />The law of cosines (known as the cosine formula, or the quot;
cos rulequot;
) is an extension of the Pythagorean theorem to arbitrary triangles:<br />or equivalently:<br />Law of tangents<br />The law of tangents:<br />Euler's formula<br />Euler's formula, which states that eix = cosx + isinx, produces the following analytical identities for sine, cosine, and tangent in terms of e and the imaginary unit i:<br />http://en.wikipedia.org/wiki/Trigonometry<br />
Trigonometry
Trigonometry
Trigonometry
Trigonometry
Trigonometry

Mais conteúdo relacionado

Mais procurados

Trigonometric function
Trigonometric functionTrigonometric function
Trigonometric function
Azurah Razak
 
Right triangle trigonometry
Right triangle trigonometryRight triangle trigonometry
Right triangle trigonometry
Jessica Garcia
 
Trigonometry maths school ppt
Trigonometry maths school ppt Trigonometry maths school ppt
Trigonometry maths school ppt
Divya Pandey
 

Mais procurados (20)

Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
calculus Ppt
calculus Pptcalculus Ppt
calculus Ppt
 
Basic trigonometry
Basic trigonometryBasic trigonometry
Basic trigonometry
 
Trigonometric Identities.
Trigonometric Identities. Trigonometric Identities.
Trigonometric Identities.
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometric function
Trigonometric functionTrigonometric function
Trigonometric function
 
Area of triangle
Area of triangleArea of triangle
Area of triangle
 
Introduction to trignometry
Introduction to trignometryIntroduction to trignometry
Introduction to trignometry
 
Trigonometry101
Trigonometry101Trigonometry101
Trigonometry101
 
Right triangle trigonometry
Right triangle trigonometryRight triangle trigonometry
Right triangle trigonometry
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometry maths school ppt
Trigonometry maths school ppt Trigonometry maths school ppt
Trigonometry maths school ppt
 
G5 trigonometry
G5 trigonometryG5 trigonometry
G5 trigonometry
 
Angles and Measures
Angles and MeasuresAngles and Measures
Angles and Measures
 
6.1 Radian Measure
6.1 Radian Measure6.1 Radian Measure
6.1 Radian Measure
 
Surface area and volume
Surface area and volumeSurface area and volume
Surface area and volume
 
Angles (Geometry 3_1)
Angles (Geometry 3_1)Angles (Geometry 3_1)
Angles (Geometry 3_1)
 

Destaque

Matrix basic operations
Matrix basic operationsMatrix basic operations
Matrix basic operations
Jessica Garcia
 
Verifying trigonometric identities
Verifying trigonometric identitiesVerifying trigonometric identities
Verifying trigonometric identities
Jessica Garcia
 
Circle system low flow anesthesia
Circle system low flow anesthesiaCircle system low flow anesthesia
Circle system low flow anesthesia
Drgeeta Choudhary
 
Trigonometric Ratios
Trigonometric RatiosTrigonometric Ratios
Trigonometric Ratios
liliana1993
 

Destaque (20)

Climate change ryan_india
Climate change ryan_indiaClimate change ryan_india
Climate change ryan_india
 
Global point of view hhes us-1
Global point of view hhes us-1Global point of view hhes us-1
Global point of view hhes us-1
 
Pc 7.3 notes
Pc 7.3 notesPc 7.3 notes
Pc 7.3 notes
 
Matrix basic operations
Matrix basic operationsMatrix basic operations
Matrix basic operations
 
Proving trigonometric identities
Proving trigonometric identitiesProving trigonometric identities
Proving trigonometric identities
 
Verifying trigonometric identities
Verifying trigonometric identitiesVerifying trigonometric identities
Verifying trigonometric identities
 
Determinants - Mathematics
Determinants - MathematicsDeterminants - Mathematics
Determinants - Mathematics
 
Determinants
DeterminantsDeterminants
Determinants
 
Determinants
DeterminantsDeterminants
Determinants
 
Lesson 3: The Limit of a Function
Lesson 3: The Limit of a FunctionLesson 3: The Limit of a Function
Lesson 3: The Limit of a Function
 
Circle system low flow anesthesia
Circle system low flow anesthesiaCircle system low flow anesthesia
Circle system low flow anesthesia
 
Proving Trigonometric Identities
Proving Trigonometric IdentitiesProving Trigonometric Identities
Proving Trigonometric Identities
 
Determinants
DeterminantsDeterminants
Determinants
 
Functions limits and continuity
Functions limits and continuityFunctions limits and continuity
Functions limits and continuity
 
Trigonometric Ratios
Trigonometric RatiosTrigonometric Ratios
Trigonometric Ratios
 
Chapter 10 - Limit and Continuity
Chapter 10 - Limit and ContinuityChapter 10 - Limit and Continuity
Chapter 10 - Limit and Continuity
 
Practical applications of limits
Practical applications of limitsPractical applications of limits
Practical applications of limits
 
Limits and their applications
Limits and their applicationsLimits and their applications
Limits and their applications
 
Derivation
DerivationDerivation
Derivation
 
Limits And Derivative
Limits And DerivativeLimits And Derivative
Limits And Derivative
 

Semelhante a Trigonometry

นำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริงนำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริง
krunittayamath
 
presentation_trigonometry-161010073248_1596171933_389536.pdf
presentation_trigonometry-161010073248_1596171933_389536.pdfpresentation_trigonometry-161010073248_1596171933_389536.pdf
presentation_trigonometry-161010073248_1596171933_389536.pdf
PrasanthiGottipati2
 

Semelhante a Trigonometry (20)

TRIGONOMETRY
TRIGONOMETRYTRIGONOMETRY
TRIGONOMETRY
 
English for Math
English for MathEnglish for Math
English for Math
 
Introduction to trigonometry
Introduction to trigonometryIntroduction to trigonometry
Introduction to trigonometry
 
trigonometry and applications
 trigonometry and applications  trigonometry and applications
trigonometry and applications
 
Trigo
TrigoTrigo
Trigo
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Introduction to trigonometry
Introduction to trigonometryIntroduction to trigonometry
Introduction to trigonometry
 
trigonometry and application
 trigonometry and application  trigonometry and application
trigonometry and application
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
นำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริงนำเสนอตรีโกณมิติจริง
นำเสนอตรีโกณมิติจริง
 
Trigonometry Exploration
Trigonometry ExplorationTrigonometry Exploration
Trigonometry Exploration
 
PPT on Trigonometric Functions. Class 11
PPT on Trigonometric Functions. Class 11PPT on Trigonometric Functions. Class 11
PPT on Trigonometric Functions. Class 11
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
Trigonometry
TrigonometryTrigonometry
Trigonometry
 
presentation_trigonometry-161010073248_1596171933_389536.pdf
presentation_trigonometry-161010073248_1596171933_389536.pdfpresentation_trigonometry-161010073248_1596171933_389536.pdf
presentation_trigonometry-161010073248_1596171933_389536.pdf
 

Último

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
QucHHunhnh
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
QucHHunhnh
 

Último (20)

Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Application orientated numerical on hev.ppt
Application orientated numerical on hev.pptApplication orientated numerical on hev.ppt
Application orientated numerical on hev.ppt
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Dyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptxDyslexia AI Workshop for Slideshare.pptx
Dyslexia AI Workshop for Slideshare.pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 

Trigonometry

  • 1. TRIGONOMETRY<br />Trigonometry (from Greek trigōnon quot; trianglequot; + metron quot; measurequot; [1] or from Sanskrit trikon quot; trianglequot; + miti quot; measurementquot; = trikonmiti[2]) is a branch of mathematics that studies triangles and the relationships between their sides and the angles between sides. Trigonometry defines the trigonometric functions, which describe those relationships and have applicability to cyclical phenomena, such as waves. The field evolved during the third century BC as a branch of geometry used extensively for astronomical studies.[3]<br />Trigonometry is usually taught in middle and secondary schools either as a separate course or as part of a precalculus curriculum. It has applications in both pure mathematics and applied mathematics, where it is essential in many branches of science and technology. A branch of trigonometry, called spherical trigonometry, studies triangles on spheres, and is important in astronomy and navigation.<br />History<br />The first trigonometric table was apparently compiled by Hipparchus, who is now consequently known as quot; the father of trigonometry.quot; [4]<br />Ancient Egyptian and Babylonian mathematicians lacked the concept of an angle measure, but they studied the ratios of the sides of similar triangles and discovered some properties of these ratios. The ancient Nubians used a similar methodology.[5] The ancient Greeks transformed trigonometry into an ordered science.[6]<br />Ancient Greek mathematicians such as Euclid and Archimedes studied the properties of the chord of an angle and proved theorems that are equivalent to modern trigonometric formulae, although they presented them geometrically rather than algebraically. Claudius Ptolemy expanded upon Hipparchus' Chords in a Circle in his Almagest.[7] The modern sine function was first defined in the Surya Siddhanta, and its properties were further documented by the 5th century Indian mathematician and astronomer Aryabhata.[8] These Greek and Indian works were translated and expanded by medieval Islamic mathematicians. By the 10th century, Islamic mathematicians were using all six trigonometric functions, had tabulated their values, and were applying them to problems in spherical geometry. At about the same time, Chinese mathematicians developed trigonometry independently, although it was not a major field of study for them. Knowledge of trigonometric functions and methods reached Europe via Latin translations of the works of Persian and Arabic astronomers such as Al Battani and Nasir al-Din al-Tusi.[9] One of the earliest works on trigonometry by a European mathematician is De Triangulis by the 15th century German mathematician Regiomontanus. Trigonometry was still so little known in 16th century Europe that Nicolaus Copernicus devoted two chapters of De revolutionibus orbium coelestium to explaining its basic concepts.<br />Driven by the demands of navigation and the growing need for accurate maps of large areas, trigonometry grew to be a major branch of mathematics.[10] Bartholomaeus Pitiscus was the first to use the word, publishing his Trigonometria in 1595.[11] Gemma Frisius described for the first time the method of triangulation still used today in surveying. It was Leonhard Euler who fully incorporated complex numbers into trigonometry. The works of James Gregory in the 17th century and Colin Maclaurin in the 18th century were influential in the development of trigonometric series.[12] Also in the 18th century, Brook Taylor defined the general Taylor series.[13]<br />Overview<br />In this right triangle: sin A = a/c; cos A = b/c; tan A = a/b.<br />If one angle of a triangle is 90 degrees and one of the other angles is known, the third is thereby fixed, because the three angles of any triangle add up to 180 degrees. The two acute angles therefore add up to 90 degrees: they are complementary angles. The shape of a triangle is completely determined, except for similarity, by the angles. Once the angles are known, the ratios of the sides are determined, regardless of the overall size of the triangle. If the length of one of the sides is known, the other two are determined. These ratios are given by the following trigonometric functions of the known angle A, where a, b and c refer to the lengths of the sides in the accompanying figure:<br />Sine function (sin), defined as the ratio of the side opposite the angle to the hypotenuse.<br />Cosine function (cos), defined as the ratio of the adjacent leg to the hypotenuse.<br />Tangent function (tan), defined as the ratio of the opposite leg to the adjacent leg.<br />The hypotenuse is the side opposite to the 90 degree angle in a right triangle; it is the longest side of the triangle, and one of the two sides adjacent to angle A. The adjacent leg is the other side that is adjacent to angle A. The opposite side is the side that is opposite to angle A. The terms perpendicular and base are sometimes used for the opposite and adjacent sides respectively. Many people find it easy to remember what sides of the right triangle are equal to sine, cosine, or tangent, by memorizing the word SOH-CAH-TOA (see below under Mnemonics).<br />The reciprocals of these functions are named the cosecant (csc or cosec), secant (sec), and cotangent (cot), respectively. The inverse functions are called the arcsine, arccosine, and arctangent, respectively. There are arithmetic relations between these functions, which are known as trigonometric identities. The cosine, cotangent, and cosecant are so named because they are respectively the sine, tangent, and secant of the complementary angle abbreviated to quot; co-quot; .<br />With these functions one can answer virtually all questions about arbitrary triangles by using the law of sines and the law of cosines. These laws can be used to compute the remaining angles and sides of any triangle as soon as two sides and their included angle or two angles and a side or three sides are known. These laws are useful in all branches of geometry, since every polygon may be described as a finite combination of triangles.<br />Extending the definitions<br />The above definitions apply to angles between 0 and 90 degrees (0 and π/2 radians) only. Using the unit circle, one can extend them to all positive and negative arguments (see trigonometric function). The trigonometric functions are periodic, with a period of 360 degrees or 2π radians. That means their values repeat at those intervals. The tangent and cotangent functions also have a shorter period, of 180 degrees or π radians.<br />The trigonometric functions can be defined in other ways besides the geometrical definitions above, using tools from calculus and infinite series. With these definitions the trigonometric functions can be defined for complex numbers. The complex exponential function is particularly useful.<br />ex + iy = ex(cosy + isiny).<br />See Euler's and De Moivre's formulas.<br />Mnemonics<br />A common use of mnemonics is to remember facts and relationships in trigonometry. For example, the sine, cosine, and tangent ratios in a right triangle can be remembered by representing them as strings of letters, as in SOH-CAH-TOA:<br />Sine = Opposite ÷ Hypotenuse<br />Cosine = Adjacent ÷ Hypotenuse<br />Tangent = Opposite ÷ Adjacent<br />One way to remember the letters is to sound them out phonetically (i.e. quot; SOH-CAH-TO-Aquot; ). HYPERLINK quot; http://en.wikipedia.org/wiki/Trigonometryquot; quot; cite_note-13quot; [14] Another method is to expand the letters into a phrase, such as quot; Some Old Horses Chew Apples Happily Throughout Old Agequot; .[15]<br />Calculating trigonometric functions<br />Main article: Generating trigonometric tables<br />Trigonometric functions were among the earliest uses for mathematical tables. Such tables were incorporated into mathematics textbooks and students were taught to look up values and how to interpolate between the values listed to get higher accuracy. Slide rules had special scales for trigonometric functions.<br />Today scientific calculators have buttons for calculating the main trigonometric functions (sin, cos, tan and sometimes cis) and their inverses. Most allow a choice of angle measurement methods: degrees, radians and, sometimes, grad. Most computer programming languages provide function libraries that include the trigonometric functions. The floating point unit hardware incorporated into the microprocessor chips used in most personal computers have built-in instructions for calculating trigonometric functions.<br />Applications of trigonometry<br />There are an enormous number of uses of trigonometry and trigonometric functions. For instance, the technique of triangulation is used in astronomy to measure the distance to nearby stars, in geography to measure distances between landmarks, and in satellite navigation systems. The sine and cosine functions are fundamental to the theory of periodic functions such as those that describe sound and light waves.<br />Fields that use trigonometry or trigonometric functions include astronomy (especially for locating apparent positions of celestial objects, in which spherical trigonometry is essential) and hence navigation (on the oceans, in aircraft, and in space), music theory, acoustics, optics, analysis of financial markets, electronics, probability theory, statistics, biology, medical imaging (CAT scans and ultrasound), pharmacy, chemistry, number theory (and hence cryptology), seismology, meteorology, oceanography, many physical sciences, land surveying and geodesy, architecture, phonetics, economics, electrical engineering, mechanical engineering, civil engineering, computer graphics, cartography, crystallography and game development.<br />Standard Identities<br />Identities are those equations that hold true for any value.<br />Angle Transformation Formulas<br />Common formulas<br />Certain equations involving trigonometric functions are true for all angles and are known as trigonometric identities. Some identities equate an expression to a different expression involving the same angles. These are listed in List of trigonometric identities. Triangle identities that relate the sides and angles of a given triangle are listed below.<br />In the following identities, A, B and C are the angles of a triangle and a, b and c are the lengths of sides of the triangle opposite the respective angles.<br />Law of sines<br />The law of sines (also known as the quot; sine rulequot; ) for an arbitrary triangle states:<br />where R is the radius of the circumscribed circle of the triangle:<br />Another law involving sines can be used to calculate the area of a triangle. Given two sides and the angle between the sides, the area of the triangle is:<br />Law of cosines<br />The law of cosines (known as the cosine formula, or the quot; cos rulequot; ) is an extension of the Pythagorean theorem to arbitrary triangles:<br />or equivalently:<br />Law of tangents<br />The law of tangents:<br />Euler's formula<br />Euler's formula, which states that eix = cosx + isinx, produces the following analytical identities for sine, cosine, and tangent in terms of e and the imaginary unit i:<br />http://en.wikipedia.org/wiki/Trigonometry<br />