SlideShare uma empresa Scribd logo
1 de 8
Baixar para ler offline
LIGHT AND CHLAMYDOMONAS METABOLISM                                                   213




                                                           1
vironments where the temperature remains con                                                REFERENCES
tinuously below 20 C (4,8). Our data would sugges                   1. BOYLEN, W., AND BROCK, D. 1973. Effects of thermal
                                                                                 C.                T.
that no comparable adaptation to low temperatu                         additions from the Yellowstone geyser basins on the benthic
                                                                       algae of the Firehole River. Ecology 541282-91.
occurs in temperate lakes where temperatures
to more than 30 C in the summer. Eucaryotic gae
do adapt to lower temperatures i n freshwater habitats
                                                        d           2. BROCK, D., & BROCK,M. L. 1967. Methodology for
                                                                                T.
                                                                       measurement of chlorophyll, primary productivity, photo-
                                                                       phosphorylation, and macromolecules in benthic algae.
where seasonal temperature flux has a summer high                      Limnol. Oceanogr. 12:600-5.
of less than 20 C, as in cold mountain streams (I).                 3. BUNT,J. S. 1963. Diatoms of antarctic sea ice as agents
   It would appear that water temperature is one of                    of primary production. Nature 199:1255-7.
the most important environmental factors in the de-                 4. - 1968. Some characteristics of microalgae isolated
                                                                       from Antarctic sea ice. Antarctic Res. Ser. 11:l-14.
velopment of large diatom populations during a                      5. MACAN, T. 1970. Biological Studies of the English
                                                                                 T.
seasonal period in which most other algal and macro-                   Lnkes. American Elsevier, N.Y., 72-83.
phytic plants are either unable to grow or are dor-                 6. MCCRACKEN, D., G U ~ A F S OT. , D., & ADAMS,M. S.
                                                                                      M.                   N
mant. Despite its inability to grow optimally at the                   1972. Productivity of Oedogoniunt in Lake Wingra. East-
                                                                       ern Deciduous Forest Biome Memo R e p . # 72-109 (Uni-
temperature of its habitat, the diatom Cymbella
                                                                       versity of Wisconsin, Madison).
develops high epiphytic populations. T h e environ-                               H.,                         H.
                                                                    7. MEGURO, ITO, K., & FUKUSHIMA, 1967. Ice flora
mental factors influencing this extensive algal de-                    (bottom type): A mechanism of primary production in polar
velopment and its role in detritus formation are                       seas and the growth of diatoms in sea ice. Arctic 20114-33.
not known.                                                          8. SOROKIN, I., & KONOVALOVA,
                                                                                  Yu.                     I. W. 1973. Production
                                                                       and decomposition of organic matter in a bay of the Japan
                                                                       Sea during the winter diatom bloom. Limnol. Oceanogr.
                      ACKNOWLEDGMENT
                                                                       18962-7.
  This study was supported by a contract from the Atomic            9. WRIGHT, T. 1964. Dynamics of a phytoplankton com-
                                                                                  R.
Energy Commission (CCO-2161-10).                                       munity in an ice-covered lake. Limnol. Oceanogr. 9:163-78.




J . Phycol. 10,213-220 (1974)


                          T H E EFFECT OF L I G H T QUALITY ON T H E CARBON
                           METABOLISM AND EXTRACELLULAR RELEASE OF
                              CHLAMYDOMONAS REINHARDTII DANGEARD'

                                              T. J . Brown2 and G. H . Geen
                        Department of Biological Sciences, Simon Fraser University, Burnaby 2, B.C., Canada




                           SUMMARY

   T h e influence of red, blue, green, and white light             while the percentage of proteins was highest in blue
on growth and photosynthetic rates, carbon metab-                   light. Light quality also influenced the composition
olism, and rates of release of extracellular compounds              of the ethanol-soluble fraction. The percentage of
in the freshwater alga Clilamydomonas reinhardtii                   organic acids was highest in cells grown in green
Dangeard was examined. Relative growth constants                    and white light, while amino acids were highest in
were 0.28, 0.?2, 0.40, and 0.41 in green, white, blue,              blue and green cultures. T h e percentage of ethanol-
and red light, respectively. Photosynthetic rates were              soluble sugars was greatest in cultures grown in
higher in white, blue, or red than in green light of                blue and red light.
the same intensity.                                                    T h e percentage release of dissolved organic car-
   More than 60% of the ' f C 0 , assimilated by cells              bon into the medium was highest in white light and
grown under blue or green light was incorporated                    lowest in blue or red light. T h e nature of the extra-
into the ethanol-insoluble fraction, compared with                  cellular products varied according t o the quality of
about 50% i n cells grozun under white or red light.                light under which the cells were cultured, but had
T h e percentage of sugars in this fraction was sig-                n o consistent relation t o the nature or concentration
nificantly higher in cells grown under green or red                 of components in the ethanol-soluble fraction.
light than in cells cultured in white OT blue light,
                                                                                          INTRODUCTION
  Received August 23, 1973; revised March 28, 1974.
  Present address: Biological Station, Fisheries Research             T h e chemical composition o planktonic algae in
                                                                                                  f
Board of Canada, Nanaimo, B.C., Canada.                             nature and cultures has received some attention (Id,
214                                           T. J. BROWN AND G. H. GEEN


                                                               green light than under white light which was inde-
                           /'
                           *.
                       i                                      pendent of light intensity has also been noted (28).
                       i        !                                 These studies suggest that the depth-dependent
                                                               shift of the spectral composition of underwater light
I"                                                             probably alters the rate and/or direction of many
      5-                                                       metabolic reactions in planktonic algae. This
'5
YI
                                                               might affect the nature and quantity of extracellular
b                                                              products which could, as an example, influence the
-     4-
                                                               growth of heterotrophic organisms which utilize dis-
-c
v1                                                             solved organic compounds, or influence the forma-
6
I
-
      3-                                                       tion of organic aggregates.
E                                                                 The primary purpose of this work was to examine
+
$
J
      *-                                                       the nature of the photosynthetic and extracellular
                                                               products of the freshwater alga Chlamydomonas
      14
                                                               reinhardtii grown under light of the same intensity
                                                               but different spectral composition, and from these
                                                               data determine whether a predictable relationship
                                                               exists between the nature of the photosynthate and
       400       500                600       700
                                                               the extracellular products.
                            WAVELENGTH (Nm)
                                                                               MATERIALS AND METHODS
  FIG. 1. The spectral composition of each of the light sys-
tems used for culturing C . reinhardtii.                          An axenic culture of Chlamydomonas reinhardtii (wild type,
                                                               mating strain 89, 90) was grown in previously sterilized
                                                               Beijerinck's medium. Stock cultures were maintained with
Z8,26-28). Variations in composition are induced by            continuous stirring at 18 2 0.5 C in cotton-stoppered 2800-ml
a number of extrinsic factors such as temperature              Fernback flasks. Light was provided by a bank of cool-white
                                                               fluorescent lamps producing 2.4 X 108 ergs/(cm")sec) at the
(6),pH (I?, and the inorganic nutrients in the                 level of the bottom of the flasks. Experimental cultures were
medium (5,7). The age of the cultured cells, stage             established with 10' cells/ml and placed in incubators operat-
of life cycle, and previous culture history also have          ing on a 16:E hr light-dark regime. The experimental cultures
an effect upon the nature of the photosynthetic                were illuminated from above with General Electric white,
products ( 1 3 J 9 ) . Cellular composition may also           blue, or green fluorescent lamps or Sylvania red fluorescent
                                                               lamps. The band width of the blue, green, or red lights
depend on the wavelength of the incident light.                reaching the cultures was more narrowly defined by placing
Blue light stimulated the incorporation of 14C into            plexiglass filters between the lamps and cultures. T h e maxi-
amino acids, especially alanine, in barley, whereas            mum energy output from the blue light system at flask level
red light stimulated 14C incorporation into sugars             was 2.4 X 103 ergs/(cm')(sec) and was the energy used for
                                                               culturing cells under each light regime. T h e spectral distribu-
(24). Blue and green light stimulated an increase in           tion of each lamp-filter combination is shown in Fig. 1.
proteins relative to white light in 2 species of marine           Growth rates were estimated from cell count data obtained
phytoplankton (26). An increase in some amino and              with a Coulter Counter. Photosynthetic rates and distribu-
organic acids in cells grown under blue light inde-            tion of 14C were determined when the experimental cultures
pendent of light intensity, photosynthetic rate, or            reached the exponential phase of growth. Four 160-ml sub-
                                                               cultures were taken from the experimental cultures, inoculated
cell density was also noted. Several other workers             with 400 pCi of H"CO,-, and incubated under the appropriate
have reported a blue light enhancement of produc-              experimental light conditions for 30 min prior to the deter-
tion of proteins and/or their precursors (4,8,9,Z2).           mination of the total 14C uptake and its distribution within
Light quality may also influence the rate of photo-             the cells.
synthesis. Blue light produced a higher rate of                   Separation and identification of the Photosynthetic products.
                                                               After incubation with Hl4COS-the algae were filtered onto
photosynthesis in 3 species of algae than other light           Millipore filters (HA 0.45 p) using a vacuum pressure of 25
qualities of the same intensity (9).                            cm Hg and placed for 1 h r in boiling ethanol in a reflux
   Since light quality and perhaps quantity may in-            apparatus. This separated the photosynthetic products into
fluence the metabolism of algae, it seems probable              the hot-ethanol soluble (HES) and insoluble fractions. The
that either might affect the quality and quantity of            HES fraction was adjusted to pH 7.2 (to reduce the expected
                                                                loss of volatile organic acids under acidic conditions) and
the extracellular organic compounds released by                dried under vacuum at 35 C. The dried extract was redissolved
unicellular algae. The release of glycolate by                  in 5 ml distilled water and an aliquot was placed in TEG
Chlorella pyrenoidosa increased at high light intensi-          [300 ml ethylene glycol monomethyl ether, 500 ml TOL (42
ties and low CO, concentration (2130). Glycolate                ml spectrofluor/liter toluene)], and the     activity measured
                                                                with a liquid scintillation counter. The HES fraction was
release by C. pyrenoidosa and C . uulgaris exposed to           then run on ion exchange resins (Rexyn 101 [H+] and 201
high intensity white or red light, but not by cells             [OH-]) to separate the free amino acids, organic acids, and
grown in blue light, has been reported (3). A smaller           sugars. Each fraction was washed and evaporated 3 times with
                                                                distilled water to remove the formic acid and ammonium
percentage extracellular release by cultures and                hydroxide used to elute the organic and amino acids from
natural populations of algae grown under blue or                the ion exchange resins.
LIGHT AND CHLAMYDOMONAS METABOLISM                                                             215

TABLE Total '4C/lOU cells fixed by C . reinhardtii under
      1.
 white, blue, green, or red light and the '4C distribution
  between the ethanol-soluble and insoluble fractions
         expressed as a percent of total 'C fixed
                                          4
                     f standard error.



              Total 14C
 Light      fixed X 1o-B      Ethanol         Ethanol                -
quality    DPM/lOs cells     soluble, %     insoluble.% Reulicates    E
                                                                     
White       59.9 f 13.6      51.8 f 0.5     48.2 f0.5       9        Y
                                                                     2
Blue        G6.4 f 14.7      31.0 2 3.4     69.0& 3.4       4        0
                                                                     Y

Green       14.92 5.1        38.5 f 1.3     61.5 f 1.3      7
Red              *
            69.1 12.2        47.1 -C 1.6    52.9-C 1.6      8


   The amino acids were cochromatogrammed with standards
 in two dimensions using phenol:water:ammonium hydroixde
 (300:75:1) and butano1:acetone:diethylamine:water (120120:
2450). The organic acids were run in ethano1:water:ammonium
 hydroxide (280:104:16) and ethyl acetate:acetic acid:water:
 sodium acetate (200:122:100:480). The sugars were run in
pheno1:water:ammonium hydroxide (300:40:1.2) and isopropa-                 I   1   I   1   I   1   ,     1     ,    I   1    I   ,    ,    ,
no1:ethyl acetate:water (315:45:90). The sugar chromatograms               0       4       8       12          16       20       24        28
were dried and rerun in the second direction to achieve better                                          DAYS
separation.
   Chromatograms were exposed to Ilford Ilfex X-ray film for          FIG. 2. Growth of C . reinhardtii in red, green, blue, and
4-5 weeks to locate the radioactive compounds. All radioactive       white light at an intensity of 2.4 X 109 ergs/(cm?(sec).
spots were excised and their activity determined. They were
identified by their relative positions using spray reagents and
known compounds. The efficiency of the spot-counting tech-           average diameter for cells grown in white, blue,
nique was determined by placing a known quantity of "C-              green, and red light was 5.1, 5.6, 7.2, and 6.0 p,
labeled leucine, serine, glycine, and aspartic acids on chromato-    respectively. The average volume of cells grown
grams, running in the appropriate solvents, spraying, and            under green light (198 p3) is approximately double
counting.
   The ethanol-insoluble fraction was hydrolyzed in a Soxhlet        that for cells grown in white, blue, or red light
apparatus. The proteins and polysaccharides were refluxed            (70.4, 91.2, and 114 p3, respectively).
for 24 hr in G HCI and 1N H,S04, respectively. The HCl
                N                                                       Cells grown under white, blue, or red light had a
was removed by 3 evaporations under vacuum. The H,SO,                higher photosynthetic rate in log phase cultures than
was removed by precipitation with BaCO,. The hydrolyzates            cells grown under green light of the same intensity.
were concentrated under vacuum, redissolved in water, run
through ion exchange resins, and separated paper chromato-           Cells grown under green light had a rate o photo-
                                                                                                                  f
graphically as previously described.                                 synthesis about one-quarter that of cells grown in
   The medium in which the cells were grown was examined             white light (Table 1). T h e lag phase in cultures
for extracellular products after the 30-min period of photo-         grown under green or red light was longer than for
synthesis. The filtrate was brought to pH 2 and bubbled with
air for 1 hr to remove the unused H14C03-. Residual bicar-
                                                                     cells grown under white or blue light (Fig. 2).
bonate activity was further reduced during a subsequent                 IJC distribution in the photosynthate. Cells grown
step in which the filtrate was concentrated to 30 ml at pH           in blue and green light fixed a greater percentage of
7.2 under vacuum. Only 0.001% of the HWO; remained after             the activity in the ethanol-insoluble fraction than
this evaporation. A 50        aliquot was placed in TEG and          did cells grown in white or red light (Table 1).
counted to determine total activity in the extracellular frac-
tion. The filtrate was then run through Rexyn 101 (H+)               Conversely, the percentage activity in the ethanol-
and 201 (OH-) to separate the amino acids, organic acids, and        soluble fraction was higher in cells grown under
sugars prior to chromatographic separation of the components         white and red light.
in each fraction.                                                       The distribution of 14C in the ethanol-insoluble
                                                                     fraction varied with light quality. T h e percent ac-
                           RESULTS
                                                                     tivity in the protein amino acids in cells grown
   Growth and photosynthetic rates. The exponential                  under red (59.3%) and green light (68.5%) was sig-
growth rate of Chlamydomonas was higher in red                       nificantly lower ( p < 0.01) than under white or blue
and blue light than in green or white light of the                   light regimes (82.3 and 93.5%, respectively). Con-
same intensity. Relative growth constants (K) and                    versely, the percent in the sugar hydrolysis fraction
the mean generation times (T) were calculated from                   was higher in cells grown under green or red light
the linear portion of each growth curve on a log                     (31.5 and 40.7%, respectively) than under white or
plot (Fig. 2).                                                       blue light (17.7 and 6.5%, respectively).
  The growth constants for cultures in green, white,                    Distribution of 14C observed in the various com-
blue, and red light were 0.28, 0.32, 0.40, and 0.41,                 pounds of the ethanol-soluble fraction after 30 min
respectively. Corresponding mean generation times                    of photosynthesis is shown in Table 2. The percent
were 59.4, 52.0, 41.6, and 40.6 hr, respectively. The                of 14C activity in the ethanol-soluble fraction did
216                                                          T. J. BROWN AND G. H. GEEN


  TABLE Distribution of I * C among compounds in the
        2.                                                                            4.
                                                                                TABLE Distribution of 'C in the sugar hydrolysis fraction
                                                                                                            4
    ethanol-soluble fraction of C . reinhardtii expressed                        of C. reinhardtii exfiressed as a percent of total activity in
     as a percent of total activity recovered in the                                 the sugar hydrolysis fraction       standard error.
        ethanol-soluble fraction 2 standard error,
                                                                                  Light quality   White           Blue            Green       Red
                  wl
                   t?                 Blue          Green           Red         Glucose       49.2f12.7       26.9*5.4          83.1f2.3    66.4f4.1
Malic            6.4 2 0.5              *
                                   2 0 0.2
                                    .             3.0 -C 0.4     5.4 2 0.5      Fructose         -                -              5.1 f0.1    2.6 f0.5
Glycolic         3.0 f0.4          2.7 f 1.0      3.3 -+ 0.9     1.8 k 0.1      Sugar origin   8.9f 3.8          4.3 f 0 . 9     0.2*0.2     0.9 *0.6
Pyruvic          6.9 f 1.5              *
                                   0.8 0.4        2.5 -C 2.0     2 3 2 0.3
                                                                  .             Sugar unknown 41.6 2 9.7      68.8   *  4.6           *
                                                                                                                                11.7 2.1     3.4 f3.9
Oxalic           3.9 2 0.7              *
                                   2.1 0.6              *
                                                  2.9 0.9        1.2 k 0.3
3-PGA            6.1 3: 1.1         4.7 * 0.9     5.6 -+ 1.2     3.6f0.6
Fumaric          1.1 2 0.3             -             -              -
                                                                                but in general showed no consistent trends which
Succinic         0.4 f 0.3          1.7 0.3       2.9   * 0.5     1.6 k 0.2
a-Ketoglutaric                      0.3 f0.2      0.4 2 0.2           *
                                                                  0.4 0.2       could be ascribed to light quality.
Citric              -                 -           0.4   * 0.1     0.2 f0.2        Hydrolysis of the ethanol-insoluble fraction yielded
OA origin        2.4 k 0.7              *
                                    5.7 2.5        1 0-t 0 3
                                                    . .           0.8 4 0.2     the compounds indicated in Tables 3 and 4. Some
OA unknown       5.8 f 1.O          2.6 f0.4           *
                                                   7.1 0.9        9.3 -c 1.1    differences in the protein amino acids found in cells
O A total           36.0               20.6          29.1           26.6
                                                                                grown under different light qualities were observed
Aspartic         10.1 f 1.3         9.8 2 1.1      8.0 * 2.1          *
                                                                  0.2 0.2       (Table 3). Hydrolysis of the insoluble sugar fraction
Glu tamic        10.4f 1.8         11.8" 1.5      17.4 -C 2.0     0.7 f0.5
8-Alanine         0.8-t- 0.8        2.7 -f. 1.6    2.6 L 0.3          *
                                                                  2.7 0.3       yielded glucose and fructose in varying amounts
Serine              -                 -            1.6 -C 0.2         *
                                                                  1.0 0.2       (Table 4). The percent glucose present in cells
Proline           0.2 f0.2                         0 6-C 0.3
                                                    .             1.9 4 0.3     grown in green and red light was significantly higher
Leucine                             8.3 f0.8       1.7 0.4        2.2 f 0.4     than in cells grown in white and blue light. Cells
Valine                              1.2 f 1.2      0.8 2 0.2          *
                                                                  1.3 0.2       grown in green and red light had a significantly
                                      -              -
                                                                                lower percent activity ( p < 0.01) in the unknown
Arginine                                                          0.9 f 0.4
Glycine                               -            0.4 f 0.4        -
AA origin         5.0 k 0.9         5.7 -C 1.4     1.6 2 0.3      1.4 f0 9      fraction than cells grown in white and blue light.
AA unknown        1.0 f 1.0                        4.9 -C 0.7     8.3 f 1.8     This unidentified sugar appeared in the same area
AA total            27 5               34.5           39.6           20.6       of the chromatograms o the sugars from cells grown
                                                                                                        f
Glucose                                                           1.3 f0.8      under all 4 light conditions.
Fructose                            5.9 -c 1.9       -              -              Extracellular organic products. The nature of the
Glycerol                              -              -            0.9 -t. 0.6   compounds released by C. reinhardtii under the
Sugar origin   3.7 f0 6
                      .             9.8 f0.3             *
                                                   5.1 0.9        8.1 f 1.5
                                                                                various light regimes is shown in Table 5. Cells
Sugar unknown 3 . 2 8
               28 .   *            36.1 2 6.9     26.8 -t 2.5    42.5 2 3.9
                                                                                grown under white light exuded a large percent ac-
Sugar total      36.5                 45.8           3.
                                                      19             52.8
  -Below detectable limit.
      ~

                                                                                tivity in each fraction (ie, free amino acids, organic
                                                                                acids, and sugars). Cells grown under blue and red
                                                                                light released mainly sugars and organic acids, re-
not change appreciably in cultures incubated for
                                                                                spectively. The composition of the material released
varying periods between 15 and 180 min. The
                                                                                by cells grown under green light was not determined
highest percent 1% activity in organic acids was re-
                                                                                because of the low activity released.
covered in cells grown under white light, whereas
cells grown under blue or green light had the highest                                                     DISCUSSION
percent activity in the amino acid fraction. Cells
grown in red light had the highest percent activity                               This study has shown that light quality influences
in the sugar fraction. The percent activity in indi-                            photosynthetic rate, growth, and the nature of the
vidual compounds within the HES fraction varied,
                                                                                TABLE Distribution of '+C in the extracellular products of
                                                                                       5.
TABLE Distribution of 'JC in the protein amino acids of
       3.                                                                        I=. reinhardtii expressed as the percent of total activity
 C . reinhardtii expressed as a percent of the total activity                      recavered in the extracellular fraction       *
                                                                                                                           standard error.
    in the protein amino acid fraction f standard error.
                                                                                                            White                Blue          Red
                    White             Blue          Green           Red         G1ycolate                  2 7 -+ 0.8
                                                                                                            .                     -          5.1 f 1.7
A spart ic       12.8 f2.5         13.4 -C 2.1    14.8 f 1.7     14.2 2 0.5     3-PGA                      2.8 f 1.1              -             *
                                                                                                                                            19.9 3.3
Glutamic         14.7 f2.4          9 3 f 1.1
                                     .                   *
                                                  12.9 0.9       10.8 f 0.6     Malic                        -                    -          6.6 f0.7
Glycine           5.1 k 1.1         6.4 f0.5       3.8 f 0.8      2 9f0.4
                                                                   .            OA origin                  5.0   *
                                                                                                                 1.0              -         11.722.2
Serine                *
                  1.1 0.6              -           2.9 f0.6       1,9 f02 .     OA unknown                 3.8 f 1.3              -         54.9 f9.7
p- Alanine            *
                 15.6 5.0                .-
                                   17.8 2.5              *
                                                  12.2 0.9       12.8 +- 0.6    AA origin                 13.8 f2.9               -            -
Leucine               *
                 16.8 3.1                *
                                   29.4 4.0       22.6 f0.6      21.6 f0.6      AA unknown                19.5 f8.8               -            -
Proline          14.3 2.8           6.8 k 2.5     10.0 f 1.4     11.4 C 0.8     Sorbitol                         *
                                                                                                           7.6 3.9             14.0 4 1.3      -
Valine           14.7 f2.1         12.4 -C 2.1    13.3 4 0 9     13.1 -t 0.5    Sugar origin              31.6 f5.0            81.5 f5.7       -
A rginine         3.9 f 1.4         1.3 -C 0.8        -           0.8 f0.5      Sugar unknown             15.7 f 4.7            4.5 f4.5       -
Phenyl alanine       -                             3.9f 1.3       0.6 f0.6      Extracellular release
Amino acid                                                                        as a percent of
   unknown           -              3.2 + 3.2      3.5   * 2.3    9.5 -t 0.8      total incorporation         35.6                   6.6        4 .O
  -Below detectable       limit.                                                  -Below detectable limit.
LIGHT AND CHLAMYDOMONAS METABOLISM                                          217

photosynthetic and extracellular products of Chlamy-        additional enzymes. I t has been shown that cells
domonas reinhardtii. The data presented in this             grown at low temperatures were larger and con-
study and the studies of others (26-28), using cultures     tained more protein (which was presumed to be
and natural populations of marine planktonic algae,         largely enzymes) than cells grown at higher temper-
suggest that the depth-dependent shift in light             atures (11). We have shown that average cell size
quality which occurs in oceans and lakes will be           was largest in green light cultures, which suggests a
associated with changes in algal metabolism, nature        physiological adaptation that may account for the
and rate of release of extracellular products, and         long lag period observed in green light cultures.
rates of growth and photosynthesis.                        Thus the observed differences in growth and photo-
   Our cultures all exhibited low growth rates and         synthetic rates of the various cultures could be
long generation times relative to enriched cultures        related to differences in enzyme or pigment concen-
(doubling every 1-2 days). These rates and genera-         trations or in the efficiency with which the various
tion times are not unlike those reported for natural       pigments are able to absorb or transfer energy.
populations (20).                                          Whatever the basis for the differences we observed,
   The lag period observed in new cultures varied          it seems likely that light quality will influence the
according to light quality, but bore no obvious re-        growth and photosynthetic rates of organisms dis-
lationship to growth or photosynthetic rates during         tributed at various depths throughout the photic
the period of log growth. Of the various explanations      zone of oceans or lakes. The effects of light quality
of the lag phenomenon (see 20 for a discussion), the       on growth and photosynthetic rates in C. reinhardtii
following seem most likely to account for the dif-         that we observed in culture were generally similar
ferences we observed:                                      to those observed in natural populations of plank-
                                                           tonic algae in Indian Arm and Saanich Inlet and
      Absence in a new culture medium of a necessary       in cultures of Cyclotella nana and Dun,aliella tertio-
      growth promoter produced by the phytoplank-          lecta (26,28).
      ton. Differences in the length of the lag period         Light quality had a distinct effect on the distribu-
      under the various light regimes could result         tion of 14C in the photosynthetic products of C .
      from differences in rates of production of an        reinhardtii, as it did in marine algae (26-28). T h e
      essential growth promoter.                           relatively high percent of 14Cfixed by C. reinhardtii
      Differential efficiency of cells in absorbing or     in the ethanol-insoluble fraction in green and blue
      utilizing light of different qualities. This         light cultures (Table 1) agrees with the results in
      could be a reflection of differences in pigment      the work cited above, in which it was shown that cul-
      or enzyme concentrations or some combination         tures grown in white light incorporated the greatest
      of the two.                                          proportion of 14C into the ethanol-soluble fraction,
   Either or both of these factors may explain the         whereas cultures grown in blue or green light in-
observed differences in lag period. When we trans-         corporated most l4C into ethanol-insoluble com-
ferred a culture growing exponentially under white         pounds. This relationship was not appreciably
light to green light, a lag of several days was ob-        affected by light intensity. These studies suggest a
served before growth resumed. Since the culture            higher percentage protein and polysaccharide pro-
had been growing exponentially prior to transfer,          duction in deep, relatively clear oceanic or lacustrine
any necessary growth promoter was presumably               environments, given the usual predominance o bluef
present. This suggests that a period of relatively         or green light at these depths in relatively clear
slow cellular adaptation is required before rapid          waters. Changes of this nature could be of nu-
growth can be expected under the new light regime.         tritional significance to herbivores.
Such adaptation could require the synthesis o addi-
                                                f             We observed an increased percentage incorpora-
tional pigments or enzymes. We measured pigment            tion of 14C into the protein fraction in cells grown
concentrations in log phase cultures grown under           under blue and white light, whereas the percentage
each of the light regimes. Concentrations of the           of polysaccharides was highest in green and red
chlorophylls and total carotenoids were highest in         light. A blue light enhancement of protein produc-
cells cultured under white light and 25 to 50%             tion was observed in Chlorella pyrenoidosa (12).
lower in cells cultured under blue, green, or red light.   Radiant energy above 500 nm resulted in a shift o     f
The significance of these differences is not im-           synthesis to polysaccharides. Our results supported
mediately apparent. However, there is a substantial        the view that blue light enhances protein synthesis
body of data indicating shifts in pigment concen-          since those cultures grown under blue or white light,
tration in response to differences in light quality or     both of which contained energy in the region of
quantity. For example, the total chlorophyll in C.         450-500 nm, had a higher percentage of protein
reinhardtii grown under blue light increased 20%           than did cultures grown under green or red light.
during the lag period, although the chlorophyll a / b      Green light enhancement of protein synthesis in
ratio decreased (10).                                      2 species of marine phytoplankton has been reported
   Adaptation may also occur through synthesis of          (26). However, this could have been attributable to
218                                     T. J. BROWN AND G . H. GEEN


a blue light effect, since a small portion of the
energy in the green light system used in those studies
was below 500 nm. It has been shown that the addi-
tion of only 4% blue light as incident energy to red
                                                          -1
light has essentially the same effect on the distribu-
tion of 14C as blue light alone (9).
   There were some significant differences in the per-
centage of some components of the protein hydrolysis
fraction in cells cultured under different light                +
qualities (Table 3). Cells grown under blue light               +
had more leucine than cells grown in white light,
while glycine was significantly higher in white and
blue light than in green and red light (Table 3).
Serine, on the other hand, was below detectable
limits only in cells grown under blue light. This
suggests that light quality influences the type of
proteins synthesized although other workers have
reported that light quality changed the rate but not
the direction of protein synthesis (23,26).
                                                           E!
   Glucose was the most significant identified radio-
active sugar obtained on carbohydrate hydrolysis, al-
though small quantities of fructose occurred in cells      FIG. 3. Percent extracellular release by C. reinhardtii cul-
cultured under green and red light. These sugars         tures grown in white light as a function of cell numbers.
may have been derived from a reserve polysaccharide
or from cell-wall polysaccharides. The cells grown
under blue and white light incorporated a smaller        release of compounds by the cells and not a loss due
percent 1% into glucose and fructose than those          to cell breakage or passive leaching, since the range
grown under green or red light (Table 4).                of compounds in the photosynthate (Table 2) was
   Within the ethanol-soluble fraction cells grown       much greater than that appearing in the extracellular
under blue and green light had the highest percent       fraction (Table 5). Differences in membrane perme-
activity in free amino acids, while cells grown in       ability related to light quality are suggested. Nitella
white and red light contained the highest percentage     shows light-induced changes in membrane potential
in the organic acids and sugar fractions, respectively   which are associated with changes in cytoplasmic
(Table 2). The main constituent of the sugar frac-       ion concentrations (25).
tion was an unknown sugar which appears not only            The percentage of newly incorporated 14C exuded
in algae but also in a number of vascular plants, and    by C . reinhardtii was similar to the range of values
has thus far not been identified (G. R. Lister,          published in the literature, although percentage
personal communication).                                 extracellular release in white light was relatively
   Our results, and those of other workers, suggest      high (Table 5). The magnitude of the release by
 that light quality alters the rates o metabolic
                                         f               cells cultured in white light was in part a function
reactions and/or activates different metabolic path-     of cell density in the cultures (5 x 104 cells/ml in
ways. For example, it has been suggested that blue       white light and 1-3 x 106 cells/ml in blue and red
light may activate phosphoenol pyruvate carboxylase      light). Our data (Fig. 3) indicate that the lower cell
in Chlorella (15) or increase the rate of secondary      density in the white light cultures would be associ-
carboxylation of certain organic acids, thereby pro-     ated with a high rate of extracellular release. At
moting the accumulation of amino acid precursors         a density of 1-3 x 106 cells/ml the release rate under
(22). Changes of this type which are dependent on        white light would probably have been less than 10%.
light quality might influence the rate or nature of         Our results did not show the positive relationship
any extracellular release.                               between the percentage of the newly formed photo-
   The nature of the dissolved organic compounds         synthate in the ethanol-soluble fraction and the per-
released from cells grown in white, blue, and red        centage extracellular release reported earlier (28).
light is shown in Table 5. Insufficient labeled          nor do our data on C. reinhardtii support the sug-
material was exuded by cells grown in green light to     gestion that a depth-dependent change in percentage
permit identification of constituent compounds. The      extracellular release could be expected in natural
extracellular products of cells grown in white light     waters as a result of the change in the size o the
                                                                                                          f
included amino acids, organic acids, and sugars,         ethanol-soluble fraction. Species differences may ex-
whereas sugars and organic acids were the only           plain these results. I n addition, the light intensity
products released by cells grown under blue and red      under which the cells are cultured may affect the
light, respectively. These data indicate a selective     extracellular release by C h Zamy domonas.
LIGHT AND CHLAMYDOMONAS METABOLISM                                                     219

   T h e extracellular compounds released by C . rein-              on the distribution of carbon-14 in the early products
hardtii in our studies were somewhat different than                 of photosynthesis. Nature 17989-90.
                                                               5.    CONSTANTOPOULOS,1970. Lipid metabolism of Mg-
                                                                                          G.
those reported by other workers (2,21). For example,                deficient algae. Plant Physiol. 45:76-80.
23% of the organic material formed by C . reinhardtii          G.   FEDOROV, D., MAKSIMOV. N., & KHROMOV, M.
                                                                                V.                   V.                   V.
appeared in the culture medium as glycolic and                       1968. Effect of light and temperature on primary pro-
oxalic acids and sugars (2). No amino acids were                    duction of certain unicellular green algae and diatoms.
exuded under white light during an 8-day growth                     Soviet Plant Physiol. 15:635-43.
                                                               7.   Focc, G. E. 1952. T h e production of extracellular ni-
period. We detected amino acid release by this                       trogenous substances by a blue-green alga. Proc. Roy. SOC.
species in white light cultures, although specific                  B . 139~372-97.
compounds were not identified. Release of soluble              8.                  A.
                                                                     HAUSCHILD, H. W., NELSON, D., & KROTROV,
                                                                                                          C.                   G.
polysaccharides by C . reinhardtii has also been re-                 1962. T h e effect of light quality on the products of
ported (13), although these may have been leached                   photosynthesis in Chlorella vulgaris. Can. J. Bot. 40:
                                                                    179-89.
from the mucilaginous sheath. We detected no                   9.             1965, On the mode of action of blue light on
labeled polysaccharides i n the medium after 30                     the products of photosynthesis in Chlorella vulgaris.
min of photosynthesis, although some were observed                  Naturwissenschaften 52:435.
after 40 min. Glycolic acid, a compound frequently            10.   HESS, L. & TOLBERT, E. 1967. Changes in chloro-
                                                                           J.                 N.
                                                                    phyll a/b ratio and products of “CO, fixation by algae
released by algae as a n extracellular product, was                 grown in blue or red light. Plant Physiol. 42:1123-30.
detected in the medium of cultures grown under                11.                  E.
                                                                    JORGENSEN, G. 1968. The adaptation of plankton
white and red, but not blue light. Similar results                  algae. 11. Aspects of temperature adaptation in Skeleto-
were reported for Chlorella pyrenoidosa and C . vul-                nema costatum. Physiol. Plant. 21:423-7.
garis (3). Other work with C . pyrenoidosa and                12.                W.
                                                                    KOWALLIK, 1965. Protein production of Chlorella in
                                                                    light of different wavelengths. Planta 64:191-200.
Euglena gracilis has shown that under blue light              13.    LEWIN, R. A. 1956. Extracellular polysaccharides of
that glycolate neither accumulated intracellularly nor              gren algae. Can. J. Microbiol. 2:665-72.
was released extracellularly (14). This suggests that         14.   LORD, M., CODD, A., & MERRETT, J. 1970 . The
                                                                           J.             G.                   M.
any glycolate formed under blue light may be                        effect of light quality on glycolate formation and excre-
                                                                    tion in algae. Plant Physiol. 46:855-6.
further metabolized via glyoxylate to glycine and             15.                  N.
                                                                    OCASAWARA, & MIYACHI, 1970. Regulation of CO,
                                                                                                   S.
other amino acids which are utilized during protein                 fixation in Chlorella by light of varied wavelengths and
synthesis. T h e absence of organic acids in the extra-             intensities. Plant Cell Physiol. 11:l-14.
cellular products of cells grown under blue light             16.           J.
                                                                    OLIVE, H. & MORRISON, H. 1967. Variation in dis-
                                                                                                 J.
                                                                    tribution of 14C in cell extracts of phytoplankton living
might be the result of a greater utilization of organic             under natural conditions. Limnol. Oceanogr. 12:383-91.
acids in blue light for protein or amino acid syn-            17.   ORTH,G . M., TOLBERT, E., & JIMENU,E. 1966. Rate
                                                                                              N.
thesis. T h e explanation for the absence of amino                  of glycolate formation during photosynthesis at high pH.
                                                                    Plant Physiol. 41:143-7.
acids and sugars in the exudate of cells grown under          18.             T.
                                                                    PARSONS, R., STEPHENS, & STRICKLAND, H. 1961.
                                                                                               K.,                  J. D.
red light is not at hand.                                           On the chemical composition of eleven species of marine
   T h e chemical composition of the algae and their                phytoplankton. J . Fish. Res. B d . Canada 18:lOOl-16.
extracellular products may also be altered by light           19.   STEWART, D. P. 1963. Liberation of extracellular ni-
                                                                               W.
                                                                    trogen by two nitrogen fixing blue-green algae. Nature
intensity (29,30) or by an interaction of light quality             200:1020-1.
and quantity. Species differences are probably of             20.   STRICKLAND, H. 1960. Measuring the production of
                                                                                  J. D.
importance as well. We have not considered these                    marine phytoplankton. Bull. Fish. Res. Bd. Canada 122:
                                                                    1-172.
latter possibilities although it is clear that further              TOLBERT, E. & ZILL,L. P. 1956. Excretion of glycolate
                                                                               N.
                                                              21.
work will be required before many generalizations                   by algae during photosynthesis. J. Biol. Chem. 222:895-
are possible.                                                       906.
                                                              22.   TRUKHIN, V. 1968. Effect o the carbon supply on
                                                                                N.                      f
                  ACKNOWLEDGMENT                                    the response of Chlorella pyrenoidosa to the effect of blue
                                                                    and red light. Soviet Plant Physiol. 15:544-8.
  Thanks are due to John Nelson for his skillful technical
                                                              23.   VOSKRESENSKAYA, 1956. Synthesis of organic and
                                                                                        N. P.
assistance and helpful suggestions. This research was sup-
                                                                    amino acids during photosynthesis under various con-
ported by a National Research Council of Canada grant.              ditions of illumination. Fiziol. Rast. 3:49-57.
                      REFERENCES                              24.   -& NECHAEVA,P. 1967. Effect of blue, red, and
                                                                                           I.
                                                                    green light on the content of protein, nucleic acids, and
   AHMED, M. M. & RIES, E. 1969. The pattern of WO,
            A.                                                      chlorophyll in young barley plants. Soviet Plant Physiol.
   fixation in different phases of the life cycle and under         1425441.
   different wavelengths in Chlorella pyrenoidosa. Prog.      25.   VREDENBERC, J. 1971. Changes in membrane po-
                                                                                    W.
   Ph 0 tosyn. R es. 3: 1662-8.                                     tential associated with cyclic and non-cyclic electron trans-
   ALLEN, R. 1956. Excretion of organic compounds by
            M.                                                      port in photochemical system I in Nitella translucens.
   Chlamydomonas. Arch. Mikrobiol. 24163-8.                         Biochem. Biophys. Res. Comm. 42:lll-8.
   BECKER, D., DOHLER, & ECLE,K. 1968. The effect
             J.                 G.,                           26.   WALLEN, G. & GEEN,G. H. 1971. Light quality in
                                                                               D.
   of monochromatic light on the extracellular excretion of         relation to growth, photosynthetic rates, and carbon
   glycolate during photosynthesis of Chlorella. Pflanzen-          metabolism in two species of marine plankton algae.
   physiol. 58:212-21.                                              Marine Biol. 10:34-43.
                                 R.
   CAYLE, & EMERSON, 1957. Effect of wavelength
            T.                                                27.   - 1971. Light quality and concentration of pro-
220                                                 EDWARD G. DURBIN


    teins, RNA, DNA, and photosynthetic pigments in two          29. WAIT. W. D. 1969. Extracellular release of organic
    species of marine plankton algae. Marine Biol. 1044-51.          matter from two freshwater diatoms. Ann. Bot. 33:427-37.
28.   -      1971. The nature of the photosynthate in natural    30. -& Focc, G. E. 1966. The kinetics of extracellular
    phytoplankton populations in relation to light quality.          glycolate production by Chlorella pyrenoidosa. J . Exp.
    Marine Biol. 10157-68.                                           B o t . 17:117-34.




J . Phycol. 10,220-225 (1974)


                    STUDIES ON T H E AUTECOLOGY OF T H E MARINE DIATOM
                              THALASSIOSIRA NORDENSKIOLDII CLEVE.
                     1. T H E INFLUENCE OF DAYLENGTH, L I G H T INTENSITY,
                                AND TEMPERATURE ON GROWTH’

                                                    Edward G. Durbin
                                 Graduate School o f Oceanography, University of Rhode Island
                                                Kingston, Rhodc Island 02881




                            SUMMARY
   The marine diatom Thalassiosira nordenskioldii                                       INTRODUCTION
Cleve was grown at 48 different combinations of day-                 The marine diatom Thalassiosira nordenskioldii
length (9:15,12:12, 15:9 LD), light intensity (0.011,             Cleve has been described (16)as a neritic arctic and
0.027, 0.066, 0.100 lylmin [g cal/cmz/min]), and                  boreal species. Extensive studies of its distribution
temperature (0,5,10, 15 C). Growth occurred at all                in the North Sea and adjacent waters showed it to
combinations of light and temperature except at 15                be one of the main species of the arctic neritic plank-
C at the highest light level. Maximum growth                      ton during the spring bloom. Because of the temper-
( K = 1.8 doublings/day) occurred at 10 C under the               ature range over which it was found (0.8-10.6 C),
15:9 L D cycle. A t 15 C the maximum rate was 1 7   .             it was described as being “rather eurythermic with a
doublings/day but occurred at the shortest day-                   low optimum” (23). Subsequent studies have shown
length (9:15 LD). The maxima at 5 and 0 C were                    it to be widely distributed and an early dominant of
1.32 and 0.67 doublings/day, respectively.                        the spring diatom bloom in arctic, boreal and even
   At 0 C growth was similar over a wide range of                 some temperate neritic waters of the northern At-
light intensities ( K = 0.6-0.65), with maximum                   lantic and Pacific oceans (1-3,6,7,9,22,22,25,27,29,
growth being attained at a much lower light in-                   25,2630).
tensity than at 5 C. Above 5 C there was a decrease                  In Narragansett Bay it is one o the major forms
                                                                                                     f
in the light intensity at which maximum growth                    in the winter-spring bloom which it generally
occurred and excessive light became inhibitory to                 initiates along with Skeletonema costatum and
growth. At 15 C the light intensity at which maxi-                Detonula conferuacea (25,26). Weekly records of
mum growth occurred was greater with shorter day-                 phytoplankton abundance since 1959 show that the
lengths. The temperature optimum was 10 C at                      mean temperature at which Thalassiosira begins
15:9 and 15 C at 9:15 LD.                                         rapid growth is 2.45 C. I n Long Island Sound
   The chlorophyll a content of the cells was greatest            Thalassiosira and Skeletonema are the 2 dominant
                                                                  species in the spring bloom (21). Both experimental
under low light intensities and short daylengths,                 and field observations showed that Thalassiosira had
while temperature had a variable effect.                          a competitive advantage over Skeletonema at low
   The response of Thalassiosira in the laboratory                light intensities and temperatures, becoming domi-
contrasts with its apparent preference for low tem-               nant under such conditions. Thalassiosira has also
peratures in nature (0-5 C). T h e experiments sug-               been found to be the early dominant in the spring
gest that the termination of the bloom of Thalas-                 bloom in other areas such as the Gulf of Maine
siosira in Narragansett Bay and elsewhere is not                  (2,27), off Umiak Island, Alaska (12), and the Oslo
solely temperature dependent.                                     Fjord (29). The arctic nature of this species is
                                                                  emphasized by its occurrence at Igloolik, near Baffin
    Received August 23, 1973; revised April 18, 1974.             Island, where it was found under ice in May ( T =

Mais conteúdo relacionado

Mais procurados

Meulepas, 2009, Enrichment Of Anaerobic Methanotrophs In Sulfate Reducing Mem...
Meulepas, 2009, Enrichment Of Anaerobic Methanotrophs In Sulfate Reducing Mem...Meulepas, 2009, Enrichment Of Anaerobic Methanotrophs In Sulfate Reducing Mem...
Meulepas, 2009, Enrichment Of Anaerobic Methanotrophs In Sulfate Reducing Mem...roelmeulepas
 
Biotechnology for Clean Environment
Biotechnology for Clean EnvironmentBiotechnology for Clean Environment
Biotechnology for Clean Environmentsubrata raha
 
Iodine and selenium distribution in the local environment
Iodine and selenium distribution in the local environmentIodine and selenium distribution in the local environment
Iodine and selenium distribution in the local environmentAlexander Decker
 
Sustaining Your Business After A Disaster Fmj Jan Feb 2012
Sustaining Your Business After A Disaster   Fmj Jan Feb 2012Sustaining Your Business After A Disaster   Fmj Jan Feb 2012
Sustaining Your Business After A Disaster Fmj Jan Feb 2012afpizzitola
 
Micro organisms in the ecosystem
Micro organisms in the ecosystemMicro organisms in the ecosystem
Micro organisms in the ecosystemMBALI HADEBE
 
Water quality assessment and application of the hydrochemistry
Water quality assessment and application of the hydrochemistryWater quality assessment and application of the hydrochemistry
Water quality assessment and application of the hydrochemistryAlexander Decker
 
Tech seminar
Tech seminarTech seminar
Tech seminarri1236
 
Anaerobicaly - Composted Environmental Wastes as Organic Fertilizer and Ident...
Anaerobicaly - Composted Environmental Wastes as Organic Fertilizer and Ident...Anaerobicaly - Composted Environmental Wastes as Organic Fertilizer and Ident...
Anaerobicaly - Composted Environmental Wastes as Organic Fertilizer and Ident...Oyeniyi Samuel
 

Mais procurados (11)

Meulepas, 2009, Enrichment Of Anaerobic Methanotrophs In Sulfate Reducing Mem...
Meulepas, 2009, Enrichment Of Anaerobic Methanotrophs In Sulfate Reducing Mem...Meulepas, 2009, Enrichment Of Anaerobic Methanotrophs In Sulfate Reducing Mem...
Meulepas, 2009, Enrichment Of Anaerobic Methanotrophs In Sulfate Reducing Mem...
 
Biotechnology for Clean Environment
Biotechnology for Clean EnvironmentBiotechnology for Clean Environment
Biotechnology for Clean Environment
 
Iodine and selenium distribution in the local environment
Iodine and selenium distribution in the local environmentIodine and selenium distribution in the local environment
Iodine and selenium distribution in the local environment
 
Sustaining Your Business After A Disaster Fmj Jan Feb 2012
Sustaining Your Business After A Disaster   Fmj Jan Feb 2012Sustaining Your Business After A Disaster   Fmj Jan Feb 2012
Sustaining Your Business After A Disaster Fmj Jan Feb 2012
 
Micro organisms in the ecosystem
Micro organisms in the ecosystemMicro organisms in the ecosystem
Micro organisms in the ecosystem
 
Study of Zooplankton Diversity of Chhapakaiya Pond Birgunj, Nepal
Study of Zooplankton Diversity of Chhapakaiya Pond Birgunj, NepalStudy of Zooplankton Diversity of Chhapakaiya Pond Birgunj, Nepal
Study of Zooplankton Diversity of Chhapakaiya Pond Birgunj, Nepal
 
Water quality assessment and application of the hydrochemistry
Water quality assessment and application of the hydrochemistryWater quality assessment and application of the hydrochemistry
Water quality assessment and application of the hydrochemistry
 
Tech seminar
Tech seminarTech seminar
Tech seminar
 
Anaerobicaly - Composted Environmental Wastes as Organic Fertilizer and Ident...
Anaerobicaly - Composted Environmental Wastes as Organic Fertilizer and Ident...Anaerobicaly - Composted Environmental Wastes as Organic Fertilizer and Ident...
Anaerobicaly - Composted Environmental Wastes as Organic Fertilizer and Ident...
 
RCEC Document 1.31.03
RCEC Document 1.31.03RCEC Document 1.31.03
RCEC Document 1.31.03
 
Soil microbiology
Soil microbiology Soil microbiology
Soil microbiology
 

Destaque

Destaque (7)

Dempsterand sommerfeld1998
Dempsterand sommerfeld1998Dempsterand sommerfeld1998
Dempsterand sommerfeld1998
 
Wed
WedWed
Wed
 
Aptand behrens1999
Aptand behrens1999Aptand behrens1999
Aptand behrens1999
 
Benchmarking (1)
Benchmarking (1)Benchmarking (1)
Benchmarking (1)
 
Juttnery watson2007
Juttnery watson2007Juttnery watson2007
Juttnery watson2007
 
Charrieretal2007
Charrieretal2007Charrieretal2007
Charrieretal2007
 
Birthday
BirthdayBirthday
Birthday
 

Semelhante a Brownand geen1974

roni_final_final_in_prog_2_EDIT-2
roni_final_final_in_prog_2_EDIT-2roni_final_final_in_prog_2_EDIT-2
roni_final_final_in_prog_2_EDIT-2Roni Devassy
 
Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...
Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...
Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...JulinSimonato
 
Application of Foraminiferal Ecology- Rahul.pptx
Application of Foraminiferal Ecology- Rahul.pptxApplication of Foraminiferal Ecology- Rahul.pptx
Application of Foraminiferal Ecology- Rahul.pptxRahulVishwakarma71547
 
Dynamics of natural phytoplankton assemblages in the Indian Sundarbans assemb...
Dynamics of natural phytoplankton assemblages in the Indian Sundarbans assemb...Dynamics of natural phytoplankton assemblages in the Indian Sundarbans assemb...
Dynamics of natural phytoplankton assemblages in the Indian Sundarbans assemb...WWF-India
 
Thesis de asis zubiaga_phytoplankton
Thesis de asis zubiaga_phytoplanktonThesis de asis zubiaga_phytoplankton
Thesis de asis zubiaga_phytoplanktonJahzeel Zubiaga
 
Absorption of radionuclides from the fukushimanuclear accident by a novel alg...
Absorption of radionuclides from the fukushimanuclear accident by a novel alg...Absorption of radionuclides from the fukushimanuclear accident by a novel alg...
Absorption of radionuclides from the fukushimanuclear accident by a novel alg...trabajomuestreo
 
Contemporary problems in ancient climates
Contemporary problems in ancient climatesContemporary problems in ancient climates
Contemporary problems in ancient climatesScott St. George
 
The solution to global warming could be in the soil
The solution to global warming could be in the soilThe solution to global warming could be in the soil
The solution to global warming could be in the soilCSM _BGBD biodiversity
 
Earth Week With Lightning2
Earth Week With Lightning2Earth Week With Lightning2
Earth Week With Lightning2fennock
 
Phytoplankton Diversity in the World Heritage Site of Indian Sundarbans: An O...
Phytoplankton Diversity in the World Heritage Site of Indian Sundarbans: An O...Phytoplankton Diversity in the World Heritage Site of Indian Sundarbans: An O...
Phytoplankton Diversity in the World Heritage Site of Indian Sundarbans: An O...Crimsonpublishers-Oceanography
 
Climate Change Studies at Mount Rainier National Park
Climate Change Studies at Mount Rainier National ParkClimate Change Studies at Mount Rainier National Park
Climate Change Studies at Mount Rainier National ParkNisqually River Council
 
Coastal marine ecosystem scientific paper
Coastal marine ecosystem scientific paper Coastal marine ecosystem scientific paper
Coastal marine ecosystem scientific paper swissmitchick
 
Bioluminescence-Living source of light on earth
Bioluminescence-Living source of light on earthBioluminescence-Living source of light on earth
Bioluminescence-Living source of light on earthAnkit446373
 
The role of abiotic factors in diurnal vertical distribution of
The role of abiotic factors in diurnal vertical distribution ofThe role of abiotic factors in diurnal vertical distribution of
The role of abiotic factors in diurnal vertical distribution ofAlexander Decker
 

Semelhante a Brownand geen1974 (20)

roni_final_final_in_prog_2_EDIT-2
roni_final_final_in_prog_2_EDIT-2roni_final_final_in_prog_2_EDIT-2
roni_final_final_in_prog_2_EDIT-2
 
Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...
Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...
Diatom biogeography: distribution of the Luticola species found in Iguazú Nat...
 
Application of Foraminiferal Ecology- Rahul.pptx
Application of Foraminiferal Ecology- Rahul.pptxApplication of Foraminiferal Ecology- Rahul.pptx
Application of Foraminiferal Ecology- Rahul.pptx
 
Dynamics of natural phytoplankton assemblages in the Indian Sundarbans assemb...
Dynamics of natural phytoplankton assemblages in the Indian Sundarbans assemb...Dynamics of natural phytoplankton assemblages in the Indian Sundarbans assemb...
Dynamics of natural phytoplankton assemblages in the Indian Sundarbans assemb...
 
Chapters 21 23 ecology
Chapters 21 23 ecology Chapters 21 23 ecology
Chapters 21 23 ecology
 
Thesis de asis zubiaga_phytoplankton
Thesis de asis zubiaga_phytoplanktonThesis de asis zubiaga_phytoplankton
Thesis de asis zubiaga_phytoplankton
 
Stickleback Poster
Stickleback PosterStickleback Poster
Stickleback Poster
 
Absorption of radionuclides from the fukushimanuclear accident by a novel alg...
Absorption of radionuclides from the fukushimanuclear accident by a novel alg...Absorption of radionuclides from the fukushimanuclear accident by a novel alg...
Absorption of radionuclides from the fukushimanuclear accident by a novel alg...
 
Contemporary problems in ancient climates
Contemporary problems in ancient climatesContemporary problems in ancient climates
Contemporary problems in ancient climates
 
The solution to global warming could be in the soil
The solution to global warming could be in the soilThe solution to global warming could be in the soil
The solution to global warming could be in the soil
 
Earth Week With Lightning2
Earth Week With Lightning2Earth Week With Lightning2
Earth Week With Lightning2
 
Phytoplankton Diversity in the World Heritage Site of Indian Sundarbans: An O...
Phytoplankton Diversity in the World Heritage Site of Indian Sundarbans: An O...Phytoplankton Diversity in the World Heritage Site of Indian Sundarbans: An O...
Phytoplankton Diversity in the World Heritage Site of Indian Sundarbans: An O...
 
Climate Change Studies at Mount Rainier National Park
Climate Change Studies at Mount Rainier National ParkClimate Change Studies at Mount Rainier National Park
Climate Change Studies at Mount Rainier National Park
 
50 51
50 5150 51
50 51
 
Althouse et al. 2014
Althouse et al. 2014Althouse et al. 2014
Althouse et al. 2014
 
Coastal marine ecosystem scientific paper
Coastal marine ecosystem scientific paper Coastal marine ecosystem scientific paper
Coastal marine ecosystem scientific paper
 
Plankton Forest
Plankton ForestPlankton Forest
Plankton Forest
 
416403a
416403a416403a
416403a
 
Bioluminescence-Living source of light on earth
Bioluminescence-Living source of light on earthBioluminescence-Living source of light on earth
Bioluminescence-Living source of light on earth
 
The role of abiotic factors in diurnal vertical distribution of
The role of abiotic factors in diurnal vertical distribution ofThe role of abiotic factors in diurnal vertical distribution of
The role of abiotic factors in diurnal vertical distribution of
 

Último

Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin ClassesCeline George
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Celine George
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfagholdier
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingTeacherCyreneCayanan
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfAyushMahapatra5
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docxPoojaSen20
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfJayanti Pande
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfAdmir Softic
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxVishalSingh1417
 

Último (20)

Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17  How to Extend Models Using Mixin ClassesMixin Classes in Odoo 17  How to Extend Models Using Mixin Classes
Mixin Classes in Odoo 17 How to Extend Models Using Mixin Classes
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
fourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writingfourth grading exam for kindergarten in writing
fourth grading exam for kindergarten in writing
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
psychiatric nursing HISTORY COLLECTION .docx
psychiatric  nursing HISTORY  COLLECTION  .docxpsychiatric  nursing HISTORY  COLLECTION  .docx
psychiatric nursing HISTORY COLLECTION .docx
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 

Brownand geen1974

  • 1. LIGHT AND CHLAMYDOMONAS METABOLISM 213 1 vironments where the temperature remains con REFERENCES tinuously below 20 C (4,8). Our data would sugges 1. BOYLEN, W., AND BROCK, D. 1973. Effects of thermal C. T. that no comparable adaptation to low temperatu additions from the Yellowstone geyser basins on the benthic algae of the Firehole River. Ecology 541282-91. occurs in temperate lakes where temperatures to more than 30 C in the summer. Eucaryotic gae do adapt to lower temperatures i n freshwater habitats d 2. BROCK, D., & BROCK,M. L. 1967. Methodology for T. measurement of chlorophyll, primary productivity, photo- phosphorylation, and macromolecules in benthic algae. where seasonal temperature flux has a summer high Limnol. Oceanogr. 12:600-5. of less than 20 C, as in cold mountain streams (I). 3. BUNT,J. S. 1963. Diatoms of antarctic sea ice as agents It would appear that water temperature is one of of primary production. Nature 199:1255-7. the most important environmental factors in the de- 4. - 1968. Some characteristics of microalgae isolated from Antarctic sea ice. Antarctic Res. Ser. 11:l-14. velopment of large diatom populations during a 5. MACAN, T. 1970. Biological Studies of the English T. seasonal period in which most other algal and macro- Lnkes. American Elsevier, N.Y., 72-83. phytic plants are either unable to grow or are dor- 6. MCCRACKEN, D., G U ~ A F S OT. , D., & ADAMS,M. S. M. N mant. Despite its inability to grow optimally at the 1972. Productivity of Oedogoniunt in Lake Wingra. East- ern Deciduous Forest Biome Memo R e p . # 72-109 (Uni- temperature of its habitat, the diatom Cymbella versity of Wisconsin, Madison). develops high epiphytic populations. T h e environ- H., H. 7. MEGURO, ITO, K., & FUKUSHIMA, 1967. Ice flora mental factors influencing this extensive algal de- (bottom type): A mechanism of primary production in polar velopment and its role in detritus formation are seas and the growth of diatoms in sea ice. Arctic 20114-33. not known. 8. SOROKIN, I., & KONOVALOVA, Yu. I. W. 1973. Production and decomposition of organic matter in a bay of the Japan Sea during the winter diatom bloom. Limnol. Oceanogr. ACKNOWLEDGMENT 18962-7. This study was supported by a contract from the Atomic 9. WRIGHT, T. 1964. Dynamics of a phytoplankton com- R. Energy Commission (CCO-2161-10). munity in an ice-covered lake. Limnol. Oceanogr. 9:163-78. J . Phycol. 10,213-220 (1974) T H E EFFECT OF L I G H T QUALITY ON T H E CARBON METABOLISM AND EXTRACELLULAR RELEASE OF CHLAMYDOMONAS REINHARDTII DANGEARD' T. J . Brown2 and G. H . Geen Department of Biological Sciences, Simon Fraser University, Burnaby 2, B.C., Canada SUMMARY T h e influence of red, blue, green, and white light while the percentage of proteins was highest in blue on growth and photosynthetic rates, carbon metab- light. Light quality also influenced the composition olism, and rates of release of extracellular compounds of the ethanol-soluble fraction. The percentage of in the freshwater alga Clilamydomonas reinhardtii organic acids was highest in cells grown in green Dangeard was examined. Relative growth constants and white light, while amino acids were highest in were 0.28, 0.?2, 0.40, and 0.41 in green, white, blue, blue and green cultures. T h e percentage of ethanol- and red light, respectively. Photosynthetic rates were soluble sugars was greatest in cultures grown in higher in white, blue, or red than in green light of blue and red light. the same intensity. T h e percentage release of dissolved organic car- More than 60% of the ' f C 0 , assimilated by cells bon into the medium was highest in white light and grown under blue or green light was incorporated lowest in blue or red light. T h e nature of the extra- into the ethanol-insoluble fraction, compared with cellular products varied according t o the quality of about 50% i n cells grozun under white or red light. light under which the cells were cultured, but had T h e percentage of sugars in this fraction was sig- n o consistent relation t o the nature or concentration nificantly higher in cells grown under green or red of components in the ethanol-soluble fraction. light than in cells cultured in white OT blue light, INTRODUCTION Received August 23, 1973; revised March 28, 1974. Present address: Biological Station, Fisheries Research T h e chemical composition o planktonic algae in f Board of Canada, Nanaimo, B.C., Canada. nature and cultures has received some attention (Id,
  • 2. 214 T. J. BROWN AND G. H. GEEN green light than under white light which was inde- /' *. i pendent of light intensity has also been noted (28). i ! These studies suggest that the depth-dependent shift of the spectral composition of underwater light I" probably alters the rate and/or direction of many 5- metabolic reactions in planktonic algae. This '5 YI might affect the nature and quantity of extracellular b products which could, as an example, influence the - 4- growth of heterotrophic organisms which utilize dis- -c v1 solved organic compounds, or influence the forma- 6 I - 3- tion of organic aggregates. E The primary purpose of this work was to examine + $ J *- the nature of the photosynthetic and extracellular products of the freshwater alga Chlamydomonas 14 reinhardtii grown under light of the same intensity but different spectral composition, and from these data determine whether a predictable relationship exists between the nature of the photosynthate and 400 500 600 700 the extracellular products. WAVELENGTH (Nm) MATERIALS AND METHODS FIG. 1. The spectral composition of each of the light sys- tems used for culturing C . reinhardtii. An axenic culture of Chlamydomonas reinhardtii (wild type, mating strain 89, 90) was grown in previously sterilized Beijerinck's medium. Stock cultures were maintained with Z8,26-28). Variations in composition are induced by continuous stirring at 18 2 0.5 C in cotton-stoppered 2800-ml a number of extrinsic factors such as temperature Fernback flasks. Light was provided by a bank of cool-white fluorescent lamps producing 2.4 X 108 ergs/(cm")sec) at the (6),pH (I?, and the inorganic nutrients in the level of the bottom of the flasks. Experimental cultures were medium (5,7). The age of the cultured cells, stage established with 10' cells/ml and placed in incubators operat- of life cycle, and previous culture history also have ing on a 16:E hr light-dark regime. The experimental cultures an effect upon the nature of the photosynthetic were illuminated from above with General Electric white, products ( 1 3 J 9 ) . Cellular composition may also blue, or green fluorescent lamps or Sylvania red fluorescent lamps. The band width of the blue, green, or red lights depend on the wavelength of the incident light. reaching the cultures was more narrowly defined by placing Blue light stimulated the incorporation of 14C into plexiglass filters between the lamps and cultures. T h e maxi- amino acids, especially alanine, in barley, whereas mum energy output from the blue light system at flask level red light stimulated 14C incorporation into sugars was 2.4 X 103 ergs/(cm')(sec) and was the energy used for culturing cells under each light regime. T h e spectral distribu- (24). Blue and green light stimulated an increase in tion of each lamp-filter combination is shown in Fig. 1. proteins relative to white light in 2 species of marine Growth rates were estimated from cell count data obtained phytoplankton (26). An increase in some amino and with a Coulter Counter. Photosynthetic rates and distribu- organic acids in cells grown under blue light inde- tion of 14C were determined when the experimental cultures pendent of light intensity, photosynthetic rate, or reached the exponential phase of growth. Four 160-ml sub- cultures were taken from the experimental cultures, inoculated cell density was also noted. Several other workers with 400 pCi of H"CO,-, and incubated under the appropriate have reported a blue light enhancement of produc- experimental light conditions for 30 min prior to the deter- tion of proteins and/or their precursors (4,8,9,Z2). mination of the total 14C uptake and its distribution within Light quality may also influence the rate of photo- the cells. synthesis. Blue light produced a higher rate of Separation and identification of the Photosynthetic products. After incubation with Hl4COS-the algae were filtered onto photosynthesis in 3 species of algae than other light Millipore filters (HA 0.45 p) using a vacuum pressure of 25 qualities of the same intensity (9). cm Hg and placed for 1 h r in boiling ethanol in a reflux Since light quality and perhaps quantity may in- apparatus. This separated the photosynthetic products into fluence the metabolism of algae, it seems probable the hot-ethanol soluble (HES) and insoluble fractions. The that either might affect the quality and quantity of HES fraction was adjusted to pH 7.2 (to reduce the expected loss of volatile organic acids under acidic conditions) and the extracellular organic compounds released by dried under vacuum at 35 C. The dried extract was redissolved unicellular algae. The release of glycolate by in 5 ml distilled water and an aliquot was placed in TEG Chlorella pyrenoidosa increased at high light intensi- [300 ml ethylene glycol monomethyl ether, 500 ml TOL (42 ties and low CO, concentration (2130). Glycolate ml spectrofluor/liter toluene)], and the activity measured with a liquid scintillation counter. The HES fraction was release by C. pyrenoidosa and C . uulgaris exposed to then run on ion exchange resins (Rexyn 101 [H+] and 201 high intensity white or red light, but not by cells [OH-]) to separate the free amino acids, organic acids, and grown in blue light, has been reported (3). A smaller sugars. Each fraction was washed and evaporated 3 times with distilled water to remove the formic acid and ammonium percentage extracellular release by cultures and hydroxide used to elute the organic and amino acids from natural populations of algae grown under blue or the ion exchange resins.
  • 3. LIGHT AND CHLAMYDOMONAS METABOLISM 215 TABLE Total '4C/lOU cells fixed by C . reinhardtii under 1. white, blue, green, or red light and the '4C distribution between the ethanol-soluble and insoluble fractions expressed as a percent of total 'C fixed 4 f standard error. Total 14C Light fixed X 1o-B Ethanol Ethanol - quality DPM/lOs cells soluble, % insoluble.% Reulicates E White 59.9 f 13.6 51.8 f 0.5 48.2 f0.5 9 Y 2 Blue G6.4 f 14.7 31.0 2 3.4 69.0& 3.4 4 0 Y Green 14.92 5.1 38.5 f 1.3 61.5 f 1.3 7 Red * 69.1 12.2 47.1 -C 1.6 52.9-C 1.6 8 The amino acids were cochromatogrammed with standards in two dimensions using phenol:water:ammonium hydroixde (300:75:1) and butano1:acetone:diethylamine:water (120120: 2450). The organic acids were run in ethano1:water:ammonium hydroxide (280:104:16) and ethyl acetate:acetic acid:water: sodium acetate (200:122:100:480). The sugars were run in pheno1:water:ammonium hydroxide (300:40:1.2) and isopropa- I 1 I 1 I 1 , 1 , I 1 I , , , no1:ethyl acetate:water (315:45:90). The sugar chromatograms 0 4 8 12 16 20 24 28 were dried and rerun in the second direction to achieve better DAYS separation. Chromatograms were exposed to Ilford Ilfex X-ray film for FIG. 2. Growth of C . reinhardtii in red, green, blue, and 4-5 weeks to locate the radioactive compounds. All radioactive white light at an intensity of 2.4 X 109 ergs/(cm?(sec). spots were excised and their activity determined. They were identified by their relative positions using spray reagents and known compounds. The efficiency of the spot-counting tech- average diameter for cells grown in white, blue, nique was determined by placing a known quantity of "C- green, and red light was 5.1, 5.6, 7.2, and 6.0 p, labeled leucine, serine, glycine, and aspartic acids on chromato- respectively. The average volume of cells grown grams, running in the appropriate solvents, spraying, and under green light (198 p3) is approximately double counting. The ethanol-insoluble fraction was hydrolyzed in a Soxhlet that for cells grown in white, blue, or red light apparatus. The proteins and polysaccharides were refluxed (70.4, 91.2, and 114 p3, respectively). for 24 hr in G HCI and 1N H,S04, respectively. The HCl N Cells grown under white, blue, or red light had a was removed by 3 evaporations under vacuum. The H,SO, higher photosynthetic rate in log phase cultures than was removed by precipitation with BaCO,. The hydrolyzates cells grown under green light of the same intensity. were concentrated under vacuum, redissolved in water, run through ion exchange resins, and separated paper chromato- Cells grown under green light had a rate o photo- f graphically as previously described. synthesis about one-quarter that of cells grown in The medium in which the cells were grown was examined white light (Table 1). T h e lag phase in cultures for extracellular products after the 30-min period of photo- grown under green or red light was longer than for synthesis. The filtrate was brought to pH 2 and bubbled with air for 1 hr to remove the unused H14C03-. Residual bicar- cells grown under white or blue light (Fig. 2). bonate activity was further reduced during a subsequent IJC distribution in the photosynthate. Cells grown step in which the filtrate was concentrated to 30 ml at pH in blue and green light fixed a greater percentage of 7.2 under vacuum. Only 0.001% of the HWO; remained after the activity in the ethanol-insoluble fraction than this evaporation. A 50 aliquot was placed in TEG and did cells grown in white or red light (Table 1). counted to determine total activity in the extracellular frac- tion. The filtrate was then run through Rexyn 101 (H+) Conversely, the percentage activity in the ethanol- and 201 (OH-) to separate the amino acids, organic acids, and soluble fraction was higher in cells grown under sugars prior to chromatographic separation of the components white and red light. in each fraction. The distribution of 14C in the ethanol-insoluble fraction varied with light quality. T h e percent ac- RESULTS tivity in the protein amino acids in cells grown Growth and photosynthetic rates. The exponential under red (59.3%) and green light (68.5%) was sig- growth rate of Chlamydomonas was higher in red nificantly lower ( p < 0.01) than under white or blue and blue light than in green or white light of the light regimes (82.3 and 93.5%, respectively). Con- same intensity. Relative growth constants (K) and versely, the percent in the sugar hydrolysis fraction the mean generation times (T) were calculated from was higher in cells grown under green or red light the linear portion of each growth curve on a log (31.5 and 40.7%, respectively) than under white or plot (Fig. 2). blue light (17.7 and 6.5%, respectively). The growth constants for cultures in green, white, Distribution of 14C observed in the various com- blue, and red light were 0.28, 0.32, 0.40, and 0.41, pounds of the ethanol-soluble fraction after 30 min respectively. Corresponding mean generation times of photosynthesis is shown in Table 2. The percent were 59.4, 52.0, 41.6, and 40.6 hr, respectively. The of 14C activity in the ethanol-soluble fraction did
  • 4. 216 T. J. BROWN AND G. H. GEEN TABLE Distribution of I * C among compounds in the 2. 4. TABLE Distribution of 'C in the sugar hydrolysis fraction 4 ethanol-soluble fraction of C . reinhardtii expressed of C. reinhardtii exfiressed as a percent of total activity in as a percent of total activity recovered in the the sugar hydrolysis fraction standard error. ethanol-soluble fraction 2 standard error, Light quality White Blue Green Red wl t? Blue Green Red Glucose 49.2f12.7 26.9*5.4 83.1f2.3 66.4f4.1 Malic 6.4 2 0.5 * 2 0 0.2 . 3.0 -C 0.4 5.4 2 0.5 Fructose - - 5.1 f0.1 2.6 f0.5 Glycolic 3.0 f0.4 2.7 f 1.0 3.3 -+ 0.9 1.8 k 0.1 Sugar origin 8.9f 3.8 4.3 f 0 . 9 0.2*0.2 0.9 *0.6 Pyruvic 6.9 f 1.5 * 0.8 0.4 2.5 -C 2.0 2 3 2 0.3 . Sugar unknown 41.6 2 9.7 68.8 * 4.6 * 11.7 2.1 3.4 f3.9 Oxalic 3.9 2 0.7 * 2.1 0.6 * 2.9 0.9 1.2 k 0.3 3-PGA 6.1 3: 1.1 4.7 * 0.9 5.6 -+ 1.2 3.6f0.6 Fumaric 1.1 2 0.3 - - - but in general showed no consistent trends which Succinic 0.4 f 0.3 1.7 0.3 2.9 * 0.5 1.6 k 0.2 a-Ketoglutaric 0.3 f0.2 0.4 2 0.2 * 0.4 0.2 could be ascribed to light quality. Citric - - 0.4 * 0.1 0.2 f0.2 Hydrolysis of the ethanol-insoluble fraction yielded OA origin 2.4 k 0.7 * 5.7 2.5 1 0-t 0 3 . . 0.8 4 0.2 the compounds indicated in Tables 3 and 4. Some OA unknown 5.8 f 1.O 2.6 f0.4 * 7.1 0.9 9.3 -c 1.1 differences in the protein amino acids found in cells O A total 36.0 20.6 29.1 26.6 grown under different light qualities were observed Aspartic 10.1 f 1.3 9.8 2 1.1 8.0 * 2.1 * 0.2 0.2 (Table 3). Hydrolysis of the insoluble sugar fraction Glu tamic 10.4f 1.8 11.8" 1.5 17.4 -C 2.0 0.7 f0.5 8-Alanine 0.8-t- 0.8 2.7 -f. 1.6 2.6 L 0.3 * 2.7 0.3 yielded glucose and fructose in varying amounts Serine - - 1.6 -C 0.2 * 1.0 0.2 (Table 4). The percent glucose present in cells Proline 0.2 f0.2 0 6-C 0.3 . 1.9 4 0.3 grown in green and red light was significantly higher Leucine 8.3 f0.8 1.7 0.4 2.2 f 0.4 than in cells grown in white and blue light. Cells Valine 1.2 f 1.2 0.8 2 0.2 * 1.3 0.2 grown in green and red light had a significantly - - lower percent activity ( p < 0.01) in the unknown Arginine 0.9 f 0.4 Glycine - 0.4 f 0.4 - AA origin 5.0 k 0.9 5.7 -C 1.4 1.6 2 0.3 1.4 f0 9 fraction than cells grown in white and blue light. AA unknown 1.0 f 1.0 4.9 -C 0.7 8.3 f 1.8 This unidentified sugar appeared in the same area AA total 27 5 34.5 39.6 20.6 of the chromatograms o the sugars from cells grown f Glucose 1.3 f0.8 under all 4 light conditions. Fructose 5.9 -c 1.9 - - Extracellular organic products. The nature of the Glycerol - - 0.9 -t. 0.6 compounds released by C. reinhardtii under the Sugar origin 3.7 f0 6 . 9.8 f0.3 * 5.1 0.9 8.1 f 1.5 various light regimes is shown in Table 5. Cells Sugar unknown 3 . 2 8 28 . * 36.1 2 6.9 26.8 -t 2.5 42.5 2 3.9 grown under white light exuded a large percent ac- Sugar total 36.5 45.8 3. 19 52.8 -Below detectable limit. ~ tivity in each fraction (ie, free amino acids, organic acids, and sugars). Cells grown under blue and red light released mainly sugars and organic acids, re- not change appreciably in cultures incubated for spectively. The composition of the material released varying periods between 15 and 180 min. The by cells grown under green light was not determined highest percent 1% activity in organic acids was re- because of the low activity released. covered in cells grown under white light, whereas cells grown under blue or green light had the highest DISCUSSION percent activity in the amino acid fraction. Cells grown in red light had the highest percent activity This study has shown that light quality influences in the sugar fraction. The percent activity in indi- photosynthetic rate, growth, and the nature of the vidual compounds within the HES fraction varied, TABLE Distribution of '+C in the extracellular products of 5. TABLE Distribution of 'JC in the protein amino acids of 3. I=. reinhardtii expressed as the percent of total activity C . reinhardtii expressed as a percent of the total activity recavered in the extracellular fraction * standard error. in the protein amino acid fraction f standard error. White Blue Red White Blue Green Red G1ycolate 2 7 -+ 0.8 . - 5.1 f 1.7 A spart ic 12.8 f2.5 13.4 -C 2.1 14.8 f 1.7 14.2 2 0.5 3-PGA 2.8 f 1.1 - * 19.9 3.3 Glutamic 14.7 f2.4 9 3 f 1.1 . * 12.9 0.9 10.8 f 0.6 Malic - - 6.6 f0.7 Glycine 5.1 k 1.1 6.4 f0.5 3.8 f 0.8 2 9f0.4 . OA origin 5.0 * 1.0 - 11.722.2 Serine * 1.1 0.6 - 2.9 f0.6 1,9 f02 . OA unknown 3.8 f 1.3 - 54.9 f9.7 p- Alanine * 15.6 5.0 .- 17.8 2.5 * 12.2 0.9 12.8 +- 0.6 AA origin 13.8 f2.9 - - Leucine * 16.8 3.1 * 29.4 4.0 22.6 f0.6 21.6 f0.6 AA unknown 19.5 f8.8 - - Proline 14.3 2.8 6.8 k 2.5 10.0 f 1.4 11.4 C 0.8 Sorbitol * 7.6 3.9 14.0 4 1.3 - Valine 14.7 f2.1 12.4 -C 2.1 13.3 4 0 9 13.1 -t 0.5 Sugar origin 31.6 f5.0 81.5 f5.7 - A rginine 3.9 f 1.4 1.3 -C 0.8 - 0.8 f0.5 Sugar unknown 15.7 f 4.7 4.5 f4.5 - Phenyl alanine - 3.9f 1.3 0.6 f0.6 Extracellular release Amino acid as a percent of unknown - 3.2 + 3.2 3.5 * 2.3 9.5 -t 0.8 total incorporation 35.6 6.6 4 .O -Below detectable limit. -Below detectable limit.
  • 5. LIGHT AND CHLAMYDOMONAS METABOLISM 217 photosynthetic and extracellular products of Chlamy- additional enzymes. I t has been shown that cells domonas reinhardtii. The data presented in this grown at low temperatures were larger and con- study and the studies of others (26-28), using cultures tained more protein (which was presumed to be and natural populations of marine planktonic algae, largely enzymes) than cells grown at higher temper- suggest that the depth-dependent shift in light atures (11). We have shown that average cell size quality which occurs in oceans and lakes will be was largest in green light cultures, which suggests a associated with changes in algal metabolism, nature physiological adaptation that may account for the and rate of release of extracellular products, and long lag period observed in green light cultures. rates of growth and photosynthesis. Thus the observed differences in growth and photo- Our cultures all exhibited low growth rates and synthetic rates of the various cultures could be long generation times relative to enriched cultures related to differences in enzyme or pigment concen- (doubling every 1-2 days). These rates and genera- trations or in the efficiency with which the various tion times are not unlike those reported for natural pigments are able to absorb or transfer energy. populations (20). Whatever the basis for the differences we observed, The lag period observed in new cultures varied it seems likely that light quality will influence the according to light quality, but bore no obvious re- growth and photosynthetic rates of organisms dis- lationship to growth or photosynthetic rates during tributed at various depths throughout the photic the period of log growth. Of the various explanations zone of oceans or lakes. The effects of light quality of the lag phenomenon (see 20 for a discussion), the on growth and photosynthetic rates in C. reinhardtii following seem most likely to account for the dif- that we observed in culture were generally similar ferences we observed: to those observed in natural populations of plank- tonic algae in Indian Arm and Saanich Inlet and Absence in a new culture medium of a necessary in cultures of Cyclotella nana and Dun,aliella tertio- growth promoter produced by the phytoplank- lecta (26,28). ton. Differences in the length of the lag period Light quality had a distinct effect on the distribu- under the various light regimes could result tion of 14C in the photosynthetic products of C . from differences in rates of production of an reinhardtii, as it did in marine algae (26-28). T h e essential growth promoter. relatively high percent of 14Cfixed by C. reinhardtii Differential efficiency of cells in absorbing or in the ethanol-insoluble fraction in green and blue utilizing light of different qualities. This light cultures (Table 1) agrees with the results in could be a reflection of differences in pigment the work cited above, in which it was shown that cul- or enzyme concentrations or some combination tures grown in white light incorporated the greatest of the two. proportion of 14C into the ethanol-soluble fraction, Either or both of these factors may explain the whereas cultures grown in blue or green light in- observed differences in lag period. When we trans- corporated most l4C into ethanol-insoluble com- ferred a culture growing exponentially under white pounds. This relationship was not appreciably light to green light, a lag of several days was ob- affected by light intensity. These studies suggest a served before growth resumed. Since the culture higher percentage protein and polysaccharide pro- had been growing exponentially prior to transfer, duction in deep, relatively clear oceanic or lacustrine any necessary growth promoter was presumably environments, given the usual predominance o bluef present. This suggests that a period of relatively or green light at these depths in relatively clear slow cellular adaptation is required before rapid waters. Changes of this nature could be of nu- growth can be expected under the new light regime. tritional significance to herbivores. Such adaptation could require the synthesis o addi- f We observed an increased percentage incorpora- tional pigments or enzymes. We measured pigment tion of 14C into the protein fraction in cells grown concentrations in log phase cultures grown under under blue and white light, whereas the percentage each of the light regimes. Concentrations of the of polysaccharides was highest in green and red chlorophylls and total carotenoids were highest in light. A blue light enhancement of protein produc- cells cultured under white light and 25 to 50% tion was observed in Chlorella pyrenoidosa (12). lower in cells cultured under blue, green, or red light. Radiant energy above 500 nm resulted in a shift o f The significance of these differences is not im- synthesis to polysaccharides. Our results supported mediately apparent. However, there is a substantial the view that blue light enhances protein synthesis body of data indicating shifts in pigment concen- since those cultures grown under blue or white light, tration in response to differences in light quality or both of which contained energy in the region of quantity. For example, the total chlorophyll in C. 450-500 nm, had a higher percentage of protein reinhardtii grown under blue light increased 20% than did cultures grown under green or red light. during the lag period, although the chlorophyll a / b Green light enhancement of protein synthesis in ratio decreased (10). 2 species of marine phytoplankton has been reported Adaptation may also occur through synthesis of (26). However, this could have been attributable to
  • 6. 218 T. J. BROWN AND G . H. GEEN a blue light effect, since a small portion of the energy in the green light system used in those studies was below 500 nm. It has been shown that the addi- tion of only 4% blue light as incident energy to red -1 light has essentially the same effect on the distribu- tion of 14C as blue light alone (9). There were some significant differences in the per- centage of some components of the protein hydrolysis fraction in cells cultured under different light + qualities (Table 3). Cells grown under blue light + had more leucine than cells grown in white light, while glycine was significantly higher in white and blue light than in green and red light (Table 3). Serine, on the other hand, was below detectable limits only in cells grown under blue light. This suggests that light quality influences the type of proteins synthesized although other workers have reported that light quality changed the rate but not the direction of protein synthesis (23,26). E! Glucose was the most significant identified radio- active sugar obtained on carbohydrate hydrolysis, al- though small quantities of fructose occurred in cells FIG. 3. Percent extracellular release by C. reinhardtii cul- cultured under green and red light. These sugars tures grown in white light as a function of cell numbers. may have been derived from a reserve polysaccharide or from cell-wall polysaccharides. The cells grown under blue and white light incorporated a smaller release of compounds by the cells and not a loss due percent 1% into glucose and fructose than those to cell breakage or passive leaching, since the range grown under green or red light (Table 4). of compounds in the photosynthate (Table 2) was Within the ethanol-soluble fraction cells grown much greater than that appearing in the extracellular under blue and green light had the highest percent fraction (Table 5). Differences in membrane perme- activity in free amino acids, while cells grown in ability related to light quality are suggested. Nitella white and red light contained the highest percentage shows light-induced changes in membrane potential in the organic acids and sugar fractions, respectively which are associated with changes in cytoplasmic (Table 2). The main constituent of the sugar frac- ion concentrations (25). tion was an unknown sugar which appears not only The percentage of newly incorporated 14C exuded in algae but also in a number of vascular plants, and by C . reinhardtii was similar to the range of values has thus far not been identified (G. R. Lister, published in the literature, although percentage personal communication). extracellular release in white light was relatively Our results, and those of other workers, suggest high (Table 5). The magnitude of the release by that light quality alters the rates o metabolic f cells cultured in white light was in part a function reactions and/or activates different metabolic path- of cell density in the cultures (5 x 104 cells/ml in ways. For example, it has been suggested that blue white light and 1-3 x 106 cells/ml in blue and red light may activate phosphoenol pyruvate carboxylase light). Our data (Fig. 3) indicate that the lower cell in Chlorella (15) or increase the rate of secondary density in the white light cultures would be associ- carboxylation of certain organic acids, thereby pro- ated with a high rate of extracellular release. At moting the accumulation of amino acid precursors a density of 1-3 x 106 cells/ml the release rate under (22). Changes of this type which are dependent on white light would probably have been less than 10%. light quality might influence the rate or nature of Our results did not show the positive relationship any extracellular release. between the percentage of the newly formed photo- The nature of the dissolved organic compounds synthate in the ethanol-soluble fraction and the per- released from cells grown in white, blue, and red centage extracellular release reported earlier (28). light is shown in Table 5. Insufficient labeled nor do our data on C. reinhardtii support the sug- material was exuded by cells grown in green light to gestion that a depth-dependent change in percentage permit identification of constituent compounds. The extracellular release could be expected in natural extracellular products of cells grown in white light waters as a result of the change in the size o the f included amino acids, organic acids, and sugars, ethanol-soluble fraction. Species differences may ex- whereas sugars and organic acids were the only plain these results. I n addition, the light intensity products released by cells grown under blue and red under which the cells are cultured may affect the light, respectively. These data indicate a selective extracellular release by C h Zamy domonas.
  • 7. LIGHT AND CHLAMYDOMONAS METABOLISM 219 T h e extracellular compounds released by C . rein- on the distribution of carbon-14 in the early products hardtii in our studies were somewhat different than of photosynthesis. Nature 17989-90. 5. CONSTANTOPOULOS,1970. Lipid metabolism of Mg- G. those reported by other workers (2,21). For example, deficient algae. Plant Physiol. 45:76-80. 23% of the organic material formed by C . reinhardtii G. FEDOROV, D., MAKSIMOV. N., & KHROMOV, M. V. V. V. appeared in the culture medium as glycolic and 1968. Effect of light and temperature on primary pro- oxalic acids and sugars (2). No amino acids were duction of certain unicellular green algae and diatoms. exuded under white light during an 8-day growth Soviet Plant Physiol. 15:635-43. 7. Focc, G. E. 1952. T h e production of extracellular ni- period. We detected amino acid release by this trogenous substances by a blue-green alga. Proc. Roy. SOC. species in white light cultures, although specific B . 139~372-97. compounds were not identified. Release of soluble 8. A. HAUSCHILD, H. W., NELSON, D., & KROTROV, C. G. polysaccharides by C . reinhardtii has also been re- 1962. T h e effect of light quality on the products of ported (13), although these may have been leached photosynthesis in Chlorella vulgaris. Can. J. Bot. 40: 179-89. from the mucilaginous sheath. We detected no 9. 1965, On the mode of action of blue light on labeled polysaccharides i n the medium after 30 the products of photosynthesis in Chlorella vulgaris. min of photosynthesis, although some were observed Naturwissenschaften 52:435. after 40 min. Glycolic acid, a compound frequently 10. HESS, L. & TOLBERT, E. 1967. Changes in chloro- J. N. phyll a/b ratio and products of “CO, fixation by algae released by algae as a n extracellular product, was grown in blue or red light. Plant Physiol. 42:1123-30. detected in the medium of cultures grown under 11. E. JORGENSEN, G. 1968. The adaptation of plankton white and red, but not blue light. Similar results algae. 11. Aspects of temperature adaptation in Skeleto- were reported for Chlorella pyrenoidosa and C . vul- nema costatum. Physiol. Plant. 21:423-7. garis (3). Other work with C . pyrenoidosa and 12. W. KOWALLIK, 1965. Protein production of Chlorella in light of different wavelengths. Planta 64:191-200. Euglena gracilis has shown that under blue light 13. LEWIN, R. A. 1956. Extracellular polysaccharides of that glycolate neither accumulated intracellularly nor gren algae. Can. J. Microbiol. 2:665-72. was released extracellularly (14). This suggests that 14. LORD, M., CODD, A., & MERRETT, J. 1970 . The J. G. M. any glycolate formed under blue light may be effect of light quality on glycolate formation and excre- tion in algae. Plant Physiol. 46:855-6. further metabolized via glyoxylate to glycine and 15. N. OCASAWARA, & MIYACHI, 1970. Regulation of CO, S. other amino acids which are utilized during protein fixation in Chlorella by light of varied wavelengths and synthesis. T h e absence of organic acids in the extra- intensities. Plant Cell Physiol. 11:l-14. cellular products of cells grown under blue light 16. J. OLIVE, H. & MORRISON, H. 1967. Variation in dis- J. tribution of 14C in cell extracts of phytoplankton living might be the result of a greater utilization of organic under natural conditions. Limnol. Oceanogr. 12:383-91. acids in blue light for protein or amino acid syn- 17. ORTH,G . M., TOLBERT, E., & JIMENU,E. 1966. Rate N. thesis. T h e explanation for the absence of amino of glycolate formation during photosynthesis at high pH. Plant Physiol. 41:143-7. acids and sugars in the exudate of cells grown under 18. T. PARSONS, R., STEPHENS, & STRICKLAND, H. 1961. K., J. D. red light is not at hand. On the chemical composition of eleven species of marine T h e chemical composition of the algae and their phytoplankton. J . Fish. Res. B d . Canada 18:lOOl-16. extracellular products may also be altered by light 19. STEWART, D. P. 1963. Liberation of extracellular ni- W. trogen by two nitrogen fixing blue-green algae. Nature intensity (29,30) or by an interaction of light quality 200:1020-1. and quantity. Species differences are probably of 20. STRICKLAND, H. 1960. Measuring the production of J. D. importance as well. We have not considered these marine phytoplankton. Bull. Fish. Res. Bd. Canada 122: 1-172. latter possibilities although it is clear that further TOLBERT, E. & ZILL,L. P. 1956. Excretion of glycolate N. 21. work will be required before many generalizations by algae during photosynthesis. J. Biol. Chem. 222:895- are possible. 906. 22. TRUKHIN, V. 1968. Effect o the carbon supply on N. f ACKNOWLEDGMENT the response of Chlorella pyrenoidosa to the effect of blue and red light. Soviet Plant Physiol. 15:544-8. Thanks are due to John Nelson for his skillful technical 23. VOSKRESENSKAYA, 1956. Synthesis of organic and N. P. assistance and helpful suggestions. This research was sup- amino acids during photosynthesis under various con- ported by a National Research Council of Canada grant. ditions of illumination. Fiziol. Rast. 3:49-57. REFERENCES 24. -& NECHAEVA,P. 1967. Effect of blue, red, and I. green light on the content of protein, nucleic acids, and AHMED, M. M. & RIES, E. 1969. The pattern of WO, A. chlorophyll in young barley plants. Soviet Plant Physiol. fixation in different phases of the life cycle and under 1425441. different wavelengths in Chlorella pyrenoidosa. Prog. 25. VREDENBERC, J. 1971. Changes in membrane po- W. Ph 0 tosyn. R es. 3: 1662-8. tential associated with cyclic and non-cyclic electron trans- ALLEN, R. 1956. Excretion of organic compounds by M. port in photochemical system I in Nitella translucens. Chlamydomonas. Arch. Mikrobiol. 24163-8. Biochem. Biophys. Res. Comm. 42:lll-8. BECKER, D., DOHLER, & ECLE,K. 1968. The effect J. G., 26. WALLEN, G. & GEEN,G. H. 1971. Light quality in D. of monochromatic light on the extracellular excretion of relation to growth, photosynthetic rates, and carbon glycolate during photosynthesis of Chlorella. Pflanzen- metabolism in two species of marine plankton algae. physiol. 58:212-21. Marine Biol. 10:34-43. R. CAYLE, & EMERSON, 1957. Effect of wavelength T. 27. - 1971. Light quality and concentration of pro-
  • 8. 220 EDWARD G. DURBIN teins, RNA, DNA, and photosynthetic pigments in two 29. WAIT. W. D. 1969. Extracellular release of organic species of marine plankton algae. Marine Biol. 1044-51. matter from two freshwater diatoms. Ann. Bot. 33:427-37. 28. - 1971. The nature of the photosynthate in natural 30. -& Focc, G. E. 1966. The kinetics of extracellular phytoplankton populations in relation to light quality. glycolate production by Chlorella pyrenoidosa. J . Exp. Marine Biol. 10157-68. B o t . 17:117-34. J . Phycol. 10,220-225 (1974) STUDIES ON T H E AUTECOLOGY OF T H E MARINE DIATOM THALASSIOSIRA NORDENSKIOLDII CLEVE. 1. T H E INFLUENCE OF DAYLENGTH, L I G H T INTENSITY, AND TEMPERATURE ON GROWTH’ Edward G. Durbin Graduate School o f Oceanography, University of Rhode Island Kingston, Rhodc Island 02881 SUMMARY The marine diatom Thalassiosira nordenskioldii INTRODUCTION Cleve was grown at 48 different combinations of day- The marine diatom Thalassiosira nordenskioldii length (9:15,12:12, 15:9 LD), light intensity (0.011, Cleve has been described (16)as a neritic arctic and 0.027, 0.066, 0.100 lylmin [g cal/cmz/min]), and boreal species. Extensive studies of its distribution temperature (0,5,10, 15 C). Growth occurred at all in the North Sea and adjacent waters showed it to combinations of light and temperature except at 15 be one of the main species of the arctic neritic plank- C at the highest light level. Maximum growth ton during the spring bloom. Because of the temper- ( K = 1.8 doublings/day) occurred at 10 C under the ature range over which it was found (0.8-10.6 C), 15:9 L D cycle. A t 15 C the maximum rate was 1 7 . it was described as being “rather eurythermic with a doublings/day but occurred at the shortest day- low optimum” (23). Subsequent studies have shown length (9:15 LD). The maxima at 5 and 0 C were it to be widely distributed and an early dominant of 1.32 and 0.67 doublings/day, respectively. the spring diatom bloom in arctic, boreal and even At 0 C growth was similar over a wide range of some temperate neritic waters of the northern At- light intensities ( K = 0.6-0.65), with maximum lantic and Pacific oceans (1-3,6,7,9,22,22,25,27,29, growth being attained at a much lower light in- 25,2630). tensity than at 5 C. Above 5 C there was a decrease In Narragansett Bay it is one o the major forms f in the light intensity at which maximum growth in the winter-spring bloom which it generally occurred and excessive light became inhibitory to initiates along with Skeletonema costatum and growth. At 15 C the light intensity at which maxi- Detonula conferuacea (25,26). Weekly records of mum growth occurred was greater with shorter day- phytoplankton abundance since 1959 show that the lengths. The temperature optimum was 10 C at mean temperature at which Thalassiosira begins 15:9 and 15 C at 9:15 LD. rapid growth is 2.45 C. I n Long Island Sound The chlorophyll a content of the cells was greatest Thalassiosira and Skeletonema are the 2 dominant species in the spring bloom (21). Both experimental under low light intensities and short daylengths, and field observations showed that Thalassiosira had while temperature had a variable effect. a competitive advantage over Skeletonema at low The response of Thalassiosira in the laboratory light intensities and temperatures, becoming domi- contrasts with its apparent preference for low tem- nant under such conditions. Thalassiosira has also peratures in nature (0-5 C). T h e experiments sug- been found to be the early dominant in the spring gest that the termination of the bloom of Thalas- bloom in other areas such as the Gulf of Maine siosira in Narragansett Bay and elsewhere is not (2,27), off Umiak Island, Alaska (12), and the Oslo solely temperature dependent. Fjord (29). The arctic nature of this species is emphasized by its occurrence at Igloolik, near Baffin Received August 23, 1973; revised April 18, 1974. Island, where it was found under ice in May ( T =