SlideShare uma empresa Scribd logo
1 de 6
Baixar para ler offline
International Journal of Engineering Science Invention
ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726
www.ijesi.org ǁ Volume 3 ǁ Issue 1 ǁ January 2014 ǁ PP.51-56

Object Tracking in Wireless Sensor Network based on the
mixture of Kalman Filter and Probability based Model
1
1

S.Diwakaran and 2P.Ganeshwari

Assistant Professor-I, Dept. of Electronics & Communication Engg, Kalasalingam University, Krishnankoil,
Virudhunagar dist, India
2
PG Student, Dept. of Electronics & Communication Engg, Kalasalingam University, Krishnankoil,
Virudhunagar dist, India.

ABSTRACT: Wireless Sensor Networks (WSNs) consists of large number of sensor nodes which are capable of
sensing and processing by using the computational power. Object tracking is one of the important applications
in WSN.Extended Kalman Filter (EKF) is the most widely used method for object tracking and Kalman filter
for estimating the state of the object. Tracking is difficult because sensors have to be send data to the head
sensor from other sensors with same time instants. Maximum Likelihood Estimation (MLE) is used to solve the
data association problem but it gives localization error. In this paper, a new approach probability based
estimation model is proposed to provide superior performance in combination with Kalman Filter (KF).

INDEXTERMS: Wireless Sensor Networks (WSNs, Object Tracking, Extended Kalman Filter, Kalman Filter,
Bayesian estimation model.

I. INTRODUCTION
Wireless Sensor Networks (WSNs) consists of large number of small, low power, and inexpensive
sensor nodes with on board sensing, processing, and wireless communication capabilities the sensors are
spatially distributed to monitor the conditions at different locations. Target tracking is one of the active area in
WSNs and is used to collect data from the environment consists of large number of sensor nodes and one or
more base stations. The nodes have the capability to sense the data, process data and send it to rest of the nodes
or to the base station and the nodes are connected through wireless communication channels. Tracking is one of
the challenging applications and is managed by the master node. The main thing is that WSNs are first
developed for military applications but now it is used for wide variety of applications among which target
tracking is one of the canonical application. In tracking of a single object more number of densely deployed
sensors measure and estimate the state of the object. The state indicates position, velocity and heading of the
object. In tracking of multiple objects the WSNs are given the work to gather information from sensor nodes at
each timestamp. Existing acoustic source localization methods make use of three types of physical
measurements: time delay of arrival (TDOA), received signal strength (RSS), direction of arrival (DOA).DOA
can be estimated by making use of the phase difference measured at receiving sensors and it is applicable when
the acoustic source emits narrowband signal.TDOA is mostly used for broadband acoustic source localization.
Target tracking is one of the most important applications of WSNs, in which, due to the limited resources for
sensing, communication, and computation, the network must rely on sensor management to balance the tracking
accuracy and energy consumption [3].
In multiple target tracking, the sensors are capable of obtaining more than one measurement; these
measurements are not only generated by the objects but also possibly from the distributed heap. Hence multiple
targets tracking algorithm needs to solve the data association problem, i.e. correctly mapping the measurement
and target pairs with the interference introduced by the mass of objects. Extended Kalman Filter (EKF) is the
most widely used method for target tracking. The EKF simply linearizes all nonlinear transforms. Also it has
some limitations that linearized transformations are reliable only if the error propagation is well approximated
by a linear function and the resulting state diverges [5].In this paper the distance measurements are considered.
Moreover for tracking multiple objects which are not sufficiently separated temporally and spatially in the
sensor field, may also lead to unlabelled measurements in the sensor data. This uncertainty in measurement
leads to the well known data association problem.Kalman filtering is the powerful framework for solving data
association problem and has better accuracy and consistency than EKF [5].
To overcome the drawback of EKF many measurement conversion methods are used to transform the
non linear measurements into linear ones. Maximum Likelihood estimation which is a measurement conversion
method is proposed in this paper which resolves the data association problem and then applying standard

www.ijesi.org

51 | Page
Object Tracking in Wireless Sensor Network…
kalman filtering which then updates the state (position and velocity) of the object. The kalman filter is the
optimal state estimator for unconstrained linear systems subject to normally distributed state and measurement
noise which are used in widely for tracking applications. The KF as an application of Bayes’ rule under the
assumption that all estimates have independent, Gaussian-distributed errors. This has lead to a common
misconception that the KF can only be strictly applied under Gaussianity assumptions [4].

II. SYSTEM MODEL
Here, the tracking of multiple moving objects in a sensor field is considered. When the object is
moving through the sensor area where sensors are located will detect the object and then form a cluster [1].
From this cluster one of the sensor nodes is selected to be the leader sensor which serves as the center. In target
tracking applications, at each time stamp, measurements obtained from numerous sensing nodes need to be
transmitted to the cluster head. The sensor nodes have limited resources and there is a high probability that the
data has some repeated information and such redundancy needs to be developed by the routing protocols to
improve energy and bandwidth. After collecting all the information the leader sensor then report it to the sink or
to the computer.
a) Tracking moving object model
The object is considered to be moving in two-dimensional field. The position and velocity of the target
at each time stamp is considered in x and y coordinates.
Pt =[ Px(t) Vx(t) Py(t) Vy(t) ]T
Where (Px(t), Py(t) are the position coordinates of the target along X and Y-axes at time tt, respectively,
and (Vx(t), Vy(t)) are the velocities of the target along X- and Y-directions at tt, respectively. The tracking is done
in two phases monitoring and reporting and these two are interleaved to get the information.
b) Measurement Model
The sensors are all considered to be same size [1].The distance measurement with respect to the target
at specific time is noted. The true distance between the sensor and the target are calculated by using the known
location of sensors. The measured distances collected from all the sensor nodes are then transferred to the leader
sensor.
Let si be the true distance between sensor i and the object, we have,
Si =√ (p-pi) 2 + (q-qi) 2 , where (pi , qi) is the known location of sensor i,and (p,q) is the unknown position of the
object at time tt.
Zi = (1+¥i) Si + Ni = Zi + Ai,
Zi is the measured distance to the target by the sensor i at time tt,
Multiplicative noises of sensor i.
Total noise of sensor i, denoted by Ai = Si + Ni.

¥i

and Ni are the additive and

c) Maximum Likelihood Estimation (MLE)
Maximum Likelihood Estimation (MLE) is the existing method used for data association problem. This
method has two advantages first; the MLE method can able to handle more number of targets within the sensor
field.MLE method provides higher accuracy in terms of source location estimates compared to the other
methods. But also there are some drawbacks because of some assumptions that the distance between sensor and
the object is very small which is not always true and also there will be delay in transmitting the measured
distance to the data collecting node. so in order to reduce this delay a new approach is proposed in this paper
which is a probability based method.

III. PROPOSED SCHEME
a) Proposed Algorithm
To overcome this problem, another measurement conversion method is suggested which is Bayesian
estimation model. It is a probability based method which resolves the problem formulated by MLE.Bayesian
estimation updates the probability density function of the object state through two stages: a prediction stage
correction stage. In prediction stage the probability density function at the previous time stamp through the
target dynamics form one step ahead prediction. In correction stage through bayes’ rule and form new
probability density function at current time stamp.

www.ijesi.org

52 | Page
Object Tracking in Wireless Sensor Network…

Fig.3.Block Diagram of the proposed scheme.
Fig.3 describes about the proposed scheme in which Bayesian estimation model is used for distance
calculation. The algorithms within Bayesian estimation framework include kalman filter.Kalman filtering is a
powerful framework for solving data assimilation problems.Kalman filter, which clearly has better accuracy and
consistency than the extended Kalman filter (EKF).The basic idea is to transform the nonlinear measurement
model into a pseudo linear form in the
Cartesian coordinates, estimate the bias and covariance of the converted measurement noise, and then
use the Kalman filter, which clearly has better accuracy and Consistency [5].
d) Kalman Filter
Bayesian is followed by applying standard kalman filtering in order to update the state of the object
recursively.Kalman filtering is a powerful framework for solving data assimilation problems.
Using Bayes rule, the posterior probability distribution of (x,y)[1],
P(x,y/Z)=[ p(Z/x,y)pa(x,y)] / p(Z)
pa (x,y) – prior probability function of (x,y) known by the sensor nodes. Kalman filter, which clearly
has better accuracy and consistency than the extended Kalman filter (EKF).The basic idea is to transform the
nonlinear measurement model into a pseudo linear form in the Cartesian coordinates, estimate the bias and
covariance of the converted measurement noise, and then use the Kalman filter, which clearly has better
accuracy and Consistency [4]. It is an optimal estimator that is it infers parameters of interest from inaccurate
observations. It is so popular for its convenient form for online real time processing and easy to formulate and
implement.

IV. SIMULATION RESULT
The software used here is network simulator 2(NS-2), fig.4. describes the node creation in which sensor
nodes are created and the corresponding position and energy are updated.

Fig.4. Node creation
Fig.4.describes the architecture models in which 100 nodes are generated.

www.ijesi.org

53 | Page
Object Tracking in Wireless Sensor Network…

Fig.5.Node Position and Energy Updating Trace File for 100 nodes.
Each node’s position and energy is updated, energy model is used for updating the energy of the node.

Fig.6. Monitoring Phase
In monitoring phase (fig.6.), the sensor nodes detect the object when the objects are moving within the
sensor field. The blue color nodes indicate objects and sensor nodes are yellow in color before it starts sensing
the objects.100th node is the data collecting node which gathers information from the sensor nodes.

Fig.7.Reporting Phase
After the objects get detected the sensor nodes will then transmit this information (fig.7.) (i.e.) report
the information to the leader sensor and the leader sensor then update the current position of the object and send
it to the sink. The red color nodes indicate that the sensor nodes start sensing the object. After sensing the
objects the sensors measure the distance of the objects and transmit this information to the data collecting node.

www.ijesi.org

54 | Page
Object Tracking in Wireless Sensor Network…

Fig.8.Moving Distance of the Object compared with the percentage of sensors.
Fig.8. describes if the percentage of sensor node increases then the distance between the node and the
object will get reduced. If the sensors number is reduced then the distance between them increases and will
introduce more localization error

Fig.9. Energy Consumption Comparison for MLE vs Bayesian

Fig.10.End to end delay Comparison for MLE and Bayesian.

V. CONCLUSION
This work proposes probability based most probable Bayesian estimation model which is a
measurement conversion method. The reason for measurement conversion is that the EKF need to transform its
nonlinear state measurements into linear form, which resolves the data association problem. The Existing MLE
has a problem of delay in transmitting the measured distance to the user.Our proposed approach has the
advantage of reducing this delay in transmitting the information.

www.ijesi.org

55 | Page
Object Tracking in Wireless Sensor Network…
REFERENCES
[1]
[2]
[3]

[4]
[5]
[6]
[7]
[8]
[9]
[10]
[11]
[12]
[13]
[14]
[15]
[16]
[17]
[18]
[19]

Xingbo Wang, Minyue Fu, F and Huanshui Zhang,, “Target Tracking in wireless sensor networks based on the combination of
KF and MLE using distance measurements ”, IEEE Transactions on Mobile Computing,Vol 11,No.4,April 2012.
J. Ru, V.P. Jilkov, X.R. Li, and A. Bashi, “Detection of Target Maneuver Onset,” IEEE Trans. Aerospace and Electronic
Systems,vol. 45, no. 2, pp. 536-554, Apr. 2009.
J. Lin, W. Xiao, F. Lewis, and L. Xie, “Energy-Efficient Distributed Adaptive Multisensor Scheduling for Target Tracking in
Wireless Sensor Networks,” IEEE Trans. Instrumentation and Measurement,
pp. 1-11, Oct. 2008.
S.Julier and J.Uhlmann, “Unscented Filtering and Nonlinear Estimation,” Proc.IEEE, vol.92, no.3, pp.401-422, Mar.2004.
Z.L. Zhao, X.R. Li, and V.P. Jilkov,”Best Linear Unbiased Filtering with Nonlinear Measurements for Target Tracking,” IEEE
Trans.Aerospace Electronic Systems, vol. 40, no. 4, pp. 1324-1336,oct. 2004
X.Sheng and Y.H. Hu,”Maximum Likelihood Multiple-Source Localization Using Acoustic Energy Measurements with Wireless
sensor Networks,” IEEE Trans.Signal Processing, vol.53, no.1, pp.44-53, jan.2005.
T.Kleine-Ostmann and A.E.Bell,”A Data Fusion Architecture for Enhanced Position Estimation in Wireless Networks,” IEEE
comm.Letters,vol.5,no.8,pp.343-345,Aug.2001
T. Zhao and A. Nehorai, “Information-Driven Distributed Maximum Likelihood Estimation Based on Gauss-Newton Method in
Wireless Sensor Networks,” IEEE Trans. Signal Processing, vol. 55, no. 9, pp. 4669-4682, Sept. 2007.
W.-P. Chen, J.C. Hou, and L. Sha, “Dynamic Clustering for Acoustic Target Tracking in Wireless Sensor Networks,” IEEE
Trans. Mobile Computing, vol. 3, no. 3, pp. 258-271, July 2004.
M. Noel, P. Joshi, and T. Jannett, “Improved Maximum Likelihood Estimation of Target Position in Wireless Sensor Networks
Using Particle Swarm Optimization,” Proc. Third Int’l Conf. Information Technology: New Generations, Apr. 2006.
T. Zhao and A. Nehorai, “Information-Driven Distributed Maximum Likelihood Estimation Based on Gauss-Newton Method in
Wireless Sensor Networks,” IEEE Trans. Signal Processing, vol. 55, no. 9, pp. 4669-4682, Sept. 2007.
L.M. Kaplan, “Global Node Selection for Localization in a Distributed Sensor Network,” IEEE Trans. Aerospace Electronics
Systems, vol. 42, no. 1, pp. 113-135, Jan. 2006.
Y. Liu and Z. Sun, “EKF-Based Adaptive Sensor Scheduling forTarget Tracking,” Proc. IEEE Int’l Symp. Information Science
and Eng. (ISISE), vol. 2, pp. 171-174, Dec. 2008.
S. Banerjee and S. Khuller, “A Clustering Scheme for Hierarchical Control in Multi-Hop Wireless Networks,” Proc. IEEE
INFOCOM, Apr. 2001.
M.G. Rabbat and R.D. Nowak, “Decentralized Source Localization and Tracking,” Proc. IEEE Int’l Conf. Acoustics, Speech, and
Signal Processing, vol. 3, pp. 921-924, May 2004.
M. McGuire, K.N. Plataniotis, and A.N. Venetsanopoulos, “Data Fusion of Power and Time Measurements for Mobile Terminal
Location,” IEEE Trans. Mobile Computing, vol. 4, no. 2, pp. 142-153, Mar./Apr. 2005.
X.R. Li and V.P. Jilkov, “A Survey of Maneuvering Target Tracking Part IV: Decision-Based Methods,” Proc. SPIE Conf.
Signal and Data Processing of Small Targets, pp. 511-534, Apr. 2002.
Y. Bar-Shalom, X.R. Li, and T. Kirubarajan, “Estimation with Application to Tracking and Navigation.” John Wiley, 2001.

www.ijesi.org

56 | Page

Mais conteúdo relacionado

Mais procurados

An Efficient top- k Query Processing in Distributed Wireless Sensor Networks
An Efficient top- k Query Processing in Distributed Wireless  Sensor NetworksAn Efficient top- k Query Processing in Distributed Wireless  Sensor Networks
An Efficient top- k Query Processing in Distributed Wireless Sensor NetworksIJMER
 
Array diagnosis using compressed sensing in near field
Array diagnosis using compressed sensing in near fieldArray diagnosis using compressed sensing in near field
Array diagnosis using compressed sensing in near fieldAlexander Decker
 
Multisensor Data Fusion : Techno Briefing
Multisensor Data Fusion : Techno BriefingMultisensor Data Fusion : Techno Briefing
Multisensor Data Fusion : Techno BriefingPaveen Juntama
 
Artificial Bee Colony algorithm for Localization in Wireless Sensor Networks
Artificial Bee Colony algorithm for Localization in Wireless Sensor NetworksArtificial Bee Colony algorithm for Localization in Wireless Sensor Networks
Artificial Bee Colony algorithm for Localization in Wireless Sensor NetworksAssociate Professor in VSB Coimbatore
 
Efficient Cluster Based Data Collection Using Mobile Data Collector for Wirel...
Efficient Cluster Based Data Collection Using Mobile Data Collector for Wirel...Efficient Cluster Based Data Collection Using Mobile Data Collector for Wirel...
Efficient Cluster Based Data Collection Using Mobile Data Collector for Wirel...ijceronline
 
LOCALIZATION ALGORITHM USING VARYING SPEED MOBILE SINK FOR WIRELESS SENSOR NE...
LOCALIZATION ALGORITHM USING VARYING SPEED MOBILE SINK FOR WIRELESS SENSOR NE...LOCALIZATION ALGORITHM USING VARYING SPEED MOBILE SINK FOR WIRELESS SENSOR NE...
LOCALIZATION ALGORITHM USING VARYING SPEED MOBILE SINK FOR WIRELESS SENSOR NE...ijasuc
 
Localization with mobile anchor points in wireless sensor networks
Localization with mobile anchor points in wireless sensor networksLocalization with mobile anchor points in wireless sensor networks
Localization with mobile anchor points in wireless sensor networksHabibur Rahman
 
Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...
Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...
Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...theijes
 
November 9, Planning and Control of Unmanned Aircraft Systems in Realistic C...
November 9, Planning and Control of Unmanned Aircraft Systems  in Realistic C...November 9, Planning and Control of Unmanned Aircraft Systems  in Realistic C...
November 9, Planning and Control of Unmanned Aircraft Systems in Realistic C...University of Colorado at Boulder
 
Performance Comparison of Sensor Deployment Techniques Used in WSN
Performance Comparison of Sensor Deployment Techniques Used in WSNPerformance Comparison of Sensor Deployment Techniques Used in WSN
Performance Comparison of Sensor Deployment Techniques Used in WSNIRJET Journal
 
Security based Clock Synchronization technique in Wireless Sensor Network for...
Security based Clock Synchronization technique in Wireless Sensor Network for...Security based Clock Synchronization technique in Wireless Sensor Network for...
Security based Clock Synchronization technique in Wireless Sensor Network for...iosrjce
 
Energy-Efficient Target Coverage in Wireless Sensor Networks Based on Modifie...
Energy-Efficient Target Coverage in Wireless Sensor Networks Based on Modifie...Energy-Efficient Target Coverage in Wireless Sensor Networks Based on Modifie...
Energy-Efficient Target Coverage in Wireless Sensor Networks Based on Modifie...ijasuc
 
NETWORK PERFORMANCE ENHANCEMENT WITH OPTIMIZATION SENSOR PLACEMENT IN WIRELES...
NETWORK PERFORMANCE ENHANCEMENT WITH OPTIMIZATION SENSOR PLACEMENT IN WIRELES...NETWORK PERFORMANCE ENHANCEMENT WITH OPTIMIZATION SENSOR PLACEMENT IN WIRELES...
NETWORK PERFORMANCE ENHANCEMENT WITH OPTIMIZATION SENSOR PLACEMENT IN WIRELES...ijwmn
 
A FAST FAULT TOLERANT PARTITIONING ALGORITHM FOR WIRELESS SENSOR NETWORKS
A FAST FAULT TOLERANT PARTITIONING ALGORITHM FOR WIRELESS SENSOR NETWORKSA FAST FAULT TOLERANT PARTITIONING ALGORITHM FOR WIRELESS SENSOR NETWORKS
A FAST FAULT TOLERANT PARTITIONING ALGORITHM FOR WIRELESS SENSOR NETWORKScsandit
 
Energy efficient k target coverage in wireless sensor net-2
Energy efficient k target coverage in wireless sensor net-2Energy efficient k target coverage in wireless sensor net-2
Energy efficient k target coverage in wireless sensor net-2IAEME Publication
 

Mais procurados (16)

An Efficient top- k Query Processing in Distributed Wireless Sensor Networks
An Efficient top- k Query Processing in Distributed Wireless  Sensor NetworksAn Efficient top- k Query Processing in Distributed Wireless  Sensor Networks
An Efficient top- k Query Processing in Distributed Wireless Sensor Networks
 
Array diagnosis using compressed sensing in near field
Array diagnosis using compressed sensing in near fieldArray diagnosis using compressed sensing in near field
Array diagnosis using compressed sensing in near field
 
Multisensor Data Fusion : Techno Briefing
Multisensor Data Fusion : Techno BriefingMultisensor Data Fusion : Techno Briefing
Multisensor Data Fusion : Techno Briefing
 
Artificial Bee Colony algorithm for Localization in Wireless Sensor Networks
Artificial Bee Colony algorithm for Localization in Wireless Sensor NetworksArtificial Bee Colony algorithm for Localization in Wireless Sensor Networks
Artificial Bee Colony algorithm for Localization in Wireless Sensor Networks
 
Efficient Cluster Based Data Collection Using Mobile Data Collector for Wirel...
Efficient Cluster Based Data Collection Using Mobile Data Collector for Wirel...Efficient Cluster Based Data Collection Using Mobile Data Collector for Wirel...
Efficient Cluster Based Data Collection Using Mobile Data Collector for Wirel...
 
LOCALIZATION ALGORITHM USING VARYING SPEED MOBILE SINK FOR WIRELESS SENSOR NE...
LOCALIZATION ALGORITHM USING VARYING SPEED MOBILE SINK FOR WIRELESS SENSOR NE...LOCALIZATION ALGORITHM USING VARYING SPEED MOBILE SINK FOR WIRELESS SENSOR NE...
LOCALIZATION ALGORITHM USING VARYING SPEED MOBILE SINK FOR WIRELESS SENSOR NE...
 
Localization with mobile anchor points in wireless sensor networks
Localization with mobile anchor points in wireless sensor networksLocalization with mobile anchor points in wireless sensor networks
Localization with mobile anchor points in wireless sensor networks
 
Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...
Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...
Tdtd-Edr: Time Orient Delay Tolerant Density Estimation Technique Based Data ...
 
November 9, Planning and Control of Unmanned Aircraft Systems in Realistic C...
November 9, Planning and Control of Unmanned Aircraft Systems  in Realistic C...November 9, Planning and Control of Unmanned Aircraft Systems  in Realistic C...
November 9, Planning and Control of Unmanned Aircraft Systems in Realistic C...
 
Performance Comparison of Sensor Deployment Techniques Used in WSN
Performance Comparison of Sensor Deployment Techniques Used in WSNPerformance Comparison of Sensor Deployment Techniques Used in WSN
Performance Comparison of Sensor Deployment Techniques Used in WSN
 
Security based Clock Synchronization technique in Wireless Sensor Network for...
Security based Clock Synchronization technique in Wireless Sensor Network for...Security based Clock Synchronization technique in Wireless Sensor Network for...
Security based Clock Synchronization technique in Wireless Sensor Network for...
 
Energy-Efficient Target Coverage in Wireless Sensor Networks Based on Modifie...
Energy-Efficient Target Coverage in Wireless Sensor Networks Based on Modifie...Energy-Efficient Target Coverage in Wireless Sensor Networks Based on Modifie...
Energy-Efficient Target Coverage in Wireless Sensor Networks Based on Modifie...
 
NETWORK PERFORMANCE ENHANCEMENT WITH OPTIMIZATION SENSOR PLACEMENT IN WIRELES...
NETWORK PERFORMANCE ENHANCEMENT WITH OPTIMIZATION SENSOR PLACEMENT IN WIRELES...NETWORK PERFORMANCE ENHANCEMENT WITH OPTIMIZATION SENSOR PLACEMENT IN WIRELES...
NETWORK PERFORMANCE ENHANCEMENT WITH OPTIMIZATION SENSOR PLACEMENT IN WIRELES...
 
A FAST FAULT TOLERANT PARTITIONING ALGORITHM FOR WIRELESS SENSOR NETWORKS
A FAST FAULT TOLERANT PARTITIONING ALGORITHM FOR WIRELESS SENSOR NETWORKSA FAST FAULT TOLERANT PARTITIONING ALGORITHM FOR WIRELESS SENSOR NETWORKS
A FAST FAULT TOLERANT PARTITIONING ALGORITHM FOR WIRELESS SENSOR NETWORKS
 
I04503075078
I04503075078I04503075078
I04503075078
 
Energy efficient k target coverage in wireless sensor net-2
Energy efficient k target coverage in wireless sensor net-2Energy efficient k target coverage in wireless sensor net-2
Energy efficient k target coverage in wireless sensor net-2
 

Destaque (10)

Lecture 08: Localization and Mapping II
Lecture 08: Localization and Mapping IILecture 08: Localization and Mapping II
Lecture 08: Localization and Mapping II
 
December 2, Projects
December 2, ProjectsDecember 2, Projects
December 2, Projects
 
Template classes and ROS messages
Template classes and ROS messagesTemplate classes and ROS messages
Template classes and ROS messages
 
November 16, Learning
November 16, LearningNovember 16, Learning
November 16, Learning
 
Indoor Localization Systems
Indoor Localization SystemsIndoor Localization Systems
Indoor Localization Systems
 
Three-dimensional construction with mobile robots and modular blocks
 Three-dimensional construction with mobile robots and modular blocks Three-dimensional construction with mobile robots and modular blocks
Three-dimensional construction with mobile robots and modular blocks
 
September 21, Modeling of Gradient-Based Controllers I
September 21, Modeling of Gradient-Based Controllers ISeptember 21, Modeling of Gradient-Based Controllers I
September 21, Modeling of Gradient-Based Controllers I
 
Arindam batabyal literature reviewpresentation
Arindam batabyal literature reviewpresentationArindam batabyal literature reviewpresentation
Arindam batabyal literature reviewpresentation
 
Lecture 01: Introduction
Lecture 01: IntroductionLecture 01: Introduction
Lecture 01: Introduction
 
On Line Training of the Path-Loss Model in Bayesian WLAN Indoor Positioning
On Line Training of the Path-Loss Model in Bayesian WLAN Indoor PositioningOn Line Training of the Path-Loss Model in Bayesian WLAN Indoor Positioning
On Line Training of the Path-Loss Model in Bayesian WLAN Indoor Positioning
 

Semelhante a Kalman Filter & Probability Model Track Objects in WSN

Adaptive and online one class support vector machine-based outlier detection
Adaptive and online one class support vector machine-based outlier detectionAdaptive and online one class support vector machine-based outlier detection
Adaptive and online one class support vector machine-based outlier detectionNguyen Duong
 
Paper id 26201484
Paper id 26201484Paper id 26201484
Paper id 26201484IJRAT
 
Investigations on real time RSSI based outdoor target tracking using kalman f...
Investigations on real time RSSI based outdoor target tracking using kalman f...Investigations on real time RSSI based outdoor target tracking using kalman f...
Investigations on real time RSSI based outdoor target tracking using kalman f...IJECEIAES
 
Wireless Sensor Network using Particle Swarm Optimization
Wireless Sensor Network using Particle Swarm OptimizationWireless Sensor Network using Particle Swarm Optimization
Wireless Sensor Network using Particle Swarm Optimizationidescitation
 
IOT-WSN: SURVEY ON POSITIONING TECHNIQUES
IOT-WSN: SURVEY ON POSITIONING TECHNIQUESIOT-WSN: SURVEY ON POSITIONING TECHNIQUES
IOT-WSN: SURVEY ON POSITIONING TECHNIQUESijassn
 
Enhanced DV Hop Localization Algorithm for Wireless Sensor Networks
Enhanced DV Hop Localization Algorithm for Wireless Sensor NetworksEnhanced DV Hop Localization Algorithm for Wireless Sensor Networks
Enhanced DV Hop Localization Algorithm for Wireless Sensor Networksijtsrd
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentIJERD Editor
 
A NOVEL APPROACH TO DETECT THE MOVEMENT OF TARGET IN WIRELESS SENSOR NETWORKS
A NOVEL APPROACH TO DETECT THE MOVEMENT OF TARGET IN WIRELESS SENSOR NETWORKSA NOVEL APPROACH TO DETECT THE MOVEMENT OF TARGET IN WIRELESS SENSOR NETWORKS
A NOVEL APPROACH TO DETECT THE MOVEMENT OF TARGET IN WIRELESS SENSOR NETWORKSEditor IJMTER
 
Analytical framework for optimized feature extraction for upgrading occupancy...
Analytical framework for optimized feature extraction for upgrading occupancy...Analytical framework for optimized feature extraction for upgrading occupancy...
Analytical framework for optimized feature extraction for upgrading occupancy...IJECEIAES
 
V1_I2_2012_Paper5.docx
V1_I2_2012_Paper5.docxV1_I2_2012_Paper5.docx
V1_I2_2012_Paper5.docxpraveena06
 
Improvising Network life time of Wireless sensor networks using mobile data a...
Improvising Network life time of Wireless sensor networks using mobile data a...Improvising Network life time of Wireless sensor networks using mobile data a...
Improvising Network life time of Wireless sensor networks using mobile data a...Editor IJCATR
 
11.0005www.iiste.org call for paper.a robust frame of wsn utilizing localizat...
11.0005www.iiste.org call for paper.a robust frame of wsn utilizing localizat...11.0005www.iiste.org call for paper.a robust frame of wsn utilizing localizat...
11.0005www.iiste.org call for paper.a robust frame of wsn utilizing localizat...Alexander Decker
 
5.a robust frame of wsn utilizing localization technique 36-46
5.a robust frame of wsn utilizing localization technique  36-465.a robust frame of wsn utilizing localization technique  36-46
5.a robust frame of wsn utilizing localization technique 36-46Alexander Decker
 
1 Object tracking using sensor network Orla Sahi
1       Object tracking using sensor network Orla Sahi1       Object tracking using sensor network Orla Sahi
1 Object tracking using sensor network Orla SahiSilvaGraf83
 
SENSOR NETWORKS BASED ON DISTRIBUTED WIRELESS SENSING
SENSOR NETWORKS BASED ON DISTRIBUTED WIRELESS SENSINGSENSOR NETWORKS BASED ON DISTRIBUTED WIRELESS SENSING
SENSOR NETWORKS BASED ON DISTRIBUTED WIRELESS SENSINGIJARIDEA Journal
 
IRJET- Clustering the Real Time Moving Object Adjacent Tracking
IRJET-  	  Clustering the Real Time Moving Object Adjacent TrackingIRJET-  	  Clustering the Real Time Moving Object Adjacent Tracking
IRJET- Clustering the Real Time Moving Object Adjacent TrackingIRJET Journal
 

Semelhante a Kalman Filter & Probability Model Track Objects in WSN (20)

Dd4301605614
Dd4301605614Dd4301605614
Dd4301605614
 
Adaptive and online one class support vector machine-based outlier detection
Adaptive and online one class support vector machine-based outlier detectionAdaptive and online one class support vector machine-based outlier detection
Adaptive and online one class support vector machine-based outlier detection
 
Bz02516281633
Bz02516281633Bz02516281633
Bz02516281633
 
Paper id 26201484
Paper id 26201484Paper id 26201484
Paper id 26201484
 
Investigations on real time RSSI based outdoor target tracking using kalman f...
Investigations on real time RSSI based outdoor target tracking using kalman f...Investigations on real time RSSI based outdoor target tracking using kalman f...
Investigations on real time RSSI based outdoor target tracking using kalman f...
 
Wireless Sensor Network using Particle Swarm Optimization
Wireless Sensor Network using Particle Swarm OptimizationWireless Sensor Network using Particle Swarm Optimization
Wireless Sensor Network using Particle Swarm Optimization
 
IOT-WSN: SURVEY ON POSITIONING TECHNIQUES
IOT-WSN: SURVEY ON POSITIONING TECHNIQUESIOT-WSN: SURVEY ON POSITIONING TECHNIQUES
IOT-WSN: SURVEY ON POSITIONING TECHNIQUES
 
Enhanced DV Hop Localization Algorithm for Wireless Sensor Networks
Enhanced DV Hop Localization Algorithm for Wireless Sensor NetworksEnhanced DV Hop Localization Algorithm for Wireless Sensor Networks
Enhanced DV Hop Localization Algorithm for Wireless Sensor Networks
 
International Journal of Engineering Research and Development
International Journal of Engineering Research and DevelopmentInternational Journal of Engineering Research and Development
International Journal of Engineering Research and Development
 
A NOVEL APPROACH TO DETECT THE MOVEMENT OF TARGET IN WIRELESS SENSOR NETWORKS
A NOVEL APPROACH TO DETECT THE MOVEMENT OF TARGET IN WIRELESS SENSOR NETWORKSA NOVEL APPROACH TO DETECT THE MOVEMENT OF TARGET IN WIRELESS SENSOR NETWORKS
A NOVEL APPROACH TO DETECT THE MOVEMENT OF TARGET IN WIRELESS SENSOR NETWORKS
 
C1802022430
C1802022430C1802022430
C1802022430
 
C1804011117
C1804011117C1804011117
C1804011117
 
Analytical framework for optimized feature extraction for upgrading occupancy...
Analytical framework for optimized feature extraction for upgrading occupancy...Analytical framework for optimized feature extraction for upgrading occupancy...
Analytical framework for optimized feature extraction for upgrading occupancy...
 
V1_I2_2012_Paper5.docx
V1_I2_2012_Paper5.docxV1_I2_2012_Paper5.docx
V1_I2_2012_Paper5.docx
 
Improvising Network life time of Wireless sensor networks using mobile data a...
Improvising Network life time of Wireless sensor networks using mobile data a...Improvising Network life time of Wireless sensor networks using mobile data a...
Improvising Network life time of Wireless sensor networks using mobile data a...
 
11.0005www.iiste.org call for paper.a robust frame of wsn utilizing localizat...
11.0005www.iiste.org call for paper.a robust frame of wsn utilizing localizat...11.0005www.iiste.org call for paper.a robust frame of wsn utilizing localizat...
11.0005www.iiste.org call for paper.a robust frame of wsn utilizing localizat...
 
5.a robust frame of wsn utilizing localization technique 36-46
5.a robust frame of wsn utilizing localization technique  36-465.a robust frame of wsn utilizing localization technique  36-46
5.a robust frame of wsn utilizing localization technique 36-46
 
1 Object tracking using sensor network Orla Sahi
1       Object tracking using sensor network Orla Sahi1       Object tracking using sensor network Orla Sahi
1 Object tracking using sensor network Orla Sahi
 
SENSOR NETWORKS BASED ON DISTRIBUTED WIRELESS SENSING
SENSOR NETWORKS BASED ON DISTRIBUTED WIRELESS SENSINGSENSOR NETWORKS BASED ON DISTRIBUTED WIRELESS SENSING
SENSOR NETWORKS BASED ON DISTRIBUTED WIRELESS SENSING
 
IRJET- Clustering the Real Time Moving Object Adjacent Tracking
IRJET-  	  Clustering the Real Time Moving Object Adjacent TrackingIRJET-  	  Clustering the Real Time Moving Object Adjacent Tracking
IRJET- Clustering the Real Time Moving Object Adjacent Tracking
 

Kalman Filter & Probability Model Track Objects in WSN

  • 1. International Journal of Engineering Science Invention ISSN (Online): 2319 – 6734, ISSN (Print): 2319 – 6726 www.ijesi.org ǁ Volume 3 ǁ Issue 1 ǁ January 2014 ǁ PP.51-56 Object Tracking in Wireless Sensor Network based on the mixture of Kalman Filter and Probability based Model 1 1 S.Diwakaran and 2P.Ganeshwari Assistant Professor-I, Dept. of Electronics & Communication Engg, Kalasalingam University, Krishnankoil, Virudhunagar dist, India 2 PG Student, Dept. of Electronics & Communication Engg, Kalasalingam University, Krishnankoil, Virudhunagar dist, India. ABSTRACT: Wireless Sensor Networks (WSNs) consists of large number of sensor nodes which are capable of sensing and processing by using the computational power. Object tracking is one of the important applications in WSN.Extended Kalman Filter (EKF) is the most widely used method for object tracking and Kalman filter for estimating the state of the object. Tracking is difficult because sensors have to be send data to the head sensor from other sensors with same time instants. Maximum Likelihood Estimation (MLE) is used to solve the data association problem but it gives localization error. In this paper, a new approach probability based estimation model is proposed to provide superior performance in combination with Kalman Filter (KF). INDEXTERMS: Wireless Sensor Networks (WSNs, Object Tracking, Extended Kalman Filter, Kalman Filter, Bayesian estimation model. I. INTRODUCTION Wireless Sensor Networks (WSNs) consists of large number of small, low power, and inexpensive sensor nodes with on board sensing, processing, and wireless communication capabilities the sensors are spatially distributed to monitor the conditions at different locations. Target tracking is one of the active area in WSNs and is used to collect data from the environment consists of large number of sensor nodes and one or more base stations. The nodes have the capability to sense the data, process data and send it to rest of the nodes or to the base station and the nodes are connected through wireless communication channels. Tracking is one of the challenging applications and is managed by the master node. The main thing is that WSNs are first developed for military applications but now it is used for wide variety of applications among which target tracking is one of the canonical application. In tracking of a single object more number of densely deployed sensors measure and estimate the state of the object. The state indicates position, velocity and heading of the object. In tracking of multiple objects the WSNs are given the work to gather information from sensor nodes at each timestamp. Existing acoustic source localization methods make use of three types of physical measurements: time delay of arrival (TDOA), received signal strength (RSS), direction of arrival (DOA).DOA can be estimated by making use of the phase difference measured at receiving sensors and it is applicable when the acoustic source emits narrowband signal.TDOA is mostly used for broadband acoustic source localization. Target tracking is one of the most important applications of WSNs, in which, due to the limited resources for sensing, communication, and computation, the network must rely on sensor management to balance the tracking accuracy and energy consumption [3]. In multiple target tracking, the sensors are capable of obtaining more than one measurement; these measurements are not only generated by the objects but also possibly from the distributed heap. Hence multiple targets tracking algorithm needs to solve the data association problem, i.e. correctly mapping the measurement and target pairs with the interference introduced by the mass of objects. Extended Kalman Filter (EKF) is the most widely used method for target tracking. The EKF simply linearizes all nonlinear transforms. Also it has some limitations that linearized transformations are reliable only if the error propagation is well approximated by a linear function and the resulting state diverges [5].In this paper the distance measurements are considered. Moreover for tracking multiple objects which are not sufficiently separated temporally and spatially in the sensor field, may also lead to unlabelled measurements in the sensor data. This uncertainty in measurement leads to the well known data association problem.Kalman filtering is the powerful framework for solving data association problem and has better accuracy and consistency than EKF [5]. To overcome the drawback of EKF many measurement conversion methods are used to transform the non linear measurements into linear ones. Maximum Likelihood estimation which is a measurement conversion method is proposed in this paper which resolves the data association problem and then applying standard www.ijesi.org 51 | Page
  • 2. Object Tracking in Wireless Sensor Network… kalman filtering which then updates the state (position and velocity) of the object. The kalman filter is the optimal state estimator for unconstrained linear systems subject to normally distributed state and measurement noise which are used in widely for tracking applications. The KF as an application of Bayes’ rule under the assumption that all estimates have independent, Gaussian-distributed errors. This has lead to a common misconception that the KF can only be strictly applied under Gaussianity assumptions [4]. II. SYSTEM MODEL Here, the tracking of multiple moving objects in a sensor field is considered. When the object is moving through the sensor area where sensors are located will detect the object and then form a cluster [1]. From this cluster one of the sensor nodes is selected to be the leader sensor which serves as the center. In target tracking applications, at each time stamp, measurements obtained from numerous sensing nodes need to be transmitted to the cluster head. The sensor nodes have limited resources and there is a high probability that the data has some repeated information and such redundancy needs to be developed by the routing protocols to improve energy and bandwidth. After collecting all the information the leader sensor then report it to the sink or to the computer. a) Tracking moving object model The object is considered to be moving in two-dimensional field. The position and velocity of the target at each time stamp is considered in x and y coordinates. Pt =[ Px(t) Vx(t) Py(t) Vy(t) ]T Where (Px(t), Py(t) are the position coordinates of the target along X and Y-axes at time tt, respectively, and (Vx(t), Vy(t)) are the velocities of the target along X- and Y-directions at tt, respectively. The tracking is done in two phases monitoring and reporting and these two are interleaved to get the information. b) Measurement Model The sensors are all considered to be same size [1].The distance measurement with respect to the target at specific time is noted. The true distance between the sensor and the target are calculated by using the known location of sensors. The measured distances collected from all the sensor nodes are then transferred to the leader sensor. Let si be the true distance between sensor i and the object, we have, Si =√ (p-pi) 2 + (q-qi) 2 , where (pi , qi) is the known location of sensor i,and (p,q) is the unknown position of the object at time tt. Zi = (1+¥i) Si + Ni = Zi + Ai, Zi is the measured distance to the target by the sensor i at time tt, Multiplicative noises of sensor i. Total noise of sensor i, denoted by Ai = Si + Ni. ¥i and Ni are the additive and c) Maximum Likelihood Estimation (MLE) Maximum Likelihood Estimation (MLE) is the existing method used for data association problem. This method has two advantages first; the MLE method can able to handle more number of targets within the sensor field.MLE method provides higher accuracy in terms of source location estimates compared to the other methods. But also there are some drawbacks because of some assumptions that the distance between sensor and the object is very small which is not always true and also there will be delay in transmitting the measured distance to the data collecting node. so in order to reduce this delay a new approach is proposed in this paper which is a probability based method. III. PROPOSED SCHEME a) Proposed Algorithm To overcome this problem, another measurement conversion method is suggested which is Bayesian estimation model. It is a probability based method which resolves the problem formulated by MLE.Bayesian estimation updates the probability density function of the object state through two stages: a prediction stage correction stage. In prediction stage the probability density function at the previous time stamp through the target dynamics form one step ahead prediction. In correction stage through bayes’ rule and form new probability density function at current time stamp. www.ijesi.org 52 | Page
  • 3. Object Tracking in Wireless Sensor Network… Fig.3.Block Diagram of the proposed scheme. Fig.3 describes about the proposed scheme in which Bayesian estimation model is used for distance calculation. The algorithms within Bayesian estimation framework include kalman filter.Kalman filtering is a powerful framework for solving data assimilation problems.Kalman filter, which clearly has better accuracy and consistency than the extended Kalman filter (EKF).The basic idea is to transform the nonlinear measurement model into a pseudo linear form in the Cartesian coordinates, estimate the bias and covariance of the converted measurement noise, and then use the Kalman filter, which clearly has better accuracy and Consistency [5]. d) Kalman Filter Bayesian is followed by applying standard kalman filtering in order to update the state of the object recursively.Kalman filtering is a powerful framework for solving data assimilation problems. Using Bayes rule, the posterior probability distribution of (x,y)[1], P(x,y/Z)=[ p(Z/x,y)pa(x,y)] / p(Z) pa (x,y) – prior probability function of (x,y) known by the sensor nodes. Kalman filter, which clearly has better accuracy and consistency than the extended Kalman filter (EKF).The basic idea is to transform the nonlinear measurement model into a pseudo linear form in the Cartesian coordinates, estimate the bias and covariance of the converted measurement noise, and then use the Kalman filter, which clearly has better accuracy and Consistency [4]. It is an optimal estimator that is it infers parameters of interest from inaccurate observations. It is so popular for its convenient form for online real time processing and easy to formulate and implement. IV. SIMULATION RESULT The software used here is network simulator 2(NS-2), fig.4. describes the node creation in which sensor nodes are created and the corresponding position and energy are updated. Fig.4. Node creation Fig.4.describes the architecture models in which 100 nodes are generated. www.ijesi.org 53 | Page
  • 4. Object Tracking in Wireless Sensor Network… Fig.5.Node Position and Energy Updating Trace File for 100 nodes. Each node’s position and energy is updated, energy model is used for updating the energy of the node. Fig.6. Monitoring Phase In monitoring phase (fig.6.), the sensor nodes detect the object when the objects are moving within the sensor field. The blue color nodes indicate objects and sensor nodes are yellow in color before it starts sensing the objects.100th node is the data collecting node which gathers information from the sensor nodes. Fig.7.Reporting Phase After the objects get detected the sensor nodes will then transmit this information (fig.7.) (i.e.) report the information to the leader sensor and the leader sensor then update the current position of the object and send it to the sink. The red color nodes indicate that the sensor nodes start sensing the object. After sensing the objects the sensors measure the distance of the objects and transmit this information to the data collecting node. www.ijesi.org 54 | Page
  • 5. Object Tracking in Wireless Sensor Network… Fig.8.Moving Distance of the Object compared with the percentage of sensors. Fig.8. describes if the percentage of sensor node increases then the distance between the node and the object will get reduced. If the sensors number is reduced then the distance between them increases and will introduce more localization error Fig.9. Energy Consumption Comparison for MLE vs Bayesian Fig.10.End to end delay Comparison for MLE and Bayesian. V. CONCLUSION This work proposes probability based most probable Bayesian estimation model which is a measurement conversion method. The reason for measurement conversion is that the EKF need to transform its nonlinear state measurements into linear form, which resolves the data association problem. The Existing MLE has a problem of delay in transmitting the measured distance to the user.Our proposed approach has the advantage of reducing this delay in transmitting the information. www.ijesi.org 55 | Page
  • 6. Object Tracking in Wireless Sensor Network… REFERENCES [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] Xingbo Wang, Minyue Fu, F and Huanshui Zhang,, “Target Tracking in wireless sensor networks based on the combination of KF and MLE using distance measurements ”, IEEE Transactions on Mobile Computing,Vol 11,No.4,April 2012. J. Ru, V.P. Jilkov, X.R. Li, and A. Bashi, “Detection of Target Maneuver Onset,” IEEE Trans. Aerospace and Electronic Systems,vol. 45, no. 2, pp. 536-554, Apr. 2009. J. Lin, W. Xiao, F. Lewis, and L. Xie, “Energy-Efficient Distributed Adaptive Multisensor Scheduling for Target Tracking in Wireless Sensor Networks,” IEEE Trans. Instrumentation and Measurement, pp. 1-11, Oct. 2008. S.Julier and J.Uhlmann, “Unscented Filtering and Nonlinear Estimation,” Proc.IEEE, vol.92, no.3, pp.401-422, Mar.2004. Z.L. Zhao, X.R. Li, and V.P. Jilkov,”Best Linear Unbiased Filtering with Nonlinear Measurements for Target Tracking,” IEEE Trans.Aerospace Electronic Systems, vol. 40, no. 4, pp. 1324-1336,oct. 2004 X.Sheng and Y.H. Hu,”Maximum Likelihood Multiple-Source Localization Using Acoustic Energy Measurements with Wireless sensor Networks,” IEEE Trans.Signal Processing, vol.53, no.1, pp.44-53, jan.2005. T.Kleine-Ostmann and A.E.Bell,”A Data Fusion Architecture for Enhanced Position Estimation in Wireless Networks,” IEEE comm.Letters,vol.5,no.8,pp.343-345,Aug.2001 T. Zhao and A. Nehorai, “Information-Driven Distributed Maximum Likelihood Estimation Based on Gauss-Newton Method in Wireless Sensor Networks,” IEEE Trans. Signal Processing, vol. 55, no. 9, pp. 4669-4682, Sept. 2007. W.-P. Chen, J.C. Hou, and L. Sha, “Dynamic Clustering for Acoustic Target Tracking in Wireless Sensor Networks,” IEEE Trans. Mobile Computing, vol. 3, no. 3, pp. 258-271, July 2004. M. Noel, P. Joshi, and T. Jannett, “Improved Maximum Likelihood Estimation of Target Position in Wireless Sensor Networks Using Particle Swarm Optimization,” Proc. Third Int’l Conf. Information Technology: New Generations, Apr. 2006. T. Zhao and A. Nehorai, “Information-Driven Distributed Maximum Likelihood Estimation Based on Gauss-Newton Method in Wireless Sensor Networks,” IEEE Trans. Signal Processing, vol. 55, no. 9, pp. 4669-4682, Sept. 2007. L.M. Kaplan, “Global Node Selection for Localization in a Distributed Sensor Network,” IEEE Trans. Aerospace Electronics Systems, vol. 42, no. 1, pp. 113-135, Jan. 2006. Y. Liu and Z. Sun, “EKF-Based Adaptive Sensor Scheduling forTarget Tracking,” Proc. IEEE Int’l Symp. Information Science and Eng. (ISISE), vol. 2, pp. 171-174, Dec. 2008. S. Banerjee and S. Khuller, “A Clustering Scheme for Hierarchical Control in Multi-Hop Wireless Networks,” Proc. IEEE INFOCOM, Apr. 2001. M.G. Rabbat and R.D. Nowak, “Decentralized Source Localization and Tracking,” Proc. IEEE Int’l Conf. Acoustics, Speech, and Signal Processing, vol. 3, pp. 921-924, May 2004. M. McGuire, K.N. Plataniotis, and A.N. Venetsanopoulos, “Data Fusion of Power and Time Measurements for Mobile Terminal Location,” IEEE Trans. Mobile Computing, vol. 4, no. 2, pp. 142-153, Mar./Apr. 2005. X.R. Li and V.P. Jilkov, “A Survey of Maneuvering Target Tracking Part IV: Decision-Based Methods,” Proc. SPIE Conf. Signal and Data Processing of Small Targets, pp. 511-534, Apr. 2002. Y. Bar-Shalom, X.R. Li, and T. Kirubarajan, “Estimation with Application to Tracking and Navigation.” John Wiley, 2001. www.ijesi.org 56 | Page