SlideShare uma empresa Scribd logo
1 de 5
Baixar para ler offline
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print),
ISSN 0976 – 6553(Online) Volume 5, Issue 6, June (2014), pp. 44-48 © IAEME
44
SIMULATION OF SRM USING FUZZY LOGIC
1
Kiran Srivastava, 2
B.K. Singh
1
RKGIT, Ghaziabad, India
2
Kumaon Engineering College, Dwarhat India
ABSTRACT
This paper presents the use of fuzzy logic for switched reluctance motor (SRM) speed. The
(Fuzzy Logic Control) FLC performs a PI-like control strategy, giving the current reference variation
based on speed error and its change. The performance of the drive system was evaluated through
digital simulations through the toolbox Simulink/ Matlab program Fuzzy controller and fuzzy logic
are generally non-linear systems; hence they can provide better performance in this case. Fuzzy
controller is mostly presented as a direct fuzzy controller or as a system, which realizes continued
changing parameters of other controller and the decision form of the fuzzy control is illustrated and
simulated.
Key words: Switched Reluctance Motor, Fuzzy Logic Controller, Simulation.
INTRODUCTION
The switched reluctance motor (SRM) has becoming an attractive alternative in variable
speed drives, due to its advantages such as structural simplicity, high reliability and low cost [1,2].
Many papers have been written about SRM concerning design and control [3]. An important
characteristic of the SRM is that the inductance of the magnetic circuit is a nonlinear function of the
phase current and rotor position. So, for the control and optimization of this drive, a precise magnetic
model is necessary. To obtain this model is not an easy task, because the magnetic circuit operates at
varying levels of saturation under operating conditions [4]. Further, the nonlinear characteristic of
this plant represents a challenge to classical control. To overcome this drawback, some alternatives
have been suggested in [5], using fuzzy and neuronal systems.
A PI Controller (proportional-integral controller) is a special case of the PID controller in
which the derivative of the error is not used. Fuzzy logic controller is an intelligent controller which
uses fuzzy logic to process the input. Fuzzy logic is a many valued logic which is much like human
reasoning.
INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING &
TECHNOLOGY (IJEET)
ISSN 0976 – 6545(Print)
ISSN 0976 – 6553(Online)
Volume 5, Issue 6, June (2014), pp. 44-48
© IAEME: www.iaeme.com/ijeet.asp
Journal Impact Factor (2014): 6.8310 (Calculated by GISI)
www.jifactor.com
IJEET
© I A E M E
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print),
ISSN 0976 – 6553(Online) Volume 5, Issue 6, June (2014), pp. 44-48 © IAEME
45
In this paper we present a study by simulation of the use of a FLC for SR drive. The SRM
simulated has a structure of eight poles on the stator and six on the rotor. The objective of the FLC is
to present a good performance.
STRUCTURE OF SRM
The Switched Reluctance Motor has gained significant interest in the field of industrial drive.
It has numerous advantages like simple and robust construction, reliability, low manufacturing cost,
high starting torque, high efficiency, and high speed capacity. The stator has concentrated windings
wound field coils and the rotor has no coils or magnets. The stator and rotor have salient poles;
hence, the machine is a doubly salient machine. Switched Reluctance Motor is a highly nonlinear
control plant and operates in saturation to maximize the torque output. The principle of operation is
such that the motion is produced as a result of variable reluctance in the air gap between the rotor
and the stator. When the voltage is applied to the stator phase, the rotor tries to rotate in the direction
of minimum reluctance position producing reluctance torque. In order to achieve a full rotation of the
motor, the windings must be energized in the correct sequence. The Switched Reluctance Motor
operates in all the four quadrants and it is suitable to operate in hazardous areas also [7].
Fig. 1: Structure of 4 phase 8/6 SRM
The voltage equation for SRM is given by,
V= r i +dΨ / dt , ψ=Li=Nφ …… (1)
For r = 0
V = L di/dt + i (dL /dθ) (dθ/dt)….. (2)
V = L di/dt + i ω (dL/dθ) …………. (3)
T = ½ i2
dL/dӨ…………………….. (4)
Where V is voltage, L is Inductance, r is resistance in winding, θ is rotor position, Ψ is flux linkages,
i current in each phase. This equation shows that the torque developed depends only on the
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print),
ISSN 0976 – 6553(Online) Volume 5, Issue 6, June (2014), pp. 44-48 © IAEME
46
magnitude of current & direction of dL/dӨ but independent of direction of current [8].
MOTOR SIMULATION
Fig. 2 shows a simulation diagram in Matlab- Simulink. In the simulation is thought SRM 8/6
making use for modeling a non-linearity called look-up table, which relatively truly matches a
nonlinear system. The fuzzy logic makes the parameter change on the basis of input current and
mutual position of rotor and stator pole. This is control method of SRM with current controller.
There are also included blocks in the regulation structure for determination the conduction of
individual motor phases [9], [10].
Fig. 2: SRM control structure in Matlab-Simulink
FUZZY LOGIC CONTROLLER
It is good to remind for introduction that the general logics was developed for the change of
parameters of PID controller. The fuzzy logics was used for the creating PID controller with
nonlinear setting of parameters K, TI, a TD for the reducing overshoot or acceleration of transient
effect. In this case the fuzzy controllers evaluates values of input. The value of current PI controller
parameters is changed according to set the rule base and function of pertinence in every step. The
rule of fuzzy logic may be in form:
IF current is small AND position is high
THEN output is small
The same results can be obtained, if you use the fuzzy PI controller with nonlinear setting.
Until you know the setting of PI controller parameters for an environment of the operating points in
which regulation system is. It can be selected the correct setting of controller parameters with help of
fuzzy supervisor. There is not to think only one complexion fuzzy PI controller due to rising severity
in these simulation cases and from practical overview. The fuzzy controller is with two inputs and
division ‘universe’ on 7 functions to needs 49 rules. When you have the same number of division
universe and you want to rise up the number of inputs for good description of nonlinear system with
4 inputs then the number of rule rise up to 2401. On this account it is important to combine more
fuzzy structures with inputs less than one fuzzy system with huge number of rule [11]. We can
describe fuzzy system by next equation:
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print),
ISSN 0976 – 6553(Online) Volume 5, Issue 6, June (2014), pp. 44-48 © IAEME
47
output = D { interference{ F(input_current), F( input_position)} }
where F is representing fuzzification, D defuzzification. It was selected the variation which is
observing the same PI controller which is using superior adaptation fuzzy controller for the change
of parameters. The inner structure of adaptation block from Fig. 2, we can see in Fig. 3. It is clear,
that adaptation is performed in certain range of input values which have the influence for motion of
SRM. The outputs of block are signals corresponding to gain and time constant for classical PI
controller.
Fig. 3: Scheme of fuzzy controller for parameters setting
The fuzzy controller which has two inputs and one output too. We can set its nonlinear
behave with the aid of rule base. It is expert system, where the rule base entry is on the foundation of
knowledge and experience of an expert with system. The control surface is result of designed fuzzy
system.
The table 1 shows the rule data base
SIMULATION RESULT
Designed adaptation controller for parameters setting was verified on described mathematic
model. The courses introduced below in figures are achieved for changing applied current value from
30A to 50A. There are showed the phase current courses with corresponding logic signal value
which corresponds to leading specific phase applied time.
Fig.4: Phase current Ia time courses Fig 5: Phase current Ia time courses
with Iref = 30A with Iref = 50A
International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print),
ISSN 0976 – 6553(Online) Volume 5, Issue 6, June (2014), pp. 44-48 © IAEME
48
CONCLUSION
The result of designed system of current control with classic PI controller, which is observed
by fuzzy supervisor, is improved current courses during changing system parameters. The main
output of designed fuzzy supervisor for simple review of system non-linearity is so-called control
area which determines non-linearity of the system. Current control independence during changing
system parameters is shown in figures 4 and 5 of current courses. The independence is given by the
change of the PI controller parameters. As it was mentioned before, the main advantage of fuzzy
control is a possibility to create for the drive suitable control on basic rules. We can achieve better
control results because of the fuzzy systems non-linearity. It is confirmed by these simulation results.
REFERENCES
[1] T.J.E.Miller “Switched Reluctance Motor and their control.”Magna Physics Publishing and
Claredon Press-Oxford, 1993.
[2] Le- Huy,’ Switched Reluctance Motor Drive: A survey ‘”Seminano Inernacional de
MotoresElectricos e acionamentos Regulaveis Proceeding Sao Paulo, Brazil.
pp -221-138, May,1991.
[3] J.J.Gribble, P.C.Kjaer, C.Cossar, T.J.E.Miller. “Optical commutation angles for current
control Switched Reluctance Motor,” power Electronics and Variable Speed Drives
Conference Publication No. 429, IEE, pp87-91, September 1996.
[4] C.Elmas, s.Sargiroglu, I colak, G.Bal, “Modelling of switched Reluctance drive based on
artificial neural networks”. Power Electronics and Variable Speed Drives Conference
Proceedings, pp 7-12, 1994.
[5] D.S.Reay. M.M Moud, T.C.Green, B.W.Williams Switched Reluctance Motor control via
fuzzy adaptive systems”. IEEE Control system, June 1995.
[6] J.M.Mendel. “Fuzzy Logic system for engineering: Tutorial Proceedings of the IEEE vol. 83,
no.3,March,1995.
[7] S. Vijayan, S. Paramasivam, R. Arumugam, S. S. Dash, K. J. Poornaselvan, "A Practical
approach to the Design and Implementation of Speed Controller for Switched Reluctance
Motor Drive using Fuzzy Logic Controller", Journal of Electrical Engineering, vol.58, No.1,
2007, pp. 39-46.
[8] Vikas S. Wadnerkar, Dr.G.TulasiRam Das, Dr.A.D.Rajkumar, “Performance Analysis of
Switched Reluctance Motor; Design, Modeling and Simulation of 8/6 Switched Reluctance
Motor”, Journal of Theoretical and Applied Information Technology, 2005-2008.
[9] KOPECKÝ, M.: Paper to Control of Switched Reluctance Motor. PhD thesis, VŠB-Technical
University of Ostrava, 2002.
[10] NEBORAK, I.: Modelling and Simulation of Electrical Control Drives. VŠB-Technical
University of Ostrava, 2002. ISBN 80-248- 0083-7.
[11] VAS, P.: Artificial-Intelligence-Based Electrical Machines and Drives. Oxford science
publication, 1999. ISBN019859397X.
[12] Mahavir Singh Naruka, D S Chauhan and S N Singh, “Power Factor Improvement in
Switched Reluctance Motor Drive using PWM Converter”, International Journal of Electrical
Engineering & Technology (IJEET), Volume 4, Issue 4, 2013, pp. 48 - 55, ISSN Print:
0976-6545, ISSN Online: 0976-6553.
[13] Pradeep B Jyoti, J.Amarnath and D.Subbarayudu, “Application of Neuro-Fuzzy Controller in
Torque Ripple Minimization of Vector Controlled VSI Induction Motor Drive”, International
Journal of Electrical Engineering & Technology (IJEET), Volume 4, Issue 3, 2013,
pp. 121 - 127, ISSN Print: 0976-6545, ISSN Online: 0976-6553.

Mais conteúdo relacionado

Mais procurados

STATOR FLUX OPTIMIZATION ON DIRECT TORQUE CONTROL WITH FUZZY LOGIC
STATOR FLUX OPTIMIZATION ON DIRECT TORQUE CONTROL WITH FUZZY LOGIC STATOR FLUX OPTIMIZATION ON DIRECT TORQUE CONTROL WITH FUZZY LOGIC
STATOR FLUX OPTIMIZATION ON DIRECT TORQUE CONTROL WITH FUZZY LOGIC cscpconf
 
07 7924 9058-1-pb
07 7924 9058-1-pb07 7924 9058-1-pb
07 7924 9058-1-pbIAESIJEECS
 
Closed loop performance investigation
Closed loop performance investigationClosed loop performance investigation
Closed loop performance investigationPrabhakar Captain
 
DC Drive Speed Control using Fuzzy Logic Controller
DC Drive Speed Control using Fuzzy Logic ControllerDC Drive Speed Control using Fuzzy Logic Controller
DC Drive Speed Control using Fuzzy Logic ControllerTridib Bose
 
Integrated fuzzy logic controller for a Brushless DC Servomotor system
Integrated fuzzylogic controller for a Brushless DC Servomotor systemIntegrated fuzzylogic controller for a Brushless DC Servomotor system
Integrated fuzzy logic controller for a Brushless DC Servomotor systemEhab Al hamayel
 
IRJET- Analysis of 3-Phase Induction Motor with High Step-Up PWM DC-DC Conver...
IRJET- Analysis of 3-Phase Induction Motor with High Step-Up PWM DC-DC Conver...IRJET- Analysis of 3-Phase Induction Motor with High Step-Up PWM DC-DC Conver...
IRJET- Analysis of 3-Phase Induction Motor with High Step-Up PWM DC-DC Conver...IRJET Journal
 
IRJET- Excitation Control of Synchronous Generator using a Fuzzy Logic based ...
IRJET- Excitation Control of Synchronous Generator using a Fuzzy Logic based ...IRJET- Excitation Control of Synchronous Generator using a Fuzzy Logic based ...
IRJET- Excitation Control of Synchronous Generator using a Fuzzy Logic based ...IRJET Journal
 
Automatic Generation Control of Multi-Area Power System with Generating Rate ...
Automatic Generation Control of Multi-Area Power System with Generating Rate ...Automatic Generation Control of Multi-Area Power System with Generating Rate ...
Automatic Generation Control of Multi-Area Power System with Generating Rate ...IJAPEJOURNAL
 
Speedcontrolofdcmotorbyfuzzycontroller 120320013939-phpapp01
Speedcontrolofdcmotorbyfuzzycontroller 120320013939-phpapp01Speedcontrolofdcmotorbyfuzzycontroller 120320013939-phpapp01
Speedcontrolofdcmotorbyfuzzycontroller 120320013939-phpapp01mustafaece
 
Performance Evaluation of Three Phase Induction Motor using MOSFET & IGBT Bas...
Performance Evaluation of Three Phase Induction Motor using MOSFET & IGBT Bas...Performance Evaluation of Three Phase Induction Motor using MOSFET & IGBT Bas...
Performance Evaluation of Three Phase Induction Motor using MOSFET & IGBT Bas...IRJET Journal
 
Design of Fuzzy Logic Controller for Speed Regulation of BLDC motor using MATLAB
Design of Fuzzy Logic Controller for Speed Regulation of BLDC motor using MATLABDesign of Fuzzy Logic Controller for Speed Regulation of BLDC motor using MATLAB
Design of Fuzzy Logic Controller for Speed Regulation of BLDC motor using MATLABijsrd.com
 
Pso based fractional order automatic generation controller for two area power...
Pso based fractional order automatic generation controller for two area power...Pso based fractional order automatic generation controller for two area power...
Pso based fractional order automatic generation controller for two area power...IAEME Publication
 
Speed Control of Induction Motor by Using Intelligence Techniques
Speed Control of Induction Motor by Using Intelligence TechniquesSpeed Control of Induction Motor by Using Intelligence Techniques
Speed Control of Induction Motor by Using Intelligence TechniquesIJERA Editor
 
Direct Torque Control of a Bldc Motor Based on Computing Technique
Direct Torque Control of a Bldc Motor Based on Computing TechniqueDirect Torque Control of a Bldc Motor Based on Computing Technique
Direct Torque Control of a Bldc Motor Based on Computing TechniqueIOSR Journals
 
Design of fuzzzy pid controller for bldc motor
Design of fuzzzy pid controller for bldc motorDesign of fuzzzy pid controller for bldc motor
Design of fuzzzy pid controller for bldc motorMishal Hussain
 

Mais procurados (19)

Performance Study of Enhanced Non-Linear PID Control Applied on Brushless DC ...
Performance Study of Enhanced Non-Linear PID Control Applied on Brushless DC ...Performance Study of Enhanced Non-Linear PID Control Applied on Brushless DC ...
Performance Study of Enhanced Non-Linear PID Control Applied on Brushless DC ...
 
STATOR FLUX OPTIMIZATION ON DIRECT TORQUE CONTROL WITH FUZZY LOGIC
STATOR FLUX OPTIMIZATION ON DIRECT TORQUE CONTROL WITH FUZZY LOGIC STATOR FLUX OPTIMIZATION ON DIRECT TORQUE CONTROL WITH FUZZY LOGIC
STATOR FLUX OPTIMIZATION ON DIRECT TORQUE CONTROL WITH FUZZY LOGIC
 
07 7924 9058-1-pb
07 7924 9058-1-pb07 7924 9058-1-pb
07 7924 9058-1-pb
 
D011113035
D011113035D011113035
D011113035
 
Closed loop performance investigation
Closed loop performance investigationClosed loop performance investigation
Closed loop performance investigation
 
DC Drive Speed Control using Fuzzy Logic Controller
DC Drive Speed Control using Fuzzy Logic ControllerDC Drive Speed Control using Fuzzy Logic Controller
DC Drive Speed Control using Fuzzy Logic Controller
 
Integrated fuzzy logic controller for a Brushless DC Servomotor system
Integrated fuzzylogic controller for a Brushless DC Servomotor systemIntegrated fuzzylogic controller for a Brushless DC Servomotor system
Integrated fuzzy logic controller for a Brushless DC Servomotor system
 
IRJET- Analysis of 3-Phase Induction Motor with High Step-Up PWM DC-DC Conver...
IRJET- Analysis of 3-Phase Induction Motor with High Step-Up PWM DC-DC Conver...IRJET- Analysis of 3-Phase Induction Motor with High Step-Up PWM DC-DC Conver...
IRJET- Analysis of 3-Phase Induction Motor with High Step-Up PWM DC-DC Conver...
 
IRJET- Excitation Control of Synchronous Generator using a Fuzzy Logic based ...
IRJET- Excitation Control of Synchronous Generator using a Fuzzy Logic based ...IRJET- Excitation Control of Synchronous Generator using a Fuzzy Logic based ...
IRJET- Excitation Control of Synchronous Generator using a Fuzzy Logic based ...
 
Design and implementation of variable and constant load for induction motor
Design and implementation of variable and constant load for induction motorDesign and implementation of variable and constant load for induction motor
Design and implementation of variable and constant load for induction motor
 
40620130101003
4062013010100340620130101003
40620130101003
 
Automatic Generation Control of Multi-Area Power System with Generating Rate ...
Automatic Generation Control of Multi-Area Power System with Generating Rate ...Automatic Generation Control of Multi-Area Power System with Generating Rate ...
Automatic Generation Control of Multi-Area Power System with Generating Rate ...
 
Speedcontrolofdcmotorbyfuzzycontroller 120320013939-phpapp01
Speedcontrolofdcmotorbyfuzzycontroller 120320013939-phpapp01Speedcontrolofdcmotorbyfuzzycontroller 120320013939-phpapp01
Speedcontrolofdcmotorbyfuzzycontroller 120320013939-phpapp01
 
Performance Evaluation of Three Phase Induction Motor using MOSFET & IGBT Bas...
Performance Evaluation of Three Phase Induction Motor using MOSFET & IGBT Bas...Performance Evaluation of Three Phase Induction Motor using MOSFET & IGBT Bas...
Performance Evaluation of Three Phase Induction Motor using MOSFET & IGBT Bas...
 
Design of Fuzzy Logic Controller for Speed Regulation of BLDC motor using MATLAB
Design of Fuzzy Logic Controller for Speed Regulation of BLDC motor using MATLABDesign of Fuzzy Logic Controller for Speed Regulation of BLDC motor using MATLAB
Design of Fuzzy Logic Controller for Speed Regulation of BLDC motor using MATLAB
 
Pso based fractional order automatic generation controller for two area power...
Pso based fractional order automatic generation controller for two area power...Pso based fractional order automatic generation controller for two area power...
Pso based fractional order automatic generation controller for two area power...
 
Speed Control of Induction Motor by Using Intelligence Techniques
Speed Control of Induction Motor by Using Intelligence TechniquesSpeed Control of Induction Motor by Using Intelligence Techniques
Speed Control of Induction Motor by Using Intelligence Techniques
 
Direct Torque Control of a Bldc Motor Based on Computing Technique
Direct Torque Control of a Bldc Motor Based on Computing TechniqueDirect Torque Control of a Bldc Motor Based on Computing Technique
Direct Torque Control of a Bldc Motor Based on Computing Technique
 
Design of fuzzzy pid controller for bldc motor
Design of fuzzzy pid controller for bldc motorDesign of fuzzzy pid controller for bldc motor
Design of fuzzzy pid controller for bldc motor
 

Semelhante a 40220140506005

FUZZY LOGIC CONTROL DESIGN FOR ELECTRICAL MACHINES
FUZZY LOGIC CONTROL DESIGN FOR ELECTRICAL MACHINESFUZZY LOGIC CONTROL DESIGN FOR ELECTRICAL MACHINES
FUZZY LOGIC CONTROL DESIGN FOR ELECTRICAL MACHINESIAEME Publication
 
Position control of a single arm manipulator using ga pid controller
Position control of a single arm manipulator using ga pid controllerPosition control of a single arm manipulator using ga pid controller
Position control of a single arm manipulator using ga pid controllerIAEME Publication
 
Comparison Analysis of Indirect FOC Induction Motor Drive using PI, Anti-Wind...
Comparison Analysis of Indirect FOC Induction Motor Drive using PI, Anti-Wind...Comparison Analysis of Indirect FOC Induction Motor Drive using PI, Anti-Wind...
Comparison Analysis of Indirect FOC Induction Motor Drive using PI, Anti-Wind...IAES-IJPEDS
 
Speed control of dc motor using relay feedback tuned pi
Speed control of dc motor using relay feedback tuned piSpeed control of dc motor using relay feedback tuned pi
Speed control of dc motor using relay feedback tuned piAlexander Decker
 
IRJET- Design and Analysis of Fuzzy and GA-PID Controllers for Optimized Perf...
IRJET- Design and Analysis of Fuzzy and GA-PID Controllers for Optimized Perf...IRJET- Design and Analysis of Fuzzy and GA-PID Controllers for Optimized Perf...
IRJET- Design and Analysis of Fuzzy and GA-PID Controllers for Optimized Perf...IRJET Journal
 
IRJET- Stability Enhancement using Power System Stabilizer with Optimization ...
IRJET- Stability Enhancement using Power System Stabilizer with Optimization ...IRJET- Stability Enhancement using Power System Stabilizer with Optimization ...
IRJET- Stability Enhancement using Power System Stabilizer with Optimization ...IRJET Journal
 
Automatic generation control of thermal generating unit by using conventional...
Automatic generation control of thermal generating unit by using conventional...Automatic generation control of thermal generating unit by using conventional...
Automatic generation control of thermal generating unit by using conventional...IAEME Publication
 
IRJET- Optimum Design of PSO based Tuning using PID Controller for an Automat...
IRJET- Optimum Design of PSO based Tuning using PID Controller for an Automat...IRJET- Optimum Design of PSO based Tuning using PID Controller for an Automat...
IRJET- Optimum Design of PSO based Tuning using PID Controller for an Automat...IRJET Journal
 
An external plunge grinding machine with control panel automation technique
An external plunge grinding machine with control panel automation techniqueAn external plunge grinding machine with control panel automation technique
An external plunge grinding machine with control panel automation techniqueIAEME Publication
 
Optimal tuning of pid power system stabilizer in simulink environment
Optimal tuning of pid power system stabilizer in simulink environmentOptimal tuning of pid power system stabilizer in simulink environment
Optimal tuning of pid power system stabilizer in simulink environmentIAEME Publication
 
IRJET- Speed Control of Induction Motor using Hybrid PID Fuzzy Controller
IRJET- Speed Control of Induction Motor using Hybrid PID Fuzzy ControllerIRJET- Speed Control of Induction Motor using Hybrid PID Fuzzy Controller
IRJET- Speed Control of Induction Motor using Hybrid PID Fuzzy ControllerIRJET Journal
 
Design and implementation of antenna control servo system for satellite grou
Design and implementation of antenna control servo system for satellite grouDesign and implementation of antenna control servo system for satellite grou
Design and implementation of antenna control servo system for satellite grouIAEME Publication
 
Speed control of a dc motor a matlab approach
Speed control of a dc motor a matlab approachSpeed control of a dc motor a matlab approach
Speed control of a dc motor a matlab approachIAEME Publication
 
Pid parameters optimization using adaptive pso algorithm for a dcsm positi
Pid parameters optimization using adaptive pso algorithm for a dcsm positiPid parameters optimization using adaptive pso algorithm for a dcsm positi
Pid parameters optimization using adaptive pso algorithm for a dcsm positiIAEME Publication
 
Implementation of PI Controller for 4Ф SRM Drive Using TMS320F28335
Implementation of PI Controller for 4Ф SRM Drive Using TMS320F28335Implementation of PI Controller for 4Ф SRM Drive Using TMS320F28335
Implementation of PI Controller for 4Ф SRM Drive Using TMS320F28335IJPEDS-IAES
 
Speed Sensorless Vector Control of Induction Motor Drive with PI and Fuzzy Co...
Speed Sensorless Vector Control of Induction Motor Drive with PI and Fuzzy Co...Speed Sensorless Vector Control of Induction Motor Drive with PI and Fuzzy Co...
Speed Sensorless Vector Control of Induction Motor Drive with PI and Fuzzy Co...IJPEDS-IAES
 

Semelhante a 40220140506005 (20)

FUZZY LOGIC CONTROL DESIGN FOR ELECTRICAL MACHINES
FUZZY LOGIC CONTROL DESIGN FOR ELECTRICAL MACHINESFUZZY LOGIC CONTROL DESIGN FOR ELECTRICAL MACHINES
FUZZY LOGIC CONTROL DESIGN FOR ELECTRICAL MACHINES
 
Position control of a single arm manipulator using ga pid controller
Position control of a single arm manipulator using ga pid controllerPosition control of a single arm manipulator using ga pid controller
Position control of a single arm manipulator using ga pid controller
 
Comparison Analysis of Indirect FOC Induction Motor Drive using PI, Anti-Wind...
Comparison Analysis of Indirect FOC Induction Motor Drive using PI, Anti-Wind...Comparison Analysis of Indirect FOC Induction Motor Drive using PI, Anti-Wind...
Comparison Analysis of Indirect FOC Induction Motor Drive using PI, Anti-Wind...
 
Speed control of dc motor using relay feedback tuned pi
Speed control of dc motor using relay feedback tuned piSpeed control of dc motor using relay feedback tuned pi
Speed control of dc motor using relay feedback tuned pi
 
IRJET- Design and Analysis of Fuzzy and GA-PID Controllers for Optimized Perf...
IRJET- Design and Analysis of Fuzzy and GA-PID Controllers for Optimized Perf...IRJET- Design and Analysis of Fuzzy and GA-PID Controllers for Optimized Perf...
IRJET- Design and Analysis of Fuzzy and GA-PID Controllers for Optimized Perf...
 
IRJET- Stability Enhancement using Power System Stabilizer with Optimization ...
IRJET- Stability Enhancement using Power System Stabilizer with Optimization ...IRJET- Stability Enhancement using Power System Stabilizer with Optimization ...
IRJET- Stability Enhancement using Power System Stabilizer with Optimization ...
 
Takagi-Sugeno Fuzzy Perpose as Speed Controller in Indirect Field Oriented Co...
Takagi-Sugeno Fuzzy Perpose as Speed Controller in Indirect Field Oriented Co...Takagi-Sugeno Fuzzy Perpose as Speed Controller in Indirect Field Oriented Co...
Takagi-Sugeno Fuzzy Perpose as Speed Controller in Indirect Field Oriented Co...
 
40220130405010 2-3
40220130405010 2-340220130405010 2-3
40220130405010 2-3
 
Automatic generation control of thermal generating unit by using conventional...
Automatic generation control of thermal generating unit by using conventional...Automatic generation control of thermal generating unit by using conventional...
Automatic generation control of thermal generating unit by using conventional...
 
IRJET- Optimum Design of PSO based Tuning using PID Controller for an Automat...
IRJET- Optimum Design of PSO based Tuning using PID Controller for an Automat...IRJET- Optimum Design of PSO based Tuning using PID Controller for an Automat...
IRJET- Optimum Design of PSO based Tuning using PID Controller for an Automat...
 
An external plunge grinding machine with control panel automation technique
An external plunge grinding machine with control panel automation techniqueAn external plunge grinding machine with control panel automation technique
An external plunge grinding machine with control panel automation technique
 
Optimal tuning of pid power system stabilizer in simulink environment
Optimal tuning of pid power system stabilizer in simulink environmentOptimal tuning of pid power system stabilizer in simulink environment
Optimal tuning of pid power system stabilizer in simulink environment
 
IRJET- Speed Control of Induction Motor using Hybrid PID Fuzzy Controller
IRJET- Speed Control of Induction Motor using Hybrid PID Fuzzy ControllerIRJET- Speed Control of Induction Motor using Hybrid PID Fuzzy Controller
IRJET- Speed Control of Induction Motor using Hybrid PID Fuzzy Controller
 
Design and implementation of antenna control servo system for satellite grou
Design and implementation of antenna control servo system for satellite grouDesign and implementation of antenna control servo system for satellite grou
Design and implementation of antenna control servo system for satellite grou
 
U04405117121
U04405117121U04405117121
U04405117121
 
Speed control of a dc motor a matlab approach
Speed control of a dc motor a matlab approachSpeed control of a dc motor a matlab approach
Speed control of a dc motor a matlab approach
 
Pid parameters optimization using adaptive pso algorithm for a dcsm positi
Pid parameters optimization using adaptive pso algorithm for a dcsm positiPid parameters optimization using adaptive pso algorithm for a dcsm positi
Pid parameters optimization using adaptive pso algorithm for a dcsm positi
 
Implementation of PI Controller for 4Ф SRM Drive Using TMS320F28335
Implementation of PI Controller for 4Ф SRM Drive Using TMS320F28335Implementation of PI Controller for 4Ф SRM Drive Using TMS320F28335
Implementation of PI Controller for 4Ф SRM Drive Using TMS320F28335
 
Design of H_∞ for induction motor
Design of H_∞ for induction motorDesign of H_∞ for induction motor
Design of H_∞ for induction motor
 
Speed Sensorless Vector Control of Induction Motor Drive with PI and Fuzzy Co...
Speed Sensorless Vector Control of Induction Motor Drive with PI and Fuzzy Co...Speed Sensorless Vector Control of Induction Motor Drive with PI and Fuzzy Co...
Speed Sensorless Vector Control of Induction Motor Drive with PI and Fuzzy Co...
 

Mais de IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSIAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSIAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSIAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSIAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOIAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYIAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEIAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTIAEME Publication
 

Mais de IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Último

Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity PlanDatabarracks
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxLoriGlavin3
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxBkGupta21
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024Lonnie McRorey
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxLoriGlavin3
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.Curtis Poe
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersNicole Novielli
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebUiPathCommunity
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rick Flair
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsPixlogix Infotech
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 

Último (20)

Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
How to write a Business Continuity Plan
How to write a Business Continuity PlanHow to write a Business Continuity Plan
How to write a Business Continuity Plan
 
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptxThe Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
The Fit for Passkeys for Employee and Consumer Sign-ins: FIDO Paris Seminar.pptx
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
unit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptxunit 4 immunoblotting technique complete.pptx
unit 4 immunoblotting technique complete.pptx
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024TeamStation AI System Report LATAM IT Salaries 2024
TeamStation AI System Report LATAM IT Salaries 2024
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
The State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptxThe State of Passkeys with FIDO Alliance.pptx
The State of Passkeys with FIDO Alliance.pptx
 
How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.How AI, OpenAI, and ChatGPT impact business and software.
How AI, OpenAI, and ChatGPT impact business and software.
 
A Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software DevelopersA Journey Into the Emotions of Software Developers
A Journey Into the Emotions of Software Developers
 
Dev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio WebDev Dives: Streamline document processing with UiPath Studio Web
Dev Dives: Streamline document processing with UiPath Studio Web
 
Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...Rise of the Machines: Known As Drones...
Rise of the Machines: Known As Drones...
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
The Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and ConsThe Ultimate Guide to Choosing WordPress Pros and Cons
The Ultimate Guide to Choosing WordPress Pros and Cons
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 

40220140506005

  • 1. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 5, Issue 6, June (2014), pp. 44-48 © IAEME 44 SIMULATION OF SRM USING FUZZY LOGIC 1 Kiran Srivastava, 2 B.K. Singh 1 RKGIT, Ghaziabad, India 2 Kumaon Engineering College, Dwarhat India ABSTRACT This paper presents the use of fuzzy logic for switched reluctance motor (SRM) speed. The (Fuzzy Logic Control) FLC performs a PI-like control strategy, giving the current reference variation based on speed error and its change. The performance of the drive system was evaluated through digital simulations through the toolbox Simulink/ Matlab program Fuzzy controller and fuzzy logic are generally non-linear systems; hence they can provide better performance in this case. Fuzzy controller is mostly presented as a direct fuzzy controller or as a system, which realizes continued changing parameters of other controller and the decision form of the fuzzy control is illustrated and simulated. Key words: Switched Reluctance Motor, Fuzzy Logic Controller, Simulation. INTRODUCTION The switched reluctance motor (SRM) has becoming an attractive alternative in variable speed drives, due to its advantages such as structural simplicity, high reliability and low cost [1,2]. Many papers have been written about SRM concerning design and control [3]. An important characteristic of the SRM is that the inductance of the magnetic circuit is a nonlinear function of the phase current and rotor position. So, for the control and optimization of this drive, a precise magnetic model is necessary. To obtain this model is not an easy task, because the magnetic circuit operates at varying levels of saturation under operating conditions [4]. Further, the nonlinear characteristic of this plant represents a challenge to classical control. To overcome this drawback, some alternatives have been suggested in [5], using fuzzy and neuronal systems. A PI Controller (proportional-integral controller) is a special case of the PID controller in which the derivative of the error is not used. Fuzzy logic controller is an intelligent controller which uses fuzzy logic to process the input. Fuzzy logic is a many valued logic which is much like human reasoning. INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) ISSN 0976 – 6545(Print) ISSN 0976 – 6553(Online) Volume 5, Issue 6, June (2014), pp. 44-48 © IAEME: www.iaeme.com/ijeet.asp Journal Impact Factor (2014): 6.8310 (Calculated by GISI) www.jifactor.com IJEET © I A E M E
  • 2. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 5, Issue 6, June (2014), pp. 44-48 © IAEME 45 In this paper we present a study by simulation of the use of a FLC for SR drive. The SRM simulated has a structure of eight poles on the stator and six on the rotor. The objective of the FLC is to present a good performance. STRUCTURE OF SRM The Switched Reluctance Motor has gained significant interest in the field of industrial drive. It has numerous advantages like simple and robust construction, reliability, low manufacturing cost, high starting torque, high efficiency, and high speed capacity. The stator has concentrated windings wound field coils and the rotor has no coils or magnets. The stator and rotor have salient poles; hence, the machine is a doubly salient machine. Switched Reluctance Motor is a highly nonlinear control plant and operates in saturation to maximize the torque output. The principle of operation is such that the motion is produced as a result of variable reluctance in the air gap between the rotor and the stator. When the voltage is applied to the stator phase, the rotor tries to rotate in the direction of minimum reluctance position producing reluctance torque. In order to achieve a full rotation of the motor, the windings must be energized in the correct sequence. The Switched Reluctance Motor operates in all the four quadrants and it is suitable to operate in hazardous areas also [7]. Fig. 1: Structure of 4 phase 8/6 SRM The voltage equation for SRM is given by, V= r i +dΨ / dt , ψ=Li=Nφ …… (1) For r = 0 V = L di/dt + i (dL /dθ) (dθ/dt)….. (2) V = L di/dt + i ω (dL/dθ) …………. (3) T = ½ i2 dL/dӨ…………………….. (4) Where V is voltage, L is Inductance, r is resistance in winding, θ is rotor position, Ψ is flux linkages, i current in each phase. This equation shows that the torque developed depends only on the
  • 3. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 5, Issue 6, June (2014), pp. 44-48 © IAEME 46 magnitude of current & direction of dL/dӨ but independent of direction of current [8]. MOTOR SIMULATION Fig. 2 shows a simulation diagram in Matlab- Simulink. In the simulation is thought SRM 8/6 making use for modeling a non-linearity called look-up table, which relatively truly matches a nonlinear system. The fuzzy logic makes the parameter change on the basis of input current and mutual position of rotor and stator pole. This is control method of SRM with current controller. There are also included blocks in the regulation structure for determination the conduction of individual motor phases [9], [10]. Fig. 2: SRM control structure in Matlab-Simulink FUZZY LOGIC CONTROLLER It is good to remind for introduction that the general logics was developed for the change of parameters of PID controller. The fuzzy logics was used for the creating PID controller with nonlinear setting of parameters K, TI, a TD for the reducing overshoot or acceleration of transient effect. In this case the fuzzy controllers evaluates values of input. The value of current PI controller parameters is changed according to set the rule base and function of pertinence in every step. The rule of fuzzy logic may be in form: IF current is small AND position is high THEN output is small The same results can be obtained, if you use the fuzzy PI controller with nonlinear setting. Until you know the setting of PI controller parameters for an environment of the operating points in which regulation system is. It can be selected the correct setting of controller parameters with help of fuzzy supervisor. There is not to think only one complexion fuzzy PI controller due to rising severity in these simulation cases and from practical overview. The fuzzy controller is with two inputs and division ‘universe’ on 7 functions to needs 49 rules. When you have the same number of division universe and you want to rise up the number of inputs for good description of nonlinear system with 4 inputs then the number of rule rise up to 2401. On this account it is important to combine more fuzzy structures with inputs less than one fuzzy system with huge number of rule [11]. We can describe fuzzy system by next equation:
  • 4. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 5, Issue 6, June (2014), pp. 44-48 © IAEME 47 output = D { interference{ F(input_current), F( input_position)} } where F is representing fuzzification, D defuzzification. It was selected the variation which is observing the same PI controller which is using superior adaptation fuzzy controller for the change of parameters. The inner structure of adaptation block from Fig. 2, we can see in Fig. 3. It is clear, that adaptation is performed in certain range of input values which have the influence for motion of SRM. The outputs of block are signals corresponding to gain and time constant for classical PI controller. Fig. 3: Scheme of fuzzy controller for parameters setting The fuzzy controller which has two inputs and one output too. We can set its nonlinear behave with the aid of rule base. It is expert system, where the rule base entry is on the foundation of knowledge and experience of an expert with system. The control surface is result of designed fuzzy system. The table 1 shows the rule data base SIMULATION RESULT Designed adaptation controller for parameters setting was verified on described mathematic model. The courses introduced below in figures are achieved for changing applied current value from 30A to 50A. There are showed the phase current courses with corresponding logic signal value which corresponds to leading specific phase applied time. Fig.4: Phase current Ia time courses Fig 5: Phase current Ia time courses with Iref = 30A with Iref = 50A
  • 5. International Journal of Electrical Engineering and Technology (IJEET), ISSN 0976 – 6545(Print), ISSN 0976 – 6553(Online) Volume 5, Issue 6, June (2014), pp. 44-48 © IAEME 48 CONCLUSION The result of designed system of current control with classic PI controller, which is observed by fuzzy supervisor, is improved current courses during changing system parameters. The main output of designed fuzzy supervisor for simple review of system non-linearity is so-called control area which determines non-linearity of the system. Current control independence during changing system parameters is shown in figures 4 and 5 of current courses. The independence is given by the change of the PI controller parameters. As it was mentioned before, the main advantage of fuzzy control is a possibility to create for the drive suitable control on basic rules. We can achieve better control results because of the fuzzy systems non-linearity. It is confirmed by these simulation results. REFERENCES [1] T.J.E.Miller “Switched Reluctance Motor and their control.”Magna Physics Publishing and Claredon Press-Oxford, 1993. [2] Le- Huy,’ Switched Reluctance Motor Drive: A survey ‘”Seminano Inernacional de MotoresElectricos e acionamentos Regulaveis Proceeding Sao Paulo, Brazil. pp -221-138, May,1991. [3] J.J.Gribble, P.C.Kjaer, C.Cossar, T.J.E.Miller. “Optical commutation angles for current control Switched Reluctance Motor,” power Electronics and Variable Speed Drives Conference Publication No. 429, IEE, pp87-91, September 1996. [4] C.Elmas, s.Sargiroglu, I colak, G.Bal, “Modelling of switched Reluctance drive based on artificial neural networks”. Power Electronics and Variable Speed Drives Conference Proceedings, pp 7-12, 1994. [5] D.S.Reay. M.M Moud, T.C.Green, B.W.Williams Switched Reluctance Motor control via fuzzy adaptive systems”. IEEE Control system, June 1995. [6] J.M.Mendel. “Fuzzy Logic system for engineering: Tutorial Proceedings of the IEEE vol. 83, no.3,March,1995. [7] S. Vijayan, S. Paramasivam, R. Arumugam, S. S. Dash, K. J. Poornaselvan, "A Practical approach to the Design and Implementation of Speed Controller for Switched Reluctance Motor Drive using Fuzzy Logic Controller", Journal of Electrical Engineering, vol.58, No.1, 2007, pp. 39-46. [8] Vikas S. Wadnerkar, Dr.G.TulasiRam Das, Dr.A.D.Rajkumar, “Performance Analysis of Switched Reluctance Motor; Design, Modeling and Simulation of 8/6 Switched Reluctance Motor”, Journal of Theoretical and Applied Information Technology, 2005-2008. [9] KOPECKÝ, M.: Paper to Control of Switched Reluctance Motor. PhD thesis, VŠB-Technical University of Ostrava, 2002. [10] NEBORAK, I.: Modelling and Simulation of Electrical Control Drives. VŠB-Technical University of Ostrava, 2002. ISBN 80-248- 0083-7. [11] VAS, P.: Artificial-Intelligence-Based Electrical Machines and Drives. Oxford science publication, 1999. ISBN019859397X. [12] Mahavir Singh Naruka, D S Chauhan and S N Singh, “Power Factor Improvement in Switched Reluctance Motor Drive using PWM Converter”, International Journal of Electrical Engineering & Technology (IJEET), Volume 4, Issue 4, 2013, pp. 48 - 55, ISSN Print: 0976-6545, ISSN Online: 0976-6553. [13] Pradeep B Jyoti, J.Amarnath and D.Subbarayudu, “Application of Neuro-Fuzzy Controller in Torque Ripple Minimization of Vector Controlled VSI Induction Motor Drive”, International Journal of Electrical Engineering & Technology (IJEET), Volume 4, Issue 3, 2013, pp. 121 - 127, ISSN Print: 0976-6545, ISSN Online: 0976-6553.