SlideShare uma empresa Scribd logo
1 de 7
Baixar para ler offline
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 268-274 © IAEME
268
STUDIES ON COMPRESSION AND FLEXURAL STRENGTH
CHARACTERISTICS OF TRIPLE BLENDED HIGH STRENGTH
RECYCLED AGGREGATE CONCRETE
M.V.S.S. Sastri1
, Dr. K. Jagannadha Rao2
, Dr. V. Bhiksma3
1
(Assoc.Professor, Department of Civil Engineering, Vasavi College of Engineering, Ibrahimbagh,
Hyderabad- 500031 (AP), India)
2
(Professor, Department of Civil Engg. Chaitanya Bharathi Institute of Technology,
Hyderabad-500075 (AP) India)
3
(Professor, Department of Civil Engg, O.U.College of Engg (A). Osmania University,
Hyderabad-500007 (AP) India)
ABSTRACT
The suitability of recycled coarse aggregate (RCA) in the production of a high-strength
concrete using triple blended industrial by-products is tested in laboratory. The by-products used are
fly ash and condensed silica fume as binders at different percentages and recycled aggregates as
partial replacement to natural aggregates. The concrete mixtures containing both supplementary
cementitious materials and recycled aggregates had shown high compressive strength (>70 MPa),
high flexural strength and split tensile strength compared to control concrete.
Keywords: Triple Blending, High Strength Concrete, Recycled Aggregate, Sustainability.
1.0 INTRODUCTION
In order to reduce resource depletion from the construction sector, an effort to use recycled
and secondary materials in concrete production has been introduced decades ago. The use of
secondary materials in concrete is still largely limited to low-strength concrete products such as base
courses for roads and 80% of the fly ash ends up in low value applications [1]. However, some
industrial by-products show excellent properties as construction materials, which means that they
could be used in concrete production not only for resource preservation but also to improve the final
product but exhibits different properties compared to conventional materials. In order to safely use
INTERNATIONAL JOURNAL OF CIVIL ENGINEERING
AND TECHNOLOGY (IJCIET)
ISSN 0976 – 6308 (Print)
ISSN 0976 – 6316(Online)
Volume 5, Issue 3, March (2014), pp. 268-274
© IAEME: www.iaeme.com/ijciet.asp
Journal Impact Factor (2014): 7.9290 (Calculated by GISI)
www.jifactor.com
IJCIET
©IAEME
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 268-274 © IAEME
269
them in concrete production they should undergo thorough quality control testing and their properties
must be taken into account in the concrete mixture design.The changes in material properties or in
production techniques generally take place for strengths more than 40 MPa. Earlier studies on
conventional strength concrete [6, 7, 8] reported that there is no significant variation in the strength
and other mechanical properties of recycle aggregate concrete compared to the natural aggregate
concrete.
1.1 Recycled aggregate
In the present scenario of construction, building demolition waste (BDW) concrete handling
and management is the new primary challenge faced by the countries all over the world. The
problem has to be tackled in an indigenous manner, it is desirable to completely recycle the waste in
order to protect natural resources and reduce environmental pollution. Recycled concrete aggregates
contain not only the original aggregates, but also a little hydrated cement paste. This paste reduces
the specific gravity and increases the porosity compared to similar virgin aggregates. Higher porosity
of recycled aggregates leads to a higher absorption [9, 10, 11, 12]. Quality requirements of recycled
aggregates produced from the poorest quality concrete have to be same as that of conventional
aggregates.
1.2 Recycled Aggregate Triple Blended Concrete Mixes
In the present experimental investigation triple blending has been carried out by mixing fly
ash and condensed silica fume in various proportions as replacements to ordinary Portland cement.
Three percentages of fly ash (20, 30 and 40) and four percentages of CSF (0, 5, 10 and 15) were used
as replacement to cement for triple blending. Recycled aggregate also varied at 0, 25 and 50% by
weight. In all 28 concrete mixes were cast and tested. The objective of the present investigation is to
find out the strength parameters, in specific, the compressive, flexural and split tensile strength of
recycled aggregate triple blended high strength concrete and compare the same with that of ordinary
concrete. In turn, the project is aimed towards experimentally proving the usage of recycled
aggregate in structural usage over ordinary concrete and thus fostering its usage for not only greater
strength and durability but also in view of the economic and environmental considerations involved.
2.0 EXPERIMENTAL INVESTIGATION
2.1 Cement
The Ordinary Portland Cement (OPC) of UltraTech 53 grade confirming to Indian standard
IS 12269-1987 was used.
2.2 Fine aggregate
Fine aggregate used for this entire study of investigation for concrete was river sand
confirming to zone-1 of IS: 383-1987.
2.3 Coarse aggregate
Crushed hard granite chips of maximum size 20 mm were used in concrete mixes.
2.4 Water
Potable water available in the college was used for casting and curing.
2.5 Condensed Silica Fume
The CSF was obtained from M/s V.B. Ferro Alloys Pvt. Ltd., Hyderabad.
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 268-274 © IAEME
270
2.6 Fly Ash
The material was procured from Ramagundam Thermal Power Plant (A.P).
2.7 Super Plasticizer (SP) of M/s Fosroc Industries Ltd Conplast SP 430 was used.
2.8 Recycled aggregate
The building demolition waste was collected from a school building at the time of road
widening and the age of the building is about 20 years. The concrete debris was broken into pieces of
approximately 80 mm size with the help of hammer & drilling machine. The foreign matters were
sorted out from the pieces. Further, those pieces were hand crushed in the lab and mechanically
sieved through sieve of 4.75 mm to remove the finer particles. The recycled coarse aggregates were
washed and dried and collected for use in concrete mix.
Table-1: Summary of Physical properties of Coarse Aggregate
Water
absorption%
Impact
strength %
Los Angeles
abrasion
value %
Aggregate
crushing
value %
Voids
%
Specific
gravity
Fineness
Modulus
NA 1.25 26 27 28 42 2.66 6.98
RA 2.71 31 31 47 51 2.50 6.925
2.9 Reference Concrete Mix
Design of M-80 grade concrete mix was carried out by using Design of Experiments method.
Quantity of cement is 650 kg/m3
with a water cement ratio of 0.28. The details of mix proportions
are given in table-2.
Table-2: Summary of Mix proportions
Mix w/c ratio Water (litre) Cement(kg) NA(kg) FA(kg) Mix
M80 0.28 182 650 1316.25 406.25
1:0.625:2.025 with
0.28 w/c and 1.5% SP
3.0 CASTING AND CURING OF SPECIMENS
Casting of Specimens was done by batching of materials, preparation of moulds and placing
of concrete in the moulds. Vibrator was used after every 1/3 filling of material into the mould and the
top surface was properly leveled at the end. They were allowed to dry for 24 hrs and proper
identification marks were written and kept into the curing tank for various ages of testing.
4.0 TESTS CONDUCTED ON HARDENED CONCRETE
4.1 Compressive strength
Three specimens of size 100 mm x 100 mm x 100 mm were used for compression testing for
each batch of mix.
4.2 Split Tensile strength Test
Split tensile test was conducted on cylinders of size 100 mm diameter and 200 mm height.
4.3 Flexural strength
The prisms of size 100x100x500mm were tested to evaluate the flexural strength of the
concrete by two point loading. All the above tests are conducted as per IS specifications.
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 268-274 © IAEME
271
5.0 TEST RESULTS AND DISCUSSIONS
The test results on hardened concrete are reported in tables 3 and 4 and figures 1 to 6.
5.1 Workability of Recycled Triple Blended, High Strength Concrete Mix
When various percentages of condensed silica fume along with recycled aggregate was added
the workability was becoming very low. Hence, superplasticizer was added up to a maximum
percentage of 1.5% to maintain workability. A higher dosage of superplasticizer is required for high
strength concrete mixes particularly when recycled aggregate and mineral admixtures like condensed
silica fume is used. But the increment of fly ash has shown improvement in workability.
Fig.1: Compressive strength of 25% RA at
various ages in MPa
Fig.2: Compressive strength of 50% RA at
various ages in MPa
Fig.3: Flexural strength of 25% RA in MPa Fig.4: Flexural strength of 50% RA in MPa
Fig.5: Split tensile strength of 25% RA in MPa Fig.6: Split tensile strength of 50% RA in MPa
Mix: first numerical in the parenthesis indicates %fly ash; second is %condensed silica fume and
third is % recycled aggregate.
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 268-274 © IAEME
272
5.2 Influence of the Mineral Admixtures on the Compressive Strength
The variation of compressive strength at 7, 28, 56 and 90 days with recycled aggregate triple
blended concrete along with percentage increment over control mixes is shown in table 3 and in fig 1
and 2. It is observed that condensed silica fume contributes towards increase in the compressive
strength of triple blended, high strength concrete mix. The compressive strength of the concrete is
showing increasing trend when fly ash is added along with condensed silica fume. Fly ash is
pozzolanic in nature and is reacting slowly as it needs longer curing periods hence even beyond 28
days the strength of concrete is improving particularly when percentage is more. Fly ash content of
20 percent and 5 percent condensed silica fume was found to be optimum for all the ages without
recycled aggregate. Highest compressive strength was obtained at 5% condensed silica fume with
20% fly ash. This value is 94 MPa. The compressive strength of the reference mix without any
mineral admixtures was obtained as 90.2 MPa at 90 days. There is an increase of nearly 4% in
compressive strength over the reference mix. It is observed from the tables that as the Fly ash
percentage increases, the compressive strength is gradually decreasing. This happened in the case of
all other combinations. The strength of the triple blended recycled aggregate concrete mixes with
20% fly ash along with various percentages of condensed silica fume and recycled aggregates
considered are above the design strength i.e. 80 MPa, but the observed strengths are lower than the
control concrete. When the cement is replaced by fly ash at 30% along with various percentages of
condensed silica fume and recycled aggregates considered the strength of recycled aggregate triple
blended concrete mixes are in the range of 10 to 29% less than the control concrete. When the
percentage replacement of fly ash at 40% and condensed silica fume at its maximum the strength of
50% recycled aggregate concrete mix is of 50% of control mix which is significant as the total
amount of cement used is 357.5 kg/m3
only. M80 grade concrete with 25% recycled aggregate could
meet the design strength requirement with 20% and 5% replacement of cement with fly ash and
condensed silica fume respectively.
5.3 Influence of the Mineral Admixtures on the Flexural Strength
Referring to table 4 and figure 3 and 4, it can be seen that silica fume contributes towards
increase in the flexural strength up to 10% but after that the strength is decreasing drastically and it
shows that optimum level of condensed silica fume has reached along with fly ash. Highest flexural
strength of 9.2 MPa was obtained at 5% CSF with 20% fly ash which is equivalent to control
concrete strength.
Table 3: Average compressive strength at all ages in MPa for typical combinations and
corresponding increase /decrease over control concrete
MIX
CF compressive strength (MPa)
7 day % 28 day % 56 day % 90 day %
(0,0,0) 0.86 54.5 0% 85.0 0% 88.6 0% 90.2 0%
(20,5,0) 0.88 58.2 7% 85.7 1% 88.5 0% 94.0 4%
(20,10,0) 0.84 51.0 -6% 80.3 -6% 85.6 -3% 90.2 0%
(20,15,0) 0.816 45.8 -16% 73.5 -14% 82.3 -7% 84.5 -6%
(30,5,0) 0.89 46.5 -15% 57.4 -32% 78.3 -12% 89.2 -1%
(30,10,0) 0.84 43.5 -20% 68.1 -20% 73.3 -17% 80.9 -10%
(30,15,0) 0.88 33.8 -38% 64.3 -24% 66.5 -25% 67.9 -25%
(40,5,0) 0.91 35.6 -35% 66.0 -22% 70.3 -21% 72.5 -20%
(40,10,0) 0.89 38.6 -29% 67.2 -21% 71.3 -20% 73.5 -19%
(40,15,0) 0.88 28.2 -48% 42.6 -50% 48.4 -45% 54.5 -40%
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 268-274 © IAEME
273
It can be seen from figure 3 and 4 that as the fly ash, condensed silica fume and recycled
aggregate percentage increases, the flexural strength is gradually decreasing. As discussed earlier
the optimum percentage of mineral admixture is obtained as 20% fly ash with 5% CSF without
recycled aggregate. The flexural strength of concrete mix with 20% fly ash, 10% condensed silica
fume along with recycled aggregate by 50% replacement is less by 9 percent to control mix, hence
can be neglected.
5.4 Influence of the Mineral Admixtures on the Split Tensile Strength
Referring to table 5 and figures 5 and 6 it is observed that condense silica fume contributes
towards increase in the split tensile strength without recycled aggregate. Highest split tensile strength
of 4.5 MPa was obtained at 10% CSF with 20% fly ash which is 5 percent more than control
concrete. From the figures it is observed that as the fly ash, condensed silica fume and recycled
aggregate percentage increases, the split tensile strength is gradually decreasing and it follows the
same trend of flexural strength. As discussed earlier the optimum percentage of mineral admixture is
obtained as 20% fly ash with 5% CSF without recycled aggregate.
Table 4: Average 28 day flexural, split tensile strengths in MPa for all the typical combinations
and the percentage increase/ decrease over control concrete
MIX Split Tensile Strength (MPa) Flexural Strength (MPa)
(0,0,0) 4.3 0% 9.2 0%
(20,5,0) 4.4 3% 9.2 0%
(20,10,0) 4.5 5% 8.4 -9%
(20,15,0) 4.4 3% 7.5 -19%
(30,5,0) 3.5 -17% 7.3 -21%
(30,10,0) 3.4 -21% 7.0 -24%
(30,15,0) 3.4 -21% 6.8 -26%
(40,5,0) 3.1 -27% 6.3 -31%
The split tensile strength of recycled aggregate triple blended concrete mix having 20% fly
ash, 10% condensed silica fume and recycled aggregate with 50% replacement is less by 4 percent
compared to control concrete, which is negligible and further these strengths can be improved by
adding fibres.
5.5 Optimum Mix for Triple Blended High Strength Recycled Aggregate Concrete
The strength of triple blended concrete with fly ash percentage of 20%, condensed silica
fume percentage of 5% and 25% recycled aggregate considered the strength is on par with control
concrete. On the overall, strength loss with the higher percentages of fly ash is compensated by silica
fume. With the fly ash percentage of 20% and with the increase of silica fume percentage up to an
optimum of 10% along with 50% recycled aggregate the strength reduction is negligible. Thus an
optimum high strength concrete mix possessing optimum strength properties can be obtained
resorting to triple blended recycled aggregate concrete.
6.0 CONCLUSIONS
Based on the present experimental investigation the following main conclusions are drawn.
1. Higher dosages of superplasticizer are required for high strength concrete mixes particularly
when mineral admixtures and recycled aggregates were employed to maintain workability.
International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print),
ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 268-274 © IAEME
274
2. Twenty percent fly ash generates marginal increase in strength beyond which decreases with
higher percentages of fly ash.
3. The use of 50% of RCA as partial replacement of natural aggregate reduced the strength of
triple blended high strength concrete marginally. But it would help in consuming the
construction and demolition waste to some extent apart from consuming the industrial wastes,
thereby achieving the sustainability.
4. It is recommended to use 20 percent fly ash and 10 percent silica fume as partial replacement
of cement and 50 percent recycled aggregates as replacement of natural aggregate for the
optimum strength properties.
5. It is the right time to seriously think of reusing demolished concrete for the production of
recycled concrete in our country. Recycling would not only conserve the resources but would
also promote safe and economic use of such concrete which is the need of the hour for a
country like India.
ACKNOWLEDGEMENTS
The authors express their sincere regard and gratitude to the management of ACE
Engineering College, Hyderabad, for the facilities provided for the experimentation work in
connection with the present paper. Our special thanks to Professor & Head Dr. P.J.Rao, for his
constant encouragement and help.
REFERENCES
1. Malhotra, V.M., 1980, “Strength and durability characteristics of concrete incorporating a
pelletized blast furnace slag fly ash, silica fume, slag and other mineral by-products in
concrete”, SP-79. V.2’American Concrete Institute, Detroit pp. 891-922.
2. IS: 1344-1968 : Indian standard specifications for pozzolonas”- Bureau of Indian Standards.
3. IS: 7869 (Part 2) – 1981 : Indian standard specifications for admixtures in concrete.
4. Folagbade, O. S. (2012). Compressive strength development of concretes containing ternary
blended cements. Indian Concrete Journal, 86(10), 9-16.
5. Knaack, A. M., & Kurama, Y. C. (2013). Design of Concrete Mixtures with Recycled
Concrete Aggregates. ACI Materials Journal, 110(5), 483-493.
6. Limbachiya, M., Leelawat, T., & Dhir, R. (2000). Use of recycled concrete aggregate in high-
strength concrete. Materials and Structures, 33(9), 574-580.
7. Tam, V. W. Y., Tam, C., & Wang, Y. (2007). Optimization on proportion for recycled
aggregate in concrete using two-stage mixing approach. Construction and Building Materials,
21(10), 1928-1939.
8. Thomas, M. D. A., Shehata, M. H., Shashiprakash, S. G., Hopkins, D. S., & Cail, K. (1999).
Use of ternary cementitious systems containing silica fume and fly ash in concrete. Cement
and Concrete Research, 29(8), 1207-1214.
9. M C Limbachiya, A. Koulouris, J J Roberts and A N Fried, “Performance of Recycle
Aggregate Concrete”, Kingston University, UK, 2004.
10. Khaldoun R, “Mechanical properties of concrete with recycled coarse aggregate”, Building
and Environment journal, volume 42, 2007, 407–415.
11. S. K. Singh and P. C. Sharma, “Use of recycled aggregates in concrete- A Paradigm Shift”,
National building materials journal, 2007.
12. Salem Ahmed Abukersh, “High quality recycled aggregate concrete”, Ph. D thesis, School of
Engineering and the Built environment, Edinburgh Napier University, UK, 2009.

Mais conteúdo relacionado

Mais procurados

IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...
IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...
IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...IRJET Journal
 
Flexural behaviour of reinforced concrete slabs using steel slag as coarse ag...
Flexural behaviour of reinforced concrete slabs using steel slag as coarse ag...Flexural behaviour of reinforced concrete slabs using steel slag as coarse ag...
Flexural behaviour of reinforced concrete slabs using steel slag as coarse ag...eSAT Publishing House
 
IRJET- A Review on “Partial Replacement of Cement and Fine Aggregate by Al...
IRJET- 	  A Review on “Partial Replacement of Cement and Fine Aggregate by Al...IRJET- 	  A Review on “Partial Replacement of Cement and Fine Aggregate by Al...
IRJET- A Review on “Partial Replacement of Cement and Fine Aggregate by Al...IRJET Journal
 
IRJET- Study on Strength of Timbercrete Blocks
IRJET-  	  Study on Strength of Timbercrete BlocksIRJET-  	  Study on Strength of Timbercrete Blocks
IRJET- Study on Strength of Timbercrete BlocksIRJET Journal
 
Effect of different types of steel fibers with metakaolin & fly
Effect of different types of steel fibers with metakaolin & flyEffect of different types of steel fibers with metakaolin & fly
Effect of different types of steel fibers with metakaolin & flyIAEME Publication
 
Strength and geotechnical characterization of copper slag as partial replacem...
Strength and geotechnical characterization of copper slag as partial replacem...Strength and geotechnical characterization of copper slag as partial replacem...
Strength and geotechnical characterization of copper slag as partial replacem...IRJET Journal
 
Feasibility study of concrete based pavement by using fibers & cementing wast...
Feasibility study of concrete based pavement by using fibers & cementing wast...Feasibility study of concrete based pavement by using fibers & cementing wast...
Feasibility study of concrete based pavement by using fibers & cementing wast...eSAT Publishing House
 
IRJET- Experimental Investigation on Concrete by Partial Replacement of Coars...
IRJET- Experimental Investigation on Concrete by Partial Replacement of Coars...IRJET- Experimental Investigation on Concrete by Partial Replacement of Coars...
IRJET- Experimental Investigation on Concrete by Partial Replacement of Coars...IRJET Journal
 
IRJET- Behaviourial Study of the Concrete on Partial Replacement of Cement by...
IRJET- Behaviourial Study of the Concrete on Partial Replacement of Cement by...IRJET- Behaviourial Study of the Concrete on Partial Replacement of Cement by...
IRJET- Behaviourial Study of the Concrete on Partial Replacement of Cement by...IRJET Journal
 
IRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFS
IRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFSIRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFS
IRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFSIRJET Journal
 
Investigation on the behaviour of alfa composite in pre and post heat treated...
Investigation on the behaviour of alfa composite in pre and post heat treated...Investigation on the behaviour of alfa composite in pre and post heat treated...
Investigation on the behaviour of alfa composite in pre and post heat treated...eSAT Journals
 
Study on properties of concrete with different levels of replacement of cemen...
Study on properties of concrete with different levels of replacement of cemen...Study on properties of concrete with different levels of replacement of cemen...
Study on properties of concrete with different levels of replacement of cemen...eSAT Journals
 

Mais procurados (17)

IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...
IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...
IRJET- Experimental Investigation on Concrete with Replacement of Fine Aggreg...
 
N502028691
N502028691N502028691
N502028691
 
Q04504101113
Q04504101113Q04504101113
Q04504101113
 
Flexural behaviour of reinforced concrete slabs using steel slag as coarse ag...
Flexural behaviour of reinforced concrete slabs using steel slag as coarse ag...Flexural behaviour of reinforced concrete slabs using steel slag as coarse ag...
Flexural behaviour of reinforced concrete slabs using steel slag as coarse ag...
 
IRJET- A Review on “Partial Replacement of Cement and Fine Aggregate by Al...
IRJET- 	  A Review on “Partial Replacement of Cement and Fine Aggregate by Al...IRJET- 	  A Review on “Partial Replacement of Cement and Fine Aggregate by Al...
IRJET- A Review on “Partial Replacement of Cement and Fine Aggregate by Al...
 
IRJET- Study on Strength of Timbercrete Blocks
IRJET-  	  Study on Strength of Timbercrete BlocksIRJET-  	  Study on Strength of Timbercrete Blocks
IRJET- Study on Strength of Timbercrete Blocks
 
Effect of different types of steel fibers with metakaolin & fly
Effect of different types of steel fibers with metakaolin & flyEffect of different types of steel fibers with metakaolin & fly
Effect of different types of steel fibers with metakaolin & fly
 
Ji3616171624
Ji3616171624Ji3616171624
Ji3616171624
 
Strength and geotechnical characterization of copper slag as partial replacem...
Strength and geotechnical characterization of copper slag as partial replacem...Strength and geotechnical characterization of copper slag as partial replacem...
Strength and geotechnical characterization of copper slag as partial replacem...
 
Flexural Behaviour of Steel Fibers Reinforced High Strength Self Compacting C...
Flexural Behaviour of Steel Fibers Reinforced High Strength Self Compacting C...Flexural Behaviour of Steel Fibers Reinforced High Strength Self Compacting C...
Flexural Behaviour of Steel Fibers Reinforced High Strength Self Compacting C...
 
Feasibility study of concrete based pavement by using fibers & cementing wast...
Feasibility study of concrete based pavement by using fibers & cementing wast...Feasibility study of concrete based pavement by using fibers & cementing wast...
Feasibility study of concrete based pavement by using fibers & cementing wast...
 
IRJET- Experimental Investigation on Concrete by Partial Replacement of Coars...
IRJET- Experimental Investigation on Concrete by Partial Replacement of Coars...IRJET- Experimental Investigation on Concrete by Partial Replacement of Coars...
IRJET- Experimental Investigation on Concrete by Partial Replacement of Coars...
 
E0210023027
E0210023027E0210023027
E0210023027
 
IRJET- Behaviourial Study of the Concrete on Partial Replacement of Cement by...
IRJET- Behaviourial Study of the Concrete on Partial Replacement of Cement by...IRJET- Behaviourial Study of the Concrete on Partial Replacement of Cement by...
IRJET- Behaviourial Study of the Concrete on Partial Replacement of Cement by...
 
IRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFS
IRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFSIRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFS
IRJET- An Experimental Investigation on Reinforced Concrete Containing GGBFS
 
Investigation on the behaviour of alfa composite in pre and post heat treated...
Investigation on the behaviour of alfa composite in pre and post heat treated...Investigation on the behaviour of alfa composite in pre and post heat treated...
Investigation on the behaviour of alfa composite in pre and post heat treated...
 
Study on properties of concrete with different levels of replacement of cemen...
Study on properties of concrete with different levels of replacement of cemen...Study on properties of concrete with different levels of replacement of cemen...
Study on properties of concrete with different levels of replacement of cemen...
 

Destaque

Development of normal strength and high strength self curing concrete using s...
Development of normal strength and high strength self curing concrete using s...Development of normal strength and high strength self curing concrete using s...
Development of normal strength and high strength self curing concrete using s...eSAT Journals
 
Concrete mix design by k r thanki
Concrete mix design by k r thankiConcrete mix design by k r thanki
Concrete mix design by k r thankiKrunal Thanki
 
Durabilty of concrete
Durabilty of concreteDurabilty of concrete
Durabilty of concretevairamuni3
 
High density concrete, high strength concrete and high performance concrete.
High density concrete, high strength concrete and high performance concrete.High density concrete, high strength concrete and high performance concrete.
High density concrete, high strength concrete and high performance concrete.shebina a
 
Concrete technology
Concrete technologyConcrete technology
Concrete technologyJNTU
 
Concrete- Classification,Properties and Testing
Concrete- Classification,Properties and TestingConcrete- Classification,Properties and Testing
Concrete- Classification,Properties and TestingRishabh Lala
 
CE 6002 CONCRETE TECHNOLOGY UNIT III
CE 6002 CONCRETE TECHNOLOGY UNIT IIICE 6002 CONCRETE TECHNOLOGY UNIT III
CE 6002 CONCRETE TECHNOLOGY UNIT IIIcivilguna
 
CE 6002 - CONCRETE TECHNOLOGY (UNIT I)
CE 6002 - CONCRETE TECHNOLOGY (UNIT I)CE 6002 - CONCRETE TECHNOLOGY (UNIT I)
CE 6002 - CONCRETE TECHNOLOGY (UNIT I)civilguna
 

Destaque (10)

Development of normal strength and high strength self curing concrete using s...
Development of normal strength and high strength self curing concrete using s...Development of normal strength and high strength self curing concrete using s...
Development of normal strength and high strength self curing concrete using s...
 
Concrete mix design by k r thanki
Concrete mix design by k r thankiConcrete mix design by k r thanki
Concrete mix design by k r thanki
 
Durabilty of concrete
Durabilty of concreteDurabilty of concrete
Durabilty of concrete
 
High density concrete, high strength concrete and high performance concrete.
High density concrete, high strength concrete and high performance concrete.High density concrete, high strength concrete and high performance concrete.
High density concrete, high strength concrete and high performance concrete.
 
Concrete technology
Concrete technologyConcrete technology
Concrete technology
 
Concrete technology
Concrete technologyConcrete technology
Concrete technology
 
B0560816
B0560816B0560816
B0560816
 
Concrete- Classification,Properties and Testing
Concrete- Classification,Properties and TestingConcrete- Classification,Properties and Testing
Concrete- Classification,Properties and Testing
 
CE 6002 CONCRETE TECHNOLOGY UNIT III
CE 6002 CONCRETE TECHNOLOGY UNIT IIICE 6002 CONCRETE TECHNOLOGY UNIT III
CE 6002 CONCRETE TECHNOLOGY UNIT III
 
CE 6002 - CONCRETE TECHNOLOGY (UNIT I)
CE 6002 - CONCRETE TECHNOLOGY (UNIT I)CE 6002 - CONCRETE TECHNOLOGY (UNIT I)
CE 6002 - CONCRETE TECHNOLOGY (UNIT I)
 

Semelhante a 20320140503031 2

A study on influence of fly ash and nano silica on strength properties of co...
A study on influence of fly ash and nano  silica on strength properties of co...A study on influence of fly ash and nano  silica on strength properties of co...
A study on influence of fly ash and nano silica on strength properties of co...IAEME Publication
 
Laboratory Analysis of Fly Ash Mix Cement Concrete for Rigid Pavement.
Laboratory Analysis of Fly Ash Mix Cement Concrete for Rigid Pavement.Laboratory Analysis of Fly Ash Mix Cement Concrete for Rigid Pavement.
Laboratory Analysis of Fly Ash Mix Cement Concrete for Rigid Pavement.IJERA Editor
 
Utilization of Demolished Concrete Waste for New Construction and Evaluation ...
Utilization of Demolished Concrete Waste for New Construction and Evaluation ...Utilization of Demolished Concrete Waste for New Construction and Evaluation ...
Utilization of Demolished Concrete Waste for New Construction and Evaluation ...IRJET Journal
 
STRENGTH CHARACTERISTICS OF CONCRETE WITH WASHED BOTTOM ASH PARTIALLY REPLACE...
STRENGTH CHARACTERISTICS OF CONCRETE WITH WASHED BOTTOM ASH PARTIALLY REPLACE...STRENGTH CHARACTERISTICS OF CONCRETE WITH WASHED BOTTOM ASH PARTIALLY REPLACE...
STRENGTH CHARACTERISTICS OF CONCRETE WITH WASHED BOTTOM ASH PARTIALLY REPLACE...IAEME Publication
 
DESIGN OF RIGID PAVEMENT AND ITS COST-BENEFIT ANALYSIS BY USAGE OF VITRIFIED ...
DESIGN OF RIGID PAVEMENT AND ITS COST-BENEFIT ANALYSIS BY USAGE OF VITRIFIED ...DESIGN OF RIGID PAVEMENT AND ITS COST-BENEFIT ANALYSIS BY USAGE OF VITRIFIED ...
DESIGN OF RIGID PAVEMENT AND ITS COST-BENEFIT ANALYSIS BY USAGE OF VITRIFIED ...IAEME Publication
 
Structural Behaviour of Ultra High Performance Fibre Reinforced Concrete
Structural Behaviour of Ultra High Performance Fibre Reinforced ConcreteStructural Behaviour of Ultra High Performance Fibre Reinforced Concrete
Structural Behaviour of Ultra High Performance Fibre Reinforced ConcreteIRJET Journal
 
IRJET-Analysis on Mix Design of High Strength Concrete (M100)
IRJET-Analysis on Mix Design of High Strength Concrete (M100)IRJET-Analysis on Mix Design of High Strength Concrete (M100)
IRJET-Analysis on Mix Design of High Strength Concrete (M100)IRJET Journal
 
IRJET- Performance of Fiber Reinforced Self Compacting Concrete Made with...
IRJET-  	  Performance of Fiber Reinforced Self Compacting Concrete Made with...IRJET-  	  Performance of Fiber Reinforced Self Compacting Concrete Made with...
IRJET- Performance of Fiber Reinforced Self Compacting Concrete Made with...IRJET Journal
 
B0350309011
B0350309011B0350309011
B0350309011theijes
 
IRJET - Impact of Steel Fibers on the Hardened Properties of High Strength Co...
IRJET - Impact of Steel Fibers on the Hardened Properties of High Strength Co...IRJET - Impact of Steel Fibers on the Hardened Properties of High Strength Co...
IRJET - Impact of Steel Fibers on the Hardened Properties of High Strength Co...IRJET Journal
 
“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”
“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”
“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”IRJET Journal
 
Effect of Mixed Fibers (Steel and Polypropylene) On Strength Properties of Fi...
Effect of Mixed Fibers (Steel and Polypropylene) On Strength Properties of Fi...Effect of Mixed Fibers (Steel and Polypropylene) On Strength Properties of Fi...
Effect of Mixed Fibers (Steel and Polypropylene) On Strength Properties of Fi...IRJET Journal
 
Effect of Partial Replacement of Cement by Fly Ash and Metakaolin on Concrete...
Effect of Partial Replacement of Cement by Fly Ash and Metakaolin on Concrete...Effect of Partial Replacement of Cement by Fly Ash and Metakaolin on Concrete...
Effect of Partial Replacement of Cement by Fly Ash and Metakaolin on Concrete...IRJET Journal
 
Self-compacting Concrete Study using Recycled Asphalt Pavement Incorporating ...
Self-compacting Concrete Study using Recycled Asphalt Pavement Incorporating ...Self-compacting Concrete Study using Recycled Asphalt Pavement Incorporating ...
Self-compacting Concrete Study using Recycled Asphalt Pavement Incorporating ...IJCMESJOURNAL
 
Improving impact and mechanical properties of gap graded concrete
Improving impact and mechanical properties of gap graded concreteImproving impact and mechanical properties of gap graded concrete
Improving impact and mechanical properties of gap graded concreteIAEME Publication
 
IRJET- Experimental Study of Concrete as a Partial Replacement of Cement by F...
IRJET- Experimental Study of Concrete as a Partial Replacement of Cement by F...IRJET- Experimental Study of Concrete as a Partial Replacement of Cement by F...
IRJET- Experimental Study of Concrete as a Partial Replacement of Cement by F...IRJET Journal
 
Modified Behaviour of Concrete by Replacing Fine Aggregates with Coal Fly Ash
Modified Behaviour of Concrete by Replacing Fine Aggregates with Coal Fly AshModified Behaviour of Concrete by Replacing Fine Aggregates with Coal Fly Ash
Modified Behaviour of Concrete by Replacing Fine Aggregates with Coal Fly Ashijtsrd
 

Semelhante a 20320140503031 2 (20)

20320140507004
2032014050700420320140507004
20320140507004
 
A study on influence of fly ash and nano silica on strength properties of co...
A study on influence of fly ash and nano  silica on strength properties of co...A study on influence of fly ash and nano  silica on strength properties of co...
A study on influence of fly ash and nano silica on strength properties of co...
 
Laboratory Analysis of Fly Ash Mix Cement Concrete for Rigid Pavement.
Laboratory Analysis of Fly Ash Mix Cement Concrete for Rigid Pavement.Laboratory Analysis of Fly Ash Mix Cement Concrete for Rigid Pavement.
Laboratory Analysis of Fly Ash Mix Cement Concrete for Rigid Pavement.
 
Utilization of Demolished Concrete Waste for New Construction and Evaluation ...
Utilization of Demolished Concrete Waste for New Construction and Evaluation ...Utilization of Demolished Concrete Waste for New Construction and Evaluation ...
Utilization of Demolished Concrete Waste for New Construction and Evaluation ...
 
Ijciet 06 08_001
Ijciet 06 08_001Ijciet 06 08_001
Ijciet 06 08_001
 
STRENGTH CHARACTERISTICS OF CONCRETE WITH WASHED BOTTOM ASH PARTIALLY REPLACE...
STRENGTH CHARACTERISTICS OF CONCRETE WITH WASHED BOTTOM ASH PARTIALLY REPLACE...STRENGTH CHARACTERISTICS OF CONCRETE WITH WASHED BOTTOM ASH PARTIALLY REPLACE...
STRENGTH CHARACTERISTICS OF CONCRETE WITH WASHED BOTTOM ASH PARTIALLY REPLACE...
 
DESIGN OF RIGID PAVEMENT AND ITS COST-BENEFIT ANALYSIS BY USAGE OF VITRIFIED ...
DESIGN OF RIGID PAVEMENT AND ITS COST-BENEFIT ANALYSIS BY USAGE OF VITRIFIED ...DESIGN OF RIGID PAVEMENT AND ITS COST-BENEFIT ANALYSIS BY USAGE OF VITRIFIED ...
DESIGN OF RIGID PAVEMENT AND ITS COST-BENEFIT ANALYSIS BY USAGE OF VITRIFIED ...
 
Structural Behaviour of Ultra High Performance Fibre Reinforced Concrete
Structural Behaviour of Ultra High Performance Fibre Reinforced ConcreteStructural Behaviour of Ultra High Performance Fibre Reinforced Concrete
Structural Behaviour of Ultra High Performance Fibre Reinforced Concrete
 
IRJET-Analysis on Mix Design of High Strength Concrete (M100)
IRJET-Analysis on Mix Design of High Strength Concrete (M100)IRJET-Analysis on Mix Design of High Strength Concrete (M100)
IRJET-Analysis on Mix Design of High Strength Concrete (M100)
 
IRJET- Performance of Fiber Reinforced Self Compacting Concrete Made with...
IRJET-  	  Performance of Fiber Reinforced Self Compacting Concrete Made with...IRJET-  	  Performance of Fiber Reinforced Self Compacting Concrete Made with...
IRJET- Performance of Fiber Reinforced Self Compacting Concrete Made with...
 
B0350309011
B0350309011B0350309011
B0350309011
 
IRJET - Impact of Steel Fibers on the Hardened Properties of High Strength Co...
IRJET - Impact of Steel Fibers on the Hardened Properties of High Strength Co...IRJET - Impact of Steel Fibers on the Hardened Properties of High Strength Co...
IRJET - Impact of Steel Fibers on the Hardened Properties of High Strength Co...
 
“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”
“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”
“INVESTIGATION ON PERFORMANCE OF RED MUD (BAUXITE RESIDUE) BASED CONCRETE”
 
Effect of Mixed Fibers (Steel and Polypropylene) On Strength Properties of Fi...
Effect of Mixed Fibers (Steel and Polypropylene) On Strength Properties of Fi...Effect of Mixed Fibers (Steel and Polypropylene) On Strength Properties of Fi...
Effect of Mixed Fibers (Steel and Polypropylene) On Strength Properties of Fi...
 
Effect of Partial Replacement of Cement by Fly Ash and Metakaolin on Concrete...
Effect of Partial Replacement of Cement by Fly Ash and Metakaolin on Concrete...Effect of Partial Replacement of Cement by Fly Ash and Metakaolin on Concrete...
Effect of Partial Replacement of Cement by Fly Ash and Metakaolin on Concrete...
 
Self-compacting Concrete Study using Recycled Asphalt Pavement Incorporating ...
Self-compacting Concrete Study using Recycled Asphalt Pavement Incorporating ...Self-compacting Concrete Study using Recycled Asphalt Pavement Incorporating ...
Self-compacting Concrete Study using Recycled Asphalt Pavement Incorporating ...
 
Gn3511531161
Gn3511531161Gn3511531161
Gn3511531161
 
Improving impact and mechanical properties of gap graded concrete
Improving impact and mechanical properties of gap graded concreteImproving impact and mechanical properties of gap graded concrete
Improving impact and mechanical properties of gap graded concrete
 
IRJET- Experimental Study of Concrete as a Partial Replacement of Cement by F...
IRJET- Experimental Study of Concrete as a Partial Replacement of Cement by F...IRJET- Experimental Study of Concrete as a Partial Replacement of Cement by F...
IRJET- Experimental Study of Concrete as a Partial Replacement of Cement by F...
 
Modified Behaviour of Concrete by Replacing Fine Aggregates with Coal Fly Ash
Modified Behaviour of Concrete by Replacing Fine Aggregates with Coal Fly AshModified Behaviour of Concrete by Replacing Fine Aggregates with Coal Fly Ash
Modified Behaviour of Concrete by Replacing Fine Aggregates with Coal Fly Ash
 

Mais de IAEME Publication

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME Publication
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...IAEME Publication
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSIAEME Publication
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSIAEME Publication
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSIAEME Publication
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSIAEME Publication
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOIAEME Publication
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IAEME Publication
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYIAEME Publication
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...IAEME Publication
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEIAEME Publication
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...IAEME Publication
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...IAEME Publication
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...IAEME Publication
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...IAEME Publication
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...IAEME Publication
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...IAEME Publication
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...IAEME Publication
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...IAEME Publication
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTIAEME Publication
 

Mais de IAEME Publication (20)

IAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdfIAEME_Publication_Call_for_Paper_September_2022.pdf
IAEME_Publication_Call_for_Paper_September_2022.pdf
 
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
MODELING AND ANALYSIS OF SURFACE ROUGHNESS AND WHITE LATER THICKNESS IN WIRE-...
 
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURSA STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
A STUDY ON THE REASONS FOR TRANSGENDER TO BECOME ENTREPRENEURS
 
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURSBROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
BROAD UNEXPOSED SKILLS OF TRANSGENDER ENTREPRENEURS
 
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONSDETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
DETERMINANTS AFFECTING THE USER'S INTENTION TO USE MOBILE BANKING APPLICATIONS
 
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONSANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
ANALYSE THE USER PREDILECTION ON GPAY AND PHONEPE FOR DIGITAL TRANSACTIONS
 
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINOVOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
VOICE BASED ATM FOR VISUALLY IMPAIRED USING ARDUINO
 
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
IMPACT OF EMOTIONAL INTELLIGENCE ON HUMAN RESOURCE MANAGEMENT PRACTICES AMONG...
 
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMYVISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
VISUALISING AGING PARENTS & THEIR CLOSE CARERS LIFE JOURNEY IN AGING ECONOMY
 
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
A STUDY ON THE IMPACT OF ORGANIZATIONAL CULTURE ON THE EFFECTIVENESS OF PERFO...
 
GANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICEGANDHI ON NON-VIOLENT POLICE
GANDHI ON NON-VIOLENT POLICE
 
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
A STUDY ON TALENT MANAGEMENT AND ITS IMPACT ON EMPLOYEE RETENTION IN SELECTED...
 
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
ATTRITION IN THE IT INDUSTRY DURING COVID-19 PANDEMIC: LINKING EMOTIONAL INTE...
 
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
INFLUENCE OF TALENT MANAGEMENT PRACTICES ON ORGANIZATIONAL PERFORMANCE A STUD...
 
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
A STUDY OF VARIOUS TYPES OF LOANS OF SELECTED PUBLIC AND PRIVATE SECTOR BANKS...
 
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
EXPERIMENTAL STUDY OF MECHANICAL AND TRIBOLOGICAL RELATION OF NYLON/BaSO4 POL...
 
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
ROLE OF SOCIAL ENTREPRENEURSHIP IN RURAL DEVELOPMENT OF INDIA - PROBLEMS AND ...
 
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
OPTIMAL RECONFIGURATION OF POWER DISTRIBUTION RADIAL NETWORK USING HYBRID MET...
 
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
APPLICATION OF FRUGAL APPROACH FOR PRODUCTIVITY IMPROVEMENT - A CASE STUDY OF...
 
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENTA MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
A MULTIPLE – CHANNEL QUEUING MODELS ON FUZZY ENVIRONMENT
 

Último

IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019IES VE
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostMatt Ray
 
COMPUTER 10: Lesson 7 - File Storage and Online Collaboration
COMPUTER 10: Lesson 7 - File Storage and Online CollaborationCOMPUTER 10: Lesson 7 - File Storage and Online Collaboration
COMPUTER 10: Lesson 7 - File Storage and Online Collaborationbruanjhuli
 
Building Your Own AI Instance (TBLC AI )
Building Your Own AI Instance (TBLC AI )Building Your Own AI Instance (TBLC AI )
Building Your Own AI Instance (TBLC AI )Brian Pichman
 
Basic Building Blocks of Internet of Things.
Basic Building Blocks of Internet of Things.Basic Building Blocks of Internet of Things.
Basic Building Blocks of Internet of Things.YounusS2
 
Videogame localization & technology_ how to enhance the power of translation.pdf
Videogame localization & technology_ how to enhance the power of translation.pdfVideogame localization & technology_ how to enhance the power of translation.pdf
Videogame localization & technology_ how to enhance the power of translation.pdfinfogdgmi
 
Comparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and IstioComparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and IstioChristian Posta
 
Designing A Time bound resource download URL
Designing A Time bound resource download URLDesigning A Time bound resource download URL
Designing A Time bound resource download URLRuncy Oommen
 
Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...
Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...
Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...Will Schroeder
 
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdf
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdfUiPath Solutions Management Preview - Northern CA Chapter - March 22.pdf
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdfDianaGray10
 
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...Aggregage
 
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfJamie (Taka) Wang
 
Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024D Cloud Solutions
 
UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...
UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...
UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...UbiTrack UK
 
UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8DianaGray10
 
Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024SkyPlanner
 
UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7DianaGray10
 
Bird eye's view on Camunda open source ecosystem
Bird eye's view on Camunda open source ecosystemBird eye's view on Camunda open source ecosystem
Bird eye's view on Camunda open source ecosystemAsko Soukka
 
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration WorkflowsIgniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration WorkflowsSafe Software
 
Empowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintEmpowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintMahmoud Rabie
 

Último (20)

IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
IESVE Software for Florida Code Compliance Using ASHRAE 90.1-2019
 
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCostKubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
KubeConEU24-Monitoring Kubernetes and Cloud Spend with OpenCost
 
COMPUTER 10: Lesson 7 - File Storage and Online Collaboration
COMPUTER 10: Lesson 7 - File Storage and Online CollaborationCOMPUTER 10: Lesson 7 - File Storage and Online Collaboration
COMPUTER 10: Lesson 7 - File Storage and Online Collaboration
 
Building Your Own AI Instance (TBLC AI )
Building Your Own AI Instance (TBLC AI )Building Your Own AI Instance (TBLC AI )
Building Your Own AI Instance (TBLC AI )
 
Basic Building Blocks of Internet of Things.
Basic Building Blocks of Internet of Things.Basic Building Blocks of Internet of Things.
Basic Building Blocks of Internet of Things.
 
Videogame localization & technology_ how to enhance the power of translation.pdf
Videogame localization & technology_ how to enhance the power of translation.pdfVideogame localization & technology_ how to enhance the power of translation.pdf
Videogame localization & technology_ how to enhance the power of translation.pdf
 
Comparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and IstioComparing Sidecar-less Service Mesh from Cilium and Istio
Comparing Sidecar-less Service Mesh from Cilium and Istio
 
Designing A Time bound resource download URL
Designing A Time bound resource download URLDesigning A Time bound resource download URL
Designing A Time bound resource download URL
 
Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...
Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...
Apres-Cyber - The Data Dilemma: Bridging Offensive Operations and Machine Lea...
 
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdf
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdfUiPath Solutions Management Preview - Northern CA Chapter - March 22.pdf
UiPath Solutions Management Preview - Northern CA Chapter - March 22.pdf
 
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
The Data Metaverse: Unpacking the Roles, Use Cases, and Tech Trends in Data a...
 
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
activity_diagram_combine_v4_20190827.pdfactivity_diagram_combine_v4_20190827.pdf
 
Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024Artificial Intelligence & SEO Trends for 2024
Artificial Intelligence & SEO Trends for 2024
 
UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...
UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...
UWB Technology for Enhanced Indoor and Outdoor Positioning in Physiological M...
 
UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8UiPath Studio Web workshop series - Day 8
UiPath Studio Web workshop series - Day 8
 
Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024Salesforce Miami User Group Event - 1st Quarter 2024
Salesforce Miami User Group Event - 1st Quarter 2024
 
UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7UiPath Studio Web workshop series - Day 7
UiPath Studio Web workshop series - Day 7
 
Bird eye's view on Camunda open source ecosystem
Bird eye's view on Camunda open source ecosystemBird eye's view on Camunda open source ecosystem
Bird eye's view on Camunda open source ecosystem
 
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration WorkflowsIgniting Next Level Productivity with AI-Infused Data Integration Workflows
Igniting Next Level Productivity with AI-Infused Data Integration Workflows
 
Empowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership BlueprintEmpowering Africa's Next Generation: The AI Leadership Blueprint
Empowering Africa's Next Generation: The AI Leadership Blueprint
 

20320140503031 2

  • 1. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 268-274 © IAEME 268 STUDIES ON COMPRESSION AND FLEXURAL STRENGTH CHARACTERISTICS OF TRIPLE BLENDED HIGH STRENGTH RECYCLED AGGREGATE CONCRETE M.V.S.S. Sastri1 , Dr. K. Jagannadha Rao2 , Dr. V. Bhiksma3 1 (Assoc.Professor, Department of Civil Engineering, Vasavi College of Engineering, Ibrahimbagh, Hyderabad- 500031 (AP), India) 2 (Professor, Department of Civil Engg. Chaitanya Bharathi Institute of Technology, Hyderabad-500075 (AP) India) 3 (Professor, Department of Civil Engg, O.U.College of Engg (A). Osmania University, Hyderabad-500007 (AP) India) ABSTRACT The suitability of recycled coarse aggregate (RCA) in the production of a high-strength concrete using triple blended industrial by-products is tested in laboratory. The by-products used are fly ash and condensed silica fume as binders at different percentages and recycled aggregates as partial replacement to natural aggregates. The concrete mixtures containing both supplementary cementitious materials and recycled aggregates had shown high compressive strength (>70 MPa), high flexural strength and split tensile strength compared to control concrete. Keywords: Triple Blending, High Strength Concrete, Recycled Aggregate, Sustainability. 1.0 INTRODUCTION In order to reduce resource depletion from the construction sector, an effort to use recycled and secondary materials in concrete production has been introduced decades ago. The use of secondary materials in concrete is still largely limited to low-strength concrete products such as base courses for roads and 80% of the fly ash ends up in low value applications [1]. However, some industrial by-products show excellent properties as construction materials, which means that they could be used in concrete production not only for resource preservation but also to improve the final product but exhibits different properties compared to conventional materials. In order to safely use INTERNATIONAL JOURNAL OF CIVIL ENGINEERING AND TECHNOLOGY (IJCIET) ISSN 0976 – 6308 (Print) ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 268-274 © IAEME: www.iaeme.com/ijciet.asp Journal Impact Factor (2014): 7.9290 (Calculated by GISI) www.jifactor.com IJCIET ©IAEME
  • 2. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 268-274 © IAEME 269 them in concrete production they should undergo thorough quality control testing and their properties must be taken into account in the concrete mixture design.The changes in material properties or in production techniques generally take place for strengths more than 40 MPa. Earlier studies on conventional strength concrete [6, 7, 8] reported that there is no significant variation in the strength and other mechanical properties of recycle aggregate concrete compared to the natural aggregate concrete. 1.1 Recycled aggregate In the present scenario of construction, building demolition waste (BDW) concrete handling and management is the new primary challenge faced by the countries all over the world. The problem has to be tackled in an indigenous manner, it is desirable to completely recycle the waste in order to protect natural resources and reduce environmental pollution. Recycled concrete aggregates contain not only the original aggregates, but also a little hydrated cement paste. This paste reduces the specific gravity and increases the porosity compared to similar virgin aggregates. Higher porosity of recycled aggregates leads to a higher absorption [9, 10, 11, 12]. Quality requirements of recycled aggregates produced from the poorest quality concrete have to be same as that of conventional aggregates. 1.2 Recycled Aggregate Triple Blended Concrete Mixes In the present experimental investigation triple blending has been carried out by mixing fly ash and condensed silica fume in various proportions as replacements to ordinary Portland cement. Three percentages of fly ash (20, 30 and 40) and four percentages of CSF (0, 5, 10 and 15) were used as replacement to cement for triple blending. Recycled aggregate also varied at 0, 25 and 50% by weight. In all 28 concrete mixes were cast and tested. The objective of the present investigation is to find out the strength parameters, in specific, the compressive, flexural and split tensile strength of recycled aggregate triple blended high strength concrete and compare the same with that of ordinary concrete. In turn, the project is aimed towards experimentally proving the usage of recycled aggregate in structural usage over ordinary concrete and thus fostering its usage for not only greater strength and durability but also in view of the economic and environmental considerations involved. 2.0 EXPERIMENTAL INVESTIGATION 2.1 Cement The Ordinary Portland Cement (OPC) of UltraTech 53 grade confirming to Indian standard IS 12269-1987 was used. 2.2 Fine aggregate Fine aggregate used for this entire study of investigation for concrete was river sand confirming to zone-1 of IS: 383-1987. 2.3 Coarse aggregate Crushed hard granite chips of maximum size 20 mm were used in concrete mixes. 2.4 Water Potable water available in the college was used for casting and curing. 2.5 Condensed Silica Fume The CSF was obtained from M/s V.B. Ferro Alloys Pvt. Ltd., Hyderabad.
  • 3. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 268-274 © IAEME 270 2.6 Fly Ash The material was procured from Ramagundam Thermal Power Plant (A.P). 2.7 Super Plasticizer (SP) of M/s Fosroc Industries Ltd Conplast SP 430 was used. 2.8 Recycled aggregate The building demolition waste was collected from a school building at the time of road widening and the age of the building is about 20 years. The concrete debris was broken into pieces of approximately 80 mm size with the help of hammer & drilling machine. The foreign matters were sorted out from the pieces. Further, those pieces were hand crushed in the lab and mechanically sieved through sieve of 4.75 mm to remove the finer particles. The recycled coarse aggregates were washed and dried and collected for use in concrete mix. Table-1: Summary of Physical properties of Coarse Aggregate Water absorption% Impact strength % Los Angeles abrasion value % Aggregate crushing value % Voids % Specific gravity Fineness Modulus NA 1.25 26 27 28 42 2.66 6.98 RA 2.71 31 31 47 51 2.50 6.925 2.9 Reference Concrete Mix Design of M-80 grade concrete mix was carried out by using Design of Experiments method. Quantity of cement is 650 kg/m3 with a water cement ratio of 0.28. The details of mix proportions are given in table-2. Table-2: Summary of Mix proportions Mix w/c ratio Water (litre) Cement(kg) NA(kg) FA(kg) Mix M80 0.28 182 650 1316.25 406.25 1:0.625:2.025 with 0.28 w/c and 1.5% SP 3.0 CASTING AND CURING OF SPECIMENS Casting of Specimens was done by batching of materials, preparation of moulds and placing of concrete in the moulds. Vibrator was used after every 1/3 filling of material into the mould and the top surface was properly leveled at the end. They were allowed to dry for 24 hrs and proper identification marks were written and kept into the curing tank for various ages of testing. 4.0 TESTS CONDUCTED ON HARDENED CONCRETE 4.1 Compressive strength Three specimens of size 100 mm x 100 mm x 100 mm were used for compression testing for each batch of mix. 4.2 Split Tensile strength Test Split tensile test was conducted on cylinders of size 100 mm diameter and 200 mm height. 4.3 Flexural strength The prisms of size 100x100x500mm were tested to evaluate the flexural strength of the concrete by two point loading. All the above tests are conducted as per IS specifications.
  • 4. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 268-274 © IAEME 271 5.0 TEST RESULTS AND DISCUSSIONS The test results on hardened concrete are reported in tables 3 and 4 and figures 1 to 6. 5.1 Workability of Recycled Triple Blended, High Strength Concrete Mix When various percentages of condensed silica fume along with recycled aggregate was added the workability was becoming very low. Hence, superplasticizer was added up to a maximum percentage of 1.5% to maintain workability. A higher dosage of superplasticizer is required for high strength concrete mixes particularly when recycled aggregate and mineral admixtures like condensed silica fume is used. But the increment of fly ash has shown improvement in workability. Fig.1: Compressive strength of 25% RA at various ages in MPa Fig.2: Compressive strength of 50% RA at various ages in MPa Fig.3: Flexural strength of 25% RA in MPa Fig.4: Flexural strength of 50% RA in MPa Fig.5: Split tensile strength of 25% RA in MPa Fig.6: Split tensile strength of 50% RA in MPa Mix: first numerical in the parenthesis indicates %fly ash; second is %condensed silica fume and third is % recycled aggregate.
  • 5. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 268-274 © IAEME 272 5.2 Influence of the Mineral Admixtures on the Compressive Strength The variation of compressive strength at 7, 28, 56 and 90 days with recycled aggregate triple blended concrete along with percentage increment over control mixes is shown in table 3 and in fig 1 and 2. It is observed that condensed silica fume contributes towards increase in the compressive strength of triple blended, high strength concrete mix. The compressive strength of the concrete is showing increasing trend when fly ash is added along with condensed silica fume. Fly ash is pozzolanic in nature and is reacting slowly as it needs longer curing periods hence even beyond 28 days the strength of concrete is improving particularly when percentage is more. Fly ash content of 20 percent and 5 percent condensed silica fume was found to be optimum for all the ages without recycled aggregate. Highest compressive strength was obtained at 5% condensed silica fume with 20% fly ash. This value is 94 MPa. The compressive strength of the reference mix without any mineral admixtures was obtained as 90.2 MPa at 90 days. There is an increase of nearly 4% in compressive strength over the reference mix. It is observed from the tables that as the Fly ash percentage increases, the compressive strength is gradually decreasing. This happened in the case of all other combinations. The strength of the triple blended recycled aggregate concrete mixes with 20% fly ash along with various percentages of condensed silica fume and recycled aggregates considered are above the design strength i.e. 80 MPa, but the observed strengths are lower than the control concrete. When the cement is replaced by fly ash at 30% along with various percentages of condensed silica fume and recycled aggregates considered the strength of recycled aggregate triple blended concrete mixes are in the range of 10 to 29% less than the control concrete. When the percentage replacement of fly ash at 40% and condensed silica fume at its maximum the strength of 50% recycled aggregate concrete mix is of 50% of control mix which is significant as the total amount of cement used is 357.5 kg/m3 only. M80 grade concrete with 25% recycled aggregate could meet the design strength requirement with 20% and 5% replacement of cement with fly ash and condensed silica fume respectively. 5.3 Influence of the Mineral Admixtures on the Flexural Strength Referring to table 4 and figure 3 and 4, it can be seen that silica fume contributes towards increase in the flexural strength up to 10% but after that the strength is decreasing drastically and it shows that optimum level of condensed silica fume has reached along with fly ash. Highest flexural strength of 9.2 MPa was obtained at 5% CSF with 20% fly ash which is equivalent to control concrete strength. Table 3: Average compressive strength at all ages in MPa for typical combinations and corresponding increase /decrease over control concrete MIX CF compressive strength (MPa) 7 day % 28 day % 56 day % 90 day % (0,0,0) 0.86 54.5 0% 85.0 0% 88.6 0% 90.2 0% (20,5,0) 0.88 58.2 7% 85.7 1% 88.5 0% 94.0 4% (20,10,0) 0.84 51.0 -6% 80.3 -6% 85.6 -3% 90.2 0% (20,15,0) 0.816 45.8 -16% 73.5 -14% 82.3 -7% 84.5 -6% (30,5,0) 0.89 46.5 -15% 57.4 -32% 78.3 -12% 89.2 -1% (30,10,0) 0.84 43.5 -20% 68.1 -20% 73.3 -17% 80.9 -10% (30,15,0) 0.88 33.8 -38% 64.3 -24% 66.5 -25% 67.9 -25% (40,5,0) 0.91 35.6 -35% 66.0 -22% 70.3 -21% 72.5 -20% (40,10,0) 0.89 38.6 -29% 67.2 -21% 71.3 -20% 73.5 -19% (40,15,0) 0.88 28.2 -48% 42.6 -50% 48.4 -45% 54.5 -40%
  • 6. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 268-274 © IAEME 273 It can be seen from figure 3 and 4 that as the fly ash, condensed silica fume and recycled aggregate percentage increases, the flexural strength is gradually decreasing. As discussed earlier the optimum percentage of mineral admixture is obtained as 20% fly ash with 5% CSF without recycled aggregate. The flexural strength of concrete mix with 20% fly ash, 10% condensed silica fume along with recycled aggregate by 50% replacement is less by 9 percent to control mix, hence can be neglected. 5.4 Influence of the Mineral Admixtures on the Split Tensile Strength Referring to table 5 and figures 5 and 6 it is observed that condense silica fume contributes towards increase in the split tensile strength without recycled aggregate. Highest split tensile strength of 4.5 MPa was obtained at 10% CSF with 20% fly ash which is 5 percent more than control concrete. From the figures it is observed that as the fly ash, condensed silica fume and recycled aggregate percentage increases, the split tensile strength is gradually decreasing and it follows the same trend of flexural strength. As discussed earlier the optimum percentage of mineral admixture is obtained as 20% fly ash with 5% CSF without recycled aggregate. Table 4: Average 28 day flexural, split tensile strengths in MPa for all the typical combinations and the percentage increase/ decrease over control concrete MIX Split Tensile Strength (MPa) Flexural Strength (MPa) (0,0,0) 4.3 0% 9.2 0% (20,5,0) 4.4 3% 9.2 0% (20,10,0) 4.5 5% 8.4 -9% (20,15,0) 4.4 3% 7.5 -19% (30,5,0) 3.5 -17% 7.3 -21% (30,10,0) 3.4 -21% 7.0 -24% (30,15,0) 3.4 -21% 6.8 -26% (40,5,0) 3.1 -27% 6.3 -31% The split tensile strength of recycled aggregate triple blended concrete mix having 20% fly ash, 10% condensed silica fume and recycled aggregate with 50% replacement is less by 4 percent compared to control concrete, which is negligible and further these strengths can be improved by adding fibres. 5.5 Optimum Mix for Triple Blended High Strength Recycled Aggregate Concrete The strength of triple blended concrete with fly ash percentage of 20%, condensed silica fume percentage of 5% and 25% recycled aggregate considered the strength is on par with control concrete. On the overall, strength loss with the higher percentages of fly ash is compensated by silica fume. With the fly ash percentage of 20% and with the increase of silica fume percentage up to an optimum of 10% along with 50% recycled aggregate the strength reduction is negligible. Thus an optimum high strength concrete mix possessing optimum strength properties can be obtained resorting to triple blended recycled aggregate concrete. 6.0 CONCLUSIONS Based on the present experimental investigation the following main conclusions are drawn. 1. Higher dosages of superplasticizer are required for high strength concrete mixes particularly when mineral admixtures and recycled aggregates were employed to maintain workability.
  • 7. International Journal of Civil Engineering and Technology (IJCIET), ISSN 0976 – 6308 (Print), ISSN 0976 – 6316(Online) Volume 5, Issue 3, March (2014), pp. 268-274 © IAEME 274 2. Twenty percent fly ash generates marginal increase in strength beyond which decreases with higher percentages of fly ash. 3. The use of 50% of RCA as partial replacement of natural aggregate reduced the strength of triple blended high strength concrete marginally. But it would help in consuming the construction and demolition waste to some extent apart from consuming the industrial wastes, thereby achieving the sustainability. 4. It is recommended to use 20 percent fly ash and 10 percent silica fume as partial replacement of cement and 50 percent recycled aggregates as replacement of natural aggregate for the optimum strength properties. 5. It is the right time to seriously think of reusing demolished concrete for the production of recycled concrete in our country. Recycling would not only conserve the resources but would also promote safe and economic use of such concrete which is the need of the hour for a country like India. ACKNOWLEDGEMENTS The authors express their sincere regard and gratitude to the management of ACE Engineering College, Hyderabad, for the facilities provided for the experimentation work in connection with the present paper. Our special thanks to Professor & Head Dr. P.J.Rao, for his constant encouragement and help. REFERENCES 1. Malhotra, V.M., 1980, “Strength and durability characteristics of concrete incorporating a pelletized blast furnace slag fly ash, silica fume, slag and other mineral by-products in concrete”, SP-79. V.2’American Concrete Institute, Detroit pp. 891-922. 2. IS: 1344-1968 : Indian standard specifications for pozzolonas”- Bureau of Indian Standards. 3. IS: 7869 (Part 2) – 1981 : Indian standard specifications for admixtures in concrete. 4. Folagbade, O. S. (2012). Compressive strength development of concretes containing ternary blended cements. Indian Concrete Journal, 86(10), 9-16. 5. Knaack, A. M., & Kurama, Y. C. (2013). Design of Concrete Mixtures with Recycled Concrete Aggregates. ACI Materials Journal, 110(5), 483-493. 6. Limbachiya, M., Leelawat, T., & Dhir, R. (2000). Use of recycled concrete aggregate in high- strength concrete. Materials and Structures, 33(9), 574-580. 7. Tam, V. W. Y., Tam, C., & Wang, Y. (2007). Optimization on proportion for recycled aggregate in concrete using two-stage mixing approach. Construction and Building Materials, 21(10), 1928-1939. 8. Thomas, M. D. A., Shehata, M. H., Shashiprakash, S. G., Hopkins, D. S., & Cail, K. (1999). Use of ternary cementitious systems containing silica fume and fly ash in concrete. Cement and Concrete Research, 29(8), 1207-1214. 9. M C Limbachiya, A. Koulouris, J J Roberts and A N Fried, “Performance of Recycle Aggregate Concrete”, Kingston University, UK, 2004. 10. Khaldoun R, “Mechanical properties of concrete with recycled coarse aggregate”, Building and Environment journal, volume 42, 2007, 407–415. 11. S. K. Singh and P. C. Sharma, “Use of recycled aggregates in concrete- A Paradigm Shift”, National building materials journal, 2007. 12. Salem Ahmed Abukersh, “High quality recycled aggregate concrete”, Ph. D thesis, School of Engineering and the Built environment, Edinburgh Napier University, UK, 2009.