SlideShare uma empresa Scribd logo
1 de 13
TRIGONOMETRÍA HECTOR EDINSON ORDOÑEZ TRIANA GRADO: 10-3
CONTENIDO INTRODUCCION TRIGONOMETRÍA PLANA RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOS  RAZONES TRIGONOMÉTRICAS DE ÁNGULOS CUALESQUIERA  FUNCIONES TRIGONOMÉTRICAS  TRIGONOMETRÍA ESFÉRICA
INTRODUCCION Trigonometría rama de la matemáticas que estudia las relaciones entre los lados y ángulos de los triangulos.Etimologicamente significa Medida de triángulos. Las primeras aplicaciones de la trigonometría se hicieron en los campos de la navegación, la geodesia y la astronomía, en los que el principal problema consistía en determinar una distancia inaccesible, es decir, una distancia que no podía ser medida de forma directa, como la distancia  entre la tierra y la luna.
Se encuentran notables aplicaciones de las funciones trigonométricas en la física y en casi todas las ramas de la ingeniera, sobre todo en el estudio de fenómenos periódicos, como el flujo de corriente alterna. Las dos ramas fundamentales de la trigonometría son la: trigonometría plana y la trigonometría esférica.
TRIGONOMETRÍA PLANA Se ocupa fundamentalmente de la resolución de los triángulos planos. Para ellos, se define las razones trigonométricas de los ángulos y se estudia las relaciones entre ellas. RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOS
La base de la trigonometría está en las razones trigonométricas, valores numéricos asociados a cada ángulo, que permiten relacionar operativamente los ángulos y lados de los triángulos. Las más importantes son seno, coseno y tangente B C a θ c A b
En un ángulo α de un triángulo rectángulo, ABC, se llama seno de α, y se escribe sen α, al cociente entre el cateto opuesto y la hipotenusa. Análogamente se definen el coseno (cos) como cociente entre el cateto adyacente y la hipotenusa, y la tangente (tg) como el cociente entre el cateto opuesto y el cateto adyacente. Hace no muchos años existían tablas numéricas en las que se daban los valores de las razones trigonométricas de una gran cantidad de ángulos. En la actualidad, con una calculadora científica se obtienen con toda precisión los valores de las razones trigonométricas de cualquier ángulo.
RAZONES TRIGONOMÉTRICAS DE ÁNGULOS CUALESQUIERA
Para definir las razones trigonométricas de ángulos cualesquiera (de 0º a 360º) se empieza situando el ángulo en la llamada circunferencia gonio métrica, una circunferencia de radio 1 con su centro, O, situado sobre unos ejes coordenados:
El vértice del ángulo se sitúa en O y el primero de sus lados, a, sobre la parte positiva del eje de las X. El segundo lado, b, se abre girando en sentido contrario a las agujas del reloj. Este segundo lado corta a la circunferencia gonio métrica en un punto, P, cuyas coordenadas son c = cos α y s = sen α. Es decir, P(cos α, sen α). La tg α= t se sitúa sobre la recta r, tangente a la circunferencia en U, y queda determinada por el punto T en que el lado b, o su prolongación, corta a r. Según esta definición, las razones trigonométricas sen, cos y tg toman valores positivos o negativos según el cuadrante en el que se encuentre el ángulo α. En la figura siguiente se resumen los signos de las tres razones:
SEN COS                             TG - + - + - - + + + - - + - - +
FUNCIONES TRIGONOMÉTRICAS  Las funciones trigonométricas se obtienen a partir de las razones trigonométricas de la forma siguiente:  El ángulo se expresa en radianes. Por tanto, los 360º de una circunferencia pasan a ser 2p radianes.
Se considera que cualquier número real puede ser la medida de un ángulo. Sus razones trigonométricas se relacionan con las razones de los ángulos comprendidos en el intervalo [0, 2p) del siguiente modo: si x - x’ = k · 2p, k número entero, entonces sen x = sen x’, cos x = cos x’, tg x = tg x’. Es decir, si dos números difieren en un número entero de veces 2p, entonces tienen las mismas razones trigonométricas

Mais conteúdo relacionado

Mais procurados

Cecyte 4 geometria unidad 3
Cecyte 4 geometria unidad 3Cecyte 4 geometria unidad 3
Cecyte 4 geometria unidad 3LUIS MONREAL
 
[Maths] 3.3 trigonometria
[Maths] 3.3 trigonometria[Maths] 3.3 trigonometria
[Maths] 3.3 trigonometriaOurutopy
 
Diapositivas Trigonometria
Diapositivas Trigonometria Diapositivas Trigonometria
Diapositivas Trigonometria Daniel_Sanchez
 
Trigonometria
TrigonometriaTrigonometria
Trigonometriamarferlu
 
Razones Trigonométricas
Razones TrigonométricasRazones Trigonométricas
Razones TrigonométricasVernicaLara13
 
TEOREMA DE PITAGORAS . COMO ENTENDER RAZONES TRIGONOMETRIAS
TEOREMA DE PITAGORAS . COMO ENTENDER RAZONES TRIGONOMETRIASTEOREMA DE PITAGORAS . COMO ENTENDER RAZONES TRIGONOMETRIAS
TEOREMA DE PITAGORAS . COMO ENTENDER RAZONES TRIGONOMETRIASkevin stanley pineda ramirez
 
Trigonometria
TrigonometriaTrigonometria
Trigonometriacsg
 
Razones trigonométricas en triángulos rectángulos
Razones trigonométricas en triángulos rectángulosRazones trigonométricas en triángulos rectángulos
Razones trigonométricas en triángulos rectánguloscebarrera
 
Introduccion trigonometria
Introduccion trigonometriaIntroduccion trigonometria
Introduccion trigonometriaeric14575
 
Razones trigonométricas
Razones trigonométricasRazones trigonométricas
Razones trigonométricasMelissa Cardozo
 
Razones trigonométricas
Razones trigonométricasRazones trigonométricas
Razones trigonométricasJUAN URIBE
 
Razones trigonométricas para un triángulo rectángulo
Razones trigonométricas para un triángulo rectánguloRazones trigonométricas para un triángulo rectángulo
Razones trigonométricas para un triángulo rectánguloAnalia Agüero
 
Teorema del seno y el coseno
Teorema  del seno y el cosenoTeorema  del seno y el coseno
Teorema del seno y el cosenofrinconr
 

Mais procurados (20)

Funciones trigonometricas
Funciones trigonometricasFunciones trigonometricas
Funciones trigonometricas
 
TRIGONOMETRIA RYJ
TRIGONOMETRIA RYJTRIGONOMETRIA RYJ
TRIGONOMETRIA RYJ
 
Cecyte 4 geometria unidad 3
Cecyte 4 geometria unidad 3Cecyte 4 geometria unidad 3
Cecyte 4 geometria unidad 3
 
[Maths] 3.3 trigonometria
[Maths] 3.3 trigonometria[Maths] 3.3 trigonometria
[Maths] 3.3 trigonometria
 
Diapositivas Trigonometria
Diapositivas Trigonometria Diapositivas Trigonometria
Diapositivas Trigonometria
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Exposicion 3 Tercer parcial
Exposicion 3 Tercer parcialExposicion 3 Tercer parcial
Exposicion 3 Tercer parcial
 
Razones Trigonométricas
Razones TrigonométricasRazones Trigonométricas
Razones Trigonométricas
 
TEOREMA DE PITAGORAS . COMO ENTENDER RAZONES TRIGONOMETRIAS
TEOREMA DE PITAGORAS . COMO ENTENDER RAZONES TRIGONOMETRIASTEOREMA DE PITAGORAS . COMO ENTENDER RAZONES TRIGONOMETRIAS
TEOREMA DE PITAGORAS . COMO ENTENDER RAZONES TRIGONOMETRIAS
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
TRIGONOMETRIA
TRIGONOMETRIA TRIGONOMETRIA
TRIGONOMETRIA
 
Razones trigonométricas en triángulos rectángulos
Razones trigonométricas en triángulos rectángulosRazones trigonométricas en triángulos rectángulos
Razones trigonométricas en triángulos rectángulos
 
Introduccion trigonometria
Introduccion trigonometriaIntroduccion trigonometria
Introduccion trigonometria
 
Razones trigonométricas
Razones trigonométricasRazones trigonométricas
Razones trigonométricas
 
Razones trigonométricas
Razones trigonométricasRazones trigonométricas
Razones trigonométricas
 
Razones trigonométricas para un triángulo rectángulo
Razones trigonométricas para un triángulo rectánguloRazones trigonométricas para un triángulo rectángulo
Razones trigonométricas para un triángulo rectángulo
 
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICASRAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS
 
Teorema del seno y el coseno
Teorema  del seno y el cosenoTeorema  del seno y el coseno
Teorema del seno y el coseno
 
Razones trigonometricas
Razones trigonometricasRazones trigonometricas
Razones trigonometricas
 
RAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICASRAZONES TRIGONOMÉTRICAS
RAZONES TRIGONOMÉTRICAS
 

Semelhante a Trigonometria (20)

TOPOGRAFIA PARA CAMINOS Y VIAS URBANAS (NEIRA)
TOPOGRAFIA PARA CAMINOS Y VIAS URBANAS (NEIRA)TOPOGRAFIA PARA CAMINOS Y VIAS URBANAS (NEIRA)
TOPOGRAFIA PARA CAMINOS Y VIAS URBANAS (NEIRA)
 
TRIGONOMETRIA
TRIGONOMETRIATRIGONOMETRIA
TRIGONOMETRIA
 
TrigonometríA 2
TrigonometríA 2TrigonometríA 2
TrigonometríA 2
 
trigonometria
trigonometriatrigonometria
trigonometria
 
Trigonometría
TrigonometríaTrigonometría
Trigonometría
 
Funciones trigonometricas 1era parte
Funciones trigonometricas 1era parteFunciones trigonometricas 1era parte
Funciones trigonometricas 1era parte
 
Tema 7. trigonometría.
Tema 7. trigonometría. Tema 7. trigonometría.
Tema 7. trigonometría.
 
Quincena7
Quincena7Quincena7
Quincena7
 
Presentacion curso
Presentacion cursoPresentacion curso
Presentacion curso
 
Clase # 15.pptx
Clase # 15.pptxClase # 15.pptx
Clase # 15.pptx
 
07 trigonometria
07 trigonometria07 trigonometria
07 trigonometria
 
Pdf trigonometria
Pdf trigonometriaPdf trigonometria
Pdf trigonometria
 
Pdf trigonometria
Pdf trigonometriaPdf trigonometria
Pdf trigonometria
 
Topografia
TopografiaTopografia
Topografia
 
Funciones trigonometricas
Funciones trigonometricasFunciones trigonometricas
Funciones trigonometricas
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Semana 10.pptx
Semana 10.pptxSemana 10.pptx
Semana 10.pptx
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Trigonometria
TrigonometriaTrigonometria
Trigonometria
 
Funciones trigonométricas
Funciones trigonométricasFunciones trigonométricas
Funciones trigonométricas
 

Último

La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.amayarogel
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Carlos Muñoz
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperiomiralbaipiales2016
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaDecaunlz
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADauxsoporte
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfPaolaRopero2
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioELIASAURELIOCHAVEZCA1
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICAÁngel Encinas
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...JonathanCovena1
 
Ley 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularLey 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularMooPandrea
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxlupitavic
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVGiustinoAdesso1
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Lourdes Feria
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAEl Fortí
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosJonathanCovena1
 
Estrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxEstrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxdkmeza
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptxdeimerhdz21
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxlclcarmen
 

Último (20)

La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.La triple Naturaleza del Hombre estudio.
La triple Naturaleza del Hombre estudio.
 
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
Plan Refuerzo Escolar 2024 para estudiantes con necesidades de Aprendizaje en...
 
Imperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperioImperialismo informal en Europa y el imperio
Imperialismo informal en Europa y el imperio
 
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdfTema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
Tema 8.- PROTECCION DE LOS SISTEMAS DE INFORMACIÓN.pdf
 
Qué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativaQué es la Inteligencia artificial generativa
Qué es la Inteligencia artificial generativa
 
CALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDADCALENDARIZACION DE MAYO / RESPONSABILIDAD
CALENDARIZACION DE MAYO / RESPONSABILIDAD
 
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdfGUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
GUIA DE CIRCUNFERENCIA Y ELIPSE UNDÉCIMO 2024.pdf
 
origen y desarrollo del ensayo literario
origen y desarrollo del ensayo literarioorigen y desarrollo del ensayo literario
origen y desarrollo del ensayo literario
 
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICABIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
BIOMETANO SÍ, PERO NO ASÍ. LA NUEVA BURBUJA ENERGÉTICA
 
La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...La empresa sostenible: Principales Características, Barreras para su Avance y...
La empresa sostenible: Principales Características, Barreras para su Avance y...
 
Power Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptxPower Point: Fe contra todo pronóstico.pptx
Power Point: Fe contra todo pronóstico.pptx
 
Ley 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circularLey 21.545 - Circular Nº 586.pdf circular
Ley 21.545 - Circular Nº 586.pdf circular
 
PLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docxPLAN DE REFUERZO ESCOLAR primaria (1).docx
PLAN DE REFUERZO ESCOLAR primaria (1).docx
 
Valoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCVValoración Crítica de EEEM Feco2023 FFUCV
Valoración Crítica de EEEM Feco2023 FFUCV
 
Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...Caja de herramientas de inteligencia artificial para la academia y la investi...
Caja de herramientas de inteligencia artificial para la academia y la investi...
 
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURAFORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
FORTI-MAYO 2024.pdf.CIENCIA,EDUCACION,CULTURA
 
Criterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficiosCriterios ESG: fundamentos, aplicaciones y beneficios
Criterios ESG: fundamentos, aplicaciones y beneficios
 
Estrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptxEstrategias de enseñanza-aprendizaje virtual.pptx
Estrategias de enseñanza-aprendizaje virtual.pptx
 
INSTRUCCION PREPARATORIA DE TIRO .pptx
INSTRUCCION PREPARATORIA DE TIRO   .pptxINSTRUCCION PREPARATORIA DE TIRO   .pptx
INSTRUCCION PREPARATORIA DE TIRO .pptx
 
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptxTIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
TIPOLOGÍA TEXTUAL- EXPOSICIÓN Y ARGUMENTACIÓN.pptx
 

Trigonometria

  • 1. TRIGONOMETRÍA HECTOR EDINSON ORDOÑEZ TRIANA GRADO: 10-3
  • 2. CONTENIDO INTRODUCCION TRIGONOMETRÍA PLANA RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOS RAZONES TRIGONOMÉTRICAS DE ÁNGULOS CUALESQUIERA FUNCIONES TRIGONOMÉTRICAS TRIGONOMETRÍA ESFÉRICA
  • 3. INTRODUCCION Trigonometría rama de la matemáticas que estudia las relaciones entre los lados y ángulos de los triangulos.Etimologicamente significa Medida de triángulos. Las primeras aplicaciones de la trigonometría se hicieron en los campos de la navegación, la geodesia y la astronomía, en los que el principal problema consistía en determinar una distancia inaccesible, es decir, una distancia que no podía ser medida de forma directa, como la distancia entre la tierra y la luna.
  • 4. Se encuentran notables aplicaciones de las funciones trigonométricas en la física y en casi todas las ramas de la ingeniera, sobre todo en el estudio de fenómenos periódicos, como el flujo de corriente alterna. Las dos ramas fundamentales de la trigonometría son la: trigonometría plana y la trigonometría esférica.
  • 5. TRIGONOMETRÍA PLANA Se ocupa fundamentalmente de la resolución de los triángulos planos. Para ellos, se define las razones trigonométricas de los ángulos y se estudia las relaciones entre ellas. RAZONES TRIGONOMÉTRICAS DE ÁNGULOS AGUDOS
  • 6. La base de la trigonometría está en las razones trigonométricas, valores numéricos asociados a cada ángulo, que permiten relacionar operativamente los ángulos y lados de los triángulos. Las más importantes son seno, coseno y tangente B C a θ c A b
  • 7. En un ángulo α de un triángulo rectángulo, ABC, se llama seno de α, y se escribe sen α, al cociente entre el cateto opuesto y la hipotenusa. Análogamente se definen el coseno (cos) como cociente entre el cateto adyacente y la hipotenusa, y la tangente (tg) como el cociente entre el cateto opuesto y el cateto adyacente. Hace no muchos años existían tablas numéricas en las que se daban los valores de las razones trigonométricas de una gran cantidad de ángulos. En la actualidad, con una calculadora científica se obtienen con toda precisión los valores de las razones trigonométricas de cualquier ángulo.
  • 8. RAZONES TRIGONOMÉTRICAS DE ÁNGULOS CUALESQUIERA
  • 9. Para definir las razones trigonométricas de ángulos cualesquiera (de 0º a 360º) se empieza situando el ángulo en la llamada circunferencia gonio métrica, una circunferencia de radio 1 con su centro, O, situado sobre unos ejes coordenados:
  • 10. El vértice del ángulo se sitúa en O y el primero de sus lados, a, sobre la parte positiva del eje de las X. El segundo lado, b, se abre girando en sentido contrario a las agujas del reloj. Este segundo lado corta a la circunferencia gonio métrica en un punto, P, cuyas coordenadas son c = cos α y s = sen α. Es decir, P(cos α, sen α). La tg α= t se sitúa sobre la recta r, tangente a la circunferencia en U, y queda determinada por el punto T en que el lado b, o su prolongación, corta a r. Según esta definición, las razones trigonométricas sen, cos y tg toman valores positivos o negativos según el cuadrante en el que se encuentre el ángulo α. En la figura siguiente se resumen los signos de las tres razones:
  • 11. SEN COS TG - + - + - - + + + - - + - - +
  • 12. FUNCIONES TRIGONOMÉTRICAS Las funciones trigonométricas se obtienen a partir de las razones trigonométricas de la forma siguiente: El ángulo se expresa en radianes. Por tanto, los 360º de una circunferencia pasan a ser 2p radianes.
  • 13. Se considera que cualquier número real puede ser la medida de un ángulo. Sus razones trigonométricas se relacionan con las razones de los ángulos comprendidos en el intervalo [0, 2p) del siguiente modo: si x - x’ = k · 2p, k número entero, entonces sen x = sen x’, cos x = cos x’, tg x = tg x’. Es decir, si dos números difieren en un número entero de veces 2p, entonces tienen las mismas razones trigonométricas