SlideShare uma empresa Scribd logo
1 de 148
Jakarta
                         10 November 2012

                         Arief Hamdani Gunawan




1. Introduction to LTE                  5. LTE Radio Procedures

2. OFDMA                                6. LTE Uplink Physical Channels and
                                        Signals
3. SC-FDMA
                                        7. LTE Mobility
4. LTE Network and Protocol
                                        8. LTE Test and Measurement
Day Two:
10 November 2012

 Arief Hamdani Gunawan
Session 5: LTE Radio Procedures
•LTE Initial Access
•Downlink physical channels and signals
•Cell search in LTE
•Primary Synchronization Signal
•Secondary Synchronization Signal
•Cell search in LTE, reference signals
•Downlink Reference Signals
•Cell Search in LTE, essential system information
•System Information Broadcast in LTE
•Random Access Procedure
•How to derive information in LTE
•Hybrid ARQ in Downlink
•Default EPS Bearer Setup
LTE Initial Access
Downlink physical channels and signals
DL Physical Layer Procedures
• Cell search and synchronization
• Scheduling
    – Dilakukan di base station (eNodeB)
    – PDCCH (Phy DL Control Channel) menginformasikan alokasi time/freq resource
      dan format transmisi yang digunakan kepada user.
    – Scheduler mengevaluasi berbagai tipe informasi (parameter QoS, pengukuran
      dari UE, kapabilitas UE, buffer status)
• Link Adaptation
    – Skema modulasi dan coding untuk shared data channel diadaptasi sesuai
      dengan kualitas link radio.
    – Untuk tujuan ini, UE secara teratur melaporkan Channel Quality Indicator
      (CQI) ke eNodeB.
• Hybrid ARQ (Automatic Repeat Request)


                                                                                 6
Cell Search in LTE
Synchronization & Cell Search

• UE yang ingin mengakses suatu sel LTE, terlebih dahulu harus melakukan
   prosedur Cell Search.
• Cell Search terdiri dari serangkaian tahapan sinkronisasi, dimana UE
   menentukan parameter waktu & frekuensi yang diperlukan untuk
   mendemodulasi sinyal DL dan untuk mengirimkan sinyal UL dengan timing
   yang tepat.
• Tiga kebutuhan sinkronisasi utama:
    – Symbol timing acquisition
    –   Carrier frequency synchronization
    –   Sampling clock synchronization


                                                                           8
Case Study
             Cell Search for Multiple Bandwidths - Problem




•   LTE offers system flexibility by supporting systems and UEs of multiple bandwidths.
•   Challenge in synchronization & bandwidth detection.
•   Unbalance traffic loads may result
                                                                                          9
Case Study
                 Cell Search for Multiple Bandwidths - Solution


 Step 1:
 Cell search using synchronization channel
 detect center 1.25 spectrum
                                                         •The UE first detect the central
 of entire 20-MHz spectrum
                                                         part of the spectrum regardless of
 Step 2:                                                 the transmission bandwidth
 BCH reception                                           capability of the UE and that of the
                                                         cell site (BTS).
 Step 3:                                                 •UE moves to the transmission
 UE shifts to the center of carrier frequency assigned
                                                         bandwidth according to the UE
 by the system and initiates data transmission
                                                         capability for actual
                                                         communication




Source: 3GPP R1-061651, “3GPP TR 25.814 v 1.5.0”                                       10
Synchronization Sequence

Dua prosedur cell search dalam LTE :
• INITIAL SYNCHRONIZATION
    – UE mendeteksi suatu sel LTE dan mendekode semua informasi yang
      diperlukan untuk registrasi.
    – Diperlukan pada saat UE di-ON-kan atau ketika kehilangan koneksi dengan
      serving cell.
• NEW CELL IDENTIFICATION
    – Dilakukan ketika UE sudah terhubung ke suatu sel LTE dan sedang dalam
      proses mendeteksi suatu sel tetangga baru.
    – Dalam hal ini UE melaporkan hasil pengukuran yang terkait dengan sel baru ke
      serving cell, sebagai persiapan untuk handover.



                                                                                11
Cell Search procedure
                                                                                 RS : Reference Signal
                                                                                 PBCH : Physical Broadcast Channel
                                                                                 PSS : non-coherent detection
                                                                                 SSS : non-coherent/coherent detection




•   PSS (Primary Synchronization Signal) dan SSS (Secondary Synchronization Signal) adalah kanal-kanal fisik
    yang di-broadcast dalam setiap sel.
•   Pendeteksian dua kanal ini :
     –   memungkinkan dilakukannya sinkronisasi waktu & frekwensi.
     –   memberikan identitas phy layer dari sel dan panjang cyclic prefix kepada UE.
     –   memberitahu UE apakah sel menggunakan FDD atau TDD.
                                                                                                                     12
Primary Synchronization Signal
Secondary Synchronization Signal
PSS and SSS frame and slot structure in FDD




                                              15
PSS and SSS frame and slot structure in TDD




                                              16
Cell search in LTE, reference signals
Downlink reference signals
Reference Signals & Channel Estimation
•   Berbeda dengan jaringan berorientasi paket, LTE tidak menggunakan PHY Preamble untuk
    memfasilitasi estimasi carrier offset, estimasi kanal, sinkronisasi waktu, dsb.
•   Sebaliknya LTE menggunakan sinyal referensi khusus yang disisipkan dalam PRB.
•   Sinyal referensi tsb dikirimkan selama simbol OFDM pertama dan kelima dari setiap slot
    untuk short CP, dan simbol OFDM pertama dan ke-empat untuk long CP.
•   Simbol-simbol referensi dikirimkan setiap selang 6 subcarrier.
•   Dalam LTE downlink, terdapat 3 tipe RS :
     –   Cell-specific RS
     –   UE-specific RS
     –   MBSFN-specific RS




                                                                                             19
DL Reference Signal Structure for 2 & 4 Antenna Transmission




                                                               20
RS-aided Channel Estimation
•   Problem estimasi kanal berhubungan dengan model kanal yang diasumsikan, yang
    ditentukan oleh karakteristik propagasi fisik, termasuk jumlah antena Tx/Rx,
    bandwidth transmisi, carrier frequency, konfigurasi sel dan kecepatan relatif antara
    eNodeB dan UE.
•   Kondisi propagasi mencirikan fungsi korelasi kanal dalam 3-dimensi, yaitu : domain
    frekwensi, domain waktu dan domain ruang (spatial).
•   Frequency-Domain Channel Estimation
     – menggunakan Linear Interpolation Estimator
     – menggunakan IFFT Estimator
•   Time-Domain Channel Estimation
     – menggunakan Finite & Infinite Length MMSE (Min Mean Squared Error)
     – menggunakan Normalized Least-Mean-Square
•   Spatial-Domain Channel Estimation


                                                                                      21
Cell search in LTE, essential system information
Downlink Physical Channels and Signals

                     P-SCH and S-SCH

                     Physical Downlink Shared Channel

                     Physical Downlink Control Channel

                     Physical Broadcast Channel

                     Physical Control Format Indicator Channel

                     Physical Multicast Channel

                     Physical Hybrid ARQ Indicator Channel




P-SCH : Primary Synchronization Channel
S-SCH : Secondary Synchronization Channel
                                                                 23
LTE Downlink Physical Channels 1




                                   24
LTE Downlink Physical Channels 2




                                   25
System information broadcast in LTE
Random Access Procedure
How to derive information in LTE?
Indicating PDCCH format
Channel Coding & Link Adaptation
•   Prinsip link adaptation menjadi landasan perancangan suatu interface radio yang
    efisien untuk trafik data berbasis paket-switched.
•   Link adaptation dalam LTE dilakukan dengan mengatur laju data informasi yang
    dikirim (skema modulasi dan channel coding rate) secara dinamis, sesuai dengan
    kualitas radio link.
•   Link adaptation mempunyai hubungan yang sangat erat dengan perancangan
    skema channel coding yang digunakan untuk FEC.
•   Skema channel coding untuk FEC yang digunakan dalam LTE :
     – Convolutional Coding
     – Turbo Coding
     – LDPC (Low Density Parity Check) coding
•   Fitur advanced channel coding yang ditambahkan dalam LTE adalah : HARQ
    (Hybrid Automatic Repeat Request).


                                                                                      30
Link Adaptation
•   UE: Reports the finest possible
    granularity
     –   The reporting scheme and
         granularity depend on the radio
         channel quality variation!


•   ENB: Receives mobility and
    quality information
     –   Incremental feedback
         information forms a rough
         picture of the radio channel with
         the first report (s). The
         granularity gets finer and finer
         with each report.




                                                          31
Adaptive Modulation
•   Adaptive Modulation & Coding
    memastikan error rate tetap dibawah
    limit yang dapat diterima, dengan
    pengaturan modulasi dan coding rate
    secara dinamis.
•   Level modulasi yang lebih rendah
    meningkatkan link budget dan fade
    margin.
•   Perubahan lingkungan propagasi
    menyebabkan perubahan skema
    modulasi dan coding.
•   Dalam perencanaan kapasitas, variasi
    kanal propagasi jangka-panjang harus
    diperhitungkan.


                                                32
Typical SNR Performance of LTE Modulation and Coding




                                                   33
Adaptive Modulation & Coding




                               34
QoS parameters for QCI
Hybrid ARQ in the downlink
•   ACK/NACK for data packets transmitted in the downlink is the same as for HSDPA,
    where the UE is able to request retransmission of incorrectly received data
    packets,
     – ACK/NACK is transmitted in UL, either on PUCCH (Physical Uplink Control Channel) or
       multiplexed within PUSCH (Physical Uplink Shared Channel) see description of those UL
       channels for details),
     – ACK/NACK transmission refers to the data packet received four sub-frames (= 4 ms)
       before,
     – 8 HARQ processes can be used in parallel in downlink.
Hybrid ARQ Operation
Default EPS bearer setup
Session 6: Uplink Physical Channels and Signals
       •Scheduling of UL Data
       •UL Frequency Hopping
       •Demodulation Reference Signal (DRS) in the UL
       •Sounding Reference Signal (SRS) in the UL
       •PUSCH power control & timing relation
       •Acknowledging UL data packets on PHICH
       •Physical UL Control Channel
Uplink physical channels and signals
Scheduling of uplink data
Uplink Physical Channels and Signals


                                        Physical Random Access Channel

                                        Physical Uplink Shared Channel

                                        Physical Uplink Control Channel




•   PUSCH (Physical Uplink Shared Channel): used for uplink shared data transmission.

•   PUCCH (Physical Uplink Control Channel): used to carry ACK/NACK, CQI for downlink
    transmission and scheduling request for uplink transmission.                        42
Uplink Data Transmission
• Pada uplink, data dialokasikan dalam beberapa resource block (RB).
• Ukuran RB untuk uplink sama dengan yang digunakan untuk downlink,
  tetapi untuk menyederhanakan disain DFT dalam pemrosesan sinyal
  uplink, tidak semua kelipatan bulat digunakan (hanya kelipatan 2, 3 dan 5).
• Interval waktu transmisi uplink adalah 1 ms (sama dengan downlink).
• User data dibawa pada Physical Uplink Shared Channel (PUSCH), yang
  ditentukan oleh BW transmisi dan pola frequency hoping.
• Physical Uplink Control Channel (PUCCH) membawa informasi kontrol
  uplink, seperti : laporan CQI dan informasi ACK/NACK, yang terkait dengan
  paket-paket data yang diterima pada arah downlink.




                                                                           43
UL frequency hopping
Intra- and inter-subframe hopping,
• Intra-subframe hopping. UE hops to
    another frequency allocation from
    one slot to another within one
    subframe,
• Inter-subframe hopping. Frequency
    allocation changes from one subframe
    to another one,
Two types of hopping,
• Type I. Explicit frequency offset is
    used in the 2nd slot, can be
    configured and is indicated to the UE
    by resource block assignment /
    hopping resource allocation field in
    DCI format 0,
• Type II. Use of pre-defined hopping
    pattern, allocated BW is divided into
    sub-bands, hopping is done from one
    sub-band to another from one slot or
    subframe depending on configured
    frequency hopping scheme.
                                            Screenshots of R&S® SMU200A Vector Signal Generator
Demodulation Reference Signal (DRS) in the UL
Sounding Reference Signal (SRS) in the UL
PUSCH power control & timing relation
Random Access
• Suatu LTE UE (User Equipment) hanya dapat di-scheduled untuk transmisi
  uplink, apabila uplink transmission timing-nya sinkron.
• Oleh karena itu LTE RACH (Random Access Channel) memainkan peran
  penting sebagai interface antara non-synchronized UE dan skema
  transmisi othogonal pada akses radio uplink LTE.
• Prosedur LTE random access mempunyai dua bentuk, yaitu : contention-
  based atau contention-free.
• Dalam prosedur contention-based, suatu random access preamble
  signature dipilih secara acak oleh UE, yang kemungkinan dapat
  menyebabkan lebih dari satu UE mengirimkan signature yang sama secara
  simultan.
• Dalam prosedur contention-free, eNodeB memiliki opsi untuk mencegah
  terjadinya contention dengan mengalokasikan suatu dedicated signature
  kepada UE.


                                                                       48
Contention-based Random Access Procedure




                       Step 1 : Preamble transmission

                       Step 2 : Random Access
                                 Response

                       Step 3 : L2/L3 message

                       Step 4 : Contention resolution
                                 message



                                                        49
Contention-free Random Access Procedure




                         Prosedur contention-free
                         random access dapat
                         diterapkan dalam hal
                         diperlukan low latency, seperti
                         handover dan new downlink
                         data.


                                                      50
UL Transmission Procedures
• Uplink scheduling
    – Dilakukan oleh base station (eNodeB)
    – PDCCH (Phy DL Control Channel) menginformasikan alokasi time/freq resource
      dan format transmisi yang digunakan kepada user.
    – Scheduler mengevaluasi berbagai tipe informasi (parameter QoS, pengukuran
      dari UE, kapabilitas UE, buffer status)
• Uplink Adaptation
    – Untuk keperluan adaptasi uplink, dapat digunakan : transmission power
      control, adaptive modulation & channel coding rate, serta adaptive
      transmission BW.
• Uplink timing control
    – Diperlukan untuk menyelaraskan waktu transmisi dari UE-UE yang berbeda,
      dengan receiver window dari eNodeB.
• Hybrid ARQ


                                                                                51
Acknowledging UL data packets on PHICH
Physical Uplink Control Channel
PUCCH carries Uplink Control Information (UCI), when no PUSCH is
  available,
• If PUSCH is available, means resources have been allocated to the
  UE for data transmission, UCI are multiplexed with user data,
UCI are Scheduling Requests (SR), ACK/NACK information related to DL
  data packets, CQI, Pre-coding Matrix Information (PMI) and Rank
  Indication (RI) for MIMO,
PUCCH is transmitted on reserved frequency regions, configured by
  higher layers, which are located at the edge of the available
  bandwidth
• Minimizing effects of a possible frequency-selective fading affecting
  the radio channel,
• Inter-slot hopping is used on PUCCH,
• A RB can be configured to support a mix of PUCCH formats
  (2/2a/2b and 1/1a/1b) or exclusively 2/2a/2b,
PUCCH




•   CQI / PMI / RI are only signaled via PUCCH when periodic reporting is requested, scheduled
    and a periodic reporting is only done via PUSCH
Physical Channel Procedure (1/2)
Physical Channel Procedure (2/2)
Test
 Carries the DL-SCH and
           PCH              1   A
   Cell ID detection,
                            2
 radio frame detection          B
Operation BW, CP length,
MIMO config, cell ID, etc   3
                                C
   SCH symbol timing
  detection, frequency      4
    offset detection            D
RB assignment, transport
  format, RSN#, HARQ
 Proc#, TCP Command,
Cyclic shift for DMRS, UE
                            5   E
      identification
Answer
  SCH symbol timing detection,
   frequency offset detection

        Cell ID detection,
      radio frame detection

 Operation BW, CP length, MIMO
        config, cell ID, etc
 RB assignment, transport format,
RSN#, HARQ Proc#, TCP Command,
     Cyclic shift for DMRS, UE
           identification

   Carries the DL-SCH and PCH
Session 7: LTE Mobility
•Handover (Intra-MME / Serving Gateway)
•LTE Interworking with 2G/3G: Two RRC States:
Connected and Idle
•LTE Interworking with CDMA2000 1xRTT and
HRPD
•MIMO
•LTE MIMO downlink modes
•LTE downlink transmitter chain
•Downlink transmitter diversity - Space Frequency
Block Coding (2 Tx antenna case)
•Downlink Spatial Multiplexing - codebook based
precoding
•LTE MIMO UL Schemes
Logical High Level Architecture for The Evolved System
               GB
   GERAN
                                      GPRS Core                               Rx+
               Iu               SGSN
                                                    S4                                   Operator’s
   UTRAN                                                     S6     S7                   IP Services
                                                                                       (e.g. IMS, PSS,
                                  S3                                                           etc,)
                                                                     IASA
                                        MME               3GPP       SAE   S2b
eNB                       eNB           UPE S5a          anchor S5b anchor
                                 S1                                                         SGi
          eNB      eNB                                             S2a                     WLAN 3GPP
      Evolved RAN (LTE)                 EPC (SAE)                           EPDG
                                                                                             IP Access

                                       Trusted non 3GPP                                WLAN
                                           IP Access                               Access Network



• EPS uses the concept of EPS bearers to route IP traffic from a gateway in the PDN to the UE.
• A bearer is an IP packet flow with a defined Quality of Service (QoS) between the gateway and the
  UE.
• The E-UTRAN and EPC together set up and release bearers as required by applications.
SAE Bearer Model
Overview of the evolved system architecture
                                                                                        User and bearer
                                                                                        information exchange for
                                                                                        inter 3GPP access system
                                                                                        mobility




C-Plane : S1-C between eNB and MME
U-Plane : S1-U between eNB and UPE



                                                                                               Transfer of subscription and
                                                                                               authentication data for user
     MME : Mobility Management Entity                                                          access to the evolved system (AAA
     UPE : User Plane Entity                                                                   interface)
     3GPP Anchor : Mobility anchor between 2G/3G and LTE access systems (based on GTP)
     SAE Anchor : Mobility anchor between 3GPP access systems (2G/3G/LTE) and non-3GPP access systems (e.g. WLAN, WiMAX).
SAE Architecture – Functions per Element
SAE Architecture 3GPP2 Operator
detailed view, non-roaming case, 3GPP2 accesses
SAE Roaming support
extending today’s successful model
SAE impact on IMS
     overview
Handover (Intra-MME/Serving Gateway)
LTE Interworking with 2G/3G
Two RRC states: CONNECTED & IDLE
LTE Interworking with CDMA2000 1xRTT
   and HRPD (High Rate Packet Data)
Introduction to MIMO:
gains to exploit from multiple antenna usage
                       Transmit diversity (TxD)
                       • Combat fading
                       • Replicas of the same signal
                          sent on several Tx antennas
                       • Get a higher SNR at the Rx
                       Spatial multiplexing (SM)
                       • Different data streams sent
                          simultaneously on different
                          antennas
                       • Higher data rate
                       • No diversity gain
                       • Limitation due to path
                          correlation
                       Beamforming
Multiple Antenna Technique:
     Four Basic Model




                              71
Multiple Antenna Technique
    Two popular techniques in MIMO wireless systems:




Spatial Diversity: Increased SNR               Spatial Multiplexing: Increased rate

•   Receive and transmit diversity mitigates   •   Spatial multiplexing yields substantial

    fading and improves link quality               increase spectral efficiency




                                                                                             72
Spatial Diversity
Transmit Diversity
•   Space-time Code (STC): Redundant data sent over time and space domains
    (antennas).
•   Receive SNR increase about linearity with diversity order Nr Nt
•   Provide diversity gain to combat fading
•   Optional in 802.16d (2x2 Alamouti STBC), used in 3G CDMA




                                                                             73
Spatial Multiplexing
MIMO Multiplexing
• Data is not redundant – less diversity but less repetition
• Provides multiplexing gain to increase data-rate
• Low (no) diversity compared with STC




                                                               74
MIMO Operation




                 75
Diversity & MIMO




                   76
LTE MIMO: downlink modes
• Transmit diversity:
   – Space Frequency Block Coding (SFBC)
   – Increasing robustness of transmission
• Spatial multiplexing:
   – Transmission of different data streams simultaneously over
     multiple spatial layers
   – Codebook based precoding
   – Open loop mode for high mobile speeds possible
• Cyclic delay diversity (CDD):
   – Addition of antenna specific cyclic shifts
   – Results in additional multipath / increased frequency
     diversity
LTE downlink transmitter chain
Downlink transmit diversity
Space-Frequency Block Coding (2 Tx antenna case)
Downlink spatial multiplexing
  codebook based precoding
LTE MIMO: uplink schemes
• Uplink transmit antenna selection:
    – 1 RF chain, 2 TX antennas at UE
      side
    – Closed loop selection of transmit
      antenna
    – eNodeB signals antenna selection
      to UE
    – Optional for UE to support
• Multi-user MIMO / collaborative
  MIMO:
    – Simultaneous transmission from 2
      Ues on same time/frequency
      resource
    – Each UE with single transmit
      antenna
    – eNodeB selects UEs with close-to
      orthogonal radio channels
Multi User Scheduling
•   Scheduler (untuk transmisi unicast) secara dinamis mengontrol resource waktu
    dan frekwensi mana yang akan dialokasikan kepada suatu user pada suatu waktu
    tertentu.
•   DL control signalling memberitahu UE, resource dan format transmisi seperti apa
    yang sudah dialokasikan.
•   Scheduler dapat secara dinamis memilih strategi multiplexing terbaik dari
    beberapa metode yang ada, misalnya : localized atau distributed allocation.
•   Scheduling berinteraksi erat dengan link adaptation dan HARQ.
•   Pertimbangan scheduling antara lain didasarkan pada :
     –   minimum & maximum data rate
     –   daya yang tersedia untuk di-share
     –   Persyaratan target BER
     –   parameter QoS
     –   laporan CQI (Channel Quality Indicator)
     –   kapabilitas UE



                                                                                      82
Channel-Dependent Scheduling

• Shared channel transmission       • Scheduling in time and frequency
• Select user and data rate on        domain
  instantaneous channel quality         – Link adaptation in time domain
    – Time-domain adaptation used         only
      already in HSPA




                                                                           83
Packet-scheduling framework
              •   Packet scheduler adalah entitas
                  pengendali untuk seluruh proses
                  scheduling.
              •   Berkonsultasi dengan modul LA (Link
                  Adaptation) untuk memperoleh estimasi
                  data rate yang dapat disuport untuk user
                  tertentu dalam sel.
              •   LA dapat menggunakan frequency-
                  selective CQI feedback dari user, untuk
                  memastikan estimasi data rate yang sesuai
                  dengan target BLER tertentu.
              •   Modul Offset calculation dalam proses
                  link-adaptation dapat digunakan untuk
                  menstabilkan performansi BLER dalam
                  kondisi LA yang tidak pasti.


                                                    84
Quiz

      MIMO is
firstly introduced
         on
 which Release?
Session 8: LTE Test and Measurement
  •LTE RF Testing aspects
  •eNB Modulation quality measurements
  •ACLR in DL (FDD)
  •eNB Performance Requirements
  •UE RF Testing Aspects
  •Transmit Modulation
  •Inband Emission
  •IQ Component
  •ACLR Measurement
  •Receiver characteristics
  •LTE Wireless device testing from R&D upto conformance
  •Stages of LTE terminal testing
  •LTE Terminal Interoperability testing
  •Test Scenarios for LTE Terminal IOT
  •LTE Conformance Testing
  •LTE Terminal Certification
  •LTE Field Trials
System architecture for 3GPP access networks
PCRF

• It is responsible for policy control decision-making, as
  well as for controlling the flow-based charging
  functionalities in the Policy Control Enforcement
  Function (PCEF) which resides in the P-GW.
• The PCRF provides the QoS authorization (QoS class
  identifier and bitrates) that decides how a certain
  data flow will be treated in the PCEF and ensures
  that this is in accordance with the user’s subscription
  profile.
P-GW

• The P-GW is responsible for IP address allocation for the UE,
  as well as QoS enforcement and flow-based charging
  according to rules from the PCRF.
• The P-GW is responsible for the filtering of downlink user IP
  packets into the different QoS based bearers. This is
  performed based on Traffic Flow Templates (TFTs).
• The P-GW performs QoS enforcement for Guaranteed Bit Rate
  (GBR) bearers.
• It also serves as the mobility anchor for inter-working with
  non-3GPP technologies such as CDMA2000 and WiMAX
  networks.
S-GW
• All user IP packets are transferred through the S-GW, which
  serves as the local mobility anchor for the data bearers when
  the UE moves between eNodeBs.
• It also retains the information about the bearers when the UE
  is in idle state (known as ECM-IDLE) and temporarily buffers
  downlink data while the MME initiates paging of the UE to re-
  establish the bearers.
• In addition, the S-GW performs some administrative functions
  in the visited network such as collecting information for
  charging (e.g. the volume of data sent to or received from the
  user), and legal interception.
• It also serves as the mobility anchor for inter-working with
  other 3GPP technologies such as GPRS and UMTS.
MME

• The MME is the control node which processes the signaling
  between the UE and the CN.
• The protocols running between the UE and the CN are known
  as the Non-Access Stratum (NAS) protocols.
• The main functions supported by the MME are classified as:
   – Functions related to bearer management. This includes the
     establishment, maintenance and release of the bearers, and is
     handled by the session management layer in the NAS protocol.
   – Functions related to connection management. This includes the
     establishment of the connection and security between the network
     and UE, and is handled by the connection or mobility management
     layer in the NAS protocol layer.
HSS
•   Home Subscription Server (HSS) is the subscription data repository for all
    permanent user data. It also records the location of the user in the level of visited
    network control node, such as MME. It is a database server maintained centrally in
    the home operator’s premises.
•   The HSS stores the master copy of the subscriber profi le, which contains
    information about the services that are applicable to the user, including
    information about the allowed PDN connections, and whether roaming to a
    particular visited network is allowed or not. For supporting mobility between non-
    3GPP ANs, the HSS also stores the Identities of those P-GWs that are in use. The
    permanent key, which is used to calculate the authentication vectors that are sent
    to a visited network for user authentication and deriving subsequent keys for
    encryption and integrity protection, is stored in the Authentication Center (AuC),
    which is typically part of the HSS.
•   In all signaling related to these functions, the HSS interacts with the MME. The HSS
    will need to be able to connect with every MME in the whole network, where its
    UEs are allowed to move. For each UE, the HSS records will point to one serving
    MME at a time, and as soon as a new MME reports that it is serving the UE, the
    HSS will cancel the location from the previous MME.
EPS Connection Management
• To reduce the overhead in the E-UTRAN and processing in the UE, all UE-
  related information in the access network can be released during long
  periods of data inactivity.
• This state is called EPS Connection Management IDLE (ECM-IDLE). The
  MME retains the UE context and the information about the established
  bearers during these idle periods.
• To allow the network to contact an ECM-IDLE UE, the UE updates the
  network as to its new location whenever it moves out of its current
  Tracking Area (TA); this procedure is called a ‘Tracking Area Update’. The
  MME is responsible for keeping track of the user location while the UE is
  in ECM-IDLE.
• When there is a need to deliver downlink data to an ECM-IDLE UE, the
  MME sends a paging message to all the eNodeBs in its current TA, and the
  eNodeBs page the UE over the radio interface. On receipt of a paging
  message, the UE performs a service request procedure which results in
  moving the UE to ECM-CONNECTED state.
MME connections to other logical nodes
        and main functions
S-GW connections to other logical nodes
         and main functions
P-GW connections to other logical nodes
         and main functions
PCRF connections to other logical nodes
                  and main functions




Each PCRF may be associated with one or more AF, P-GW and S-GW. There is only
one PCRF associated with each PDN connection that a single UE has.
LTE RF Testing Aspects
       Base station (eNodeB) according to 3GPP
•   Measurements are performed using           •   Rx characteristics (= Uplink):
    Fixed Reference Channels (FRC) and             Reference sensitivity level, Dynamic
    EUTRA Test Models (E-TM),                      range, In-channel selectivity,
•   Tx characteristic (= Downlink)                 Adjacent channel selectivity (ACS)
     – Base station output power                   and narrow-band blocking, Blocking,
     – Output power dynamics: RE Power             Receiver spurious emissions, Receiver
       Control dynamic range, total power          intermodulation
       dynamic range,                          •   Performance requirements,
     – Transmit ON/OFF power: Transmitter           –  …for PUSCH: Fading conditions, UL
       OFF power, transmitter transient               timing adjustment, high speed train,
       period,                                        HARQ-ACK multiplexed in PUSCH,
     – Transmitted signal quality: Frequency        – …for PUCCH: DTX to ACK performance,
       Error, Error Vector Magnitude (EVM),           ACK missed detection PUCCH format 1a
       Time alignment between transmitter             (single user), CQI missed detection for
       antennas, DL RS power, etc. …                  PUCCH format 2, ACK missed detection
     – Unwanted emissions: Occupied                   PUCCH format 1a (multiple user)
       Bandwidth, Adjacent Channel Leakage          – PRACH performance: FALSE detection
       Power Ratio (ACLR), Operating band             probability, detection requirements
       unwanted emissions, etc. …
     – Transmitter spurious emissions and
       intermodulation,



                          3GPP TS 36.104: Base Station (BS) radio transmission and reception
eNB modulation quality measurements
• Frequency error
    – If frequency error is larger than a few subcarrier, demodulation at the UE
      might not work properly and cause network interference,
    – Quick test: OBW, Limit for frequency error after demodulation 0.05 ppm + 12
      Hz (1ms),
• Error Vector Magnitude (EVM),
    – Amount of distortion effecting the receiver to demodulate the signal properly,
    – Limit changes for modulation schemes QPSK (17.5%), 16QAM (12.5%), 64QAM
      (8%),
• Time alignment,
    – Only TX test defined for multiple antennas, measurement is to measure the
      time delay between the signals for the two transmitting antennas, delay shall
      not exceed 65 ns,
• DL RS power
    – “Comparable” to WCDMA measurement CPICH RSCP; absolute DL RS power is
      indicated on SIB Type 2, measured DL RS power shall be in the range of ±2.1
      dB,
ACLR in DL (FDD)
ACLR in DL (FDD):
No filter definition in LTE!
eNB performance requirements
             PRACH and preamble testing I
• PRACH testing is one of the performance requirements
  defined in 3GPP TS 36.141 E-UTRA BS conformance testing,
   – Total probability of FALSE detection of preamble (Pfa 0.1% or less),
   – Probability of detection of preamble (Pd = 99% at defined SNR),
   – Two modes of testing: normal and high-speed mode,
       • Different SNR and fading profiles are used (table shows settings for
         normal mode),
eNB performance requirements
          PRACH and preamble testing I
– Depending on the mode different preambles are used to check
  detection probability (table shows preamble to be used for normal
  mode),
eNB performance requirements
                   PRACH and preamble testing II
 •   According to 3GPP TS 36.211 the NCS
     value is not set directly instead it is
     translated to a NCS configuration
     value,
 •   This value is set in the signal
     generator R&S® SMx or R&S® AMU,




Screenshot taken
      from R&S®
SMU200A Vector
Signal Generator
UE RF testing
LTE RF Testing Aspects
       User Equipment (UE) according to 3GPP
Tx characteristic                         Rx characteristics
• Transmit power,                         • Reference sensitivity level,
• Output power dynamics,                  • UE maximum input level,
• Transmit Signal Quality,                • Adjacent channel selectivity,
    – Frequency error, EVM vs.            • Blocking characteristics,
      subcarrier, EVM vs. symbol, LO
      leakage, IQ imbalance, Inband       • Intermodulation characteristics,
      emission, spectrum flatness,        • Spurious emissions,
• Output RF spectrum emissions,           Performance requirements
    – Occupied bandwidth, Spectrum        • Demodulation FDD PDSCH (FRC),
      Emission Mask (SEM), Adjacent
      Channel Leakage Power Ratio         • Demodulation FDD
      (ACLR),                                PCFICH/PDCCH (FRC)
• Spurious Emission,
• Transmit Intermodulation,



      3GPP TS 36.101: User Equipment (UE) radio transmission and reception
Transmit modulation




According to 3GPP specification LO leakage (or IQ origin offset) is removed from evaluated
signal before calculating EVM and in-band emission.
In-band emission
IQ component
•   Also known is LO leakage, IQ offset, etc.,
•   Measure of carrier feedthrough present in the signal,
•   Removed from measured waveform, before calculating EVM and in-band emission
    (3GPP TS 36.101 V8.3.0, Annex F),
•   In difference to DL the DC subcarrier in UL is used for transmission, but subcarriers
    are shifted half of subcarrier spacing (= 7.5 kHz) to be symmetric around DC
    carrier,
•   Due to this frequency shift energy of the LO falls into the two central subcarrier
ACLR measurement I
Receiver characteristics

• Throughput shall be >95% for…
  – Reference Sensitivity Level,
  – Adjacent Channel Selectivity,
  – Blocking Characteristics,
• …using the well-defined DL reference
  channels according to 3GPP specification
LTE wireless device testing
from R&D up to conformance
Stages of LTE terminal testing
LTE terminal interoperability testing
                         motivation
• Interoperability testing is used to
  verify
   – Connectivity of the UE with the
     real network (by means of base
     station simulators)
   – Service quality, end-to-end
     performance
   – Different LTE features and
     parametrizations
   – Interworking between LTE and
     legacy technologies
• The complete UE protocol stack
  is tested.
• IOT test scenarios are based on
  requirements from real network
  operation and typical use cases.
LTE terminal interoperability testing
                  example test scenarios
•   Registration
•   UE initiated detach
•   Network initiated detach
•   Mobile originated EPS bearer establishment
•   Mobile terminated EPS bearer establishment
•   Cell (re-)selection
•   GUTI reallocation
•   Tracking are update
•   …
•   Plus: end-to-end scenarios (video streaming, VoIP, …)
•   Plus: intra-LTE mobility, inter-RAT mobility
Test scenarios for LTE terminal IOT
different sources for maximum test coverage
LTE conformance testing
                                motivation
• Verifying compliance of terminals
  to 3GPP LTE standard
    – by validated test cases
      implemented on registered test
      platforms
    – in order to ensure worldwide
      interoperability of the terminal
      within every mobile network
• 3GPP RAN5 defines conformance
  test specifications for
    – RF
    – Radio Resource Management
      (RRM)
    – Signaling
• Certification organizations (e.g.
  GCF) define certification criteria
  based on RAN5 test specifications
LTE field trial testing and
coverage measurements
LTE field trials
  requirements from different deployment scenarios

• Bandwidths from 1.4 MHz to 20 MHz
• Different LTE FDD and TDD frequency bands
• Combination with legacy technologies
  (GSM/EDGE, WCDMA/HSPA, CDMA2000 1xEV-
  DO)
• Spectrum clearance and refarming scenarios
• Femto cell / Home eNB scenarios
LTE field trials
                       scope of test tools
• Field trials provide input for:
    – Calibration and verification of
      planning tools for different
      deployment scenarios
    – Network optimization (capacity
      and quality)
    – Quality of service verification
    – Definition of Key Performance
      Indicators (KPIs) and
      verification, also from
      subscriber’s point of view
• Parallel use of scanners /
  measurement receivers for
  comparison with UE and base
  station behaviour
• Support of IOT activities
Example result from the field
scanner measurements for LTE
10 Steps to Determine 3G/4G
              IP Data Throughput
1. Will my device connect?    6. What happens if I try real
2. Do I have a good quality      application?
   transmitter?               7. What happens under non-
3. Do I have a good quality      ideal conditions?
   receiver?                  8. Is it robust?
4. Can I achieve max E2E      9. Does it work closed loop?
   tput under ideal           10. How good is my battery
   conditions with UDP           life?
5. What about with TCP and
   simultaneous UL/DL?
Step 1: Will my device connect?
Step 1: Will my device connect?




• Is the UE able to sync to the DL?
•Can I get through the connection set-up
• Can I ping my UE?
• If not take a log and de-bug message exchange
•Make edits as required with Message editor
2. Do I have a good quality Transmitter?
                   RF test
• High data throughput testing relies on good quality UL
  transmissions
• Look for the following:
    – Ensure you have appropriate
      power and attenuation
      settings
    – High EVM for high order
      modulation schemes
    – High EVM at the band edge
    – Spurs both in band and out of
      band
    – Linearity issues/ spectral
      growth
    – Switching transients, LO
      settling time
    – Repeat tests with any “other”
      radio’s active
3GPP Tx Measurements
UL RF Measurements
3. Do I have a good quality receiver?

• High Data throughput
  testing relies on good a
  quality receiver
• Look for the following:
   – sensitivity for different
     modulation schemes
   – Max input level
     performance
   – susceptibility to
     interference (simultaneous
     UL/DL, other radios, spurs
     from digital board, …)
3. Do I have a good quality receiver?
DL Data Throughput for TD LTE
(20MHz channel, 2x2 MIMO, UL/DL config 5, special subframe config 6)
Measurement Technique: UDP vs FTP (TCP)
               UDP                                 FTP

+ Unacknowledged                    + Simulates real-world file
+ removes flow control                 transfers
   complexity                       +Transferred files can be viewed
+ removes higher layer acks            and/or compared
+ Less susceptible latency
                                    - Adds flow control complexity
- Not the full story for file       - Add higher layer acks and
   transfers                            retransmissions
- Not suitable for used in shared   - TCP Control algorithms sensitive
networks                            to multiple parameters
                                    - Test system configuration can
                                    affect results
5. Can I achieve max E2E tput under ideal conditions
                       with TCP?




• TCP adds higher layer support for error detection, re-transmissions,
  congestion control and flow control
• TCP flow control algorithms interpret “lost” packets as congestion
• Careful consideration of parameters such as window size, number
  of parallel process, segment size etc. need to be considered
TCP “Flapping”
6. What happens if I try a real application? …
           (Voice, video, ftp …)
7. What happens under non-ideal conditions?

                       •Typically fade the DL and use robust
                       UL
                       •Perform test mode and E2E testing
                       •Measure MAC (BLER & Tput) and IP
                       layer throughput
                       •Use TCP with care!
8. Is it robust? …




• E2E IP tests PHY, MAC, PDCP, and IP layers all working
  together at full rate
• Check processor can handle multiple real time activities – add
  SMS and voice calls during E2E IP
• Check there are no memory overflow/leakage issues
9. Does it work closed loop?




•BLER/Tput Testing
•Supports Test Mode and E2E Testing
10. How good is my battery life?
Case Study
Automated Measurements Give Repeatable 21Mbps Results!
Case Study
Device Performance: MIPS Matter!
Case Study
Cat14 (21Mbps) Devices – Better the second time around
Case Study
Not All HSDPA Cat 6 Devices Have the Same Throughput
Final Note
Test
      LTE DL peak rate
          64 QAM
          20 MHz
         4x4 MIMO

          How much
theoretical Mbps per antenna?
References
• Telecommunication management; Performance
  Management (PM); Performance measurements;
  Universal Terrestrial Radio Access Network (UTRAN)
• http://www.3gpp.org/ftp/Specs/html-info/32405

• Terminal conformance specification, Radio transmission
  and reception (FDD)
• http://www.3gpp.org/ftp/Specs/html-info/34121.htm

• User Equipment (UE) radio transmission and reception
  (FDD)
• http://www.3gpp.org/ftp/Specs/html-info/25101.htm
The End


Thank You

Mais conteúdo relacionado

Mais procurados

LTE air interface overview
LTE air interface overviewLTE air interface overview
LTE air interface overviewNasir Ahmad
 
Oea000000 lte principle fundamental issue 1.01
Oea000000 lte principle fundamental issue 1.01Oea000000 lte principle fundamental issue 1.01
Oea000000 lte principle fundamental issue 1.01Ndukwe Amandi
 
lte physical layer overview
 lte physical layer overview lte physical layer overview
lte physical layer overviewPraveen Kumar
 
Overview of LTE Air-Interface Technical White Paper
Overview of LTE Air-Interface Technical White PaperOverview of LTE Air-Interface Technical White Paper
Overview of LTE Air-Interface Technical White PaperGoing LTE
 
Lte air-interface
Lte  air-interfaceLte  air-interface
Lte air-interfaceArshad Alam
 
19080432 rrc-procedures-in-lte-comments-v1
19080432 rrc-procedures-in-lte-comments-v119080432 rrc-procedures-in-lte-comments-v1
19080432 rrc-procedures-in-lte-comments-v1vedaarunachalam
 
02 tm51172 en02gla2_air interface protocols_ppt
02 tm51172 en02gla2_air interface protocols_ppt02 tm51172 en02gla2_air interface protocols_ppt
02 tm51172 en02gla2_air interface protocols_pptNdukwe Amandi
 
LTE Long Term Evolution
LTE Long Term EvolutionLTE Long Term Evolution
LTE Long Term Evolutionajus ady
 
Cell Search Procedure in LTE
Cell Search Procedure in LTECell Search Procedure in LTE
Cell Search Procedure in LTEMorg
 
Chap 1. stc lte e nb overview
Chap 1. stc lte e nb overviewChap 1. stc lte e nb overview
Chap 1. stc lte e nb overviewsivakumar D
 
Ericsson interview
Ericsson interviewEricsson interview
Ericsson interviewSatish Jadav
 
LTE (Long Term Evolution) Introduction
LTE (Long Term Evolution) IntroductionLTE (Long Term Evolution) Introduction
LTE (Long Term Evolution) IntroductionGuisun Han
 

Mais procurados (20)

LTE air interface overview
LTE air interface overviewLTE air interface overview
LTE air interface overview
 
Lte technical overview
Lte technical overviewLte technical overview
Lte technical overview
 
Oea000000 lte principle fundamental issue 1.01
Oea000000 lte principle fundamental issue 1.01Oea000000 lte principle fundamental issue 1.01
Oea000000 lte principle fundamental issue 1.01
 
Lte training session_1
Lte training session_1Lte training session_1
Lte training session_1
 
lte physical layer overview
 lte physical layer overview lte physical layer overview
lte physical layer overview
 
Overview of LTE Air-Interface Technical White Paper
Overview of LTE Air-Interface Technical White PaperOverview of LTE Air-Interface Technical White Paper
Overview of LTE Air-Interface Technical White Paper
 
Lte air-interface
Lte  air-interfaceLte  air-interface
Lte air-interface
 
19080432 rrc-procedures-in-lte-comments-v1
19080432 rrc-procedures-in-lte-comments-v119080432 rrc-procedures-in-lte-comments-v1
19080432 rrc-procedures-in-lte-comments-v1
 
Lte basic
Lte basicLte basic
Lte basic
 
02 tm51172 en02gla2_air interface protocols_ppt
02 tm51172 en02gla2_air interface protocols_ppt02 tm51172 en02gla2_air interface protocols_ppt
02 tm51172 en02gla2_air interface protocols_ppt
 
Introduction to LTE
Introduction to LTEIntroduction to LTE
Introduction to LTE
 
LTE Long Term Evolution
LTE Long Term EvolutionLTE Long Term Evolution
LTE Long Term Evolution
 
3 gpp lte radio layer 2
3 gpp lte radio layer 23 gpp lte radio layer 2
3 gpp lte radio layer 2
 
LTE Basic
LTE BasicLTE Basic
LTE Basic
 
lte advanced
lte advancedlte advanced
lte advanced
 
Cell Search Procedure in LTE
Cell Search Procedure in LTECell Search Procedure in LTE
Cell Search Procedure in LTE
 
Chap 1. stc lte e nb overview
Chap 1. stc lte e nb overviewChap 1. stc lte e nb overview
Chap 1. stc lte e nb overview
 
Ericsson interview
Ericsson interviewEricsson interview
Ericsson interview
 
Lte signaling
Lte signalingLte signaling
Lte signaling
 
LTE (Long Term Evolution) Introduction
LTE (Long Term Evolution) IntroductionLTE (Long Term Evolution) Introduction
LTE (Long Term Evolution) Introduction
 

Destaque

Chap 2. lte channel structure .eng
Chap 2. lte  channel structure .engChap 2. lte  channel structure .eng
Chap 2. lte channel structure .engsivakumar D
 
wimax Ppt for seminar
wimax Ppt for seminarwimax Ppt for seminar
wimax Ppt for seminarPratik Anand
 
Gsm Cell Planning And Optimization
Gsm Cell Planning And OptimizationGsm Cell Planning And Optimization
Gsm Cell Planning And OptimizationYasir Azmat
 
Main Differences between LTE & LTE-Advanced
Main Differences between LTE & LTE-AdvancedMain Differences between LTE & LTE-Advanced
Main Differences between LTE & LTE-AdvancedSabir Hussain
 
SATELLITE COMMUNICATION AND IT'S APPLICATION IN GPS
SATELLITE COMMUNICATION AND IT'S APPLICATION IN GPSSATELLITE COMMUNICATION AND IT'S APPLICATION IN GPS
SATELLITE COMMUNICATION AND IT'S APPLICATION IN GPSArkaprava Jana
 
Wcdma Radio Network Planning And Optimization
Wcdma Radio Network Planning And OptimizationWcdma Radio Network Planning And Optimization
Wcdma Radio Network Planning And OptimizationPengpeng Song
 
LTE - Long Term Evolution
LTE - Long Term EvolutionLTE - Long Term Evolution
LTE - Long Term EvolutionArief Gunawan
 
Evolution Of Telecommunication
Evolution Of TelecommunicationEvolution Of Telecommunication
Evolution Of TelecommunicationRohan Attravanam
 
Satellite communications ppt
Satellite communications pptSatellite communications ppt
Satellite communications pptNiranjan kumar
 

Destaque (20)

3GPP LTE-MAC
3GPP LTE-MAC3GPP LTE-MAC
3GPP LTE-MAC
 
Chap 2. lte channel structure .eng
Chap 2. lte  channel structure .engChap 2. lte  channel structure .eng
Chap 2. lte channel structure .eng
 
wimax Ppt for seminar
wimax Ppt for seminarwimax Ppt for seminar
wimax Ppt for seminar
 
14 wcdma
14 wcdma14 wcdma
14 wcdma
 
LTE Planning
LTE PlanningLTE Planning
LTE Planning
 
Wcdma channels
Wcdma channels Wcdma channels
Wcdma channels
 
Hspa and hspa+
Hspa and hspa+Hspa and hspa+
Hspa and hspa+
 
Lte Tutorial
Lte TutorialLte Tutorial
Lte Tutorial
 
Gsm Cell Planning And Optimization
Gsm Cell Planning And OptimizationGsm Cell Planning And Optimization
Gsm Cell Planning And Optimization
 
Main Differences between LTE & LTE-Advanced
Main Differences between LTE & LTE-AdvancedMain Differences between LTE & LTE-Advanced
Main Differences between LTE & LTE-Advanced
 
SATELLITE COMMUNICATION AND IT'S APPLICATION IN GPS
SATELLITE COMMUNICATION AND IT'S APPLICATION IN GPSSATELLITE COMMUNICATION AND IT'S APPLICATION IN GPS
SATELLITE COMMUNICATION AND IT'S APPLICATION IN GPS
 
Hspa and hsdpa
Hspa and hsdpaHspa and hsdpa
Hspa and hsdpa
 
Wcdma Radio Network Planning And Optimization
Wcdma Radio Network Planning And OptimizationWcdma Radio Network Planning And Optimization
Wcdma Radio Network Planning And Optimization
 
Full gsm overview (modified)
Full gsm overview  (modified)Full gsm overview  (modified)
Full gsm overview (modified)
 
LTE - Long Term Evolution
LTE - Long Term EvolutionLTE - Long Term Evolution
LTE - Long Term Evolution
 
Evolution Of Telecommunication
Evolution Of TelecommunicationEvolution Of Telecommunication
Evolution Of Telecommunication
 
Lte optimization
Lte optimizationLte optimization
Lte optimization
 
Satellite communications ppt
Satellite communications pptSatellite communications ppt
Satellite communications ppt
 
HSPA Essentials
HSPA EssentialsHSPA Essentials
HSPA Essentials
 
Satellite access
Satellite accessSatellite access
Satellite access
 

Semelhante a Day two 10 november 2012

LTE Radio Overview: Downlink
LTE Radio Overview: DownlinkLTE Radio Overview: Downlink
LTE Radio Overview: Downlinkaliirfan04
 
Ue introduction
Ue introductionUe introduction
Ue introductionJamesFun
 
Lte 1x Ev Do Terminology 0209[1]
Lte 1x Ev Do Terminology 0209[1]Lte 1x Ev Do Terminology 0209[1]
Lte 1x Ev Do Terminology 0209[1]chgibbs7
 
Manage LTE RAN Synchronization.pdf
Manage LTE RAN Synchronization.pdfManage LTE RAN Synchronization.pdf
Manage LTE RAN Synchronization.pdfleilaerman
 
REALIZATION OF TRANSMITTER AND RECEIVER ARCHITECTURE FOR DOWNLINK CHANNELS IN...
REALIZATION OF TRANSMITTER AND RECEIVER ARCHITECTURE FOR DOWNLINK CHANNELS IN...REALIZATION OF TRANSMITTER AND RECEIVER ARCHITECTURE FOR DOWNLINK CHANNELS IN...
REALIZATION OF TRANSMITTER AND RECEIVER ARCHITECTURE FOR DOWNLINK CHANNELS IN...VLSICS Design
 
LTE Attach Call Flow_Vi.pptx
LTE Attach Call Flow_Vi.pptxLTE Attach Call Flow_Vi.pptx
LTE Attach Call Flow_Vi.pptxGaganVerma62
 
Umts interview questions
Umts interview questionsUmts interview questions
Umts interview questionsKaran Singh
 
LTE Physical-Layer EMERSON EDUARDO RODRIGUES
LTE Physical-Layer EMERSON EDUARDO RODRIGUESLTE Physical-Layer EMERSON EDUARDO RODRIGUES
LTE Physical-Layer EMERSON EDUARDO RODRIGUESEMERSON EDUARDO RODRIGUES
 
How to verify_your_lte_mac_rf_interactions_16_nov11
How to verify_your_lte_mac_rf_interactions_16_nov11How to verify_your_lte_mac_rf_interactions_16_nov11
How to verify_your_lte_mac_rf_interactions_16_nov11Kondi Naveen
 
Wc & lte 4 g module 4- 2019 by prof.sv1
Wc & lte 4 g  module 4- 2019 by prof.sv1Wc & lte 4 g  module 4- 2019 by prof.sv1
Wc & lte 4 g module 4- 2019 by prof.sv1SURESHA V
 
Wc & lte 4 g module 4- 2019 by prof.sv1
Wc & lte 4 g  module 4- 2019 by prof.sv1Wc & lte 4 g  module 4- 2019 by prof.sv1
Wc & lte 4 g module 4- 2019 by prof.sv1SURESHA V
 
Module 4 PPT VTU university 17EC81 OFDM module
Module 4 PPT VTU university 17EC81 OFDM moduleModule 4 PPT VTU university 17EC81 OFDM module
Module 4 PPT VTU university 17EC81 OFDM moduleChetan Naik
 
4G-Fourth Generation Mobile Communication System
4G-Fourth Generation Mobile Communication System4G-Fourth Generation Mobile Communication System
4G-Fourth Generation Mobile Communication SystemSafaet Hossain
 
4G-Questions interview.pdf
4G-Questions interview.pdf4G-Questions interview.pdf
4G-Questions interview.pdfMohamedShabana37
 

Semelhante a Day two 10 november 2012 (20)

LTE Air Interface
LTE Air InterfaceLTE Air Interface
LTE Air Interface
 
LTE Radio Overview: Downlink
LTE Radio Overview: DownlinkLTE Radio Overview: Downlink
LTE Radio Overview: Downlink
 
Ue introduction
Ue introductionUe introduction
Ue introduction
 
Lte 1x Ev Do Terminology 0209[1]
Lte 1x Ev Do Terminology 0209[1]Lte 1x Ev Do Terminology 0209[1]
Lte 1x Ev Do Terminology 0209[1]
 
Manage LTE RAN Synchronization.pdf
Manage LTE RAN Synchronization.pdfManage LTE RAN Synchronization.pdf
Manage LTE RAN Synchronization.pdf
 
REALIZATION OF TRANSMITTER AND RECEIVER ARCHITECTURE FOR DOWNLINK CHANNELS IN...
REALIZATION OF TRANSMITTER AND RECEIVER ARCHITECTURE FOR DOWNLINK CHANNELS IN...REALIZATION OF TRANSMITTER AND RECEIVER ARCHITECTURE FOR DOWNLINK CHANNELS IN...
REALIZATION OF TRANSMITTER AND RECEIVER ARCHITECTURE FOR DOWNLINK CHANNELS IN...
 
LTE Attach Call Flow_Vi.pptx
LTE Attach Call Flow_Vi.pptxLTE Attach Call Flow_Vi.pptx
LTE Attach Call Flow_Vi.pptx
 
Umts interview questions
Umts interview questionsUmts interview questions
Umts interview questions
 
Wcdma channels
Wcdma channelsWcdma channels
Wcdma channels
 
LTE Physical-Layer EMERSON EDUARDO RODRIGUES
LTE Physical-Layer EMERSON EDUARDO RODRIGUESLTE Physical-Layer EMERSON EDUARDO RODRIGUES
LTE Physical-Layer EMERSON EDUARDO RODRIGUES
 
Rs
RsRs
Rs
 
How to verify_your_lte_mac_rf_interactions_16_nov11
How to verify_your_lte_mac_rf_interactions_16_nov11How to verify_your_lte_mac_rf_interactions_16_nov11
How to verify_your_lte_mac_rf_interactions_16_nov11
 
Wc & lte 4 g module 4- 2019 by prof.sv1
Wc & lte 4 g  module 4- 2019 by prof.sv1Wc & lte 4 g  module 4- 2019 by prof.sv1
Wc & lte 4 g module 4- 2019 by prof.sv1
 
Wc & lte 4 g module 4- 2019 by prof.sv1
Wc & lte 4 g  module 4- 2019 by prof.sv1Wc & lte 4 g  module 4- 2019 by prof.sv1
Wc & lte 4 g module 4- 2019 by prof.sv1
 
Lte imp
Lte impLte imp
Lte imp
 
LTE Procedures
LTE ProceduresLTE Procedures
LTE Procedures
 
Lte initial access
Lte initial accessLte initial access
Lte initial access
 
Module 4 PPT VTU university 17EC81 OFDM module
Module 4 PPT VTU university 17EC81 OFDM moduleModule 4 PPT VTU university 17EC81 OFDM module
Module 4 PPT VTU university 17EC81 OFDM module
 
4G-Fourth Generation Mobile Communication System
4G-Fourth Generation Mobile Communication System4G-Fourth Generation Mobile Communication System
4G-Fourth Generation Mobile Communication System
 
4G-Questions interview.pdf
4G-Questions interview.pdf4G-Questions interview.pdf
4G-Questions interview.pdf
 

Mais de Arief Gunawan

Metaverse - Let's learn to understand when business becomes virtual and when ...
Metaverse - Let's learn to understand when business becomes virtual and when ...Metaverse - Let's learn to understand when business becomes virtual and when ...
Metaverse - Let's learn to understand when business becomes virtual and when ...Arief Gunawan
 
Technology Disruptions
Technology DisruptionsTechnology Disruptions
Technology DisruptionsArief Gunawan
 
Tutorial on Network Management and Security in Wireless Communications (Bandu...
Tutorial on Network Management and Security in Wireless Communications (Bandu...Tutorial on Network Management and Security in Wireless Communications (Bandu...
Tutorial on Network Management and Security in Wireless Communications (Bandu...Arief Gunawan
 
APWiMob 2014 (Bali, 28-30 August 2014) CFP
APWiMob 2014 (Bali, 28-30 August 2014) CFPAPWiMob 2014 (Bali, 28-30 August 2014) CFP
APWiMob 2014 (Bali, 28-30 August 2014) CFPArief Gunawan
 
Prof Ekram Hossain on DLT 2013 in Indonesia
Prof Ekram Hossain on DLT 2013 in IndonesiaProf Ekram Hossain on DLT 2013 in Indonesia
Prof Ekram Hossain on DLT 2013 in IndonesiaArief Gunawan
 
Day one ofdma and mimo
Day one ofdma and mimoDay one ofdma and mimo
Day one ofdma and mimoArief Gunawan
 
IEEE Background presentation
IEEE Background  presentationIEEE Background  presentation
IEEE Background presentationArief Gunawan
 
Cloud and Ubiquitous Computing in Today's Era of Tera
Cloud and Ubiquitous Computing in Today's Era of TeraCloud and Ubiquitous Computing in Today's Era of Tera
Cloud and Ubiquitous Computing in Today's Era of TeraArief Gunawan
 
Cloud Computing: Peluang Bisnis dan Tantangan Regulasi
Cloud Computing: Peluang Bisnis dan Tantangan RegulasiCloud Computing: Peluang Bisnis dan Tantangan Regulasi
Cloud Computing: Peluang Bisnis dan Tantangan RegulasiArief Gunawan
 
Mobile Cloud @ Binus
Mobile Cloud @ BinusMobile Cloud @ Binus
Mobile Cloud @ BinusArief Gunawan
 
Small Cell @ IT Telkom
Small Cell @ IT TelkomSmall Cell @ IT Telkom
Small Cell @ IT TelkomArief Gunawan
 
03 Beginning Android Application Development
03 Beginning Android Application Development03 Beginning Android Application Development
03 Beginning Android Application DevelopmentArief Gunawan
 
02 BlackBerry Application Development
02 BlackBerry Application Development02 BlackBerry Application Development
02 BlackBerry Application DevelopmentArief Gunawan
 

Mais de Arief Gunawan (20)

Metaverse - Let's learn to understand when business becomes virtual and when ...
Metaverse - Let's learn to understand when business becomes virtual and when ...Metaverse - Let's learn to understand when business becomes virtual and when ...
Metaverse - Let's learn to understand when business becomes virtual and when ...
 
Technology Disruptions
Technology DisruptionsTechnology Disruptions
Technology Disruptions
 
Tutorial on Network Management and Security in Wireless Communications (Bandu...
Tutorial on Network Management and Security in Wireless Communications (Bandu...Tutorial on Network Management and Security in Wireless Communications (Bandu...
Tutorial on Network Management and Security in Wireless Communications (Bandu...
 
APWiMob 2014 (Bali, 28-30 August 2014) CFP
APWiMob 2014 (Bali, 28-30 August 2014) CFPAPWiMob 2014 (Bali, 28-30 August 2014) CFP
APWiMob 2014 (Bali, 28-30 August 2014) CFP
 
Prof Ekram Hossain on DLT 2013 in Indonesia
Prof Ekram Hossain on DLT 2013 in IndonesiaProf Ekram Hossain on DLT 2013 in Indonesia
Prof Ekram Hossain on DLT 2013 in Indonesia
 
M2M Day Two
M2M Day TwoM2M Day Two
M2M Day Two
 
M2M Day One
M2M Day OneM2M Day One
M2M Day One
 
Day two planning
Day two planningDay two planning
Day two planning
 
Day one ofdma and mimo
Day one ofdma and mimoDay one ofdma and mimo
Day one ofdma and mimo
 
Cloud Architecture
Cloud ArchitectureCloud Architecture
Cloud Architecture
 
Cloud Ecosystem
Cloud EcosystemCloud Ecosystem
Cloud Ecosystem
 
IEEE Background presentation
IEEE Background  presentationIEEE Background  presentation
IEEE Background presentation
 
Cloud and Ubiquitous Computing in Today's Era of Tera
Cloud and Ubiquitous Computing in Today's Era of TeraCloud and Ubiquitous Computing in Today's Era of Tera
Cloud and Ubiquitous Computing in Today's Era of Tera
 
Cloud Computing: Peluang Bisnis dan Tantangan Regulasi
Cloud Computing: Peluang Bisnis dan Tantangan RegulasiCloud Computing: Peluang Bisnis dan Tantangan Regulasi
Cloud Computing: Peluang Bisnis dan Tantangan Regulasi
 
Mobile Cloud @ Binus
Mobile Cloud @ BinusMobile Cloud @ Binus
Mobile Cloud @ Binus
 
Small Cell @ UI
Small Cell @ UISmall Cell @ UI
Small Cell @ UI
 
Small Cell @ IT Telkom
Small Cell @ IT TelkomSmall Cell @ IT Telkom
Small Cell @ IT Telkom
 
03 Beginning Android Application Development
03 Beginning Android Application Development03 Beginning Android Application Development
03 Beginning Android Application Development
 
02 BlackBerry Application Development
02 BlackBerry Application Development02 BlackBerry Application Development
02 BlackBerry Application Development
 
01 Mobile Jungle
01 Mobile Jungle01 Mobile Jungle
01 Mobile Jungle
 

Último

AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsMemoori
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationRidwan Fadjar
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii SoldatenkoFwdays
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024Stephanie Beckett
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embeddingZilliz
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Commit University
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsSergiu Bodiu
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyAlfredo García Lavilla
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr LapshynFwdays
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Enterprise Knowledge
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...Fwdays
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupFlorian Wilhelm
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsMiki Katsuragi
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLScyllaDB
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfAddepto
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piececharlottematthew16
 

Último (20)

AI as an Interface for Commercial Buildings
AI as an Interface for Commercial BuildingsAI as an Interface for Commercial Buildings
AI as an Interface for Commercial Buildings
 
My Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 PresentationMy Hashitalk Indonesia April 2024 Presentation
My Hashitalk Indonesia April 2024 Presentation
 
"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko"Debugging python applications inside k8s environment", Andrii Soldatenko
"Debugging python applications inside k8s environment", Andrii Soldatenko
 
What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024What's New in Teams Calling, Meetings and Devices March 2024
What's New in Teams Calling, Meetings and Devices March 2024
 
Training state-of-the-art general text embedding
Training state-of-the-art general text embeddingTraining state-of-the-art general text embedding
Training state-of-the-art general text embedding
 
Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!Nell’iperspazio con Rocket: il Framework Web di Rust!
Nell’iperspazio con Rocket: il Framework Web di Rust!
 
DevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platformsDevEX - reference for building teams, processes, and platforms
DevEX - reference for building teams, processes, and platforms
 
Commit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easyCommit 2024 - Secret Management made easy
Commit 2024 - Secret Management made easy
 
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
"Federated learning: out of reach no matter how close",Oleksandr Lapshyn
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 
Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024Designing IA for AI - Information Architecture Conference 2024
Designing IA for AI - Information Architecture Conference 2024
 
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks..."LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
"LLMs for Python Engineers: Advanced Data Analysis and Semantic Kernel",Oleks...
 
Streamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project SetupStreamlining Python Development: A Guide to a Modern Project Setup
Streamlining Python Development: A Guide to a Modern Project Setup
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
Vertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering TipsVertex AI Gemini Prompt Engineering Tips
Vertex AI Gemini Prompt Engineering Tips
 
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
Developer Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQLDeveloper Data Modeling Mistakes: From Postgres to NoSQL
Developer Data Modeling Mistakes: From Postgres to NoSQL
 
Gen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdfGen AI in Business - Global Trends Report 2024.pdf
Gen AI in Business - Global Trends Report 2024.pdf
 
Story boards and shot lists for my a level piece
Story boards and shot lists for my a level pieceStory boards and shot lists for my a level piece
Story boards and shot lists for my a level piece
 

Day two 10 november 2012

  • 1. Jakarta 10 November 2012 Arief Hamdani Gunawan 1. Introduction to LTE 5. LTE Radio Procedures 2. OFDMA 6. LTE Uplink Physical Channels and Signals 3. SC-FDMA 7. LTE Mobility 4. LTE Network and Protocol 8. LTE Test and Measurement
  • 2. Day Two: 10 November 2012 Arief Hamdani Gunawan
  • 3. Session 5: LTE Radio Procedures •LTE Initial Access •Downlink physical channels and signals •Cell search in LTE •Primary Synchronization Signal •Secondary Synchronization Signal •Cell search in LTE, reference signals •Downlink Reference Signals •Cell Search in LTE, essential system information •System Information Broadcast in LTE •Random Access Procedure •How to derive information in LTE •Hybrid ARQ in Downlink •Default EPS Bearer Setup
  • 6. DL Physical Layer Procedures • Cell search and synchronization • Scheduling – Dilakukan di base station (eNodeB) – PDCCH (Phy DL Control Channel) menginformasikan alokasi time/freq resource dan format transmisi yang digunakan kepada user. – Scheduler mengevaluasi berbagai tipe informasi (parameter QoS, pengukuran dari UE, kapabilitas UE, buffer status) • Link Adaptation – Skema modulasi dan coding untuk shared data channel diadaptasi sesuai dengan kualitas link radio. – Untuk tujuan ini, UE secara teratur melaporkan Channel Quality Indicator (CQI) ke eNodeB. • Hybrid ARQ (Automatic Repeat Request) 6
  • 8. Synchronization & Cell Search • UE yang ingin mengakses suatu sel LTE, terlebih dahulu harus melakukan prosedur Cell Search. • Cell Search terdiri dari serangkaian tahapan sinkronisasi, dimana UE menentukan parameter waktu & frekuensi yang diperlukan untuk mendemodulasi sinyal DL dan untuk mengirimkan sinyal UL dengan timing yang tepat. • Tiga kebutuhan sinkronisasi utama: – Symbol timing acquisition – Carrier frequency synchronization – Sampling clock synchronization 8
  • 9. Case Study Cell Search for Multiple Bandwidths - Problem • LTE offers system flexibility by supporting systems and UEs of multiple bandwidths. • Challenge in synchronization & bandwidth detection. • Unbalance traffic loads may result 9
  • 10. Case Study Cell Search for Multiple Bandwidths - Solution Step 1: Cell search using synchronization channel detect center 1.25 spectrum •The UE first detect the central of entire 20-MHz spectrum part of the spectrum regardless of Step 2: the transmission bandwidth BCH reception capability of the UE and that of the cell site (BTS). Step 3: •UE moves to the transmission UE shifts to the center of carrier frequency assigned bandwidth according to the UE by the system and initiates data transmission capability for actual communication Source: 3GPP R1-061651, “3GPP TR 25.814 v 1.5.0” 10
  • 11. Synchronization Sequence Dua prosedur cell search dalam LTE : • INITIAL SYNCHRONIZATION – UE mendeteksi suatu sel LTE dan mendekode semua informasi yang diperlukan untuk registrasi. – Diperlukan pada saat UE di-ON-kan atau ketika kehilangan koneksi dengan serving cell. • NEW CELL IDENTIFICATION – Dilakukan ketika UE sudah terhubung ke suatu sel LTE dan sedang dalam proses mendeteksi suatu sel tetangga baru. – Dalam hal ini UE melaporkan hasil pengukuran yang terkait dengan sel baru ke serving cell, sebagai persiapan untuk handover. 11
  • 12. Cell Search procedure RS : Reference Signal PBCH : Physical Broadcast Channel PSS : non-coherent detection SSS : non-coherent/coherent detection • PSS (Primary Synchronization Signal) dan SSS (Secondary Synchronization Signal) adalah kanal-kanal fisik yang di-broadcast dalam setiap sel. • Pendeteksian dua kanal ini : – memungkinkan dilakukannya sinkronisasi waktu & frekwensi. – memberikan identitas phy layer dari sel dan panjang cyclic prefix kepada UE. – memberitahu UE apakah sel menggunakan FDD atau TDD. 12
  • 15. PSS and SSS frame and slot structure in FDD 15
  • 16. PSS and SSS frame and slot structure in TDD 16
  • 17. Cell search in LTE, reference signals
  • 19. Reference Signals & Channel Estimation • Berbeda dengan jaringan berorientasi paket, LTE tidak menggunakan PHY Preamble untuk memfasilitasi estimasi carrier offset, estimasi kanal, sinkronisasi waktu, dsb. • Sebaliknya LTE menggunakan sinyal referensi khusus yang disisipkan dalam PRB. • Sinyal referensi tsb dikirimkan selama simbol OFDM pertama dan kelima dari setiap slot untuk short CP, dan simbol OFDM pertama dan ke-empat untuk long CP. • Simbol-simbol referensi dikirimkan setiap selang 6 subcarrier. • Dalam LTE downlink, terdapat 3 tipe RS : – Cell-specific RS – UE-specific RS – MBSFN-specific RS 19
  • 20. DL Reference Signal Structure for 2 & 4 Antenna Transmission 20
  • 21. RS-aided Channel Estimation • Problem estimasi kanal berhubungan dengan model kanal yang diasumsikan, yang ditentukan oleh karakteristik propagasi fisik, termasuk jumlah antena Tx/Rx, bandwidth transmisi, carrier frequency, konfigurasi sel dan kecepatan relatif antara eNodeB dan UE. • Kondisi propagasi mencirikan fungsi korelasi kanal dalam 3-dimensi, yaitu : domain frekwensi, domain waktu dan domain ruang (spatial). • Frequency-Domain Channel Estimation – menggunakan Linear Interpolation Estimator – menggunakan IFFT Estimator • Time-Domain Channel Estimation – menggunakan Finite & Infinite Length MMSE (Min Mean Squared Error) – menggunakan Normalized Least-Mean-Square • Spatial-Domain Channel Estimation 21
  • 22. Cell search in LTE, essential system information
  • 23. Downlink Physical Channels and Signals P-SCH and S-SCH Physical Downlink Shared Channel Physical Downlink Control Channel Physical Broadcast Channel Physical Control Format Indicator Channel Physical Multicast Channel Physical Hybrid ARQ Indicator Channel P-SCH : Primary Synchronization Channel S-SCH : Secondary Synchronization Channel 23
  • 24. LTE Downlink Physical Channels 1 24
  • 25. LTE Downlink Physical Channels 2 25
  • 28. How to derive information in LTE?
  • 30. Channel Coding & Link Adaptation • Prinsip link adaptation menjadi landasan perancangan suatu interface radio yang efisien untuk trafik data berbasis paket-switched. • Link adaptation dalam LTE dilakukan dengan mengatur laju data informasi yang dikirim (skema modulasi dan channel coding rate) secara dinamis, sesuai dengan kualitas radio link. • Link adaptation mempunyai hubungan yang sangat erat dengan perancangan skema channel coding yang digunakan untuk FEC. • Skema channel coding untuk FEC yang digunakan dalam LTE : – Convolutional Coding – Turbo Coding – LDPC (Low Density Parity Check) coding • Fitur advanced channel coding yang ditambahkan dalam LTE adalah : HARQ (Hybrid Automatic Repeat Request). 30
  • 31. Link Adaptation • UE: Reports the finest possible granularity – The reporting scheme and granularity depend on the radio channel quality variation! • ENB: Receives mobility and quality information – Incremental feedback information forms a rough picture of the radio channel with the first report (s). The granularity gets finer and finer with each report. 31
  • 32. Adaptive Modulation • Adaptive Modulation & Coding memastikan error rate tetap dibawah limit yang dapat diterima, dengan pengaturan modulasi dan coding rate secara dinamis. • Level modulasi yang lebih rendah meningkatkan link budget dan fade margin. • Perubahan lingkungan propagasi menyebabkan perubahan skema modulasi dan coding. • Dalam perencanaan kapasitas, variasi kanal propagasi jangka-panjang harus diperhitungkan. 32
  • 33. Typical SNR Performance of LTE Modulation and Coding 33
  • 36. Hybrid ARQ in the downlink • ACK/NACK for data packets transmitted in the downlink is the same as for HSDPA, where the UE is able to request retransmission of incorrectly received data packets, – ACK/NACK is transmitted in UL, either on PUCCH (Physical Uplink Control Channel) or multiplexed within PUSCH (Physical Uplink Shared Channel) see description of those UL channels for details), – ACK/NACK transmission refers to the data packet received four sub-frames (= 4 ms) before, – 8 HARQ processes can be used in parallel in downlink.
  • 39. Session 6: Uplink Physical Channels and Signals •Scheduling of UL Data •UL Frequency Hopping •Demodulation Reference Signal (DRS) in the UL •Sounding Reference Signal (SRS) in the UL •PUSCH power control & timing relation •Acknowledging UL data packets on PHICH •Physical UL Control Channel
  • 42. Uplink Physical Channels and Signals Physical Random Access Channel Physical Uplink Shared Channel Physical Uplink Control Channel • PUSCH (Physical Uplink Shared Channel): used for uplink shared data transmission. • PUCCH (Physical Uplink Control Channel): used to carry ACK/NACK, CQI for downlink transmission and scheduling request for uplink transmission. 42
  • 43. Uplink Data Transmission • Pada uplink, data dialokasikan dalam beberapa resource block (RB). • Ukuran RB untuk uplink sama dengan yang digunakan untuk downlink, tetapi untuk menyederhanakan disain DFT dalam pemrosesan sinyal uplink, tidak semua kelipatan bulat digunakan (hanya kelipatan 2, 3 dan 5). • Interval waktu transmisi uplink adalah 1 ms (sama dengan downlink). • User data dibawa pada Physical Uplink Shared Channel (PUSCH), yang ditentukan oleh BW transmisi dan pola frequency hoping. • Physical Uplink Control Channel (PUCCH) membawa informasi kontrol uplink, seperti : laporan CQI dan informasi ACK/NACK, yang terkait dengan paket-paket data yang diterima pada arah downlink. 43
  • 44. UL frequency hopping Intra- and inter-subframe hopping, • Intra-subframe hopping. UE hops to another frequency allocation from one slot to another within one subframe, • Inter-subframe hopping. Frequency allocation changes from one subframe to another one, Two types of hopping, • Type I. Explicit frequency offset is used in the 2nd slot, can be configured and is indicated to the UE by resource block assignment / hopping resource allocation field in DCI format 0, • Type II. Use of pre-defined hopping pattern, allocated BW is divided into sub-bands, hopping is done from one sub-band to another from one slot or subframe depending on configured frequency hopping scheme. Screenshots of R&S® SMU200A Vector Signal Generator
  • 45. Demodulation Reference Signal (DRS) in the UL
  • 46. Sounding Reference Signal (SRS) in the UL
  • 47. PUSCH power control & timing relation
  • 48. Random Access • Suatu LTE UE (User Equipment) hanya dapat di-scheduled untuk transmisi uplink, apabila uplink transmission timing-nya sinkron. • Oleh karena itu LTE RACH (Random Access Channel) memainkan peran penting sebagai interface antara non-synchronized UE dan skema transmisi othogonal pada akses radio uplink LTE. • Prosedur LTE random access mempunyai dua bentuk, yaitu : contention- based atau contention-free. • Dalam prosedur contention-based, suatu random access preamble signature dipilih secara acak oleh UE, yang kemungkinan dapat menyebabkan lebih dari satu UE mengirimkan signature yang sama secara simultan. • Dalam prosedur contention-free, eNodeB memiliki opsi untuk mencegah terjadinya contention dengan mengalokasikan suatu dedicated signature kepada UE. 48
  • 49. Contention-based Random Access Procedure Step 1 : Preamble transmission Step 2 : Random Access Response Step 3 : L2/L3 message Step 4 : Contention resolution message 49
  • 50. Contention-free Random Access Procedure Prosedur contention-free random access dapat diterapkan dalam hal diperlukan low latency, seperti handover dan new downlink data. 50
  • 51. UL Transmission Procedures • Uplink scheduling – Dilakukan oleh base station (eNodeB) – PDCCH (Phy DL Control Channel) menginformasikan alokasi time/freq resource dan format transmisi yang digunakan kepada user. – Scheduler mengevaluasi berbagai tipe informasi (parameter QoS, pengukuran dari UE, kapabilitas UE, buffer status) • Uplink Adaptation – Untuk keperluan adaptasi uplink, dapat digunakan : transmission power control, adaptive modulation & channel coding rate, serta adaptive transmission BW. • Uplink timing control – Diperlukan untuk menyelaraskan waktu transmisi dari UE-UE yang berbeda, dengan receiver window dari eNodeB. • Hybrid ARQ 51
  • 52. Acknowledging UL data packets on PHICH
  • 53. Physical Uplink Control Channel PUCCH carries Uplink Control Information (UCI), when no PUSCH is available, • If PUSCH is available, means resources have been allocated to the UE for data transmission, UCI are multiplexed with user data, UCI are Scheduling Requests (SR), ACK/NACK information related to DL data packets, CQI, Pre-coding Matrix Information (PMI) and Rank Indication (RI) for MIMO, PUCCH is transmitted on reserved frequency regions, configured by higher layers, which are located at the edge of the available bandwidth • Minimizing effects of a possible frequency-selective fading affecting the radio channel, • Inter-slot hopping is used on PUCCH, • A RB can be configured to support a mix of PUCCH formats (2/2a/2b and 1/1a/1b) or exclusively 2/2a/2b,
  • 54. PUCCH • CQI / PMI / RI are only signaled via PUCCH when periodic reporting is requested, scheduled and a periodic reporting is only done via PUSCH
  • 57. Test Carries the DL-SCH and PCH 1 A Cell ID detection, 2 radio frame detection B Operation BW, CP length, MIMO config, cell ID, etc 3 C SCH symbol timing detection, frequency 4 offset detection D RB assignment, transport format, RSN#, HARQ Proc#, TCP Command, Cyclic shift for DMRS, UE 5 E identification
  • 58. Answer SCH symbol timing detection, frequency offset detection Cell ID detection, radio frame detection Operation BW, CP length, MIMO config, cell ID, etc RB assignment, transport format, RSN#, HARQ Proc#, TCP Command, Cyclic shift for DMRS, UE identification Carries the DL-SCH and PCH
  • 59. Session 7: LTE Mobility •Handover (Intra-MME / Serving Gateway) •LTE Interworking with 2G/3G: Two RRC States: Connected and Idle •LTE Interworking with CDMA2000 1xRTT and HRPD •MIMO •LTE MIMO downlink modes •LTE downlink transmitter chain •Downlink transmitter diversity - Space Frequency Block Coding (2 Tx antenna case) •Downlink Spatial Multiplexing - codebook based precoding •LTE MIMO UL Schemes
  • 60. Logical High Level Architecture for The Evolved System GB GERAN GPRS Core Rx+ Iu SGSN S4 Operator’s UTRAN S6 S7 IP Services (e.g. IMS, PSS, S3 etc,) IASA MME 3GPP SAE S2b eNB eNB UPE S5a anchor S5b anchor S1 SGi eNB eNB S2a WLAN 3GPP Evolved RAN (LTE) EPC (SAE) EPDG IP Access Trusted non 3GPP WLAN IP Access Access Network • EPS uses the concept of EPS bearers to route IP traffic from a gateway in the PDN to the UE. • A bearer is an IP packet flow with a defined Quality of Service (QoS) between the gateway and the UE. • The E-UTRAN and EPC together set up and release bearers as required by applications.
  • 62. Overview of the evolved system architecture User and bearer information exchange for inter 3GPP access system mobility C-Plane : S1-C between eNB and MME U-Plane : S1-U between eNB and UPE Transfer of subscription and authentication data for user MME : Mobility Management Entity access to the evolved system (AAA UPE : User Plane Entity interface) 3GPP Anchor : Mobility anchor between 2G/3G and LTE access systems (based on GTP) SAE Anchor : Mobility anchor between 3GPP access systems (2G/3G/LTE) and non-3GPP access systems (e.g. WLAN, WiMAX).
  • 63. SAE Architecture – Functions per Element
  • 64. SAE Architecture 3GPP2 Operator detailed view, non-roaming case, 3GPP2 accesses
  • 65. SAE Roaming support extending today’s successful model
  • 66. SAE impact on IMS overview
  • 68. LTE Interworking with 2G/3G Two RRC states: CONNECTED & IDLE
  • 69. LTE Interworking with CDMA2000 1xRTT and HRPD (High Rate Packet Data)
  • 70. Introduction to MIMO: gains to exploit from multiple antenna usage Transmit diversity (TxD) • Combat fading • Replicas of the same signal sent on several Tx antennas • Get a higher SNR at the Rx Spatial multiplexing (SM) • Different data streams sent simultaneously on different antennas • Higher data rate • No diversity gain • Limitation due to path correlation Beamforming
  • 71. Multiple Antenna Technique: Four Basic Model 71
  • 72. Multiple Antenna Technique Two popular techniques in MIMO wireless systems: Spatial Diversity: Increased SNR Spatial Multiplexing: Increased rate • Receive and transmit diversity mitigates • Spatial multiplexing yields substantial fading and improves link quality increase spectral efficiency 72
  • 73. Spatial Diversity Transmit Diversity • Space-time Code (STC): Redundant data sent over time and space domains (antennas). • Receive SNR increase about linearity with diversity order Nr Nt • Provide diversity gain to combat fading • Optional in 802.16d (2x2 Alamouti STBC), used in 3G CDMA 73
  • 74. Spatial Multiplexing MIMO Multiplexing • Data is not redundant – less diversity but less repetition • Provides multiplexing gain to increase data-rate • Low (no) diversity compared with STC 74
  • 77. LTE MIMO: downlink modes • Transmit diversity: – Space Frequency Block Coding (SFBC) – Increasing robustness of transmission • Spatial multiplexing: – Transmission of different data streams simultaneously over multiple spatial layers – Codebook based precoding – Open loop mode for high mobile speeds possible • Cyclic delay diversity (CDD): – Addition of antenna specific cyclic shifts – Results in additional multipath / increased frequency diversity
  • 79. Downlink transmit diversity Space-Frequency Block Coding (2 Tx antenna case)
  • 80. Downlink spatial multiplexing codebook based precoding
  • 81. LTE MIMO: uplink schemes • Uplink transmit antenna selection: – 1 RF chain, 2 TX antennas at UE side – Closed loop selection of transmit antenna – eNodeB signals antenna selection to UE – Optional for UE to support • Multi-user MIMO / collaborative MIMO: – Simultaneous transmission from 2 Ues on same time/frequency resource – Each UE with single transmit antenna – eNodeB selects UEs with close-to orthogonal radio channels
  • 82. Multi User Scheduling • Scheduler (untuk transmisi unicast) secara dinamis mengontrol resource waktu dan frekwensi mana yang akan dialokasikan kepada suatu user pada suatu waktu tertentu. • DL control signalling memberitahu UE, resource dan format transmisi seperti apa yang sudah dialokasikan. • Scheduler dapat secara dinamis memilih strategi multiplexing terbaik dari beberapa metode yang ada, misalnya : localized atau distributed allocation. • Scheduling berinteraksi erat dengan link adaptation dan HARQ. • Pertimbangan scheduling antara lain didasarkan pada : – minimum & maximum data rate – daya yang tersedia untuk di-share – Persyaratan target BER – parameter QoS – laporan CQI (Channel Quality Indicator) – kapabilitas UE 82
  • 83. Channel-Dependent Scheduling • Shared channel transmission • Scheduling in time and frequency • Select user and data rate on domain instantaneous channel quality – Link adaptation in time domain – Time-domain adaptation used only already in HSPA 83
  • 84. Packet-scheduling framework • Packet scheduler adalah entitas pengendali untuk seluruh proses scheduling. • Berkonsultasi dengan modul LA (Link Adaptation) untuk memperoleh estimasi data rate yang dapat disuport untuk user tertentu dalam sel. • LA dapat menggunakan frequency- selective CQI feedback dari user, untuk memastikan estimasi data rate yang sesuai dengan target BLER tertentu. • Modul Offset calculation dalam proses link-adaptation dapat digunakan untuk menstabilkan performansi BLER dalam kondisi LA yang tidak pasti. 84
  • 85. Quiz MIMO is firstly introduced on which Release?
  • 86. Session 8: LTE Test and Measurement •LTE RF Testing aspects •eNB Modulation quality measurements •ACLR in DL (FDD) •eNB Performance Requirements •UE RF Testing Aspects •Transmit Modulation •Inband Emission •IQ Component •ACLR Measurement •Receiver characteristics •LTE Wireless device testing from R&D upto conformance •Stages of LTE terminal testing •LTE Terminal Interoperability testing •Test Scenarios for LTE Terminal IOT •LTE Conformance Testing •LTE Terminal Certification •LTE Field Trials
  • 87. System architecture for 3GPP access networks
  • 88. PCRF • It is responsible for policy control decision-making, as well as for controlling the flow-based charging functionalities in the Policy Control Enforcement Function (PCEF) which resides in the P-GW. • The PCRF provides the QoS authorization (QoS class identifier and bitrates) that decides how a certain data flow will be treated in the PCEF and ensures that this is in accordance with the user’s subscription profile.
  • 89. P-GW • The P-GW is responsible for IP address allocation for the UE, as well as QoS enforcement and flow-based charging according to rules from the PCRF. • The P-GW is responsible for the filtering of downlink user IP packets into the different QoS based bearers. This is performed based on Traffic Flow Templates (TFTs). • The P-GW performs QoS enforcement for Guaranteed Bit Rate (GBR) bearers. • It also serves as the mobility anchor for inter-working with non-3GPP technologies such as CDMA2000 and WiMAX networks.
  • 90. S-GW • All user IP packets are transferred through the S-GW, which serves as the local mobility anchor for the data bearers when the UE moves between eNodeBs. • It also retains the information about the bearers when the UE is in idle state (known as ECM-IDLE) and temporarily buffers downlink data while the MME initiates paging of the UE to re- establish the bearers. • In addition, the S-GW performs some administrative functions in the visited network such as collecting information for charging (e.g. the volume of data sent to or received from the user), and legal interception. • It also serves as the mobility anchor for inter-working with other 3GPP technologies such as GPRS and UMTS.
  • 91. MME • The MME is the control node which processes the signaling between the UE and the CN. • The protocols running between the UE and the CN are known as the Non-Access Stratum (NAS) protocols. • The main functions supported by the MME are classified as: – Functions related to bearer management. This includes the establishment, maintenance and release of the bearers, and is handled by the session management layer in the NAS protocol. – Functions related to connection management. This includes the establishment of the connection and security between the network and UE, and is handled by the connection or mobility management layer in the NAS protocol layer.
  • 92. HSS • Home Subscription Server (HSS) is the subscription data repository for all permanent user data. It also records the location of the user in the level of visited network control node, such as MME. It is a database server maintained centrally in the home operator’s premises. • The HSS stores the master copy of the subscriber profi le, which contains information about the services that are applicable to the user, including information about the allowed PDN connections, and whether roaming to a particular visited network is allowed or not. For supporting mobility between non- 3GPP ANs, the HSS also stores the Identities of those P-GWs that are in use. The permanent key, which is used to calculate the authentication vectors that are sent to a visited network for user authentication and deriving subsequent keys for encryption and integrity protection, is stored in the Authentication Center (AuC), which is typically part of the HSS. • In all signaling related to these functions, the HSS interacts with the MME. The HSS will need to be able to connect with every MME in the whole network, where its UEs are allowed to move. For each UE, the HSS records will point to one serving MME at a time, and as soon as a new MME reports that it is serving the UE, the HSS will cancel the location from the previous MME.
  • 93. EPS Connection Management • To reduce the overhead in the E-UTRAN and processing in the UE, all UE- related information in the access network can be released during long periods of data inactivity. • This state is called EPS Connection Management IDLE (ECM-IDLE). The MME retains the UE context and the information about the established bearers during these idle periods. • To allow the network to contact an ECM-IDLE UE, the UE updates the network as to its new location whenever it moves out of its current Tracking Area (TA); this procedure is called a ‘Tracking Area Update’. The MME is responsible for keeping track of the user location while the UE is in ECM-IDLE. • When there is a need to deliver downlink data to an ECM-IDLE UE, the MME sends a paging message to all the eNodeBs in its current TA, and the eNodeBs page the UE over the radio interface. On receipt of a paging message, the UE performs a service request procedure which results in moving the UE to ECM-CONNECTED state.
  • 94. MME connections to other logical nodes and main functions
  • 95. S-GW connections to other logical nodes and main functions
  • 96. P-GW connections to other logical nodes and main functions
  • 97. PCRF connections to other logical nodes and main functions Each PCRF may be associated with one or more AF, P-GW and S-GW. There is only one PCRF associated with each PDN connection that a single UE has.
  • 98. LTE RF Testing Aspects Base station (eNodeB) according to 3GPP • Measurements are performed using • Rx characteristics (= Uplink): Fixed Reference Channels (FRC) and Reference sensitivity level, Dynamic EUTRA Test Models (E-TM), range, In-channel selectivity, • Tx characteristic (= Downlink) Adjacent channel selectivity (ACS) – Base station output power and narrow-band blocking, Blocking, – Output power dynamics: RE Power Receiver spurious emissions, Receiver Control dynamic range, total power intermodulation dynamic range, • Performance requirements, – Transmit ON/OFF power: Transmitter – …for PUSCH: Fading conditions, UL OFF power, transmitter transient timing adjustment, high speed train, period, HARQ-ACK multiplexed in PUSCH, – Transmitted signal quality: Frequency – …for PUCCH: DTX to ACK performance, Error, Error Vector Magnitude (EVM), ACK missed detection PUCCH format 1a Time alignment between transmitter (single user), CQI missed detection for antennas, DL RS power, etc. … PUCCH format 2, ACK missed detection – Unwanted emissions: Occupied PUCCH format 1a (multiple user) Bandwidth, Adjacent Channel Leakage – PRACH performance: FALSE detection Power Ratio (ACLR), Operating band probability, detection requirements unwanted emissions, etc. … – Transmitter spurious emissions and intermodulation, 3GPP TS 36.104: Base Station (BS) radio transmission and reception
  • 99. eNB modulation quality measurements • Frequency error – If frequency error is larger than a few subcarrier, demodulation at the UE might not work properly and cause network interference, – Quick test: OBW, Limit for frequency error after demodulation 0.05 ppm + 12 Hz (1ms), • Error Vector Magnitude (EVM), – Amount of distortion effecting the receiver to demodulate the signal properly, – Limit changes for modulation schemes QPSK (17.5%), 16QAM (12.5%), 64QAM (8%), • Time alignment, – Only TX test defined for multiple antennas, measurement is to measure the time delay between the signals for the two transmitting antennas, delay shall not exceed 65 ns, • DL RS power – “Comparable” to WCDMA measurement CPICH RSCP; absolute DL RS power is indicated on SIB Type 2, measured DL RS power shall be in the range of ±2.1 dB,
  • 100. ACLR in DL (FDD)
  • 101. ACLR in DL (FDD): No filter definition in LTE!
  • 102. eNB performance requirements PRACH and preamble testing I • PRACH testing is one of the performance requirements defined in 3GPP TS 36.141 E-UTRA BS conformance testing, – Total probability of FALSE detection of preamble (Pfa 0.1% or less), – Probability of detection of preamble (Pd = 99% at defined SNR), – Two modes of testing: normal and high-speed mode, • Different SNR and fading profiles are used (table shows settings for normal mode),
  • 103. eNB performance requirements PRACH and preamble testing I – Depending on the mode different preambles are used to check detection probability (table shows preamble to be used for normal mode),
  • 104. eNB performance requirements PRACH and preamble testing II • According to 3GPP TS 36.211 the NCS value is not set directly instead it is translated to a NCS configuration value, • This value is set in the signal generator R&S® SMx or R&S® AMU, Screenshot taken from R&S® SMU200A Vector Signal Generator
  • 106. LTE RF Testing Aspects User Equipment (UE) according to 3GPP Tx characteristic Rx characteristics • Transmit power, • Reference sensitivity level, • Output power dynamics, • UE maximum input level, • Transmit Signal Quality, • Adjacent channel selectivity, – Frequency error, EVM vs. • Blocking characteristics, subcarrier, EVM vs. symbol, LO leakage, IQ imbalance, Inband • Intermodulation characteristics, emission, spectrum flatness, • Spurious emissions, • Output RF spectrum emissions, Performance requirements – Occupied bandwidth, Spectrum • Demodulation FDD PDSCH (FRC), Emission Mask (SEM), Adjacent Channel Leakage Power Ratio • Demodulation FDD (ACLR), PCFICH/PDCCH (FRC) • Spurious Emission, • Transmit Intermodulation, 3GPP TS 36.101: User Equipment (UE) radio transmission and reception
  • 107. Transmit modulation According to 3GPP specification LO leakage (or IQ origin offset) is removed from evaluated signal before calculating EVM and in-band emission.
  • 109. IQ component • Also known is LO leakage, IQ offset, etc., • Measure of carrier feedthrough present in the signal, • Removed from measured waveform, before calculating EVM and in-band emission (3GPP TS 36.101 V8.3.0, Annex F), • In difference to DL the DC subcarrier in UL is used for transmission, but subcarriers are shifted half of subcarrier spacing (= 7.5 kHz) to be symmetric around DC carrier, • Due to this frequency shift energy of the LO falls into the two central subcarrier
  • 111. Receiver characteristics • Throughput shall be >95% for… – Reference Sensitivity Level, – Adjacent Channel Selectivity, – Blocking Characteristics, • …using the well-defined DL reference channels according to 3GPP specification
  • 112. LTE wireless device testing from R&D up to conformance
  • 113. Stages of LTE terminal testing
  • 114. LTE terminal interoperability testing motivation • Interoperability testing is used to verify – Connectivity of the UE with the real network (by means of base station simulators) – Service quality, end-to-end performance – Different LTE features and parametrizations – Interworking between LTE and legacy technologies • The complete UE protocol stack is tested. • IOT test scenarios are based on requirements from real network operation and typical use cases.
  • 115. LTE terminal interoperability testing example test scenarios • Registration • UE initiated detach • Network initiated detach • Mobile originated EPS bearer establishment • Mobile terminated EPS bearer establishment • Cell (re-)selection • GUTI reallocation • Tracking are update • … • Plus: end-to-end scenarios (video streaming, VoIP, …) • Plus: intra-LTE mobility, inter-RAT mobility
  • 116. Test scenarios for LTE terminal IOT different sources for maximum test coverage
  • 117. LTE conformance testing motivation • Verifying compliance of terminals to 3GPP LTE standard – by validated test cases implemented on registered test platforms – in order to ensure worldwide interoperability of the terminal within every mobile network • 3GPP RAN5 defines conformance test specifications for – RF – Radio Resource Management (RRM) – Signaling • Certification organizations (e.g. GCF) define certification criteria based on RAN5 test specifications
  • 118. LTE field trial testing and coverage measurements
  • 119. LTE field trials requirements from different deployment scenarios • Bandwidths from 1.4 MHz to 20 MHz • Different LTE FDD and TDD frequency bands • Combination with legacy technologies (GSM/EDGE, WCDMA/HSPA, CDMA2000 1xEV- DO) • Spectrum clearance and refarming scenarios • Femto cell / Home eNB scenarios
  • 120. LTE field trials scope of test tools • Field trials provide input for: – Calibration and verification of planning tools for different deployment scenarios – Network optimization (capacity and quality) – Quality of service verification – Definition of Key Performance Indicators (KPIs) and verification, also from subscriber’s point of view • Parallel use of scanners / measurement receivers for comparison with UE and base station behaviour • Support of IOT activities
  • 121. Example result from the field scanner measurements for LTE
  • 122. 10 Steps to Determine 3G/4G IP Data Throughput 1. Will my device connect? 6. What happens if I try real 2. Do I have a good quality application? transmitter? 7. What happens under non- 3. Do I have a good quality ideal conditions? receiver? 8. Is it robust? 4. Can I achieve max E2E 9. Does it work closed loop? tput under ideal 10. How good is my battery conditions with UDP life? 5. What about with TCP and simultaneous UL/DL?
  • 123. Step 1: Will my device connect?
  • 124. Step 1: Will my device connect? • Is the UE able to sync to the DL? •Can I get through the connection set-up • Can I ping my UE? • If not take a log and de-bug message exchange •Make edits as required with Message editor
  • 125. 2. Do I have a good quality Transmitter? RF test • High data throughput testing relies on good quality UL transmissions • Look for the following: – Ensure you have appropriate power and attenuation settings – High EVM for high order modulation schemes – High EVM at the band edge – Spurs both in band and out of band – Linearity issues/ spectral growth – Switching transients, LO settling time – Repeat tests with any “other” radio’s active
  • 128. 3. Do I have a good quality receiver? • High Data throughput testing relies on good a quality receiver • Look for the following: – sensitivity for different modulation schemes – Max input level performance – susceptibility to interference (simultaneous UL/DL, other radios, spurs from digital board, …)
  • 129. 3. Do I have a good quality receiver?
  • 130. DL Data Throughput for TD LTE (20MHz channel, 2x2 MIMO, UL/DL config 5, special subframe config 6)
  • 131. Measurement Technique: UDP vs FTP (TCP) UDP FTP + Unacknowledged + Simulates real-world file + removes flow control transfers complexity +Transferred files can be viewed + removes higher layer acks and/or compared + Less susceptible latency - Adds flow control complexity - Not the full story for file - Add higher layer acks and transfers retransmissions - Not suitable for used in shared - TCP Control algorithms sensitive networks to multiple parameters - Test system configuration can affect results
  • 132. 5. Can I achieve max E2E tput under ideal conditions with TCP? • TCP adds higher layer support for error detection, re-transmissions, congestion control and flow control • TCP flow control algorithms interpret “lost” packets as congestion • Careful consideration of parameters such as window size, number of parallel process, segment size etc. need to be considered
  • 134. 6. What happens if I try a real application? … (Voice, video, ftp …)
  • 135. 7. What happens under non-ideal conditions? •Typically fade the DL and use robust UL •Perform test mode and E2E testing •Measure MAC (BLER & Tput) and IP layer throughput •Use TCP with care!
  • 136. 8. Is it robust? … • E2E IP tests PHY, MAC, PDCP, and IP layers all working together at full rate • Check processor can handle multiple real time activities – add SMS and voice calls during E2E IP • Check there are no memory overflow/leakage issues
  • 137. 9. Does it work closed loop? •BLER/Tput Testing •Supports Test Mode and E2E Testing
  • 138. 10. How good is my battery life?
  • 139. Case Study Automated Measurements Give Repeatable 21Mbps Results!
  • 141. Case Study Cat14 (21Mbps) Devices – Better the second time around
  • 142. Case Study Not All HSDPA Cat 6 Devices Have the Same Throughput
  • 144. Test LTE DL peak rate 64 QAM 20 MHz 4x4 MIMO How much theoretical Mbps per antenna?
  • 145.
  • 146.
  • 147. References • Telecommunication management; Performance Management (PM); Performance measurements; Universal Terrestrial Radio Access Network (UTRAN) • http://www.3gpp.org/ftp/Specs/html-info/32405 • Terminal conformance specification, Radio transmission and reception (FDD) • http://www.3gpp.org/ftp/Specs/html-info/34121.htm • User Equipment (UE) radio transmission and reception (FDD) • http://www.3gpp.org/ftp/Specs/html-info/25101.htm