SlideShare uma empresa Scribd logo
1 de 10
FLEXIÓN PURA Cuando un cuerpo (viga) está sometido a dos momentos de la misma magnitud y sentidos opuestos, estará sometido a flexión pura. Este es el caso del tramo CD de la barra mostrada. En este tramo hay solamente momento como fuerza interna y es constante.
En la práctica flexión pura se da pocas veces. Normalmente flexión esta acompañada con fuerzas cortante o con fuerzas axiales o con ambas. Se muestra un ejemplo de viga en voladizo con carga transversal. Esta viga tendrá a todo lo largo una fuerza cortante igual a la carga aplicada y el momento no será constante. Momento crece desde 0 en el punto A hasta el valor máximo en el punto B que será M B =PL. CON CARGA TRANSVERSAL CON CARGA EXCENTRICA Carga axial que no pasa por el centroide de la sección, produce fuerzas internas: axial y momento de un par
PRINCIPIO DE SUPERPOSICIÓN dice que el efecto de diversas cargas es igual a la suma de los efectos de cada una. Este principio se usa para explicar lo que pasa en el caso de flexión en combinación con la fuerza axial. Por esto estudiaremos primero la flexión pura para después agregar los efectos de fuerza axial, mientras los efectos de fuerza cortante son de otra índole – producen esfuerzos cortantes y la deformación será distorsión. Los esfuerzos normal y cortantes no se pueden sumar.
UN ELEMENTO SIMÉTRICO EN FLEXIÓN PURA Fuerzas internas en cualquier sección serán equivalentes a un par de fuerzas o sea momento de un par es el momento flector en la sección. De la estática se sabe que momento de un par consta de dos fuerzas iguales y opuestas. Entonces la suma de las componentes de las  fuerzas en cualquier dirección será cero. El momento es el mismo alrededor de cualquier eje perpendicular al plano del par y cero alrededor de cualquier eje en el plano del par. Estableciendo las ecuaciones de equilibrio considerando lo mencionado arriba se tiene:
Las tres ecuaciones del equilibrio estático no nos dicen como será la distribución de los esfuerzos.  La distribución de esfuerzos es estáticamente indeterminada y para obtenerla hay que analizar las deformaciones del elemento.
DEFORMACIÓNES EN FLEXIÓN Viga con un plano de simetría (plano  xy ) en flexión pura permanecerá simétrica después de la flexión. Todas las secciones giran alrededor del punto C y permanecen planas. La viga se convierte en un arco circular con el centro en el punto C. Para el momento mostrado, las fibras superiores (de arriba) se acortan, mientras las fibras inferiores se alargan. Entre estas fibras habrá unas que ni se estiran ni se encojen. Estas fibras estarán en un plano curvo y  neutro. La superficie del plano neutro será paralela a las superficies superior e inferior. Las fibras por encima de la superficie neutra estarán comprimidas y tendrán esfuerzos negativos, mientras las fibras por debajo estarán tensadas y tendrán esfuerzos positivos. Debido a la flexión una viga se curvará.
ESFUERZO EN FLEXIÓN Después de la deformación la superficie neutra quedará del mismo largo. Otras fibras, que no están en la superficie neutra (JK) sufrirán deformaciones y su nueva longitud será: Designando con    el radio de la curvatura de la viga, medido desde C hasta la superficie neutra y considerando un segmento de largo  L  se puede escribir: L= 
Para un material linealmente elástico Esfuerzo es linealmente proporcional a la distancia de la fibra desde el eje neutro. Debido a que fuerza axial en la sección no existe (se trata de flexión pura) se puede escribir la siguiente ecuación de equilibrio: Esta expresión dice que el momento de primer orden con respecto al eje neutro debe ser cero o sea el eje neutro pasa por el centroide de la sección. Otra ecuación de equilibrio:
ESFUERZO NORMAL MÁXIMO EN EL CASO DE FLEXIÓN PURA Se dará en las fibras extremas, por arriba o por debajo de la superficie neutra, depende de la dirección del momento. Valor absoluto del esfuerzo máximo será: Donde  S  es una propiedad de la sección y se llama módulo elástico de la sección. Para una sección rectangular será: Secciones laminadas hechas en acero en forma de H invertida (según normas ASTM designadas como perfil S o perfil W) tienen grandes momentos de inercia debido a que su área está alejada del eje neutro y por lo mismo tienen grandes módulos elásticos. Los valores de los módulos elásticos se obtienen de las tablas en los manuales donde además se obtienen todas las propiedades geométricas.
Deformación de la sección transversal Deformación debido a momento flector se cuantifica por medio de la curvatura de la superficie neutra: Aunque las secciones permanecen planas durante la flexión, en el plano de la sección habrá deformaciones:  El área por encima del eje neutro se expandirá, mientras el área por debajo se contraerá causando una curvatura de la sección llamada curvatura anticlástica. curvatura anticlástica

Mais conteúdo relacionado

Mais procurados

Esfuerzos cortantes en vigas
Esfuerzos cortantes en vigasEsfuerzos cortantes en vigas
Esfuerzos cortantes en vigasTino Lc
 
07prismas solicitaciones deformada
07prismas solicitaciones deformada07prismas solicitaciones deformada
07prismas solicitaciones deformadamarco55
 
resistencia de materiales
resistencia de materialesresistencia de materiales
resistencia de materialesRJosue2015
 
CALCULO DE REACCIONES DE EMPOTRAMIENTO PERFECTO EN VIGAS HORIZONTALES CON CA...
CALCULO DE REACCIONES DE EMPOTRAMIENTO PERFECTO EN VIGAS HORIZONTALES  CON CA...CALCULO DE REACCIONES DE EMPOTRAMIENTO PERFECTO EN VIGAS HORIZONTALES  CON CA...
CALCULO DE REACCIONES DE EMPOTRAMIENTO PERFECTO EN VIGAS HORIZONTALES CON CA...Alexandra Benítez
 
Deformaciones y esfuerzos en secciones no circulares
Deformaciones y esfuerzos en secciones no circularesDeformaciones y esfuerzos en secciones no circulares
Deformaciones y esfuerzos en secciones no circularesPerla Berrones
 
Uda 3 torsión en ejes
Uda 3  torsión en ejesUda 3  torsión en ejes
Uda 3 torsión en ejesDri Delgado
 
Cálculo esfuerzos normales y cortantes
Cálculo esfuerzos normales y cortantesCálculo esfuerzos normales y cortantes
Cálculo esfuerzos normales y cortantesMario García
 
Deflexiones por el método de área de momento (2)
Deflexiones por el método de área de momento (2)Deflexiones por el método de área de momento (2)
Deflexiones por el método de área de momento (2)LuiggiArtola1
 
RESISTENCIA DE MATERIALES CAPI.3 TORSION
RESISTENCIA DE  MATERIALES CAPI.3 TORSIONRESISTENCIA DE  MATERIALES CAPI.3 TORSION
RESISTENCIA DE MATERIALES CAPI.3 TORSIONFreddy Ank
 
ESTUDIO DE LA FLEXIÓN DE UN VIGA EN VOLADIZO
ESTUDIO DE LA FLEXIÓN DE UN VIGA EN VOLADIZOESTUDIO DE LA FLEXIÓN DE UN VIGA EN VOLADIZO
ESTUDIO DE LA FLEXIÓN DE UN VIGA EN VOLADIZOSaul Ccencho Boza
 
Ecuación de resistencia en secciones oblicuas de piezas sometidas a tracción ...
Ecuación de resistencia en secciones oblicuas de piezas sometidas a tracción ...Ecuación de resistencia en secciones oblicuas de piezas sometidas a tracción ...
Ecuación de resistencia en secciones oblicuas de piezas sometidas a tracción ...Gabriel Pujol
 
Tensiones o Esfuerzos en Vigas
Tensiones o Esfuerzos en VigasTensiones o Esfuerzos en Vigas
Tensiones o Esfuerzos en VigasJosé Chirinos
 

Mais procurados (20)

Esfuerzos cortantes en vigas
Esfuerzos cortantes en vigasEsfuerzos cortantes en vigas
Esfuerzos cortantes en vigas
 
07prismas solicitaciones deformada
07prismas solicitaciones deformada07prismas solicitaciones deformada
07prismas solicitaciones deformada
 
resistencia de materiales
resistencia de materialesresistencia de materiales
resistencia de materiales
 
DISTRIBUCION DE ESFUERZOS (NORMALES-CORTANTES)
DISTRIBUCION DE ESFUERZOS (NORMALES-CORTANTES)DISTRIBUCION DE ESFUERZOS (NORMALES-CORTANTES)
DISTRIBUCION DE ESFUERZOS (NORMALES-CORTANTES)
 
CALCULO DE REACCIONES DE EMPOTRAMIENTO PERFECTO EN VIGAS HORIZONTALES CON CA...
CALCULO DE REACCIONES DE EMPOTRAMIENTO PERFECTO EN VIGAS HORIZONTALES  CON CA...CALCULO DE REACCIONES DE EMPOTRAMIENTO PERFECTO EN VIGAS HORIZONTALES  CON CA...
CALCULO DE REACCIONES DE EMPOTRAMIENTO PERFECTO EN VIGAS HORIZONTALES CON CA...
 
Esfuerzo plano
Esfuerzo planoEsfuerzo plano
Esfuerzo plano
 
Deformaciones y esfuerzos en secciones no circulares
Deformaciones y esfuerzos en secciones no circularesDeformaciones y esfuerzos en secciones no circulares
Deformaciones y esfuerzos en secciones no circulares
 
Uda 3 torsión en ejes
Uda 3  torsión en ejesUda 3  torsión en ejes
Uda 3 torsión en ejes
 
Flexión pura
Flexión puraFlexión pura
Flexión pura
 
Unidad 4
Unidad 4Unidad 4
Unidad 4
 
Cálculo esfuerzos normales y cortantes
Cálculo esfuerzos normales y cortantesCálculo esfuerzos normales y cortantes
Cálculo esfuerzos normales y cortantes
 
Deflexiones por el método de área de momento (2)
Deflexiones por el método de área de momento (2)Deflexiones por el método de área de momento (2)
Deflexiones por el método de área de momento (2)
 
RESISTENCIA DE MATERIALES CAPI.3 TORSION
RESISTENCIA DE  MATERIALES CAPI.3 TORSIONRESISTENCIA DE  MATERIALES CAPI.3 TORSION
RESISTENCIA DE MATERIALES CAPI.3 TORSION
 
ESTUDIO DE LA FLEXIÓN DE UN VIGA EN VOLADIZO
ESTUDIO DE LA FLEXIÓN DE UN VIGA EN VOLADIZOESTUDIO DE LA FLEXIÓN DE UN VIGA EN VOLADIZO
ESTUDIO DE LA FLEXIÓN DE UN VIGA EN VOLADIZO
 
Ecuación de resistencia en secciones oblicuas de piezas sometidas a tracción ...
Ecuación de resistencia en secciones oblicuas de piezas sometidas a tracción ...Ecuación de resistencia en secciones oblicuas de piezas sometidas a tracción ...
Ecuación de resistencia en secciones oblicuas de piezas sometidas a tracción ...
 
Capitulo4
Capitulo4Capitulo4
Capitulo4
 
Torsión parte 1
Torsión parte 1Torsión parte 1
Torsión parte 1
 
Tensiones o Esfuerzos en Vigas
Tensiones o Esfuerzos en VigasTensiones o Esfuerzos en Vigas
Tensiones o Esfuerzos en Vigas
 
Torsión
TorsiónTorsión
Torsión
 
Esfuerzo y Deformacion
Esfuerzo y DeformacionEsfuerzo y Deformacion
Esfuerzo y Deformacion
 

Destaque

xarxes generalistes
xarxes generalistesxarxes generalistes
xarxes generalistesSandrixfever
 
Directivo en Salud
Directivo en SaludDirectivo en Salud
Directivo en Saludjulieth09
 
La Dicotomía en la Iconografía Moche
La Dicotomía en la Iconografía MocheLa Dicotomía en la Iconografía Moche
La Dicotomía en la Iconografía Mochediana
 
Historia de mexico 1
Historia de mexico 1Historia de mexico 1
Historia de mexico 1vjgaby
 
Amsterdam Resumen
Amsterdam ResumenAmsterdam Resumen
Amsterdam ResumenAlexia29
 
somo esposo y ahora??
somo esposo y ahora??somo esposo y ahora??
somo esposo y ahora??byron
 
Tema Vi Odo 225 Uasd 2010
Tema Vi Odo 225 Uasd 2010Tema Vi Odo 225 Uasd 2010
Tema Vi Odo 225 Uasd 2010Milagros Daly
 
Cantabria Copia
Cantabria   CopiaCantabria   Copia
Cantabria CopiaBeiitaa7
 
Derechos De Autor
Derechos De AutorDerechos De Autor
Derechos De Autorjohanagro
 

Destaque (20)

Peces
PecesPeces
Peces
 
Foursquare
FoursquareFoursquare
Foursquare
 
Síntesis del foro 3
Síntesis del foro 3Síntesis del foro 3
Síntesis del foro 3
 
xarxes generalistes
xarxes generalistesxarxes generalistes
xarxes generalistes
 
Directivo en Salud
Directivo en SaludDirectivo en Salud
Directivo en Salud
 
La Dicotomía en la Iconografía Moche
La Dicotomía en la Iconografía MocheLa Dicotomía en la Iconografía Moche
La Dicotomía en la Iconografía Moche
 
Accessibilitat innovacio
Accessibilitat innovacioAccessibilitat innovacio
Accessibilitat innovacio
 
Historia de mexico 1
Historia de mexico 1Historia de mexico 1
Historia de mexico 1
 
Amsterdam Resumen
Amsterdam ResumenAmsterdam Resumen
Amsterdam Resumen
 
4 3 1 Becas Del Miniterio I
4 3 1 Becas Del Miniterio I4 3 1 Becas Del Miniterio I
4 3 1 Becas Del Miniterio I
 
somo esposo y ahora??
somo esposo y ahora??somo esposo y ahora??
somo esposo y ahora??
 
Tema Vi Odo 225 Uasd 2010
Tema Vi Odo 225 Uasd 2010Tema Vi Odo 225 Uasd 2010
Tema Vi Odo 225 Uasd 2010
 
Cantabria Copia
Cantabria   CopiaCantabria   Copia
Cantabria Copia
 
PráCtica Pa
PráCtica PaPráCtica Pa
PráCtica Pa
 
Las madres no mueren
Las madres no muerenLas madres no mueren
Las madres no mueren
 
Lo 2
Lo 2Lo 2
Lo 2
 
Es coope rosales
Es coope rosalesEs coope rosales
Es coope rosales
 
Marina
MarinaMarina
Marina
 
Derechos De Autor
Derechos De AutorDerechos De Autor
Derechos De Autor
 
Para ser feliz...
Para ser feliz...Para ser feliz...
Para ser feliz...
 

Semelhante a Solcap4

Semelhante a Solcap4 (20)

Torsion
TorsionTorsion
Torsion
 
Resistencia de los materiales
Resistencia de los materialesResistencia de los materiales
Resistencia de los materiales
 
Unidad iii torsion
Unidad iii torsionUnidad iii torsion
Unidad iii torsion
 
Esfuerzo y deformación
Esfuerzo y deformaciónEsfuerzo y deformación
Esfuerzo y deformación
 
Teoria de-la-elasticidad
Teoria de-la-elasticidadTeoria de-la-elasticidad
Teoria de-la-elasticidad
 
UNIDAD I_Mecanica_de_Materiales (2).pptx
UNIDAD I_Mecanica_de_Materiales (2).pptxUNIDAD I_Mecanica_de_Materiales (2).pptx
UNIDAD I_Mecanica_de_Materiales (2).pptx
 
Unidad II torsión
Unidad II torsión Unidad II torsión
Unidad II torsión
 
Capitulo 7
Capitulo 7Capitulo 7
Capitulo 7
 
Flexion pura y esfuerzo causado por flexion
Flexion pura y esfuerzo causado por flexionFlexion pura y esfuerzo causado por flexion
Flexion pura y esfuerzo causado por flexion
 
Bethania redondo 28428523_resist.matii.10%
Bethania redondo 28428523_resist.matii.10%Bethania redondo 28428523_resist.matii.10%
Bethania redondo 28428523_resist.matii.10%
 
CAPITULO I, II, III
CAPITULO I, II, IIICAPITULO I, II, III
CAPITULO I, II, III
 
esfuerzo en vigas.pdf
esfuerzo en vigas.pdfesfuerzo en vigas.pdf
esfuerzo en vigas.pdf
 
Esfuerzo en vigas
Esfuerzo en vigas Esfuerzo en vigas
Esfuerzo en vigas
 
Torsion
TorsionTorsion
Torsion
 
Solcap3
Solcap3Solcap3
Solcap3
 
Solcap3
Solcap3Solcap3
Solcap3
 
Torsion
TorsionTorsion
Torsion
 
proyecto formativocap1.docx
proyecto formativocap1.docxproyecto formativocap1.docx
proyecto formativocap1.docx
 
Flexion final
Flexion finalFlexion final
Flexion final
 
ESFUERZO, DEFORMACION, FLEXION, FATIGA Y TORSION
ESFUERZO, DEFORMACION, FLEXION, FATIGA Y TORSIONESFUERZO, DEFORMACION, FLEXION, FATIGA Y TORSION
ESFUERZO, DEFORMACION, FLEXION, FATIGA Y TORSION
 

Mais de guest1f9b03a (7)

Capitulo 8
Capitulo 8Capitulo 8
Capitulo 8
 
Capitulo 6
Capitulo 6Capitulo 6
Capitulo 6
 
Capitulo 6
Capitulo 6Capitulo 6
Capitulo 6
 
Capitulo4
Capitulo4Capitulo4
Capitulo4
 
Capitulo4
Capitulo4Capitulo4
Capitulo4
 
Capitulo4
Capitulo4Capitulo4
Capitulo4
 
Cap6r
Cap6rCap6r
Cap6r
 

Solcap4

  • 1. FLEXIÓN PURA Cuando un cuerpo (viga) está sometido a dos momentos de la misma magnitud y sentidos opuestos, estará sometido a flexión pura. Este es el caso del tramo CD de la barra mostrada. En este tramo hay solamente momento como fuerza interna y es constante.
  • 2. En la práctica flexión pura se da pocas veces. Normalmente flexión esta acompañada con fuerzas cortante o con fuerzas axiales o con ambas. Se muestra un ejemplo de viga en voladizo con carga transversal. Esta viga tendrá a todo lo largo una fuerza cortante igual a la carga aplicada y el momento no será constante. Momento crece desde 0 en el punto A hasta el valor máximo en el punto B que será M B =PL. CON CARGA TRANSVERSAL CON CARGA EXCENTRICA Carga axial que no pasa por el centroide de la sección, produce fuerzas internas: axial y momento de un par
  • 3. PRINCIPIO DE SUPERPOSICIÓN dice que el efecto de diversas cargas es igual a la suma de los efectos de cada una. Este principio se usa para explicar lo que pasa en el caso de flexión en combinación con la fuerza axial. Por esto estudiaremos primero la flexión pura para después agregar los efectos de fuerza axial, mientras los efectos de fuerza cortante son de otra índole – producen esfuerzos cortantes y la deformación será distorsión. Los esfuerzos normal y cortantes no se pueden sumar.
  • 4. UN ELEMENTO SIMÉTRICO EN FLEXIÓN PURA Fuerzas internas en cualquier sección serán equivalentes a un par de fuerzas o sea momento de un par es el momento flector en la sección. De la estática se sabe que momento de un par consta de dos fuerzas iguales y opuestas. Entonces la suma de las componentes de las fuerzas en cualquier dirección será cero. El momento es el mismo alrededor de cualquier eje perpendicular al plano del par y cero alrededor de cualquier eje en el plano del par. Estableciendo las ecuaciones de equilibrio considerando lo mencionado arriba se tiene:
  • 5. Las tres ecuaciones del equilibrio estático no nos dicen como será la distribución de los esfuerzos. La distribución de esfuerzos es estáticamente indeterminada y para obtenerla hay que analizar las deformaciones del elemento.
  • 6. DEFORMACIÓNES EN FLEXIÓN Viga con un plano de simetría (plano xy ) en flexión pura permanecerá simétrica después de la flexión. Todas las secciones giran alrededor del punto C y permanecen planas. La viga se convierte en un arco circular con el centro en el punto C. Para el momento mostrado, las fibras superiores (de arriba) se acortan, mientras las fibras inferiores se alargan. Entre estas fibras habrá unas que ni se estiran ni se encojen. Estas fibras estarán en un plano curvo y neutro. La superficie del plano neutro será paralela a las superficies superior e inferior. Las fibras por encima de la superficie neutra estarán comprimidas y tendrán esfuerzos negativos, mientras las fibras por debajo estarán tensadas y tendrán esfuerzos positivos. Debido a la flexión una viga se curvará.
  • 7. ESFUERZO EN FLEXIÓN Después de la deformación la superficie neutra quedará del mismo largo. Otras fibras, que no están en la superficie neutra (JK) sufrirán deformaciones y su nueva longitud será: Designando con  el radio de la curvatura de la viga, medido desde C hasta la superficie neutra y considerando un segmento de largo L se puede escribir: L= 
  • 8. Para un material linealmente elástico Esfuerzo es linealmente proporcional a la distancia de la fibra desde el eje neutro. Debido a que fuerza axial en la sección no existe (se trata de flexión pura) se puede escribir la siguiente ecuación de equilibrio: Esta expresión dice que el momento de primer orden con respecto al eje neutro debe ser cero o sea el eje neutro pasa por el centroide de la sección. Otra ecuación de equilibrio:
  • 9. ESFUERZO NORMAL MÁXIMO EN EL CASO DE FLEXIÓN PURA Se dará en las fibras extremas, por arriba o por debajo de la superficie neutra, depende de la dirección del momento. Valor absoluto del esfuerzo máximo será: Donde S es una propiedad de la sección y se llama módulo elástico de la sección. Para una sección rectangular será: Secciones laminadas hechas en acero en forma de H invertida (según normas ASTM designadas como perfil S o perfil W) tienen grandes momentos de inercia debido a que su área está alejada del eje neutro y por lo mismo tienen grandes módulos elásticos. Los valores de los módulos elásticos se obtienen de las tablas en los manuales donde además se obtienen todas las propiedades geométricas.
  • 10. Deformación de la sección transversal Deformación debido a momento flector se cuantifica por medio de la curvatura de la superficie neutra: Aunque las secciones permanecen planas durante la flexión, en el plano de la sección habrá deformaciones: El área por encima del eje neutro se expandirá, mientras el área por debajo se contraerá causando una curvatura de la sección llamada curvatura anticlástica. curvatura anticlástica