SlideShare uma empresa Scribd logo
1 de 30
Northern Sewerage Project: Lining Selection in a Corrosive Environment
Old Brick Sewers
Long Time Coming
Location
Residential Section along MPIS
Environmental Concerns
NSP1 Geology Weathered Silurian along NDS Section 2 (NSP-1) ,[object Object]
NSP2 Geology ,[object Object],Massive Basalt NIS Section 2 (NSP2)
Long Section NSP1 – NDS 2
Excavation Methods (photo courtesy of John Holland/Melbourne Water) ,[object Object],[object Object],[object Object],[object Object]
Primary and Secondary Support 2400 I.D Test Ring  (photo courtesy of John Holland) ,[object Object],[object Object]
Primary and Secondary Support INITIAL SUPPORT (Rock Bolts) Final Lining (RCP w/ Sac. Concrete, or FRPP) 1800 R 1500 Heavy Support Light Support TIMBER BLOCKING  RING BEAM  BACKFILL GROUT
Spatial Constraints NSP Stage 2 Support Types
Lining Required?
Lining Required?
Lining Required?
Lining Required?
Lining Required?
Lining Required?
Similar Projects ,[object Object],[object Object],[object Object],[object Object],[object Object]
Corrosion - Sulphide Sulphate, SO 4 Sulphide, S 2- Hydrogen Sulphide, H 2 S [aq] Hydrogen Sulphide, H 2 S [g] Sulphuric Acid, H 2 SO4 Moisture on walls Prevent sulphate reducing to sulphide - add oxygen, nitrate, reduce temperature, BOD, sulphate Prevent sulphide converting to aqueous hydrogen sulphide - increase pH Minimise turbulence to prevent hydrogen sulphide in liquid releasing to sewer atmosphere. Ventilate to prevent hydrogen sulphide converting to sulphuric acid on walls Liner impervious to sulphuric acid,  Control exits and treat odours.
Investigation
Lining Options
Durability
Durability
Durability
Groundwater
Groundwater
Final Lining Selection ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
[object Object]

Mais conteúdo relacionado

Mais procurados

Hydrologic Design of a Percolation Tank
Hydrologic Design of a Percolation TankHydrologic Design of a Percolation Tank
Hydrologic Design of a Percolation Tank
C. P. Kumar
 
Green Remediation - 2012 Maine Water Conference
Green Remediation - 2012 Maine Water ConferenceGreen Remediation - 2012 Maine Water Conference
Green Remediation - 2012 Maine Water Conference
St.Germain Collins
 

Mais procurados (20)

Advances in Hydraulic Structures, Rubber Dam-A way forward
Advances in Hydraulic Structures, Rubber Dam-A way forwardAdvances in Hydraulic Structures, Rubber Dam-A way forward
Advances in Hydraulic Structures, Rubber Dam-A way forward
 
The hydrogeological risk asesment on the merti aquifer
The hydrogeological risk asesment on the merti aquiferThe hydrogeological risk asesment on the merti aquifer
The hydrogeological risk asesment on the merti aquifer
 
Artificial ground water recharge
Artificial ground water rechargeArtificial ground water recharge
Artificial ground water recharge
 
Construction Dewatering PowerPoint
Construction Dewatering PowerPointConstruction Dewatering PowerPoint
Construction Dewatering PowerPoint
 
Reservoir planning ajitha miss
Reservoir planning ajitha missReservoir planning ajitha miss
Reservoir planning ajitha miss
 
Reservoir sedimentation
Reservoir sedimentationReservoir sedimentation
Reservoir sedimentation
 
reservoir siltation and desiltation
reservoir siltation and desiltationreservoir siltation and desiltation
reservoir siltation and desiltation
 
Impacts from groundwater comtrol in urban areas
Impacts from groundwater comtrol in urban areasImpacts from groundwater comtrol in urban areas
Impacts from groundwater comtrol in urban areas
 
Dewatering for open pit mines and quarries
Dewatering for open pit mines and quarriesDewatering for open pit mines and quarries
Dewatering for open pit mines and quarries
 
R. Klingbeil, 2013: Managed Aquifer Recharge - MAR and Aquifer Storage Recove...
R. Klingbeil, 2013: Managed Aquifer Recharge - MAR and Aquifer Storage Recove...R. Klingbeil, 2013: Managed Aquifer Recharge - MAR and Aquifer Storage Recove...
R. Klingbeil, 2013: Managed Aquifer Recharge - MAR and Aquifer Storage Recove...
 
Ch 44 subsoil drainage
Ch 44   subsoil drainageCh 44   subsoil drainage
Ch 44 subsoil drainage
 
Hydrology and Water Resources Engineering
Hydrology and Water Resources EngineeringHydrology and Water Resources Engineering
Hydrology and Water Resources Engineering
 
Groundwater improvement techniques
Groundwater improvement techniques Groundwater improvement techniques
Groundwater improvement techniques
 
Red millpond506 2016_03_23
Red millpond506 2016_03_23Red millpond506 2016_03_23
Red millpond506 2016_03_23
 
Artificial recharge guide
Artificial recharge guideArtificial recharge guide
Artificial recharge guide
 
Ravine Alliance
Ravine AllianceRavine Alliance
Ravine Alliance
 
Hydrologic Design of a Percolation Tank
Hydrologic Design of a Percolation TankHydrologic Design of a Percolation Tank
Hydrologic Design of a Percolation Tank
 
Green Remediation - 2012 Maine Water Conference
Green Remediation - 2012 Maine Water ConferenceGreen Remediation - 2012 Maine Water Conference
Green Remediation - 2012 Maine Water Conference
 
Dam safety & Safety Devices
Dam safety & Safety DevicesDam safety & Safety Devices
Dam safety & Safety Devices
 
Presentation application-of-geosynthetics-in-canal
Presentation application-of-geosynthetics-in-canalPresentation application-of-geosynthetics-in-canal
Presentation application-of-geosynthetics-in-canal
 

Semelhante a Northern Sewerage Project: Lining Selection in a Corrosive Environment

PhD_Defence_PNason
PhD_Defence_PNasonPhD_Defence_PNason
PhD_Defence_PNason
Peter Nason
 
Gb2013 frank goodwin_ international zinc association
Gb2013 frank goodwin_ international zinc associationGb2013 frank goodwin_ international zinc association
Gb2013 frank goodwin_ international zinc association
Galvabrasil
 
Topic 5: Environmental and social concerns
Topic 5: Environmental and social concernsTopic 5: Environmental and social concerns
Topic 5: Environmental and social concerns
London Mining Network
 
Acid Mine drainage occurrence and its remediation
Acid Mine drainage occurrence and its remediationAcid Mine drainage occurrence and its remediation
Acid Mine drainage occurrence and its remediation
Anurag Jha
 
Tac dong moi truong 3
Tac dong moi truong 3Tac dong moi truong 3
Tac dong moi truong 3
nhóc Ngố
 
Make Sure You Know....
Make Sure You Know....Make Sure You Know....
Make Sure You Know....
tudorgeog
 

Semelhante a Northern Sewerage Project: Lining Selection in a Corrosive Environment (20)

PhD_Defence_PNason
PhD_Defence_PNasonPhD_Defence_PNason
PhD_Defence_PNason
 
Gb2013 frank goodwin_ international zinc association
Gb2013 frank goodwin_ international zinc associationGb2013 frank goodwin_ international zinc association
Gb2013 frank goodwin_ international zinc association
 
A new metallogenic framework to aid mineral exploration in the Cobar Basin
A new metallogenic framework to aid mineral exploration in the Cobar BasinA new metallogenic framework to aid mineral exploration in the Cobar Basin
A new metallogenic framework to aid mineral exploration in the Cobar Basin
 
Topic 5: Environmental and social concerns
Topic 5: Environmental and social concernsTopic 5: Environmental and social concerns
Topic 5: Environmental and social concerns
 
Objective Capital Global Mining Investment Conference - North America: Stephe...
Objective Capital Global Mining Investment Conference - North America: Stephe...Objective Capital Global Mining Investment Conference - North America: Stephe...
Objective Capital Global Mining Investment Conference - North America: Stephe...
 
Acid Mine drainage occurrence and its remediation
Acid Mine drainage occurrence and its remediationAcid Mine drainage occurrence and its remediation
Acid Mine drainage occurrence and its remediation
 
Acid mine drainage
Acid mine drainageAcid mine drainage
Acid mine drainage
 
Topic 4: Mine wastes
Topic 4: Mine wastesTopic 4: Mine wastes
Topic 4: Mine wastes
 
Tac dong moi truong 3
Tac dong moi truong 3Tac dong moi truong 3
Tac dong moi truong 3
 
SCIMAP - David Higgins, Tees Rivers trust
SCIMAP -  David Higgins, Tees Rivers trustSCIMAP -  David Higgins, Tees Rivers trust
SCIMAP - David Higgins, Tees Rivers trust
 
WRT CaBA/CRF Conference 02/12/14 - Sean Comber
WRT CaBA/CRF Conference 02/12/14 - Sean ComberWRT CaBA/CRF Conference 02/12/14 - Sean Comber
WRT CaBA/CRF Conference 02/12/14 - Sean Comber
 
Acid mine drainage.pptx
Acid mine drainage.pptxAcid mine drainage.pptx
Acid mine drainage.pptx
 
MRS_Dounreay_paper
MRS_Dounreay_paperMRS_Dounreay_paper
MRS_Dounreay_paper
 
Make Sure You Know....
Make Sure You Know....Make Sure You Know....
Make Sure You Know....
 
Presentation 3: Impact Assessment Findings
Presentation 3: Impact Assessment FindingsPresentation 3: Impact Assessment Findings
Presentation 3: Impact Assessment Findings
 
Exploration for Sed Copper Deposits.pptx
Exploration for Sed Copper Deposits.pptxExploration for Sed Copper Deposits.pptx
Exploration for Sed Copper Deposits.pptx
 
23 popp if g daef
23 popp if g daef23 popp if g daef
23 popp if g daef
 
Robert W. Fairbanks and Richard N. St. Jean, Coastal Shoreline Protection Usi...
Robert W. Fairbanks and Richard N. St. Jean, Coastal Shoreline Protection Usi...Robert W. Fairbanks and Richard N. St. Jean, Coastal Shoreline Protection Usi...
Robert W. Fairbanks and Richard N. St. Jean, Coastal Shoreline Protection Usi...
 
17 if g popp teutschenthal v4
17 if g popp teutschenthal v417 if g popp teutschenthal v4
17 if g popp teutschenthal v4
 
Impact of Agricultural Stream Restoration on Riparian Hydrology and Biogeoche...
Impact of Agricultural Stream Restoration on Riparian Hydrology and Biogeoche...Impact of Agricultural Stream Restoration on Riparian Hydrology and Biogeoche...
Impact of Agricultural Stream Restoration on Riparian Hydrology and Biogeoche...
 

Northern Sewerage Project: Lining Selection in a Corrosive Environment

Notas do Editor

  1. The Northern Sewerage Project is currently under construction in the northern suburbs of Melbourne. Melbourne Water and Yarra Valley Water are joint clients. John Holland is the main contractor. Design was undertaken by Sinclair Knight Merz and Jacobs Associates. I [mark] will describe the tunnelling and geology and how it affected the lining selection Doug will discuss the sewer issues, concrete corrosion mechanism and risks affecting liner selection.
  2. The Northern Sewerage Project is proceeding because: Melbourne’s original sewers were constructed over a century ago. During wet weather, many of these ageing sewers overflow. The photo gives you an idea on the size, form of construction and condition of the aging system Photo of Gary Griffioen in the Hobson’s Bay Main Sewer about 1990 (taken taken by Doug)
  3. The current project is part of a strategy that was developed in 1973 by the Melbourne and Metropolitan Board of Works. The strategy split Melbourne into western and eastern zones It envisaged an intercepting sewer extending from Werribee to Bundoora. The Northern Sewerage Project is an extension of the Western Trunk and North Western Sewers built by Melbourne Water in the 1980’s and 1990’s
  4. [Describe location using maps] NSP is located in the northern suburbs of Melbourne – The main site office is in Coburg North. In total 7 tunnel sections and 8 access shafts will be constructed [point out NSP1, NSP2 and shaft locations]
  5. Slide illustrates the density of the residential housing along most of the NSP1 alignment. This particular photo is along MPIS (NSP1) – Tunnel is about 30m deep at chainage.
  6. A significant length of the proposed sewer is located in the Moonee Ponds and Merri Creek valleys. Old, under-capacity sewers overflow into these waterways.
  7. The geology along the NSP tunnels will be predominately Silurian (interrbedded siltstone/sandstone) and Basalt. NSP1 tunnels will main be trough Silurian (5 to 85 MPA – fresh and extremely weather average strengths typically 30 to 40MPa) NSP2 will be predominately Basalt with strengths general ranging from 60 to 190 MPa. There is a short section of tunnel (~500m) in NIS 1 (southern section) which is anticipated to be the ex weathered siltstone and recent alluvium mat’l.
  8. The geology along the NSP tunnels will be predominately Silurian (interrbedded siltstone/sandstone) and Basalt. NSP1 tunnels will main be trough Silurian (5 to 85 MPA – fresh and extremely weather average strengths typically 30 to 40MPa) NSP2 will be predominately Basalt with strengths general ranging from 60 to 190 MPa. There is a short section of tunnel (~500m) in NIS 1 (southern section) which is anticipated to be the ex weathered siltstone and recent alluvium mat’l.
  9. Much of the investigation effort was aimed at optimising conditions for tunnelling. The NDS2 will be one of the more difficult drives due to the paleovalley (Basalt average 100-MPa).
  10. 3 TBMs will be used on NSP. Two earth Pressure Balance Machines and one shielded hard rock machine. 3-m EPM will do 4.7km of tunnel, 4-m EPB 4km and the hard rock about 3.2km JH, working with the SKM/JA indicated that 3m was the minimum cut diameter if a manned TBM was to be used. Pipe jacking was eliminated in the CD phase due to the depth, number shafts required and residential area.
  11. All 4 Tunnel Sections on NSP-1 will use precast bolted and gasketed segments. The NSP1 segments (both 2.4m and 3.4m diameter) will provide primary and secondary support. 100 yr design life (including watertightness). NSP2 will use similar precast segments to NSP1 in the short soft ground section (500m). But for the basalt reaches [next slide]
  12. shotcrete, rock bolts and possibly steel sets will be used to support the ground behind the hard rock TBM. JH can either use slick lines to backfill the pipes in-place or grout thru pre-installed grout ports.
  13. The cut diameter was based on John Holland’s recommendation. 3m and 4m were picked for the tunnels. The spatial constraints played a major role in the lining selection specifically when it came to the pipe joints. NSP1 open in-wall joints (bell and spigot would not fit) have been proposed. A drain system was used on NSP1 as the segments will provide the structural support and watertightness. ON NPS2 the system is designed as a sealed system . Therefore the final lining provides both long-term ground and groundwater support. Segements are used on in the short soft ground section but they are only designed for short-term groundwater support. These segments will provide long term ground support. HAND OVER TO DOUG
  14. Is a corrosion lining required? This photo shows a concrete sewer suffering the effects of corrosion after only 4 years in service.
  15. Is a corrosion lining required? This photo shows the Merri Creek Main sewer in the same general area as the proposed NSP2 (50-80 years old here??).
  16. Is a corrosion lining required? This photo shows a concrete sewer pipe in the NSP2 (I.e. further upstream) catchment showing some slime growth.
  17. Is a corrosion lining required? This photo shows a concrete sewer pipe which is a tributary of NSP2.
  18. Is a corrosion lining required? Also a tributary, but further upstream.
  19. Is a corrosion lining required? MCM123 showing about 10mm corrosion after 30 years service. 0.0 to 0.1 mm/year between Jukes Road and LE Cotchin Reserve Shafts (NIS Section 3); 0.1 to 1.0 mm/year between Newlands Road and Jukes Road Shafts (NIS Section 2); and 0.2 to 1.5 mm/year between Carr Street and Newlands Road Shafts (NIS Section 1).
  20. Is a corrosion lining required? Many contemporary sewers have been constructed with protective liners.
  21. Is a corrosion lining required? The root cause is bacteria in the slime on the sewer walls. The bacteria convert hydrogen-sulphide gas into sulphuric acid The pH of sewer walls can be as low as zero Sulphide model was done to predict corrosion rates along NSP.
  22. Is a corrosion liner required? Investigations included: Sampling of sewage, chemical analysis and predictive spreadsheet modelling were undertaken to determine the need for a non-corrosive liner. Inspection of nearby sewers was undertaken to gather representative data on concrete corrosion rates. Sewage quality, hydraulics, turbulence were reviewed. Advice was obtained from concrete technologists and materials specialists. Risk and the preferences of each client were taken into account. The answer is yes, in all but the upstream end of NSP2 The result was independently reviewed.
  23. What type of corrosion liner is appropriate? Many options were investigated, ranging from the simple allowance of an extra thickness of concrete to hi-tech materials. NSP1 Considered a very wide range of options (see figure) NSP2 Considered a smaller range of options 1 RCP (with sacrificial concrete) 2 RCP+PE 3 CIP(not considered further) 4 FRPP 5 Polycrete®
  24. GRP liner pipes are light but flexible This photo (courtesy of John Holland) shows a GRP liner being being lowered into the Perth Main Sewer.
  25. Concrete pipes with a plastic sheet liner are often used for pipe-jacking This photo shows the jacking pipes used in the Brown’s Bay sewer in Auckland NZ Note the lines indicating the extrusions providing the anchorage
  26. This photo shows a sample of plastic sheet (PVC or PE typically) with anchors that are cast into concrete
  27. Two entirely separate teams were required by the Clients The corrosion issue was analysed, data was gathered, a wide range of options were considered, risks were assessed, preferences considered and recommendations made. The potential for precipitation (or 'scaling‘) due to minerals in the ground water is indicated by the Langelier Saturation Index (LSI). If ground water infiltrated through cement based grout, its pH would increase and its LSI would increase. Groundwater with an elevated Langelier Saturation Index (LSI) could deposit minerals between RCP and a PE membrane. A Langelier Saturation Index with a strong tendency to deposit calcium carbonate (CaCO3) was considered possible for NSP2.