SlideShare uma empresa Scribd logo
1 de 20
BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS A.Broquetas, M.Fortes, M.A.Siddique, S.Duque, J.C.Merlano, P.López-Dekker, J.J.Mallorquí, A.Aguasca Remote Sensing Laboratory (RSLab) Universitat Politècnica de Catalunya, Barcelona
[object Object],[object Object],[object Object],[object Object],[object Object],Contents 2005 2006 2007 2008 2009 2010 ,[object Object],[object Object],[object Object],[object Object],[object Object],[object Object]
Introduction  : Fixed receivers bistatic SAR ,[object Object],[object Object],[object Object],[object Object]
Bistatic SAR Spatial Resolution ,[object Object],[object Object],[object Object],[object Object],TX RX
SABRINA-X: Channel Block Diagram ,[object Object],[object Object],[object Object]
SABRINA-X: L.O. Synthesizer
SABRINA-X: Subsystem design & development (I) ,[object Object],RF Filter: 9.5-9.8 GHz, I.Loss = 3 dB Horn Antennas G = 18 dB
SABRINA-X: Subsystem design & development (II) ,[object Object],BB Amp. & LP Filter G =16.5 dB  RF Amp. 6.5 a 13.5 GHz  G=14 dB NF= 4.5dB  1/4 Freq. Synthesizer X4 Freq. Multiplier
4 Acquisition Modes: I/Q BB:  2 A/D x RF channel. Fs = 200/100 MS/s  Bandwidth retained  < Fs MHz ,[object Object]
4 Acquisition Modes: Low-IF :  1 A/D x RF Channel. Fs = 200/100 MS/s  ,[object Object],Bandwidth retained < 1/2 Fs MHz
Campaign Set-up Antennas receiving Scattered signals Antenna receiving Direct signal SABRINA-X
Acquired Data & Synchronization ,[object Object],Illumination envelopes ,[object Object],[object Object],[object Object],[object Object],[object Object],Direct + scattered Spectrogram
Range compression with Chirp replica and receiver equalization Direct pulse compression evaluation Green:  compression with linear FM chirp Blue :  compression with chirp replica & RX H(f) equalization Received spectrum  Receiver H(f)  Equalized Receiver H’(f)
Bistatic SAR Images
Geocoded SAR Image
Bistatic InSAR ,[object Object],[object Object],θ r B n,r A 1 A 2 R r θ t R t “ Back”- scattering “ Forward”- scattering θ t R t
Preliminary geocoded Interferogram
Geocoded Interferogram with low resolution DEM compensation
Geocoded reference image
Conclusions ,[object Object],[object Object],[object Object],[object Object],[object Object]

Mais conteúdo relacionado

Mais procurados

TGS NSA- Blanchard 3D
TGS NSA- Blanchard 3DTGS NSA- Blanchard 3D
TGS NSA- Blanchard 3DTGS
 
On_the_development_of_dualfrq_PR_china(Tiger).ppt
On_the_development_of_dualfrq_PR_china(Tiger).pptOn_the_development_of_dualfrq_PR_china(Tiger).ppt
On_the_development_of_dualfrq_PR_china(Tiger).pptgrssieee
 
IGARSS_DESDynI_2011.pptx
IGARSS_DESDynI_2011.pptxIGARSS_DESDynI_2011.pptx
IGARSS_DESDynI_2011.pptxgrssieee
 
Capria no_video_ship_detection_with_dvbt_software_defined_passive_radar
 Capria no_video_ship_detection_with_dvbt_software_defined_passive_radar Capria no_video_ship_detection_with_dvbt_software_defined_passive_radar
Capria no_video_ship_detection_with_dvbt_software_defined_passive_radargrssieee
 
Falzon Das Se Ag Compressed
Falzon Das Se Ag CompressedFalzon Das Se Ag Compressed
Falzon Das Se Ag Compressedgfalzon2
 
Fujimura_Presen.ppt
Fujimura_Presen.pptFujimura_Presen.ppt
Fujimura_Presen.pptgrssieee
 
TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS
TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONSTH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS
TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONSgrssieee
 
Determination of orbital elements and refraction
Determination of orbital elements and refractionDetermination of orbital elements and refraction
Determination of orbital elements and refractionClifford Stone
 
Sat geo 03(1)
Sat geo 03(1)Sat geo 03(1)
Sat geo 03(1)lenisepti
 
Sano_IGARSS2011.ppt
Sano_IGARSS2011.pptSano_IGARSS2011.ppt
Sano_IGARSS2011.pptgrssieee
 
Seismic QC & Filtering with Geostatistics
Seismic QC & Filtering with GeostatisticsSeismic QC & Filtering with Geostatistics
Seismic QC & Filtering with GeostatisticsGeovariances
 
MIRAS: the instrument aboard SMOS
MIRAS: the instrument aboard SMOSMIRAS: the instrument aboard SMOS
MIRAS: the instrument aboard SMOSadrianocamps
 
4-IGARSS_2011_v4.ppt
4-IGARSS_2011_v4.ppt4-IGARSS_2011_v4.ppt
4-IGARSS_2011_v4.pptgrssieee
 
MIRAS: The SMOS Instrument
MIRAS: The SMOS InstrumentMIRAS: The SMOS Instrument
MIRAS: The SMOS Instrumentadrianocamps
 
Synthetic aperture radar_advanced
Synthetic aperture radar_advancedSynthetic aperture radar_advanced
Synthetic aperture radar_advancedNaivedya Mishra
 
Radar Cross Section
Radar Cross SectionRadar Cross Section
Radar Cross SectionNann Wai
 
A REVIEW ON SYNTHETIC APERTURE RADAR
A REVIEW ON SYNTHETIC APERTURE RADARA REVIEW ON SYNTHETIC APERTURE RADAR
A REVIEW ON SYNTHETIC APERTURE RADARAM Publications
 

Mais procurados (20)

TGS NSA- Blanchard 3D
TGS NSA- Blanchard 3DTGS NSA- Blanchard 3D
TGS NSA- Blanchard 3D
 
On_the_development_of_dualfrq_PR_china(Tiger).ppt
On_the_development_of_dualfrq_PR_china(Tiger).pptOn_the_development_of_dualfrq_PR_china(Tiger).ppt
On_the_development_of_dualfrq_PR_china(Tiger).ppt
 
IGARSS_DESDynI_2011.pptx
IGARSS_DESDynI_2011.pptxIGARSS_DESDynI_2011.pptx
IGARSS_DESDynI_2011.pptx
 
Albert huizing -_tno
Albert huizing -_tnoAlbert huizing -_tno
Albert huizing -_tno
 
Capria no_video_ship_detection_with_dvbt_software_defined_passive_radar
 Capria no_video_ship_detection_with_dvbt_software_defined_passive_radar Capria no_video_ship_detection_with_dvbt_software_defined_passive_radar
Capria no_video_ship_detection_with_dvbt_software_defined_passive_radar
 
Falzon Das Se Ag Compressed
Falzon Das Se Ag CompressedFalzon Das Se Ag Compressed
Falzon Das Se Ag Compressed
 
DASIA Congres .2002
DASIA Congres .2002 DASIA Congres .2002
DASIA Congres .2002
 
Fujimura_Presen.ppt
Fujimura_Presen.pptFujimura_Presen.ppt
Fujimura_Presen.ppt
 
TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS
TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONSTH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS
TH1.L10.1: TANDEM-X: SCIENTIFIC CONTRIBUTIONS
 
Determination of orbital elements and refraction
Determination of orbital elements and refractionDetermination of orbital elements and refraction
Determination of orbital elements and refraction
 
Sat geo 03(1)
Sat geo 03(1)Sat geo 03(1)
Sat geo 03(1)
 
Sano_IGARSS2011.ppt
Sano_IGARSS2011.pptSano_IGARSS2011.ppt
Sano_IGARSS2011.ppt
 
Seismic QC & Filtering with Geostatistics
Seismic QC & Filtering with GeostatisticsSeismic QC & Filtering with Geostatistics
Seismic QC & Filtering with Geostatistics
 
MIRAS: the instrument aboard SMOS
MIRAS: the instrument aboard SMOSMIRAS: the instrument aboard SMOS
MIRAS: the instrument aboard SMOS
 
4-IGARSS_2011_v4.ppt
4-IGARSS_2011_v4.ppt4-IGARSS_2011_v4.ppt
4-IGARSS_2011_v4.ppt
 
MIRAS: The SMOS Instrument
MIRAS: The SMOS InstrumentMIRAS: The SMOS Instrument
MIRAS: The SMOS Instrument
 
Synthetic aperture radar_advanced
Synthetic aperture radar_advancedSynthetic aperture radar_advanced
Synthetic aperture radar_advanced
 
Radar Cross Section
Radar Cross SectionRadar Cross Section
Radar Cross Section
 
A REVIEW ON SYNTHETIC APERTURE RADAR
A REVIEW ON SYNTHETIC APERTURE RADARA REVIEW ON SYNTHETIC APERTURE RADAR
A REVIEW ON SYNTHETIC APERTURE RADAR
 
Introduction to velocity model building
Introduction to velocity model buildingIntroduction to velocity model building
Introduction to velocity model building
 

Destaque

Radar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radarRadar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radarForward2025
 
synthetic aperture radar
synthetic aperture radarsynthetic aperture radar
synthetic aperture radarAmit Rastogi
 
Nonlinear Range Cell Migration (RCM) Compensation Method for SpaceborneAirbor...
Nonlinear Range Cell Migration (RCM) Compensation Method for SpaceborneAirbor...Nonlinear Range Cell Migration (RCM) Compensation Method for SpaceborneAirbor...
Nonlinear Range Cell Migration (RCM) Compensation Method for SpaceborneAirbor...grssieee
 
ArbStudio Arbitrary Waveform Generators
ArbStudio Arbitrary Waveform GeneratorsArbStudio Arbitrary Waveform Generators
ArbStudio Arbitrary Waveform GeneratorsPremier Farnell
 
ECE 17 Final Presentation Portable Ultrasound Driver
ECE 17 Final Presentation Portable Ultrasound DriverECE 17 Final Presentation Portable Ultrasound Driver
ECE 17 Final Presentation Portable Ultrasound Driverrivasd1214
 
Chapter 1-generality
Chapter 1-generalityChapter 1-generality
Chapter 1-generalityRima Assaf
 
2-Bordoni_IGARSS11_APC.ppt
2-Bordoni_IGARSS11_APC.ppt2-Bordoni_IGARSS11_APC.ppt
2-Bordoni_IGARSS11_APC.pptgrssieee
 
4 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-24 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-2Solo Hermelin
 
4 matched filters and ambiguity functions for radar signals
4 matched filters and ambiguity functions for radar signals4 matched filters and ambiguity functions for radar signals
4 matched filters and ambiguity functions for radar signalsSolo Hermelin
 
Radar 2009 a 13 clutter rejection doppler filtering
Radar 2009 a 13 clutter rejection   doppler filteringRadar 2009 a 13 clutter rejection   doppler filtering
Radar 2009 a 13 clutter rejection doppler filteringForward2025
 
Radar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compressionRadar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compressionForward2025
 
1 radar basic -part i 1
1 radar basic -part i 11 radar basic -part i 1
1 radar basic -part i 1Solo Hermelin
 
5 pulse compression waveform
5 pulse compression waveform5 pulse compression waveform
5 pulse compression waveformSolo Hermelin
 
1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processingSolo Hermelin
 
10 range and doppler measurements in radar systems
10 range and doppler measurements in radar systems10 range and doppler measurements in radar systems
10 range and doppler measurements in radar systemsSolo Hermelin
 

Destaque (20)

Radar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radarRadar 2009 a 14 airborne pulse doppler radar
Radar 2009 a 14 airborne pulse doppler radar
 
synthetic aperture radar
synthetic aperture radarsynthetic aperture radar
synthetic aperture radar
 
Nonlinear Range Cell Migration (RCM) Compensation Method for SpaceborneAirbor...
Nonlinear Range Cell Migration (RCM) Compensation Method for SpaceborneAirbor...Nonlinear Range Cell Migration (RCM) Compensation Method for SpaceborneAirbor...
Nonlinear Range Cell Migration (RCM) Compensation Method for SpaceborneAirbor...
 
ArbStudio Arbitrary Waveform Generators
ArbStudio Arbitrary Waveform GeneratorsArbStudio Arbitrary Waveform Generators
ArbStudio Arbitrary Waveform Generators
 
ECE 17 Final Presentation Portable Ultrasound Driver
ECE 17 Final Presentation Portable Ultrasound DriverECE 17 Final Presentation Portable Ultrasound Driver
ECE 17 Final Presentation Portable Ultrasound Driver
 
The Most Effective Pain & Muscle Stimulation Units
The Most Effective Pain & Muscle Stimulation UnitsThe Most Effective Pain & Muscle Stimulation Units
The Most Effective Pain & Muscle Stimulation Units
 
Chapter 1-generality
Chapter 1-generalityChapter 1-generality
Chapter 1-generality
 
2-Bordoni_IGARSS11_APC.ppt
2-Bordoni_IGARSS11_APC.ppt2-Bordoni_IGARSS11_APC.ppt
2-Bordoni_IGARSS11_APC.ppt
 
7 air-to-air combat
7 air-to-air combat7 air-to-air combat
7 air-to-air combat
 
4 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-24 matched filters and ambiguity functions for radar signals-2
4 matched filters and ambiguity functions for radar signals-2
 
PresentationSAR
PresentationSARPresentationSAR
PresentationSAR
 
4 matched filters and ambiguity functions for radar signals
4 matched filters and ambiguity functions for radar signals4 matched filters and ambiguity functions for radar signals
4 matched filters and ambiguity functions for radar signals
 
Radar 2009 a 13 clutter rejection doppler filtering
Radar 2009 a 13 clutter rejection   doppler filteringRadar 2009 a 13 clutter rejection   doppler filtering
Radar 2009 a 13 clutter rejection doppler filtering
 
Radar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compressionRadar 2009 a 11 waveforms and pulse compression
Radar 2009 a 11 waveforms and pulse compression
 
1 radar basic -part i 1
1 radar basic -part i 11 radar basic -part i 1
1 radar basic -part i 1
 
5 pulse compression waveform
5 pulse compression waveform5 pulse compression waveform
5 pulse compression waveform
 
1 radar signal processing
1 radar signal processing1 radar signal processing
1 radar signal processing
 
10 range and doppler measurements in radar systems
10 range and doppler measurements in radar systems10 range and doppler measurements in radar systems
10 range and doppler measurements in radar systems
 
radar
radarradar
radar
 
Defibrillators
DefibrillatorsDefibrillators
Defibrillators
 

Semelhante a MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS

IGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptIGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptgrssieee
 
10.7mW, 2.1 sq mm, 0.13um CMOS GPS radio
10.7mW, 2.1 sq mm, 0.13um CMOS GPS radio10.7mW, 2.1 sq mm, 0.13um CMOS GPS radio
10.7mW, 2.1 sq mm, 0.13um CMOS GPS radioDavid Tester
 
4_IGARSS11_HRWS.ppt
4_IGARSS11_HRWS.ppt4_IGARSS11_HRWS.ppt
4_IGARSS11_HRWS.pptgrssieee
 
Williams_FR1_TO4_5_2011_07_29v1.ppt
Williams_FR1_TO4_5_2011_07_29v1.pptWilliams_FR1_TO4_5_2011_07_29v1.ppt
Williams_FR1_TO4_5_2011_07_29v1.pptgrssieee
 
CSI Acquisition for FDD-based Massive MIMO Systems
CSI Acquisition for FDD-based Massive MIMO SystemsCSI Acquisition for FDD-based Massive MIMO Systems
CSI Acquisition for FDD-based Massive MIMO SystemsCPqD
 
3_Igarss2011RFI.ppt
3_Igarss2011RFI.ppt3_Igarss2011RFI.ppt
3_Igarss2011RFI.pptgrssieee
 
A System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical NetworksA System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical NetworksCedric Lam
 
15 03-0460-00-0000-css-tutorial
15 03-0460-00-0000-css-tutorial15 03-0460-00-0000-css-tutorial
15 03-0460-00-0000-css-tutorialmohamed ashraf
 
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Consideration
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer ConsiderationUHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Consideration
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Considerationxiaohuzhang
 
Comparative Analysis of DP QPSK and DP 16-QAM Optical Coherent Receiver, with...
Comparative Analysis of DP QPSK and DP 16-QAM Optical Coherent Receiver, with...Comparative Analysis of DP QPSK and DP 16-QAM Optical Coherent Receiver, with...
Comparative Analysis of DP QPSK and DP 16-QAM Optical Coherent Receiver, with...IRJET Journal
 
Lect 11.regenerative repeaters
Lect 11.regenerative repeatersLect 11.regenerative repeaters
Lect 11.regenerative repeatersNebiye Slmn
 
beamformingantennas1-150723193911-lva1-app6892.pdf
beamformingantennas1-150723193911-lva1-app6892.pdfbeamformingantennas1-150723193911-lva1-app6892.pdf
beamformingantennas1-150723193911-lva1-app6892.pdfFirstknightPhyo
 

Semelhante a MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS (20)

IGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.pptIGARSS11_FFBP_CSAR_v3.ppt
IGARSS11_FFBP_CSAR_v3.ppt
 
KinPhy
KinPhyKinPhy
KinPhy
 
ATNAC.2008
ATNAC.2008ATNAC.2008
ATNAC.2008
 
ENZCON_BPSRx_3
ENZCON_BPSRx_3ENZCON_BPSRx_3
ENZCON_BPSRx_3
 
heavey_b6p1
heavey_b6p1heavey_b6p1
heavey_b6p1
 
10.7mW, 2.1 sq mm, 0.13um CMOS GPS radio
10.7mW, 2.1 sq mm, 0.13um CMOS GPS radio10.7mW, 2.1 sq mm, 0.13um CMOS GPS radio
10.7mW, 2.1 sq mm, 0.13um CMOS GPS radio
 
Beamforming antennas (1)
Beamforming antennas (1)Beamforming antennas (1)
Beamforming antennas (1)
 
4_IGARSS11_HRWS.ppt
4_IGARSS11_HRWS.ppt4_IGARSS11_HRWS.ppt
4_IGARSS11_HRWS.ppt
 
6Aesa7.ppt
6Aesa7.ppt6Aesa7.ppt
6Aesa7.ppt
 
Williams_FR1_TO4_5_2011_07_29v1.ppt
Williams_FR1_TO4_5_2011_07_29v1.pptWilliams_FR1_TO4_5_2011_07_29v1.ppt
Williams_FR1_TO4_5_2011_07_29v1.ppt
 
CSI Acquisition for FDD-based Massive MIMO Systems
CSI Acquisition for FDD-based Massive MIMO SystemsCSI Acquisition for FDD-based Massive MIMO Systems
CSI Acquisition for FDD-based Massive MIMO Systems
 
3_Igarss2011RFI.ppt
3_Igarss2011RFI.ppt3_Igarss2011RFI.ppt
3_Igarss2011RFI.ppt
 
damle-lec.ppt
damle-lec.pptdamle-lec.ppt
damle-lec.ppt
 
damle-lec.ppt
damle-lec.pptdamle-lec.ppt
damle-lec.ppt
 
A System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical NetworksA System's View of Metro and Regional Optical Networks
A System's View of Metro and Regional Optical Networks
 
15 03-0460-00-0000-css-tutorial
15 03-0460-00-0000-css-tutorial15 03-0460-00-0000-css-tutorial
15 03-0460-00-0000-css-tutorial
 
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Consideration
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer ConsiderationUHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Consideration
UHF/VHFEnergy Harvesting Radio System Physical and MAC Layer Consideration
 
Comparative Analysis of DP QPSK and DP 16-QAM Optical Coherent Receiver, with...
Comparative Analysis of DP QPSK and DP 16-QAM Optical Coherent Receiver, with...Comparative Analysis of DP QPSK and DP 16-QAM Optical Coherent Receiver, with...
Comparative Analysis of DP QPSK and DP 16-QAM Optical Coherent Receiver, with...
 
Lect 11.regenerative repeaters
Lect 11.regenerative repeatersLect 11.regenerative repeaters
Lect 11.regenerative repeaters
 
beamformingantennas1-150723193911-lva1-app6892.pdf
beamformingantennas1-150723193911-lva1-app6892.pdfbeamformingantennas1-150723193911-lva1-app6892.pdf
beamformingantennas1-150723193911-lva1-app6892.pdf
 

Mais de grssieee

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...grssieee
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELgrssieee
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...grssieee
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESgrssieee
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSgrssieee
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERgrssieee
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...grssieee
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...grssieee
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animationsgrssieee
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdfgrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
DLR open house
DLR open houseDLR open house
DLR open housegrssieee
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.pptgrssieee
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptgrssieee
 

Mais de grssieee (20)

Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
Tangent height accuracy of Superconducting Submillimeter-Wave Limb-Emission S...
 
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODELSEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
SEGMENTATION OF POLARIMETRIC SAR DATA WITH A MULTI-TEXTURE PRODUCT MODEL
 
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
TWO-POINT STATISTIC OF POLARIMETRIC SAR DATA TWO-POINT STATISTIC OF POLARIMET...
 
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIESTHE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
THE SENTINEL-1 MISSION AND ITS APPLICATION CAPABILITIES
 
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUSGMES SPACE COMPONENT:PROGRAMMATIC STATUS
GMES SPACE COMPONENT:PROGRAMMATIC STATUS
 
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETERPROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
PROGRESSES OF DEVELOPMENT OF CFOSAT SCATTEROMETER
 
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
DEVELOPMENT OF ALGORITHMS AND PRODUCTS FOR SUPPORTING THE ITALIAN HYPERSPECTR...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
EO-1/HYPERION: NEARING TWELVE YEARS OF SUCCESSFUL MISSION SCIENCE OPERATION A...
 
Test
TestTest
Test
 
test 34mb wo animations
test  34mb wo animationstest  34mb wo animations
test 34mb wo animations
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
Test 70MB
Test 70MBTest 70MB
Test 70MB
 
2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf2011_Fox_Tax_Worksheets.pdf
2011_Fox_Tax_Worksheets.pdf
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
DLR open house
DLR open houseDLR open house
DLR open house
 
Tana_IGARSS2011.ppt
Tana_IGARSS2011.pptTana_IGARSS2011.ppt
Tana_IGARSS2011.ppt
 
Solaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.pptSolaro_IGARSS_2011.ppt
Solaro_IGARSS_2011.ppt
 

MO3.L09.2 - BISTATIC SAR BASED ON TERRASAR-X AND GROUND BASED RECEIVERS

Notas do Editor

  1. - Introduction: basic proposed geometry &amp; motivation for this bistatic activity - Description of the SBX receiver - Some aspects of bistatic processing and Interferometry - First results of imaging and single pass interferogram on the Barcelona harbor - Conclusions
  2. Using a SAR satellite as a transmitter of opportunity, bistatic SAR raw data and images are obtained from the echoes recorded by ground receivers The motivations: - Research on wide angle bistatic scattering and image interpretation which is expected to differ from the monostatic or quasi-monostatic cases Source of experimental SAR raw data in flexible RX configurations: SAR processing, multichannel SAR: interferometry, polarimetry, tomography, etc. Example: shown in the image 3 receivers operation in Differential Interferometric model would provide the 3D subsidence vector information Affordable education covering the whole SAR chain: SAR systems/processing/research/new applications wide an The Sabrina’s possible applications are the following. The first one and which will be presented here is a DEM generation using across track single interferometry. This application is the first one to be done if future complex differentials applications are wanted to be carried out. Another one, in which we have done some studies and we are working on are MTI applications using along track single pass interferometry. Also differential applications can be performed using sabrina, such as terrain deformation monitoring. That can be interesting due that more than one receiver can be used in each acquisition and they can be placed in different locations allowing the extraction of the 3D terrain deformation component. Well, also all the fact that more than one receiver can be used in each acquisition can allow the use of multibaseline techniques in a single pass mode, avoiding the temporal decorrelation.
  3. Ok, lets define the bistatic resolution and compare it to the monostatic one For the monostatic case, the range resolution, depends inversely to the sinus of the transmitter incidence angle with respect to the normal of the terrain. However for the bistatic case, it depends inversely to the sinus of the transmitter and receiver incidence angles with respect to the normal. About, azimuth, the bistatic resolution is slightly worse than the monostatic, it losses a factor due to the one way path and gains a factor sqrt of 2 due to the 1 way transmitter diagram antenna. The result is a loss of resolution of a factor sqrt 2
  4. Lets pass to describe the acquisition scheme for single pass interferometric data using a fixed receiver. ERS or ENVI are used as a transmitters of opportunity and two antennas are placed on the ground, with a certain baseline, illuminate the area of interest. It is important to notice that due that receiver is near to the scene, the incidence angle, range to the antenas and baseline are variying along the scene. We can distinguish between two acquisition configurations, backward scattering and forward scattering. In fact, both of them are forward scatt due that the path from the transmitter to the scene and the path from the scene to the transmitter are different in both cases. Well, then we call back scatt when the transmitter and receivers are on the same side of the area of interest and forward when they arent As in the monostatic case, the information resides in the difference of the intereferometric phase between nearby points. Well this formula is similar to the monostatic one, with the difference of the factor 2, due to only one way and taking into account that baselins, range and incidence angle vary along the illuminated area.