SlideShare uma empresa Scribd logo
1 de 4
Baixar para ler offline
Sistemas de Equações do Primeiro Grau com Duas
Incógnitas
Quando  tratamos  as equações  do  1°  grau  com  duas  variáveis vimos  que  a  equação x  +  y  =  20  admite
infinitas  soluções,  pois  se  não  houver  restrições  como  as  do  exemplo  na  página  em  questão,  podemos  atribuir
qualquer valor a x, e para tornar a equação verdadeira, basta que calculemos y como sendo 20 ­ x.
A equação x ­ y = 6 pelos mesmos motivos, em não havendo restrições, também admite infinitas soluções.
Como as equações x + y = 20 e x ­ y = 6 admitem infinitas soluções podemos nos perguntar:
Será que dentre estas soluções existem aquelas que são comuns às duas equações, isto é, que resolva ao mesmo
tempo tanto a primeira, quanto à segunda equação?
Este é justamente o tema deste tópico que vamos tratar agora.
Métodos de Resolução
Há vários métodos para calcularmos a solução deste tipo de sistema. Agora veremos os dois mais utilizados, primeiro
ométodo da adição e em seguida o método da substituição.
Método da Adição
Este método consiste em realizarmos a soma dos respectivos termos de cada uma das equações, a fim de obtermos
uma equação com apenas uma incógnita.
Quando  a  simples  soma  não  nos  permite  alcançar  este  objetivo,  recorremos  ao  princípio  multiplicativo  da
igualdadepara multiplicarmos todos os termos de uma das equações por um determinado valor, de sorte que a
equação equivalente resultante, nos permita obter uma equação com uma única incógnita.
A seguir temos outras explicações que retratam estas situações.
Quando o sistema admite uma única solução?
Tomemos como ponto de partida o sistema composto pelas duas equações abaixo:
Perceba que iremos eliminar o termo com a variável y, se somarmos cada um dos termos da primeira equação com
o respectivo termo da segunda equação:
Agora  de  forma  simplificada  podemos  obter  o  valor  da  incógnita x simplesmente  passando  o  coeficiente  2  que
multiplica esta variável, para o outro lado com a operação inversa, dividindo assim todo o segundo membro por 2:
Agora que sabemos que x  =  13,  para  encontrarmos  o  valor  de y,  basta  que  troquemos x por 13  na  primeira
equação e depois isolemos y no primeiro membro:
Escolhemos a primeira e não a segunda equação, pois se escolhêssemos a segunda, teríamos que realizar um passo
a mais que seria multiplicar ambos os membros por ­1, já que teríamos ­y no primeiro membro e não y como é
preciso, no entanto podemos escolher a equação que quisermos. Normalmente iremos escolher a equação que nos
facilite a realização dos cálculos.
Observe também que neste caso primeiro obtivemos o valor da variável x e em função dele conseguimos obter o
valor dey, porque isto nos era conveniente. Se for mais fácil primeiro encontrarmos o valor da segunda incógnita, é
assim que devemos proceder.
Quando um sistema admite uma única solução dizemos que ele é um sistema possível e determinado.
Quando o sistema admite uma infinidade de
soluções?
Vejamos o sistema abaixo:
Note que somando todos os termos da primeira equação ao da segunda, não conseguiremos eliminar quaisquer
variáveis, então vamos multiplicar os termos da primeira por ­2 e então realizarmos a soma:
Veja que eliminamos não uma das variáveis, mas as duas. O fato de termos obtido 0 = 0 indica que o sistema
admite uma infinidade de soluções.
Quando  um  sistema  admite  uma  infinidade  de  soluções  dizemos  que  ele  é  um  sistema  possível  e
indeterminado.
Quando o sistema não admite solução?
Vejamos este outro sistema:
Note que se somarmos os termos da primeira equação com os da segunda, também não conseguiremos eliminar
nenhuma  das  variáveis,  mas  agora  veja  o  que  acontece  se  multiplicarmos  por 2  todos  os  termos  da  primeira
equação e realizarmos a soma das equações:
Obtivemos 0 = ­3 que é inválido, este é o indicativo de que o sistema não admite soluções.
Quando um sistema não admite soluções dizemos que ele é um sistema impossível.
Método da Substituição
Este método consiste em elegermos uma das equações e desta isolarmos uma das variáveis. Feito isto substituímos
na outra equação, a variável isolada pela expressão obtida no segundo membro da equação obtida quando isolamos
a variável.
Este procedimento também resultará em uma equação com uma única variável.
O  procedimento  é  menos  confuso  do  que  parece.  A  seguir  veremos  em  detalhes  algumas  situações  que
exemplificam tais conceitos, assim como fizemos no caso do método da adição.
Quando o sistema admite uma única solução?
Para  nos  permitir  a  comparação  entre  os  dois  métodos,  vamos  utilizar  o  mesmo  sistema  utilizado  no  método
anterior:
Vamos escolher a primeira equação e isolar a variável x:
Agora na segunda equação vamos substituir x por 20 ­ y:
Agora que sabemos que y = 7, podemos calcular o valor de x:
Quando o sistema admite uma infinidade de
soluções?
Solucionemos o sistema abaixo:
Este sistema já foi resolvido pelo método da adição, agora vamos resolvê­lo pelo método da substituição.
Por ser mais fácil e gerar em um resultado mais simples, vamos isolar a incógnita y da primeira equação:
Agora na outra equação vamos substituir y por 10 ­ 2x:
Como obtivemos 0 = 0, o sistema admite uma infinidade de soluções.
Quando o sistema não admite solução?
Novamente vamos solucionar o mesmo sistema utilizado no método anterior:
Observe que é mais viável isolarmos a variável x da primeira equação, pois o seu coeficiente 2 é divisor de ambos
coeficientes do primeiro membro da segunda equação, o que irá ajudar nos cálculos:
Agora substituímos x na segunda equação pelo valor encontrado:
Conforme explicado anteriormente, o resultado 0 = ­3 indica que este sistema não admite soluções.

Mais conteúdo relacionado

Mais procurados

Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatóriabetencourt
 
O conjunto-dos-números-reais
O conjunto-dos-números-reaisO conjunto-dos-números-reais
O conjunto-dos-números-reaisleilamaluf
 
Lista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grauLista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grauEverton Moraes
 
Lista de Exercicios Sistemas Lineares do 1 grau.
Lista de Exercicios Sistemas Lineares do 1 grau.Lista de Exercicios Sistemas Lineares do 1 grau.
Lista de Exercicios Sistemas Lineares do 1 grau.Gleidson Luis
 
Teorema de pitágoras apresentação de slide
Teorema de pitágoras   apresentação de slideTeorema de pitágoras   apresentação de slide
Teorema de pitágoras apresentação de slideRaquel1966
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricasLarissa Souza
 
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grauestrelaeia
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau pptktorz
 
Grandezas Proporcionais
Grandezas ProporcionaisGrandezas Proporcionais
Grandezas ProporcionaisCarlos Airton
 
Operações com números racionais
Operações com números racionaisOperações com números racionais
Operações com números racionaisMarcelo Pinheiro
 
Números.reais.introdução
Números.reais.introduçãoNúmeros.reais.introdução
Números.reais.introduçãoFilipa Guerreiro
 

Mais procurados (20)

Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
 
Soma dos ângulos internos de um triângulo gabarito
Soma dos ângulos internos de um triângulo gabaritoSoma dos ângulos internos de um triângulo gabarito
Soma dos ângulos internos de um triângulo gabarito
 
O conjunto-dos-números-reais
O conjunto-dos-números-reaisO conjunto-dos-números-reais
O conjunto-dos-números-reais
 
Geometria plana
Geometria planaGeometria plana
Geometria plana
 
Produtos Notavéis 8º ano
Produtos Notavéis 8º ano Produtos Notavéis 8º ano
Produtos Notavéis 8º ano
 
Polinomios
PolinomiosPolinomios
Polinomios
 
Lista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grauLista de Exercícios – Equação do 1° grau
Lista de Exercícios – Equação do 1° grau
 
Lista de Exercicios Sistemas Lineares do 1 grau.
Lista de Exercicios Sistemas Lineares do 1 grau.Lista de Exercicios Sistemas Lineares do 1 grau.
Lista de Exercicios Sistemas Lineares do 1 grau.
 
Teorema de pitágoras apresentação de slide
Teorema de pitágoras   apresentação de slideTeorema de pitágoras   apresentação de slide
Teorema de pitágoras apresentação de slide
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
 
Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grau
 
Porcentagem
PorcentagemPorcentagem
Porcentagem
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau ppt
 
Grandezas Proporcionais
Grandezas ProporcionaisGrandezas Proporcionais
Grandezas Proporcionais
 
Radiciaçâo
RadiciaçâoRadiciaçâo
Radiciaçâo
 
Inequações
InequaçõesInequações
Inequações
 
Operações com números racionais
Operações com números racionaisOperações com números racionais
Operações com números racionais
 
Números.reais.introdução
Números.reais.introduçãoNúmeros.reais.introdução
Números.reais.introdução
 

Destaque

Portifolio da 8 serie = 9 ano de 2013 prof mm
Portifolio da 8 serie = 9 ano  de 2013   prof mmPortifolio da 8 serie = 9 ano  de 2013   prof mm
Portifolio da 8 serie = 9 ano de 2013 prof mmvinitvito
 
Lista de exercícios – sistema de equações do 1° grau
Lista de exercícios – sistema de equações do 1° grauLista de exercícios – sistema de equações do 1° grau
Lista de exercícios – sistema de equações do 1° grauEverton Moraes
 
Equações 1º grau simples e com parenteses
Equações 1º grau   simples e com parentesesEquações 1º grau   simples e com parenteses
Equações 1º grau simples e com parentesesRita Sousa
 
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)Hélio Rocha
 
1ª lista de exercícios 9º ano(equações do 2º grau - incompletas)
1ª lista de exercícios   9º ano(equações do 2º grau - incompletas)1ª lista de exercícios   9º ano(equações do 2º grau - incompletas)
1ª lista de exercícios 9º ano(equações do 2º grau - incompletas)Ilton Bruno
 

Destaque (6)

Portifolio da 8 serie = 9 ano de 2013 prof mm
Portifolio da 8 serie = 9 ano  de 2013   prof mmPortifolio da 8 serie = 9 ano  de 2013   prof mm
Portifolio da 8 serie = 9 ano de 2013 prof mm
 
Lista de exercícios – sistema de equações do 1° grau
Lista de exercícios – sistema de equações do 1° grauLista de exercícios – sistema de equações do 1° grau
Lista de exercícios – sistema de equações do 1° grau
 
Equações 1º grau simples e com parenteses
Equações 1º grau   simples e com parentesesEquações 1º grau   simples e com parenteses
Equações 1º grau simples e com parenteses
 
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
 
1ª lista de exercícios 9º ano(equações do 2º grau - incompletas)
1ª lista de exercícios   9º ano(equações do 2º grau - incompletas)1ª lista de exercícios   9º ano(equações do 2º grau - incompletas)
1ª lista de exercícios 9º ano(equações do 2º grau - incompletas)
 
Revisão para prova
Revisão para provaRevisão para prova
Revisão para prova
 

Semelhante a Sistemas de equações do 1° grau com 2 incógnitas

A equação irracional é construída a partir de problemas em que a medida desco...
A equação irracional é construída a partir de problemas em que a medida desco...A equação irracional é construída a partir de problemas em que a medida desco...
A equação irracional é construída a partir de problemas em que a medida desco...Gustavo Wyllian
 
Sistemas de equações
 Sistemas de equações Sistemas de equações
Sistemas de equaçõesmarilia65
 
Sistemas de equacões
 Sistemas de equacões Sistemas de equacões
Sistemas de equacõesmarilia65
 
Equações do 1º grau II.ppt
Equações do 1º grau II.pptEquações do 1º grau II.ppt
Equações do 1º grau II.pptricardoluiz71
 
Sistemas de equações lineares
Sistemas de equações linearesSistemas de equações lineares
Sistemas de equações linearesRafael Freitas
 
Resolvendo sistemas
Resolvendo sistemasResolvendo sistemas
Resolvendo sistemasErasmo lopes
 
Ideia básica para se resolver equações
Ideia básica para se resolver equaçõesIdeia básica para se resolver equações
Ideia básica para se resolver equaçõesArildo de Souza
 
Sistemas de equações lineares
Sistemas de equações linearesSistemas de equações lineares
Sistemas de equações linearesRafael Freitas
 
Equação do segundo grau
Equação do segundo grauEquação do segundo grau
Equação do segundo graujaoozinhoqi123
 
Resolução de sistemas lineares
Resolução de sistemas linearesResolução de sistemas lineares
Resolução de sistemas linearesOtávio Sales
 
Sistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitasSistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitasrosilenedalmolin
 
Exercícios sistemas de equações
Exercícios sistemas de equaçõesExercícios sistemas de equações
Exercícios sistemas de equaçõesAdriano Silva
 

Semelhante a Sistemas de equações do 1° grau com 2 incógnitas (18)

EquaçAo Do 2º Grau
EquaçAo Do 2º GrauEquaçAo Do 2º Grau
EquaçAo Do 2º Grau
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
A equação irracional é construída a partir de problemas em que a medida desco...
A equação irracional é construída a partir de problemas em que a medida desco...A equação irracional é construída a partir de problemas em que a medida desco...
A equação irracional é construída a partir de problemas em que a medida desco...
 
Mat74a
Mat74aMat74a
Mat74a
 
Sistemas de equações
 Sistemas de equações Sistemas de equações
Sistemas de equações
 
Sistemas de equacões
 Sistemas de equacões Sistemas de equacões
Sistemas de equacões
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Equações do 1º grau II.ppt
Equações do 1º grau II.pptEquações do 1º grau II.ppt
Equações do 1º grau II.ppt
 
Sistemas de equações lineares
Sistemas de equações linearesSistemas de equações lineares
Sistemas de equações lineares
 
Resolvendo sistemas
Resolvendo sistemasResolvendo sistemas
Resolvendo sistemas
 
Ideia básica para se resolver equações
Ideia básica para se resolver equaçõesIdeia básica para se resolver equações
Ideia básica para se resolver equações
 
Sistemas de equações lineares
Sistemas de equações linearesSistemas de equações lineares
Sistemas de equações lineares
 
Teorema chinês do resto
Teorema chinês do restoTeorema chinês do resto
Teorema chinês do resto
 
Equação do segundo grau
Equação do segundo grauEquação do segundo grau
Equação do segundo grau
 
Resolução de sistemas lineares
Resolução de sistemas linearesResolução de sistemas lineares
Resolução de sistemas lineares
 
Sistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitasSistemas de equações de 1º grau com duas incógnitas
Sistemas de equações de 1º grau com duas incógnitas
 
58ad47702e6f04f314a21718ac26d233.pdf
58ad47702e6f04f314a21718ac26d233.pdf58ad47702e6f04f314a21718ac26d233.pdf
58ad47702e6f04f314a21718ac26d233.pdf
 
Exercícios sistemas de equações
Exercícios sistemas de equaçõesExercícios sistemas de equações
Exercícios sistemas de equações
 

Último

PRIMEIRO---RCP - DEA - BLS estudos - basico
PRIMEIRO---RCP - DEA - BLS estudos - basicoPRIMEIRO---RCP - DEA - BLS estudos - basico
PRIMEIRO---RCP - DEA - BLS estudos - basicoSilvaDias3
 
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxQUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxIsabellaGomes58
 
HABILIDADES ESSENCIAIS - MATEMÁTICA 4º ANO.pdf
HABILIDADES ESSENCIAIS  - MATEMÁTICA 4º ANO.pdfHABILIDADES ESSENCIAIS  - MATEMÁTICA 4º ANO.pdf
HABILIDADES ESSENCIAIS - MATEMÁTICA 4º ANO.pdfdio7ff
 
Aula 1, 2 Bacterias Características e Morfologia.pptx
Aula 1, 2  Bacterias Características e Morfologia.pptxAula 1, 2  Bacterias Características e Morfologia.pptx
Aula 1, 2 Bacterias Características e Morfologia.pptxpamelacastro71
 
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 anoAdelmaTorres2
 
Slides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdfSlides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdfpaulafernandes540558
 
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...Martin M Flynn
 
Mesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecasMesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecasRicardo Diniz campos
 
Bingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteirosBingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteirosAntnyoAllysson
 
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do  3ANO fundamental 1 MG.pdfPLANEJAMENTO anual do  3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdfProfGleide
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfHenrique Pontes
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxacaciocarmo1
 
Dança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira parteDança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira partecoletivoddois
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISVitor Vieira Vasconcelos
 
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxApostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxIsabelaRafael2
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfaulasgege
 
PPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdfPPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdfAnaGonalves804156
 
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANOInvestimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANOMarcosViniciusLemesL
 
A Inteligência Artificial na Educação e a Inclusão Linguística
A Inteligência Artificial na Educação e a Inclusão LinguísticaA Inteligência Artificial na Educação e a Inclusão Linguística
A Inteligência Artificial na Educação e a Inclusão LinguísticaFernanda Ledesma
 

Último (20)

PRIMEIRO---RCP - DEA - BLS estudos - basico
PRIMEIRO---RCP - DEA - BLS estudos - basicoPRIMEIRO---RCP - DEA - BLS estudos - basico
PRIMEIRO---RCP - DEA - BLS estudos - basico
 
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxQUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
 
HABILIDADES ESSENCIAIS - MATEMÁTICA 4º ANO.pdf
HABILIDADES ESSENCIAIS  - MATEMÁTICA 4º ANO.pdfHABILIDADES ESSENCIAIS  - MATEMÁTICA 4º ANO.pdf
HABILIDADES ESSENCIAIS - MATEMÁTICA 4º ANO.pdf
 
Aula 1, 2 Bacterias Características e Morfologia.pptx
Aula 1, 2  Bacterias Características e Morfologia.pptxAula 1, 2  Bacterias Características e Morfologia.pptx
Aula 1, 2 Bacterias Características e Morfologia.pptx
 
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
637743470-Mapa-Mental-Portugue-s-1.pdf 4 ano
 
Slides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdfSlides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdf
 
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
DIGNITAS INFINITA - DIGNIDADE HUMANA -Declaração do Dicastério para a Doutrin...
 
Mesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecasMesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecas
 
Bingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteirosBingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteiros
 
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do  3ANO fundamental 1 MG.pdfPLANEJAMENTO anual do  3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
 
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdfBRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
BRASIL - DOMÍNIOS MORFOCLIMÁTICOS - Fund 2.pdf
 
Baladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptxBaladão sobre Variação Linguistica para o spaece.pptx
Baladão sobre Variação Linguistica para o spaece.pptx
 
Dança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira parteDança Contemporânea na arte da dança primeira parte
Dança Contemporânea na arte da dança primeira parte
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGIS
 
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxApostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
 
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
HORA DO CONTO4_BECRE D. CARLOS I_2023_2024
 
Cultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdfCultura e Sociedade - Texto de Apoio.pdf
Cultura e Sociedade - Texto de Apoio.pdf
 
PPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdfPPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdf
 
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANOInvestimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANO
 
A Inteligência Artificial na Educação e a Inclusão Linguística
A Inteligência Artificial na Educação e a Inclusão LinguísticaA Inteligência Artificial na Educação e a Inclusão Linguística
A Inteligência Artificial na Educação e a Inclusão Linguística
 

Sistemas de equações do 1° grau com 2 incógnitas

  • 1. Sistemas de Equações do Primeiro Grau com Duas Incógnitas Quando  tratamos  as equações  do  1°  grau  com  duas  variáveis vimos  que  a  equação x  +  y  =  20  admite infinitas  soluções,  pois  se  não  houver  restrições  como  as  do  exemplo  na  página  em  questão,  podemos  atribuir qualquer valor a x, e para tornar a equação verdadeira, basta que calculemos y como sendo 20 ­ x. A equação x ­ y = 6 pelos mesmos motivos, em não havendo restrições, também admite infinitas soluções. Como as equações x + y = 20 e x ­ y = 6 admitem infinitas soluções podemos nos perguntar: Será que dentre estas soluções existem aquelas que são comuns às duas equações, isto é, que resolva ao mesmo tempo tanto a primeira, quanto à segunda equação? Este é justamente o tema deste tópico que vamos tratar agora. Métodos de Resolução Há vários métodos para calcularmos a solução deste tipo de sistema. Agora veremos os dois mais utilizados, primeiro ométodo da adição e em seguida o método da substituição. Método da Adição Este método consiste em realizarmos a soma dos respectivos termos de cada uma das equações, a fim de obtermos uma equação com apenas uma incógnita. Quando  a  simples  soma  não  nos  permite  alcançar  este  objetivo,  recorremos  ao  princípio  multiplicativo  da igualdadepara multiplicarmos todos os termos de uma das equações por um determinado valor, de sorte que a equação equivalente resultante, nos permita obter uma equação com uma única incógnita. A seguir temos outras explicações que retratam estas situações. Quando o sistema admite uma única solução? Tomemos como ponto de partida o sistema composto pelas duas equações abaixo: Perceba que iremos eliminar o termo com a variável y, se somarmos cada um dos termos da primeira equação com o respectivo termo da segunda equação:
  • 2. Agora  de  forma  simplificada  podemos  obter  o  valor  da  incógnita x simplesmente  passando  o  coeficiente  2  que multiplica esta variável, para o outro lado com a operação inversa, dividindo assim todo o segundo membro por 2: Agora que sabemos que x  =  13,  para  encontrarmos  o  valor  de y,  basta  que  troquemos x por 13  na  primeira equação e depois isolemos y no primeiro membro: Escolhemos a primeira e não a segunda equação, pois se escolhêssemos a segunda, teríamos que realizar um passo a mais que seria multiplicar ambos os membros por ­1, já que teríamos ­y no primeiro membro e não y como é preciso, no entanto podemos escolher a equação que quisermos. Normalmente iremos escolher a equação que nos facilite a realização dos cálculos. Observe também que neste caso primeiro obtivemos o valor da variável x e em função dele conseguimos obter o valor dey, porque isto nos era conveniente. Se for mais fácil primeiro encontrarmos o valor da segunda incógnita, é assim que devemos proceder. Quando um sistema admite uma única solução dizemos que ele é um sistema possível e determinado. Quando o sistema admite uma infinidade de soluções? Vejamos o sistema abaixo: Note que somando todos os termos da primeira equação ao da segunda, não conseguiremos eliminar quaisquer variáveis, então vamos multiplicar os termos da primeira por ­2 e então realizarmos a soma: Veja que eliminamos não uma das variáveis, mas as duas. O fato de termos obtido 0 = 0 indica que o sistema admite uma infinidade de soluções. Quando  um  sistema  admite  uma  infinidade  de  soluções  dizemos  que  ele  é  um  sistema  possível  e indeterminado. Quando o sistema não admite solução? Vejamos este outro sistema: Note que se somarmos os termos da primeira equação com os da segunda, também não conseguiremos eliminar
  • 3. nenhuma  das  variáveis,  mas  agora  veja  o  que  acontece  se  multiplicarmos  por 2  todos  os  termos  da  primeira equação e realizarmos a soma das equações: Obtivemos 0 = ­3 que é inválido, este é o indicativo de que o sistema não admite soluções. Quando um sistema não admite soluções dizemos que ele é um sistema impossível. Método da Substituição Este método consiste em elegermos uma das equações e desta isolarmos uma das variáveis. Feito isto substituímos na outra equação, a variável isolada pela expressão obtida no segundo membro da equação obtida quando isolamos a variável. Este procedimento também resultará em uma equação com uma única variável. O  procedimento  é  menos  confuso  do  que  parece.  A  seguir  veremos  em  detalhes  algumas  situações  que exemplificam tais conceitos, assim como fizemos no caso do método da adição. Quando o sistema admite uma única solução? Para  nos  permitir  a  comparação  entre  os  dois  métodos,  vamos  utilizar  o  mesmo  sistema  utilizado  no  método anterior: Vamos escolher a primeira equação e isolar a variável x: Agora na segunda equação vamos substituir x por 20 ­ y: Agora que sabemos que y = 7, podemos calcular o valor de x: Quando o sistema admite uma infinidade de soluções? Solucionemos o sistema abaixo:
  • 4. Este sistema já foi resolvido pelo método da adição, agora vamos resolvê­lo pelo método da substituição. Por ser mais fácil e gerar em um resultado mais simples, vamos isolar a incógnita y da primeira equação: Agora na outra equação vamos substituir y por 10 ­ 2x: Como obtivemos 0 = 0, o sistema admite uma infinidade de soluções. Quando o sistema não admite solução? Novamente vamos solucionar o mesmo sistema utilizado no método anterior: Observe que é mais viável isolarmos a variável x da primeira equação, pois o seu coeficiente 2 é divisor de ambos coeficientes do primeiro membro da segunda equação, o que irá ajudar nos cálculos: Agora substituímos x na segunda equação pelo valor encontrado: Conforme explicado anteriormente, o resultado 0 = ­3 indica que este sistema não admite soluções.