GEOMETRIA DESCRITIVA A 11.º Ano Problemas Métricos Ângulo entre Recta e Plano
GENERALIDADES O  ângulo entre uma recta e um plano  é o ângulo formado entre a recta dada e a projeção ortogonal da recta ...
r I p P’ r’ θº P α P’’ θ 1 º I’ r’’ β Se uma recta r faz um ângulo θ com um dado plano α, a reta fará o mesmo ângulo com q...
α 90º - θº θº θº r p s r’ P P’ I Ângulo entre uma Recta Oblíqua e um Plano Oblíquo Utilizando o  método geral para a deter...
Pretende-se a  V.G.  do ângulo formado entre uma recta oblíqua  r  e um plano oblíquo δ. r 1 r 2 f δ Utilizando o  método ...
É dada uma recta oblíqua  m  contém o ponto  M  (0; 4; 5). A projecção horizontal da recta  m  faz um ângulo de 30º (a.e.)...
Ângulo entre uma Recta Oblíqua e um Plano de Rampa Pretende-se a  V.G.  do ângulo formado entre uma recta oblíqua  r  e um...
Uma recta de perfil  p  é definida pelos pontos  A  (1; 1) e  B  (3; 2). É dado um plano de rampa ρ, com o seu traço horiz...
Próximos SlideShares
Carregando em…5
×

Pmarectaplano

1.033 visualizações

Publicada em

0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
1.033
No SlideShare
0
A partir de incorporações
0
Número de incorporações
3
Ações
Compartilhamentos
0
Downloads
7
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Pmarectaplano

  1. 1. GEOMETRIA DESCRITIVA A 11.º Ano Problemas Métricos Ângulo entre Recta e Plano
  2. 2. GENERALIDADES O ângulo entre uma recta e um plano é o ângulo formado entre a recta dada e a projeção ortogonal da recta sobre o plano. Esse ângulo está contido num plano que contém a reta dada e é ortogonal ao plano dado. r I p P’ r’ θº P α
  3. 3. r I p P’ r’ θº P α P’’ θ 1 º I’ r’’ β Se uma recta r faz um ângulo θ com um dado plano α, a reta fará o mesmo ângulo com qualquer plano paralelo ao plano α.
  4. 4. α 90º - θº θº θº r p s r’ P P’ I Ângulo entre uma Recta Oblíqua e um Plano Oblíquo Utilizando o método geral para a determinação de ângulos entre rectas e planos resulta numa enorme complexidade de traçados, sendo mais adequado o método do ângulo complementar . Tal solução é sempre preferível quando o plano é não projetante. 1- conduzir por um ponto qualquer P da recta r , uma recta p ortogonal ao plano α. 2- Determinar o ângulo formado pelas duas rectas, r e p . 3- o ângulo entre a reta e o plano dado é o ângulo complementar do ângulo entre a reta dada e a reta ortogonal ao plano. 90º - θº é a V.G . entre as duas rectas e o ângulo complementar do ângulo pretendido. θº é a V.G . do ângulo entre e recta r e o plano α.
  5. 5. Pretende-se a V.G. do ângulo formado entre uma recta oblíqua r e um plano oblíquo δ. r 1 r 2 f δ Utilizando o método geral para a determinação de ângulos entre rectas e planos resulta numa enorme complexidade de traçados, sendo mais adequado o método do ângulo complementar . Tal solução é sempre preferível quando o plano é não projetante. É conduzida por um ponto qualquer P da recta r , uma recta p ortogonal ao plano δ. Determina-se o ângulo formado pelas duas rectas, r e p , via rebatimento. 90º - βº é a V.G . entre as duas rectas e o ângulo complementar do ângulo pretendido. βº é a V.G . do ângulo entre e recta r e o plano δ. p 2 p 1 (h φ ) ≡ e 1 e 2 ≡ B r ≡ A r p r r r 90º-βº βº h δ x P 1 P 2 B 1 B 2 A 1 A 2 P r1 P r
  6. 6. É dada uma recta oblíqua m contém o ponto M (0; 4; 5). A projecção horizontal da recta m faz um ângulo de 30º (a.e.) com o eixo x e a sua projecção frontal faz um ângulo de 45º (a.e.) com o eixo x. É dado um plano oblíquo δ, ortogonal ao β 1,3 , intersecta o eixo x num ponto com 2 cm de abcissa e o seu traço horizontal faz um ângulo de 30º (a.d.) com o eixo x. Determina a V.G. do ângulo entre a recta m e o plano δ. m 1 m 2 h δ f δ Utilizando o método geral para a determinação de ângulos entre rectas e planos resulta numa enorme complexidade de traçados, sendo mais adequado o método do ângulo complementar . Tal solução é sempre preferível quando o plano é não projectante. É conduzida pelo um ponto M da recta m , uma recta p ortogonal ao plano δ. Determina-se o ângulo formado pelas duas rectas, m e p , via rebatimento. 90º - αº é a V.G . entre as duas rectas e o ângulo complementar do ângulo pretendido. αº é a V.G . do ângulo entre e recta m e o plano δ. p 1 (h φ ) p 2 ≡ e 1 e 2 ≡ A r ≡ B r m r p r 90º- αº αº x y ≡ z M 1 M 2 A 1 A 2 B 1 B 2 M r1 M r
  7. 7. Ângulo entre uma Recta Oblíqua e um Plano de Rampa Pretende-se a V.G. do ângulo formado entre uma recta oblíqua r e um plano de rampa ρ. Uma vez que que se trata de um plano não projectante, será mais adequado o método do ângulo complementar . É conduzida por um ponto qualquer P da recta r , uma recta p ortogonal ao plano ρ . Determina-se o ângulo formado pelas duas rectas, r e p , depois do processo de rebatimento das rectas. O plano π é o plano de perfil que contém a recta p . A recta i é a recta de intersecção entre os planos π e ρ, definida pelos seus traços, F e H . Para determinar a V.G. do ângulo, existe a necessidade de rebater o plano definido pelos duas rectas r e p , para um plano horizontal υ. 90º - βº é a V.G . entre as duas rectas e o ângulo complementar do ângulo pretendido. βº é a V.G . do ângulo entre e recta r e o plano ρ . r 1 r 2 f ρ h ρ p 1 ≡ p 2 ≡ f π ≡ h π ≡ H 2 ≡ i 1 ≡ i 2 ≡ (e 2 ) ≡ e 1 ≡ h πr ≡ f πr ≡ H r i r p r A r (f υ ) ≡ e’ 2 ≡ A r1 ≡ B r e’ 1 p r1 r r1 90º-βº βº x P 1 P 2 F 1 F 2 H 1 P r F r A 1 A 2 B 2 B 1 P r1 P r2
  8. 8. Uma recta de perfil p é definida pelos pontos A (1; 1) e B (3; 2). É dado um plano de rampa ρ, com o seu traço horizontal de 5 cm de afastamento , e o seu traço frontal de 3 cm de cota . Determina a V.G. do ângulo entre a recta p e o plano ρ. p 1 ≡ p 2 h ρ f ρ Neste caso, o processo mais simples é via o processo de mudança do diedro de projecção. É conduzida por um ponto qualquer P da recta r , uma recta p ortogonal ao plano ρ. O ponto C de f ρ é utilizado para determinar o traço do plano ρ no plano 4 . O ângulo entre a recta p e o plano ρ é o ângulo entre p 4 e f 4ρ . p 4 f 4ρ αº x A 1 A 2 B 1 B 2 2 1 x’ 4 1 C 1 C 2 A 4 B 4 C 4

×