SlideShare uma empresa Scribd logo
1 de 82
Liposomes




            1
OUTLINE
• WHAT ARE LIPOSOMES?
• BASIC LIPOSOME STRUCTURE.
• WHY USE LIPOSOMES IN DRUG
  DELIVERY?
• ADVANTAGES OF LIPOSOMES.
• STRUCTURAL COMPONENTS OF 
  LIPOSOMES.
• CLASSIFICATION OF LIPOSOMES.
• PREPARATION OF LIPOSOMES.

                                 2
Liposomes (= vesicles)
   Liposomes are concentric bilayered vesicles
    in which an aqueous core is entirely enclosed
    by a membranous lipid bilayer mainly
    composed     of    natural    or   synthetic
    phospholipids.
   Liposomes were first produced in England in
    1961 by Alec D. Bangham, who was
    studying phospholipids and blood clotting.
   The size of a liposome ranges from some

    20 nm up to several micrometers.                3
   The lipid moecules are ususally phospholipids- amphipathic moieties with a
    hydrophilic head group and two hydrophobic tails.
   On addition of excess water, such lipidic moieties spontaneously originate to give
    the most thermodynamically stable conformation.
   In which polor head groups face outwords into the aqueous medium, and the lipidic
    chains turns inwords to avoid the water phase, giving rise to double layer or bilayer
Hydrophobic




Hydrophilic
cavity




          5
Basic liposome structure




                           6
What is a lamella?

– A Lamella is a flat plate like structure that appears
during the formation of liposomes. The phospholipids
bilayer first exists as a lamella before getting 
converted into spheres.
– Several lamella of phospholipids bilayers 
are stacked 
one on top of the other during formation of liposomes 
 to form a multilamellar structure. 




                                                          7
Unilamellar vesicles    Multilamellar vesicles     



                                                      8
Structural Components of
              Liposomes

• THE MAIN COMPONENTS OF LIPOSOMES ARE :-
    
1.  Phospholipids

2.  Cholesterol




                                            9
Phospholipids 
• Phospholipids are the major structural compone
  nts of biological membranes such as  the 
  cell membrane.


                               Phosphoglycerides
 Two Types Of
  Two Types Of
 Phospholipids(Along With
  Phospholipids(Along With
 Their Hydrolysis Products)
  Their Hydrolysis Products)

                                 Sphingolipids


                                                   10
Phosphatidylcholine
• Most common phospholipids used is 
    phosphatidylcholine (PC).

•   Phosphatidylcholine is an amphipathic
    molecule in which exists:-
    – a hydrophilic polar head group, 
       phosphocholine.
    – a glycerol bridge.
    – a pair of hydrophobic acyl hydrocarbon 
       chains.
                                                11
Generally phospholipids are
   represented as follows:-
         follows:




                              12
Phospholipids
            Polar Head Groups




                Three carbon glycerol




                                    13
14
ROLE OF CHOLESTEROL IN BILAYER FORMATION
• Cholesterol by itself does not form bilayer structure.

• Cholesterol act as fluidity buffer

• After intercalation with phospholipid molecules alter the
  freedom of motion of carbon molecules in the acyl chain

• Restricts the transformations of trans to gauche conformations

• Cholesterol incorporation increases the separation between
  choline head group & eliminates normal electrostatic &
  hydrogen bonding interactions
Some other commonly used 
             phospholipids

 Naturally occurring phospholipids:
      –  PC : Phosphatidylcholine
      –  PE : Phosphatidylethanolamine
      –  PS : Phosphatidylserine

 Synthetic phospholipids:
      –  DOPC : Dioleoylphosphatidylcholine
      –  DSPC : Distearoylphosphatidylcholine

                                                16
Why Use Liposomes in Drug 
                  Delivery?
 Drug Targeting
nactive:  Unmodified liposomes gather in specific tissue 
     reticuloendothelial system 
Active:  alter liposome surface with ligand  (antibodies, 
  enzymes, protein A, sugars)
  Physical: temperature or pH sensitive liposomes 
  Directly to site

                                                        17
Why Use Liposomes in 
           Drug Delivery?
   Pharmacokinetics - efficacy and toxicity
Changes the absorbance and biodistribution
  Deliver drug in desired form
  Multidrug resistance
 Protection
Decrease harmful side effects
          Change where drug accumulates in the body

  Protects drug
                                                      18
Why Use Liposomes in 
             Drug Delivery?
 Release
Affect the time in which the drug is released 

Prolong time -increase duration of action and 
     decrease administration

  Dependent on drug and liposome properties
            Liposome composition, pH and osmotic gradient, and
                    environment

                                                                 19
ADVANTAGES OF LIPOSOMES
•     Provides selective passive targeting to tumor 
      tissues.
•    Increased efficacy and therapeutic index.
•    Increased stability of encapsulated drug.
•    Reduction in toxicity of the encapsulated agent.
•    Site avoidance effect (avoids non-target tissues).
•    Improved pharmacokinetic effects (reduced 
       elimination increased circulation life times).
•   Flexibility to couple with site specific ligands to
      achieve active targetting.  
                                                          20
DISADVANTAGES
 PHYSICAL/ CHEMICAL STABILITY
 VERY HIGH PRODUTION COST
 DRUG LEAKEGE/ ENTRAPMENT/ DRUG FUSION
STERILIZATION 
 SHORT  BIOLOGICAL ACTIVITY / t ½

 OXIDATION OF BILAYER …LIPIDS AND LOW  SOLUBILITY
 RATE OF RELEASE  and ALTERED BIODISTRIBUTION
  LOW THEARAPEUTIC INDEX and DOSE EFFECTIVENESS
 OVERCOMING RESISTANCE
 EXTENCIVE CLINICAL  AND LABORATORY  RESEARCH TO  
    ACERTAIN LONG CERCULATING LIPOSOMES
REPEATED IV ADMINISTRATION PROBLEMES
CLASSIFICATION OF LIPOSOMES

• Liposomes are classified on the basis of 

     – Structural parameters
     – Method of preparation
     – Composition and applications




                                              22
1. Based on structural parameters
                            Based on structural parameters




              MLV                      OLV                                       MVV
                                                   UV Unilamellar
          Multilamellar           oligolamellar                              Multivesicular 
                                                   Vesicles (all     
             Large                   vesicles                                  vesicles
                                                    size ranges) 
            vesicles             (>0.1-1.0 um)                                (> 1.0 um)
           (>0.5 um)

                                                                        SUV Small Unilamellar 
   MUV Medium Unilamellar 
                                                                             Vesicles 
         Vesicles
                                                                             20-100nm

                                                                        LUV Large Unilamellar 
GUV Giant Unilamellar Vesicles
                                                                              Vesicles
           >1um
                                                                              >100nm        23
24
25
3. Based on composition & application

1- Conventional.

2- Stealth.(PEG, increase 
   blood circulation time and 
   decrease phagocytic 
   attack).

3- Cationic.(lipoplex)

4- Targeted.(antibody)

                                     26
PREPARATION OF LIPOSOMES

                     Methods of liposome 
                         preparation



                                     Active or remote loading:
                                  certain types of compounds with 
    Passive loading:                       ionisable groups 
 Involves loading of  the  
                                         and those with both 
        entrapped 
                                      manufacturing procedure
agents before or during the  
                                  lipid and water solubility can be
 manufacturing procedure
                                   introduced into the liposomes 
                                               after the 
                                   formation of the intact vesicles27
Methods of liposome preparation


Passive loading techniques                                   Active loading techniques



Mechanical dispersion               Solvent dispersion               Detergent removal
      methods                            methods                         methods



                                                                   Detergent(Cholate,
Lipid film hydration by            Ethanol injection
                                                                      Alkyl glycoside,  
   hand shaking non-hand            Ether injection
                                                                      Triton X-100) removal
   shaking and freeze drying        Double emulsion            
Micro emulsification                                                 from mixed micelles by
                                      vesicles
Sonication                         Stable plurilamellar          Dialysis
French pressure cell               Vesicles                      Column 
Membrane extrusion                 Reverse phase                    chromatography
Dried reconstituted                   evaporation vesicles        Dilution
  vesicles                                                         Reconstituted sendai
Freeze thawed liposomes                                              virus enveloped 
                                                                      vesicles           28
BASIC METHOD OF FORMULATION OF LIPOSOMES

         SOLVANT
         eg.CHCl3

          LIPID e.g..
         LICITHIN

           DISPERSION
           FORMATIONN


                                          Separate liposome's from
                                          supernatatant by
          Encapsulated solute             centrifugation, gel
                                          filtration/ sonication or
                        FILM OF LIPID     dialysis or by addition of
                        OCCURS AT SIDES   buffers + drug.
                        OF VESSELS
Method                                    Vesicles
                      Mechanical methods
Vortex or hand shaking of phospholipid dispersions             MLV
Extrusion through polycarbonate filters at low or medium 
                                                               OLV, LUV
pressure
Extrusion through a French press cell “Microfluidizer” 
                                                               Mainly SUV
technique
High-pressure homogenization                                   Mainly SUV
Ultrasonic irritation                                          SUV of minimal size
Bubbling of gas                                                BSV
        Methods based on replacement of organic solvent(s) by aqueous media
Removal of organic solvent(s)                               MLV, OLV, SUV
Use of water-immiscible solvents: ether and petroleum     MLV, OLV, LUV
Ethanol injection method                                  LUV
Ether infusion (solvent vaporization)                     LUV, OLV, MLV
Reverse-phase evaporation
            Methods based on detergent removal
Gel exclusion chromatography                              SUV
“Slow” dialysis                                           LUV, OLV, MLV
Fast dilution                                             LUV, OLV
Other related techniques                                  MLV, OLV, LUV, SUV
PASSIVE LOADING TECHNIQUES
       • Mechanical Dispersion method
       • Solvent Dispersion method
       • Detergent Solubilisation method
MECHANICAL DISPERSION
      METHODS
LIPID HYDRATION METHOD




The mechanical energy required for swelling of lipids and dispersion
of casted lipid film is imparted by manual agitation (hand shaking
technique)
The % encapsulation efficiency as high as 30% is achieved due to
loss of water soluble component during swelling and entrapped only
10-15%. On other hand lipid soluble drug encapsulated 100%
1.   Hand‐shaken multilamellar vesicles
2.   Non‐shaking vesicles
3.   Pro‐liposomes
4.   Freeze drying
      
     :–AFTER THESE METHODS, OTHER PROCESSING METHODS ARE
     USED TO MODIFY THESE TYPE OF VESICLES THAT ARE
     PRODUCED SUCH AS:
• Micro emulsification liposomes (MEL)
• Sonicated unilamellar vesicles (SUVs)
• French Pressure Cell Liposomes
• Membrane extrusion liposomes
• Dried‐reconstituted vesicles (DRVs)
• Freeze thaw Sonication (FTS)
• pH induced vesiculation
• Calcium induced fusion
    :–These methods are known as “the mechanical treatment of MLVs” or 
     “Processing of  lipids by physical means
                                                                      34
Hand shaken multilamellar vesicles

•   Simplest and most widely used method of physical dispersion
•   Basic method involves
         – Dissolution of the lipid mixture and charge components in     
            chloroform:methanol solvent
         – Evaporation of the solvent in a rotary evaporator or by hand  
            shaking to form a film shaking to form a
         – Further drying of the film by attaching the flask to the   
            manifold of the lyophilizer.
         – Casted film is then dispersed in an aqueous medium.
         – Upon hydration, lipid swell and peel off the wall of the flask 
            and vesiculate forming multilamellar vesicles (MLVs) 

                                                                        35
PROCESS IN MORE DETAIL –
    STEP 1:
•   Lipid mixture of different phospholipids and charge components in 
    chloroform:methanol solvent mixture (2:1 v/v) is prepared first and 
    then introduced into a round bottom flask with a ground glass neck.
•   This flask is then attached to a rotary evaporator and rotated at 60 
    rpm.
•   The organic solvents are evaporated at about 30 degrees Celsius or 
    above the transition temperature of the lipids used.
•   The rotation is continued for 15 mins after the dry residue first 
    appears.
•   The evaporator is isolated from the vacuum source by closing the 
    tap.
•   The nitrogen is introduced into the evaporator and the pressure at 
    the cylinder head is gradually raised till there is no difference 
    between inside and outside the flask between inside and outside the 
    flask.
•   The flask is then removed from the evaporator and fixed on to the 
    manifold of lyophilizer to remove residual solvents.                  36
STEP 2‐ Hydration of lipid layer:

• After releasing the vacuum and removal from the lyophilizer, 
  the flask is flushed with nitrogen.
• 5ml of saline phosphate buffer (containing solute to be 
  entrapped) is added.
• The flask is attached to the evaporator again (flushed with N2) 
  and rotated at room temperature and pressure at the same 
  speed or below 60 rpm.
• The flask is left rotating for 30 minutes or until all lipid has 
  been removed from the wall of the flask and has given 
  homogenous milky‐white suspension free of visible particles.
• The suspension is allowed to stand for a further 2 hours at 
  room temperature or at a temperature above the transition 
  temperature of the lipid in order to complete the swelling 
  process to give MLVs.
                                                                 37
Hand shaken method in general
               




                                38
Non‐shaking vesicles
•   The procedure differs from hand shaken method in that it uses a stream 
    of nitrogen to provide agitation rather than the rotationary movements.
•   Solution of lipid in chloroform:methanol mixture is spread over the flat 
    bottom conical flask.
•   The solution is evaporated at room temperature by flow of nitrogen 
    through the flask without disturbing the solution.
•   After drying, water saturated nitrogen is passed through the flask until 
    the opacity of the dried lipid film disappears (15-20mins).
•   After hydration, lipid is swelled by addition of bulk fluid. The flask is 
    inclined to one side, 10‐20 ml of 0.2M sucrose in distilled water 
    (degassed) is introduced down the side of the flask, and the flask is 
    slowly returned to upright orientation.
•   The fluid is allowed to run gently over the lipid layer on the bottom of the 
    flask.
•   The flask is flushed with nitrogen sealed and allowed to stand for 2 hrs 
    at 37 degrees Celsius. Take care not to disturb the flask in any way.
•   After swelling, the vesicles are harvested by swirling the contents of the 
    flask gently , to yield a milky‐suspension.                                39
PROLIPOSOMES
 To increase the surface area of dried lipid film and to
  facilitate continuous hydration and lipid is dried over the
  finally divided particulate support i.e.- NaCl, Sorbitol, or
  other polysaccharides. These dried lipid coated
  particulates are called as proliposomes

 Proliposomes form dispersion of MLVs on addition of
  water, where support is rapidly dissolved and lipid film
  hydrate to form MLVs

 Methods overcome the stability problem and entrapment
  efficiency doesn’t matter when formation of stable
  liposome.
Freeze drying
•                              
    Another method of dispersing the lipid in a finely divided 
  form, prior to addition of aqueous media, is to freeze dry 
  the lipid dissolved in a suitable organic solvent.
• The solvent choice depends on the freeze point which 
  needs to above the temperature of the condenser 
  lyophilizers. Tertiary butanol is considered to be most 
  ideal solvent.
• After obtaining the dry lipid which is an expanded foam 
  like structure, water or saline can be added with rapid 
  mixing above the phase transition temperature to give 
  MLVs.


                                                              41
SONICATION METHOD

PROBE  SONICATOR: is employed for
dispersions, which require high energy in a
small volume (e.g., high concentration of
lipids, or a viscous aqueous phase)
Disadvantage- lipid degradation due to high
energy and sonication tips release titanium
particles into liposome dispersion
BATH  SONICATOR:  The bath is more
suitable for large volumes of diluted lipids.
Method: Placing a test tube containing the
dispersion in a bath sonicator and sonicating
for 5-10min(1,00,000g) which yield a
slightly hazy transparent solution. Using
centrifugation to yield a clear SUV
dispersion
FRENCH PRESSURE CELL
                     LIPOSOMES
This techniques yields rather “uni or
oligo lamellar liposomes” of intermediate
size of 30-80 nm in diameter depending on
the applied pressure.
Dispersion of MLVs can be converted to
SUVs by passage through a small orifice
under high pressure.
MLV dispersion are placed in the French
pressure cell and extruded at about
20,000psi at 450C By multiple extrusion
i.e.., 4.5 passed about 95% of MLVs get
converted into SUVs which can be
determined       by     size    exclusion
chromatography.
MICRO EMULSIFICATION LIPOSOMES(MEL)
 “Micro Fluidizer” is used to prepare small MLVs from Concentrated lipid
   dispersion

 The lipids can introduced into fluidizers, either as a dispersion of large MLVs
  or as a slurry of unhydrated lipids in organic medium.

 Microfluidizer pumps the fluid at very high pressure(10,000psi, 600-700 bar)
  through a 5um orifice.

 Then it is forced along defined micro channels, which direct two streams of
  fluid to collide together at right angles at a very high velocity, thereby affecting

 an efficient transfercanenergy.
  The fluid collected of be recycled through the
   pump and interaction chamber until vesicles of
   the spherical dimension are obtained.

 After a single pass, the size of vesicles is reduced
  to a size 0.1 and 0.2um in diameter.
VESICLES PREPARED BY
              EXTRUSION TECHNIQUES (VETs)

It is used to process LUVs as well as MLVs.

Liposomes prepared by this tech. are called
 as membrane filter extrusion liposomes

The 30% capture volume can be obtained
 using high lipid conc. The trapped volume
 in this process is 1-2 litre /mole of lipids

 It is due to their ease of production, readily
  selectable vesicle diameter, batch to batch
  reproducibility & freedom from solvent or
  surfactant contamination is possible
FREEZE THAW SONICATION
                   METHOD (FTS)
The method is based on
freezing of a unilamellar
dispersion & then thawing at
room temp for 15 min.
Thus the process ruptures &
refuses SUVs during which the
solute equilibrates between
inside & outside & liposomes
themselves fuse & increase in
size.
Entrapment volume can be
upto 30% of the total vol. of
dispersion. Sucrose, divalent
metal ions & high ionic
strength salt solutions can not
be entrapped efficiently
SOLVENT DISPERSION
           METHODS




Note:- Organic solvent miscible with aqueous
 phase
SOLVENT DISPERSION METHODS FOR
        PASSIVE LOADING
Ethanol injection:-
• An ethanol solution of lipids is injected rapidly through a fine
  needle into an excess of saline or other aq. medium
• This method has low risk of degradation of sensitive lipids
• The vesicles of 100 nm size may be obtained by varying the conc.
  Of lipid in ethanol or by changing the rate of injection of ethanol
  solution in preheated aqu. solution.
• Limitation-solubility of lipids in ethanol & vol. of ethanol that
  can be introduced into medium(7.5%v/v max)
• Difficulty to remove residual ethanol from phospholipid
  membrane

   Ether injection:-
• Involves mixing of organic phase into aqu. Phase at the temp. of
  vaporizing the organic solvent
• It has low encapsulation efficiency
REVERSE PHASE EVAPORATION
         METHOD
DETERGENT SOLUBILISATIOIN
             METHODS




Note:- Liposome size and shape depend on chemical nature of detergent,
       concentration and other lipid involved
Detergent depletion method
• The phospholipids are brought into intimate contact 
  with the aqueous phase via detergents which 
  associate with phospholipid molecules
• The structures formed are called as micelles
• The conc. of detergent at which micelles are formed is 
  called as CMC
• The detergent methods are not very efficient in % 
  entrapment values
• The methods employed for removal of detergent 
  include dialysis, column chromatography & use of 
  biobeads
Dialysis Method
Detergent commonly use for this purpose exhibit resonably 
high CMC (10 to 20 mM) so that their removal is facilitated 
A commercial version of the dialysis system is available under 
the tradename LIPOREP

Column Chromatography
Phospholipid inthe form of either sonicated vesicle or as a 
dry film, at a molar ratio of 2:1 with deoxycholate form 
unilamellar vesicles of 100nm on removal of deoxycholate by 
column chromatography 




                                                            54
ACTIVE LOADING TECHNIQUES
                                                                          AFTER DRYING IN PROCESS
•   Weak amphipathic bases accumulate in the aqueous phase of lipid
    vesicles in response to a difference in pH between the inside and
    outside of the liposomes (pHin & pHout)                               FILM/CAKE OF LIPID IS FROM
•   Two steps process generates this pH imbalance and active
    (remote) loading.
•   Vesicles are prapared in low pH solution, thus generating low pH
    within the liposomal interiors, followed by addition of the base to
                                                                               STACKS OF LIPID
    extraliposomal medium.
                                                                                BILAYER FORM
•   Basic compounds, carrying amino groups are relatively lipophipic
    at high pH and hydrophilic at low pH.
•   In two chambered aqueous system separated by membrane
    liposomes, accumulation occurs at the low pH side, under                  SWELLING IN FLUID
    dynamic equilibrium conditions.
•   Thus the unprotonated form of basic drug can diffuse through the
    bilayer                                                                  SHEET IS SELF CLOSE
•   The exchange of external medium by gel chromatography with
    neutral solution                                                          LOADING OF DRUG
•   Weak base doxorubicine, adriamycin and vincristine which co-           ON pH- GRADIENT TECHNIQUE
    exist in aqueous solutions in neutral and charged forms have been
    sucessfully loaded into preformed liposomes via the pH gradient        FORMATION OF BILAYER
    method.                                                                 (LIPOSOMES) IF DRUG
56
57
58
 
Reverse phase evaporation vesicles
                                  partial  bilayer




     In rotar y evaporator                     close to
     each other




            At this stage-
            the monolayers come
            close to each other




                                                          59
Ethanol/Ether injection method




                                 60
DRYING
• An important step involved in the preparation of 
    liposomes is the drying of the lipid.
• Large volume of organic solution of lipids is most
    easily dried in a rotary evaporator fitted with a dried a 
    rotary evaporator fitted with cooling coil and a 
    thermostatically controlled water bath.
• Rapid evaporation of solvent is carried out by gentle 
    warming (20‐40 degrees) under reduced pressure (400 
    700 mm Hg)(400‐700 mm Hg)
• Rapid rotation of the solvent containing flask increases 
    the surface area for evaporation. 
                                                                 61
• In  cases  where  sufficient  vacuum  is  not  attainable  or  if 
    the  concentration  of  lipids  is  particularly  high,  it  may  be 
    difficult to remove the last traces of chloroform from the 
    lipid film.
    Therefore, it is recommended as a matter of routine that 
    after  rotary  evaporation,  some  further  means  is 
    employed to bring the residue to complete dryness.
    Attachment of the flask to the manifold of lyophilizer, and 
    overnight exposure to high vacuum is a good method.




                                                                      62
I] Physical Dispersion or
     Mechanical Dispersion Methods

• Aqueous volume enclosed using this method is usually 
  5‐10%, which is very small proportion of the total volume 
  used for swelling.
• Therefore large quantity of water‐soluble compounds are 
  wasted during swelling.
• On the other hand, lipid soluble compounds can be 
  encapsulated to 100% efficacy, provided they are not 
  present in quantities that are greater than the structural 
  component of the membrane.

                                                           63
How LUVs Are Generated From The
           Suspension?
• The suspension is centrifuged at 12,000g for 10 
  min. in a bench centrifuge at room temperature.
• The layer of multilamellar vesicles floating on the 
  surface is removed. To the remaining fluid an 
  equal volume of iso‐osmolar glucose is added 
  and centrifuged again at 12,000g. Large 
  unilamellar vesicles form a soft pellet which can 
  be resuspended in any required medium of 
  appropriate osmolarity.

                                                    64
Pro‐Liposomes

• Method devised to increase the surface of dry lipid while 
  keeping the low aqueous volume.
• In this method, the lipids are dried down to a finely divided 
  particulate support, such as powdered sodium particulate 
  support, such as powdered chloride, or sorbitol or other 
  polysaccharide – to give pro‐liposomes.
• The lipids are swelled upon adding water to dried lipid coated 
  powder (pro‐liposomes), where the support rapidly dissolves 
  to give a suspension of MLVs in aqueous solution.
• The size of the carrier influences the size and heterogeneity 
  of the liposomes.



                                                               65
• This method overcomes the problems encountered when 
  storing liposomes themselves in either liquid, dry or frozen 
  form, and is ideally suited for preparations where the material 
  to be entrapped incorporates into lipid membrane.
• In cases where 100% entrapment of aqueous component is 
  not essential this method is also of value .
• For preparing pro‐liposome a special equipment i.e. Buchi 
  rotary evaporator ‘R’ with water cooled condenser coil and a 
  stainless steel covered thermocouple connected to a digital 
  thermometer is required.
• The end of the glass solvent inlet tube is modified to ato fine 
  point, so that the solvent is introduced into the flask as a fine 
  spray.


                                                                  66
BUCHI  Rotary Evaporator R type




                                  67
Method Of Preparation of Proliposomes
•   The lipid solution in chloroform (60mg/ml) is prepared and sorbitol powder is 
    introduced into 100ml flask.
•   The flask is then fitted into the evaporator and rotated slowly so that the 
    powder tumbles gently off the walls to ensure good mixing and the solvent is 
    evaporated.
•   The flask is lowered into a water bath at 50‐55 degrees Celsius when a 
    good vacuum is developed.
•   An aliquot of 5ml of lipid solution is introduced into the flask via the solvent 
    inlet tube.
•   The solvent is absorbed completely by the powder and the temperature of 
    the bed is monitored.
•   As evaporation proceeds the temperature will decrease.
•   A second aliquot is introduced slowly when the temperature begins to rise 
    again.
•   The temperature is allowed to rise to 30 degrees Celsius the vacuum is 
    released and the drying process is completed by connecting the flask 
    containing the powder to lyophilizer, and leaving it evacuated overnight at 
    room temperature.
•   The powder is transferred into a 10ml glass vial containing 600mg solid 
    each (100mg lipid and 500mg sorbitol support) flushed with nitrogen, and  68
    sealed well and stored.
Processing of the lipids hydrated
by physical means, or the mechanical
         treatment of MLVs
•   Micro emulsification liposomes (MEL)
•   Sonicated unilamellar vesicles (SUVs)
•   French Pressure Cell Liposomes
•   Membrane extrusion liposomes
•   Dried‐reconstituted vesicles (DRVs)
•   Freeze thaw Sonication (FTS)
•   pH induced vesiculation
•   Calcium induced fusion

                                            69
Micro emulsification liposomes (MEL)
                    




                                       70
Sonicated unilamellar vesicles (SUVs)
                  
                  




                                    71
French Pressure Cell Liposomes
                
                




                                 72
Membrane Extrusion Liposomes




                               73
Liposomes Help Improve

Therapeutic index
Rapid metabolism
Unfavorable pharmokinetics
 Low solubility
 Lack of stability
 Irritation




                                74
Current liposomal drug 
                      preparations
    Type of Agents     Examples
Anticancer Drugs             Duanorubicin,      Doxorubicin*, Epirubicin
                             Methotrexate, Cisplatin*, Cytarabin
Anti bacterial
                                Triclosan, Clindamycin hydrochloride,
                                Ampicillin, peperacillin, rifamicin
Antiviral
DNA material               AZT
Enzymes                     cDNA - CFTR*
Radionuclide                    Hexosaminidase A
Fungicides                      Glucocerebrosidase, Peroxidase
Vaccines
                             In-111*, Tc-99m
                             Amphotericin B*
                                Malaria merozoite, Malaria sporozoite
                                Hepatitis B antigen, Rabies virus glycoprotein
                                                                                 75
         *Currently in Clinical Trials or Approved for Clinical Use
CFTR
Gene Therapy
        Deliver cDNA of Cystic Fibrosis Transmembrane Conductance
                 Regulator (CFTR) to epithelial tissue of respiratory system



  Cationic liposome

   Fuse to cell membrane and
                incorporate cDNA into cell

  Clinical trials - no significant
             change in symptoms


   Now trying adeno associated
            virus                                                              76
Doxil
      Chemotherapy drug doxorubin
           Anemia, damage to veins and tissue at injection, decrease
              platelet and WBC count, toxic to




Treats Kaposi’s sarcoma lesions or cancer tumors
Modifications of liposome “stealth”
  keeps doxorubin in blood for 50 hours instead of
      20 minutes
  concentrates at KS lesions and tumors




                  *Just approved by FDA*                               77
Amphotericin B


Systemic fungal
     infections in immune compromised patients

AmB - kills ergosterol-containing fungal cells, also
      kills cholesterol-containing human cells
Side effects: nephrotoxicity, chills, and fevers
Fungizone - AmB with deoxycholate                  78
Liposomal Formulation of AmB
                                          Phospholipid:AmB ratio




                AmB           Cholesterol - only few %moles




                 Lipid

Exact Mechanism of liposomes not understood
     Diffusion
     Lipid transfer

Decrease in toxicity
                                                   79
No decrease in effectiveness of drug against fungi
Problems with Liposomal Preparations of Drugs


 $$$$  
                   Fungizone $40.58       Amphotec $2334

     Doxil $1200 per treatment, twice the cost of normal protocol 
          of chemotherapy and drugs 

                                             )
    Lack long term stability (short shelf life

      Physical and chemical instability 

        Freeze dry and pH adjustment
    Low “Pay Load” - poor encapsulation
    Low “Pay Load” - poor encapsula

    Polar drugs and drugs without opposite charge
      Modifications


  Possibility of new side effects
      Doxil “hand and foot syndrome”

                                                                     80
Future
Studies with insulin show that liposomes may
     be an effective way to package proteins
     and peptides for use
Clinical Trials for several liposomal formulations
More studies on the manipulation of liposomes




                                                     81
THANK YOU




            82

Mais conteúdo relacionado

Mais procurados

Liposomes-Classification, methods of preparation and application
Liposomes-Classification, methods of preparation and application Liposomes-Classification, methods of preparation and application
Liposomes-Classification, methods of preparation and application Vijay Hemmadi
 
LIPOSOMES USED AS AN DRUG DELIVERY SYSTEMS
LIPOSOMES USED AS AN DRUG DELIVERY SYSTEMSLIPOSOMES USED AS AN DRUG DELIVERY SYSTEMS
LIPOSOMES USED AS AN DRUG DELIVERY SYSTEMSROHIT
 
Liposomal drug delivery system
Liposomal drug delivery systemLiposomal drug delivery system
Liposomal drug delivery systemZahid1392
 
Nanoparticle targeted drug delivery system
Nanoparticle targeted drug delivery systemNanoparticle targeted drug delivery system
Nanoparticle targeted drug delivery systemBINDIYA PATEL
 
Pulmonary drug delivery system [PDDS]
Pulmonary drug delivery system [PDDS]Pulmonary drug delivery system [PDDS]
Pulmonary drug delivery system [PDDS]Sagar Savale
 
Niosomes and Aquasomes
Niosomes and AquasomesNiosomes and Aquasomes
Niosomes and AquasomesSyed Imran
 
oral controlled drug delivery system
oral controlled drug delivery systemoral controlled drug delivery system
oral controlled drug delivery systemBaliram Musale
 
Microsphere & microcapsules
Microsphere & microcapsulesMicrosphere & microcapsules
Microsphere & microcapsulesPravin Chinchole
 
NIOSOME, ITS PREPARATION AND EVALUATION
NIOSOME, ITS PREPARATION AND EVALUATIONNIOSOME, ITS PREPARATION AND EVALUATION
NIOSOME, ITS PREPARATION AND EVALUATIONMUSTAFIZUR RAHMAN
 

Mais procurados (20)

Liposome ppt
Liposome pptLiposome ppt
Liposome ppt
 
Liposomes-Classification, methods of preparation and application
Liposomes-Classification, methods of preparation and application Liposomes-Classification, methods of preparation and application
Liposomes-Classification, methods of preparation and application
 
Liposomes
LiposomesLiposomes
Liposomes
 
Liposomes
LiposomesLiposomes
Liposomes
 
LIPOSOMES USED AS AN DRUG DELIVERY SYSTEMS
LIPOSOMES USED AS AN DRUG DELIVERY SYSTEMSLIPOSOMES USED AS AN DRUG DELIVERY SYSTEMS
LIPOSOMES USED AS AN DRUG DELIVERY SYSTEMS
 
Niosomes
NiosomesNiosomes
Niosomes
 
Niosome
Niosome Niosome
Niosome
 
Liposomal drug delivery system
Liposomal drug delivery systemLiposomal drug delivery system
Liposomal drug delivery system
 
Liposomes
LiposomesLiposomes
Liposomes
 
liposomes
liposomes liposomes
liposomes
 
Liposomes
LiposomesLiposomes
Liposomes
 
Liposomes
LiposomesLiposomes
Liposomes
 
Nanoparticle targeted drug delivery system
Nanoparticle targeted drug delivery systemNanoparticle targeted drug delivery system
Nanoparticle targeted drug delivery system
 
Pulmonary drug delivery system [PDDS]
Pulmonary drug delivery system [PDDS]Pulmonary drug delivery system [PDDS]
Pulmonary drug delivery system [PDDS]
 
Niosomes and Aquasomes
Niosomes and AquasomesNiosomes and Aquasomes
Niosomes and Aquasomes
 
NIOSOMES
NIOSOMESNIOSOMES
NIOSOMES
 
oral controlled drug delivery system
oral controlled drug delivery systemoral controlled drug delivery system
oral controlled drug delivery system
 
Microsphere & microcapsules
Microsphere & microcapsulesMicrosphere & microcapsules
Microsphere & microcapsules
 
Microspheres
MicrospheresMicrospheres
Microspheres
 
NIOSOME, ITS PREPARATION AND EVALUATION
NIOSOME, ITS PREPARATION AND EVALUATIONNIOSOME, ITS PREPARATION AND EVALUATION
NIOSOME, ITS PREPARATION AND EVALUATION
 

Destaque

liposomes and niosomes
liposomes and niosomes liposomes and niosomes
liposomes and niosomes swethaaitha
 
Liposomal drug delivery system
Liposomal drug delivery systemLiposomal drug delivery system
Liposomal drug delivery systemNazmul Islam
 
parentral controlled drug delivery system
parentral controlled drug delivery systemparentral controlled drug delivery system
parentral controlled drug delivery systemswapna porandla
 
Parenteral controlled drug delivery system sushmitha
Parenteral controlled drug delivery system sushmithaParenteral controlled drug delivery system sushmitha
Parenteral controlled drug delivery system sushmithaDanish Kurien
 
Liposomes in drug delivery
Liposomes in drug deliveryLiposomes in drug delivery
Liposomes in drug deliveryAliElshafey
 
LinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-PresentedLinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-PresentedSlideShare
 
Lipid mediated lipofection
Lipid mediated lipofectionLipid mediated lipofection
Lipid mediated lipofectionBilal051
 
Biomedical importance of cholestrol
Biomedical importance of cholestrolBiomedical importance of cholestrol
Biomedical importance of cholestrolHussan Sheikh
 
Niosomes - A novel drug delivery system
Niosomes - A novel drug delivery systemNiosomes - A novel drug delivery system
Niosomes - A novel drug delivery systemAPCER Life Sciences
 
Fatty acid synthesis and cholestrol synthesis
Fatty acid synthesis and cholestrol synthesisFatty acid synthesis and cholestrol synthesis
Fatty acid synthesis and cholestrol synthesismuti ullah
 
Cholestrol in foods
Cholestrol in foodsCholestrol in foods
Cholestrol in foodsMuneeb Khan
 
Cholestrol & its significance
Cholestrol & its significanceCholestrol & its significance
Cholestrol & its significancemelbia shine
 
Nonlinear pharmacokinetic
Nonlinear pharmacokineticNonlinear pharmacokinetic
Nonlinear pharmacokineticbuner12345
 

Destaque (20)

liposomes and niosomes
liposomes and niosomes liposomes and niosomes
liposomes and niosomes
 
Liposomal drug delivery system
Liposomal drug delivery systemLiposomal drug delivery system
Liposomal drug delivery system
 
Liposomes
LiposomesLiposomes
Liposomes
 
Lyposome
LyposomeLyposome
Lyposome
 
liposomes
liposomesliposomes
liposomes
 
Liposomes
Liposomes Liposomes
Liposomes
 
parentral controlled drug delivery system
parentral controlled drug delivery systemparentral controlled drug delivery system
parentral controlled drug delivery system
 
Parenteral controlled drug delivery system sushmitha
Parenteral controlled drug delivery system sushmithaParenteral controlled drug delivery system sushmitha
Parenteral controlled drug delivery system sushmitha
 
Liposomes in drug delivery
Liposomes in drug deliveryLiposomes in drug delivery
Liposomes in drug delivery
 
LinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-PresentedLinkedIn SlideShare: Knowledge, Well-Presented
LinkedIn SlideShare: Knowledge, Well-Presented
 
fda
fdafda
fda
 
Lipid mediated lipofection
Lipid mediated lipofectionLipid mediated lipofection
Lipid mediated lipofection
 
Biomedical importance of cholestrol
Biomedical importance of cholestrolBiomedical importance of cholestrol
Biomedical importance of cholestrol
 
Niosomes - A novel drug delivery system
Niosomes - A novel drug delivery systemNiosomes - A novel drug delivery system
Niosomes - A novel drug delivery system
 
Liposomes and nanoparticles
Liposomes and nanoparticlesLiposomes and nanoparticles
Liposomes and nanoparticles
 
Fatty acid synthesis and cholestrol synthesis
Fatty acid synthesis and cholestrol synthesisFatty acid synthesis and cholestrol synthesis
Fatty acid synthesis and cholestrol synthesis
 
Niosomes by kalyan
Niosomes by kalyanNiosomes by kalyan
Niosomes by kalyan
 
Cholestrol in foods
Cholestrol in foodsCholestrol in foods
Cholestrol in foods
 
Cholestrol & its significance
Cholestrol & its significanceCholestrol & its significance
Cholestrol & its significance
 
Nonlinear pharmacokinetic
Nonlinear pharmacokineticNonlinear pharmacokinetic
Nonlinear pharmacokinetic
 

Semelhante a Liposome

Liposomes & Niosomes.pptx
Liposomes & Niosomes.pptxLiposomes & Niosomes.pptx
Liposomes & Niosomes.pptxSasidharRlc2
 
Liposomes detail topic explanation notes
Liposomes detail topic explanation notesLiposomes detail topic explanation notes
Liposomes detail topic explanation notesUVAS
 
LIPOSOMES.pptx
LIPOSOMES.pptxLIPOSOMES.pptx
LIPOSOMES.pptxPunithM12
 
Liposomes by Mr. Vishal Shelke
Liposomes by Mr. Vishal ShelkeLiposomes by Mr. Vishal Shelke
Liposomes by Mr. Vishal ShelkeVishal Shelke
 
03 spandana liposomes_ppt
03 spandana liposomes_ppt03 spandana liposomes_ppt
03 spandana liposomes_pptspandu4750
 
Inroduction to LIPOSOMES & NIOSOMES.pptx
Inroduction to LIPOSOMES & NIOSOMES.pptxInroduction to LIPOSOMES & NIOSOMES.pptx
Inroduction to LIPOSOMES & NIOSOMES.pptxHarshadaa bafna
 
Liposomes by Dr. S. V. Deshmane
Liposomes by Dr. S. V. DeshmaneLiposomes by Dr. S. V. Deshmane
Liposomes by Dr. S. V. DeshmaneSubhash Deshmane
 
Liposome drug delivery system
Liposome drug delivery systemLiposome drug delivery system
Liposome drug delivery systemHiron Devnath
 
Liposomes and liposomal drug delivery system( recent advancement)
Liposomes and liposomal drug delivery system( recent advancement)Liposomes and liposomal drug delivery system( recent advancement)
Liposomes and liposomal drug delivery system( recent advancement)Unmesh Bhamare
 
Liposomal drug delivery systems an overview
Liposomal drug delivery systems an overviewLiposomal drug delivery systems an overview
Liposomal drug delivery systems an overviewsana916816
 

Semelhante a Liposome (20)

Liposomes & Niosomes.pptx
Liposomes & Niosomes.pptxLiposomes & Niosomes.pptx
Liposomes & Niosomes.pptx
 
Liposomes detail topic explanation notes
Liposomes detail topic explanation notesLiposomes detail topic explanation notes
Liposomes detail topic explanation notes
 
Liposomes
LiposomesLiposomes
Liposomes
 
Snehal liposomes
Snehal liposomesSnehal liposomes
Snehal liposomes
 
Liposomes.ppt
Liposomes.pptLiposomes.ppt
Liposomes.ppt
 
Liposomes ppt
Liposomes pptLiposomes ppt
Liposomes ppt
 
LIPOSOMES.pptx
LIPOSOMES.pptxLIPOSOMES.pptx
LIPOSOMES.pptx
 
Liposomes
LiposomesLiposomes
Liposomes
 
Liposomes by Mr. Vishal Shelke
Liposomes by Mr. Vishal ShelkeLiposomes by Mr. Vishal Shelke
Liposomes by Mr. Vishal Shelke
 
2liposomes
2liposomes2liposomes
2liposomes
 
Liposomes
LiposomesLiposomes
Liposomes
 
03 spandana liposomes_ppt
03 spandana liposomes_ppt03 spandana liposomes_ppt
03 spandana liposomes_ppt
 
Inroduction to LIPOSOMES & NIOSOMES.pptx
Inroduction to LIPOSOMES & NIOSOMES.pptxInroduction to LIPOSOMES & NIOSOMES.pptx
Inroduction to LIPOSOMES & NIOSOMES.pptx
 
Liposomes by Dr. S. V. Deshmane
Liposomes by Dr. S. V. DeshmaneLiposomes by Dr. S. V. Deshmane
Liposomes by Dr. S. V. Deshmane
 
Liposome drug delivery system
Liposome drug delivery systemLiposome drug delivery system
Liposome drug delivery system
 
LIPOSOMES@.pptx
LIPOSOMES@.pptxLIPOSOMES@.pptx
LIPOSOMES@.pptx
 
liposomes
liposomesliposomes
liposomes
 
Liposomes and liposomal drug delivery system( recent advancement)
Liposomes and liposomal drug delivery system( recent advancement)Liposomes and liposomal drug delivery system( recent advancement)
Liposomes and liposomal drug delivery system( recent advancement)
 
Liposomal drug delivery systems an overview
Liposomal drug delivery systems an overviewLiposomal drug delivery systems an overview
Liposomal drug delivery systems an overview
 
2liposomes
2liposomes2liposomes
2liposomes
 

Mais de Gaurav Kr

Instrumental analysis
Instrumental analysisInstrumental analysis
Instrumental analysisGaurav Kr
 
Investigational new drug application
Investigational new drug applicationInvestigational new drug application
Investigational new drug applicationGaurav Kr
 
Fractional factorial design tutorial
Fractional factorial design tutorialFractional factorial design tutorial
Fractional factorial design tutorialGaurav Kr
 
Herbal medicine
Herbal medicineHerbal medicine
Herbal medicineGaurav Kr
 
Investigational new drug application
Investigational new drug applicationInvestigational new drug application
Investigational new drug applicationGaurav Kr
 
Gmp for water for p'cal use
Gmp for water for p'cal useGmp for water for p'cal use
Gmp for water for p'cal useGaurav Kr
 
Gmp compliance
Gmp complianceGmp compliance
Gmp complianceGaurav Kr
 
GMP and cGMP
GMP and cGMPGMP and cGMP
GMP and cGMPGaurav Kr
 
Drug master files
Drug master filesDrug master files
Drug master filesGaurav Kr
 
Drug development and nda
Drug development and ndaDrug development and nda
Drug development and ndaGaurav Kr
 
Dosage form design
Dosage form designDosage form design
Dosage form designGaurav Kr
 
Control of microbial growth
Control of microbial growthControl of microbial growth
Control of microbial growthGaurav Kr
 
Computer system validation
Computer system validationComputer system validation
Computer system validationGaurav Kr
 
Designing around patent
Designing around patentDesigning around patent
Designing around patentGaurav Kr
 
Clinical trails
Clinical trailsClinical trails
Clinical trailsGaurav Kr
 
Clinical study and gcp
Clinical study and gcpClinical study and gcp
Clinical study and gcpGaurav Kr
 
Clinical research
Clinical researchClinical research
Clinical researchGaurav Kr
 

Mais de Gaurav Kr (20)

Instrumental analysis
Instrumental analysisInstrumental analysis
Instrumental analysis
 
Investigational new drug application
Investigational new drug applicationInvestigational new drug application
Investigational new drug application
 
Fractional factorial design tutorial
Fractional factorial design tutorialFractional factorial design tutorial
Fractional factorial design tutorial
 
Herbals
HerbalsHerbals
Herbals
 
Herbal medicine
Herbal medicineHerbal medicine
Herbal medicine
 
Investigational new drug application
Investigational new drug applicationInvestigational new drug application
Investigational new drug application
 
Gmp for water for p'cal use
Gmp for water for p'cal useGmp for water for p'cal use
Gmp for water for p'cal use
 
Gmp compliance
Gmp complianceGmp compliance
Gmp compliance
 
GMP and cGMP
GMP and cGMPGMP and cGMP
GMP and cGMP
 
Foi and iig
Foi and iigFoi and iig
Foi and iig
 
Drug master files
Drug master filesDrug master files
Drug master files
 
Drug development and nda
Drug development and ndaDrug development and nda
Drug development and nda
 
EMEA
EMEAEMEA
EMEA
 
Dosage form design
Dosage form designDosage form design
Dosage form design
 
Control of microbial growth
Control of microbial growthControl of microbial growth
Control of microbial growth
 
Computer system validation
Computer system validationComputer system validation
Computer system validation
 
Designing around patent
Designing around patentDesigning around patent
Designing around patent
 
Clinical trails
Clinical trailsClinical trails
Clinical trails
 
Clinical study and gcp
Clinical study and gcpClinical study and gcp
Clinical study and gcp
 
Clinical research
Clinical researchClinical research
Clinical research
 

Último

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseAnaAcapella
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Association for Project Management
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17Celine George
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentationcamerronhm
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSCeline George
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Pooja Bhuva
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptxMaritesTamaniVerdade
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.MaryamAhmad92
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxheathfieldcps1
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxAmanpreet Kaur
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 

Último (20)

Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...Making communications land - Are they received and understood as intended? we...
Making communications land - Are they received and understood as intended? we...
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
SOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning PresentationSOC 101 Demonstration of Learning Presentation
SOC 101 Demonstration of Learning Presentation
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Spatium Project Simulation student brief
Spatium Project Simulation student briefSpatium Project Simulation student brief
Spatium Project Simulation student brief
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptxSKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
SKILL OF INTRODUCING THE LESSON MICRO SKILLS.pptx
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 

Liposome

  • 2. OUTLINE • WHAT ARE LIPOSOMES? • BASIC LIPOSOME STRUCTURE. • WHY USE LIPOSOMES IN DRUG DELIVERY? • ADVANTAGES OF LIPOSOMES. • STRUCTURAL COMPONENTS OF  LIPOSOMES. • CLASSIFICATION OF LIPOSOMES. • PREPARATION OF LIPOSOMES. 2
  • 3. Liposomes (= vesicles)  Liposomes are concentric bilayered vesicles in which an aqueous core is entirely enclosed by a membranous lipid bilayer mainly composed of natural or synthetic phospholipids.  Liposomes were first produced in England in 1961 by Alec D. Bangham, who was studying phospholipids and blood clotting.  The size of a liposome ranges from some 20 nm up to several micrometers. 3
  • 4. The lipid moecules are ususally phospholipids- amphipathic moieties with a hydrophilic head group and two hydrophobic tails.  On addition of excess water, such lipidic moieties spontaneously originate to give the most thermodynamically stable conformation.  In which polor head groups face outwords into the aqueous medium, and the lipidic chains turns inwords to avoid the water phase, giving rise to double layer or bilayer
  • 8. Unilamellar vesicles  Multilamellar vesicles        8
  • 9. Structural Components of Liposomes • THE MAIN COMPONENTS OF LIPOSOMES ARE :-      1.  Phospholipids 2.  Cholesterol 9
  • 10. Phospholipids  • Phospholipids are the major structural compone nts of biological membranes such as  the  cell membrane. Phosphoglycerides Two Types Of Two Types Of Phospholipids(Along With Phospholipids(Along With Their Hydrolysis Products) Their Hydrolysis Products) Sphingolipids 10
  • 12. Generally phospholipids are represented as follows:- follows: 12
  • 13. Phospholipids Polar Head Groups Three carbon glycerol 13
  • 14. 14
  • 15. ROLE OF CHOLESTEROL IN BILAYER FORMATION • Cholesterol by itself does not form bilayer structure. • Cholesterol act as fluidity buffer • After intercalation with phospholipid molecules alter the freedom of motion of carbon molecules in the acyl chain • Restricts the transformations of trans to gauche conformations • Cholesterol incorporation increases the separation between choline head group & eliminates normal electrostatic & hydrogen bonding interactions
  • 16. Some other commonly used  phospholipids  Naturally occurring phospholipids:       –  PC : Phosphatidylcholine       –  PE : Phosphatidylethanolamine       –  PS : Phosphatidylserine  Synthetic phospholipids:       –  DOPC : Dioleoylphosphatidylcholine       –  DSPC : Distearoylphosphatidylcholine 16
  • 17. Why Use Liposomes in Drug  Delivery? Drug Targeting nactive:  Unmodified liposomes gather in specific tissue  reticuloendothelial system  Active:  alter liposome surface with ligand  (antibodies,  enzymes, protein A, sugars) Physical: temperature or pH sensitive liposomes  Directly to site 17
  • 18. Why Use Liposomes in  Drug Delivery? Pharmacokinetics - efficacy and toxicity Changes the absorbance and biodistribution  Deliver drug in desired form Multidrug resistance Protection Decrease harmful side effects Change where drug accumulates in the body Protects drug 18
  • 19. Why Use Liposomes in  Drug Delivery? Release Affect the time in which the drug is released  Prolong time -increase duration of action and  decrease administration Dependent on drug and liposome properties Liposome composition, pH and osmotic gradient, and environment 19
  • 20. ADVANTAGES OF LIPOSOMES • Provides selective passive targeting to tumor        tissues. •    Increased efficacy and therapeutic index. •    Increased stability of encapsulated drug. •    Reduction in toxicity of the encapsulated agent. •    Site avoidance effect (avoids non-target tissues). •    Improved pharmacokinetic effects (reduced         elimination increased circulation life times). •   Flexibility to couple with site specific ligands to       achieve active targetting.   20
  • 22. CLASSIFICATION OF LIPOSOMES • Liposomes are classified on the basis of       – Structural parameters      – Method of preparation      – Composition and applications 22
  • 23. 1. Based on structural parameters Based on structural parameters MLV OLV  MVV UV Unilamellar Multilamellar  oligolamellar  Multivesicular  Vesicles (all      Large  vesicles vesicles size ranges)  vesicles (>0.1-1.0 um) (> 1.0 um) (>0.5 um) SUV Small Unilamellar  MUV Medium Unilamellar  Vesicles  Vesicles 20-100nm LUV Large Unilamellar  GUV Giant Unilamellar Vesicles Vesicles >1um >100nm 23
  • 24. 24
  • 25. 25
  • 26. 3. Based on composition & application 1- Conventional. 2- Stealth.(PEG, increase  blood circulation time and  decrease phagocytic  attack). 3- Cationic.(lipoplex) 4- Targeted.(antibody) 26
  • 27. PREPARATION OF LIPOSOMES Methods of liposome  preparation Active or remote loading: certain types of compounds with  Passive loading: ionisable groups  Involves loading of  the   and those with both  entrapped  manufacturing procedure agents before or during the   lipid and water solubility can be manufacturing procedure introduced into the liposomes  after the  formation of the intact vesicles27
  • 28. Methods of liposome preparation Passive loading techniques Active loading techniques Mechanical dispersion Solvent dispersion Detergent removal methods methods methods Detergent(Cholate, Lipid film hydration by  Ethanol injection    Alkyl glycoside,      hand shaking non-hand Ether injection    Triton X-100) removal    shaking and freeze drying Double emulsion             Micro emulsification    from mixed micelles by   vesicles Sonication Stable plurilamellar  Dialysis French pressure cell Vesicles Column  Membrane extrusion Reverse phase                  chromatography Dried reconstituted                 evaporation vesicles Dilution   vesicles Reconstituted sendai Freeze thawed liposomes    virus enveloped     vesicles 28
  • 29. BASIC METHOD OF FORMULATION OF LIPOSOMES SOLVANT eg.CHCl3 LIPID e.g.. LICITHIN DISPERSION FORMATIONN Separate liposome's from supernatatant by Encapsulated solute centrifugation, gel filtration/ sonication or FILM OF LIPID dialysis or by addition of OCCURS AT SIDES buffers + drug. OF VESSELS
  • 30. Method Vesicles Mechanical methods Vortex or hand shaking of phospholipid dispersions MLV Extrusion through polycarbonate filters at low or medium  OLV, LUV pressure Extrusion through a French press cell “Microfluidizer”  Mainly SUV technique High-pressure homogenization Mainly SUV Ultrasonic irritation SUV of minimal size Bubbling of gas BSV Methods based on replacement of organic solvent(s) by aqueous media Removal of organic solvent(s) MLV, OLV, SUV Use of water-immiscible solvents: ether and petroleum MLV, OLV, LUV Ethanol injection method LUV Ether infusion (solvent vaporization) LUV, OLV, MLV Reverse-phase evaporation Methods based on detergent removal Gel exclusion chromatography SUV “Slow” dialysis LUV, OLV, MLV Fast dilution LUV, OLV Other related techniques MLV, OLV, LUV, SUV
  • 31. PASSIVE LOADING TECHNIQUES • Mechanical Dispersion method • Solvent Dispersion method • Detergent Solubilisation method
  • 33. LIPID HYDRATION METHOD The mechanical energy required for swelling of lipids and dispersion of casted lipid film is imparted by manual agitation (hand shaking technique) The % encapsulation efficiency as high as 30% is achieved due to loss of water soluble component during swelling and entrapped only 10-15%. On other hand lipid soluble drug encapsulated 100%
  • 34. 1. Hand‐shaken multilamellar vesicles 2. Non‐shaking vesicles 3. Pro‐liposomes 4. Freeze drying   :–AFTER THESE METHODS, OTHER PROCESSING METHODS ARE USED TO MODIFY THESE TYPE OF VESICLES THAT ARE PRODUCED SUCH AS: • Micro emulsification liposomes (MEL) • Sonicated unilamellar vesicles (SUVs) • French Pressure Cell Liposomes • Membrane extrusion liposomes • Dried‐reconstituted vesicles (DRVs) • Freeze thaw Sonication (FTS) • pH induced vesiculation • Calcium induced fusion     :–These methods are known as “the mechanical treatment of MLVs” or  “Processing of  lipids by physical means 34
  • 35. Hand shaken multilamellar vesicles • Simplest and most widely used method of physical dispersion • Basic method involves – Dissolution of the lipid mixture and charge components in         chloroform:methanol solvent – Evaporation of the solvent in a rotary evaporator or by hand      shaking to form a film shaking to form a – Further drying of the film by attaching the flask to the       manifold of the lyophilizer. – Casted film is then dispersed in an aqueous medium. – Upon hydration, lipid swell and peel off the wall of the flask     and vesiculate forming multilamellar vesicles (MLVs)  35
  • 36. PROCESS IN MORE DETAIL – STEP 1: • Lipid mixture of different phospholipids and charge components in  chloroform:methanol solvent mixture (2:1 v/v) is prepared first and  then introduced into a round bottom flask with a ground glass neck. • This flask is then attached to a rotary evaporator and rotated at 60  rpm. • The organic solvents are evaporated at about 30 degrees Celsius or  above the transition temperature of the lipids used. • The rotation is continued for 15 mins after the dry residue first  appears. • The evaporator is isolated from the vacuum source by closing the  tap. • The nitrogen is introduced into the evaporator and the pressure at  the cylinder head is gradually raised till there is no difference  between inside and outside the flask between inside and outside the  flask. • The flask is then removed from the evaporator and fixed on to the  manifold of lyophilizer to remove residual solvents. 36
  • 37. STEP 2‐ Hydration of lipid layer: • After releasing the vacuum and removal from the lyophilizer,  the flask is flushed with nitrogen. • 5ml of saline phosphate buffer (containing solute to be  entrapped) is added. • The flask is attached to the evaporator again (flushed with N2)  and rotated at room temperature and pressure at the same  speed or below 60 rpm. • The flask is left rotating for 30 minutes or until all lipid has  been removed from the wall of the flask and has given  homogenous milky‐white suspension free of visible particles. • The suspension is allowed to stand for a further 2 hours at  room temperature or at a temperature above the transition  temperature of the lipid in order to complete the swelling  process to give MLVs. 37
  • 39. Non‐shaking vesicles • The procedure differs from hand shaken method in that it uses a stream  of nitrogen to provide agitation rather than the rotationary movements. • Solution of lipid in chloroform:methanol mixture is spread over the flat  bottom conical flask. • The solution is evaporated at room temperature by flow of nitrogen  through the flask without disturbing the solution. • After drying, water saturated nitrogen is passed through the flask until  the opacity of the dried lipid film disappears (15-20mins). • After hydration, lipid is swelled by addition of bulk fluid. The flask is  inclined to one side, 10‐20 ml of 0.2M sucrose in distilled water  (degassed) is introduced down the side of the flask, and the flask is  slowly returned to upright orientation. • The fluid is allowed to run gently over the lipid layer on the bottom of the  flask. • The flask is flushed with nitrogen sealed and allowed to stand for 2 hrs  at 37 degrees Celsius. Take care not to disturb the flask in any way. • After swelling, the vesicles are harvested by swirling the contents of the  flask gently , to yield a milky‐suspension. 39
  • 40. PROLIPOSOMES  To increase the surface area of dried lipid film and to facilitate continuous hydration and lipid is dried over the finally divided particulate support i.e.- NaCl, Sorbitol, or other polysaccharides. These dried lipid coated particulates are called as proliposomes  Proliposomes form dispersion of MLVs on addition of water, where support is rapidly dissolved and lipid film hydrate to form MLVs  Methods overcome the stability problem and entrapment efficiency doesn’t matter when formation of stable liposome.
  • 41. Freeze drying •   Another method of dispersing the lipid in a finely divided  form, prior to addition of aqueous media, is to freeze dry  the lipid dissolved in a suitable organic solvent. • The solvent choice depends on the freeze point which  needs to above the temperature of the condenser  lyophilizers. Tertiary butanol is considered to be most  ideal solvent. • After obtaining the dry lipid which is an expanded foam  like structure, water or saline can be added with rapid  mixing above the phase transition temperature to give  MLVs. 41
  • 42. SONICATION METHOD PROBE  SONICATOR: is employed for dispersions, which require high energy in a small volume (e.g., high concentration of lipids, or a viscous aqueous phase) Disadvantage- lipid degradation due to high energy and sonication tips release titanium particles into liposome dispersion BATH  SONICATOR:  The bath is more suitable for large volumes of diluted lipids. Method: Placing a test tube containing the dispersion in a bath sonicator and sonicating for 5-10min(1,00,000g) which yield a slightly hazy transparent solution. Using centrifugation to yield a clear SUV dispersion
  • 43. FRENCH PRESSURE CELL LIPOSOMES This techniques yields rather “uni or oligo lamellar liposomes” of intermediate size of 30-80 nm in diameter depending on the applied pressure. Dispersion of MLVs can be converted to SUVs by passage through a small orifice under high pressure. MLV dispersion are placed in the French pressure cell and extruded at about 20,000psi at 450C By multiple extrusion i.e.., 4.5 passed about 95% of MLVs get converted into SUVs which can be determined by size exclusion chromatography.
  • 44. MICRO EMULSIFICATION LIPOSOMES(MEL) “Micro Fluidizer” is used to prepare small MLVs from Concentrated lipid dispersion The lipids can introduced into fluidizers, either as a dispersion of large MLVs or as a slurry of unhydrated lipids in organic medium. Microfluidizer pumps the fluid at very high pressure(10,000psi, 600-700 bar) through a 5um orifice. Then it is forced along defined micro channels, which direct two streams of fluid to collide together at right angles at a very high velocity, thereby affecting an efficient transfercanenergy. The fluid collected of be recycled through the pump and interaction chamber until vesicles of the spherical dimension are obtained. After a single pass, the size of vesicles is reduced to a size 0.1 and 0.2um in diameter.
  • 45. VESICLES PREPARED BY EXTRUSION TECHNIQUES (VETs) It is used to process LUVs as well as MLVs. Liposomes prepared by this tech. are called as membrane filter extrusion liposomes The 30% capture volume can be obtained using high lipid conc. The trapped volume in this process is 1-2 litre /mole of lipids  It is due to their ease of production, readily selectable vesicle diameter, batch to batch reproducibility & freedom from solvent or surfactant contamination is possible
  • 46. FREEZE THAW SONICATION METHOD (FTS) The method is based on freezing of a unilamellar dispersion & then thawing at room temp for 15 min. Thus the process ruptures & refuses SUVs during which the solute equilibrates between inside & outside & liposomes themselves fuse & increase in size. Entrapment volume can be upto 30% of the total vol. of dispersion. Sucrose, divalent metal ions & high ionic strength salt solutions can not be entrapped efficiently
  • 47. SOLVENT DISPERSION METHODS Note:- Organic solvent miscible with aqueous phase
  • 48. SOLVENT DISPERSION METHODS FOR PASSIVE LOADING
  • 49. Ethanol injection:- • An ethanol solution of lipids is injected rapidly through a fine needle into an excess of saline or other aq. medium • This method has low risk of degradation of sensitive lipids • The vesicles of 100 nm size may be obtained by varying the conc. Of lipid in ethanol or by changing the rate of injection of ethanol solution in preheated aqu. solution. • Limitation-solubility of lipids in ethanol & vol. of ethanol that can be introduced into medium(7.5%v/v max) • Difficulty to remove residual ethanol from phospholipid membrane Ether injection:- • Involves mixing of organic phase into aqu. Phase at the temp. of vaporizing the organic solvent • It has low encapsulation efficiency
  • 50.
  • 52. DETERGENT SOLUBILISATIOIN METHODS Note:- Liposome size and shape depend on chemical nature of detergent, concentration and other lipid involved
  • 53. Detergent depletion method • The phospholipids are brought into intimate contact  with the aqueous phase via detergents which  associate with phospholipid molecules • The structures formed are called as micelles • The conc. of detergent at which micelles are formed is  called as CMC • The detergent methods are not very efficient in %  entrapment values • The methods employed for removal of detergent  include dialysis, column chromatography & use of  biobeads
  • 55. ACTIVE LOADING TECHNIQUES AFTER DRYING IN PROCESS • Weak amphipathic bases accumulate in the aqueous phase of lipid vesicles in response to a difference in pH between the inside and outside of the liposomes (pHin & pHout) FILM/CAKE OF LIPID IS FROM • Two steps process generates this pH imbalance and active (remote) loading. • Vesicles are prapared in low pH solution, thus generating low pH within the liposomal interiors, followed by addition of the base to STACKS OF LIPID extraliposomal medium. BILAYER FORM • Basic compounds, carrying amino groups are relatively lipophipic at high pH and hydrophilic at low pH. • In two chambered aqueous system separated by membrane liposomes, accumulation occurs at the low pH side, under SWELLING IN FLUID dynamic equilibrium conditions. • Thus the unprotonated form of basic drug can diffuse through the bilayer SHEET IS SELF CLOSE • The exchange of external medium by gel chromatography with neutral solution LOADING OF DRUG • Weak base doxorubicine, adriamycin and vincristine which co- ON pH- GRADIENT TECHNIQUE exist in aqueous solutions in neutral and charged forms have been sucessfully loaded into preformed liposomes via the pH gradient FORMATION OF BILAYER method. (LIPOSOMES) IF DRUG
  • 56. 56
  • 57. 57
  • 58. 58
  • 59.   Reverse phase evaporation vesicles partial  bilayer In rotar y evaporator close to each other At this stage- the monolayers come close to each other 59
  • 61. DRYING • An important step involved in the preparation of  liposomes is the drying of the lipid. • Large volume of organic solution of lipids is most     easily dried in a rotary evaporator fitted with a dried a  rotary evaporator fitted with cooling coil and a  thermostatically controlled water bath. • Rapid evaporation of solvent is carried out by gentle  warming (20‐40 degrees) under reduced pressure (400  700 mm Hg)(400‐700 mm Hg) • Rapid rotation of the solvent containing flask increases  the surface area for evaporation.  61
  • 62. • In  cases  where  sufficient  vacuum  is  not  attainable  or  if  the  concentration  of  lipids  is  particularly  high,  it  may  be  difficult to remove the last traces of chloroform from the  lipid film.     Therefore, it is recommended as a matter of routine that  after  rotary  evaporation,  some  further  means  is  employed to bring the residue to complete dryness. Attachment of the flask to the manifold of lyophilizer, and  overnight exposure to high vacuum is a good method. 62
  • 63. I] Physical Dispersion or Mechanical Dispersion Methods • Aqueous volume enclosed using this method is usually  5‐10%, which is very small proportion of the total volume  used for swelling. • Therefore large quantity of water‐soluble compounds are  wasted during swelling. • On the other hand, lipid soluble compounds can be  encapsulated to 100% efficacy, provided they are not  present in quantities that are greater than the structural  component of the membrane. 63
  • 64. How LUVs Are Generated From The Suspension? • The suspension is centrifuged at 12,000g for 10  min. in a bench centrifuge at room temperature. • The layer of multilamellar vesicles floating on the  surface is removed. To the remaining fluid an  equal volume of iso‐osmolar glucose is added  and centrifuged again at 12,000g. Large  unilamellar vesicles form a soft pellet which can  be resuspended in any required medium of  appropriate osmolarity. 64
  • 65. Pro‐Liposomes • Method devised to increase the surface of dry lipid while  keeping the low aqueous volume. • In this method, the lipids are dried down to a finely divided  particulate support, such as powdered sodium particulate  support, such as powdered chloride, or sorbitol or other  polysaccharide – to give pro‐liposomes. • The lipids are swelled upon adding water to dried lipid coated  powder (pro‐liposomes), where the support rapidly dissolves  to give a suspension of MLVs in aqueous solution. • The size of the carrier influences the size and heterogeneity  of the liposomes. 65
  • 66. • This method overcomes the problems encountered when  storing liposomes themselves in either liquid, dry or frozen  form, and is ideally suited for preparations where the material  to be entrapped incorporates into lipid membrane. • In cases where 100% entrapment of aqueous component is  not essential this method is also of value . • For preparing pro‐liposome a special equipment i.e. Buchi  rotary evaporator ‘R’ with water cooled condenser coil and a  stainless steel covered thermocouple connected to a digital  thermometer is required. • The end of the glass solvent inlet tube is modified to ato fine  point, so that the solvent is introduced into the flask as a fine  spray. 66
  • 68. Method Of Preparation of Proliposomes • The lipid solution in chloroform (60mg/ml) is prepared and sorbitol powder is  introduced into 100ml flask. • The flask is then fitted into the evaporator and rotated slowly so that the  powder tumbles gently off the walls to ensure good mixing and the solvent is  evaporated. • The flask is lowered into a water bath at 50‐55 degrees Celsius when a  good vacuum is developed. • An aliquot of 5ml of lipid solution is introduced into the flask via the solvent  inlet tube. • The solvent is absorbed completely by the powder and the temperature of  the bed is monitored. • As evaporation proceeds the temperature will decrease. • A second aliquot is introduced slowly when the temperature begins to rise  again. • The temperature is allowed to rise to 30 degrees Celsius the vacuum is  released and the drying process is completed by connecting the flask  containing the powder to lyophilizer, and leaving it evacuated overnight at  room temperature. • The powder is transferred into a 10ml glass vial containing 600mg solid  each (100mg lipid and 500mg sorbitol support) flushed with nitrogen, and  68 sealed well and stored.
  • 69. Processing of the lipids hydrated by physical means, or the mechanical treatment of MLVs • Micro emulsification liposomes (MEL) • Sonicated unilamellar vesicles (SUVs) • French Pressure Cell Liposomes • Membrane extrusion liposomes • Dried‐reconstituted vesicles (DRVs) • Freeze thaw Sonication (FTS) • pH induced vesiculation • Calcium induced fusion 69
  • 75. Current liposomal drug  preparations Type of Agents Examples Anticancer Drugs Duanorubicin, Doxorubicin*, Epirubicin Methotrexate, Cisplatin*, Cytarabin Anti bacterial Triclosan, Clindamycin hydrochloride, Ampicillin, peperacillin, rifamicin Antiviral DNA material AZT Enzymes cDNA - CFTR* Radionuclide Hexosaminidase A Fungicides Glucocerebrosidase, Peroxidase Vaccines In-111*, Tc-99m Amphotericin B* Malaria merozoite, Malaria sporozoite Hepatitis B antigen, Rabies virus glycoprotein 75 *Currently in Clinical Trials or Approved for Clinical Use
  • 76. CFTR Gene Therapy Deliver cDNA of Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) to epithelial tissue of respiratory system Cationic liposome Fuse to cell membrane and incorporate cDNA into cell Clinical trials - no significant change in symptoms Now trying adeno associated virus 76
  • 77. Doxil Chemotherapy drug doxorubin Anemia, damage to veins and tissue at injection, decrease platelet and WBC count, toxic to Treats Kaposi’s sarcoma lesions or cancer tumors Modifications of liposome “stealth” keeps doxorubin in blood for 50 hours instead of 20 minutes concentrates at KS lesions and tumors *Just approved by FDA* 77
  • 78. Amphotericin B Systemic fungal infections in immune compromised patients AmB - kills ergosterol-containing fungal cells, also kills cholesterol-containing human cells Side effects: nephrotoxicity, chills, and fevers Fungizone - AmB with deoxycholate 78
  • 79. Liposomal Formulation of AmB Phospholipid:AmB ratio AmB Cholesterol - only few %moles Lipid Exact Mechanism of liposomes not understood Diffusion Lipid transfer Decrease in toxicity 79 No decrease in effectiveness of drug against fungi
  • 80. Problems with Liposomal Preparations of Drugs  $$$$   Fungizone $40.58       Amphotec $2334 Doxil $1200 per treatment, twice the cost of normal protocol  of chemotherapy and drugs  )  Lack long term stability (short shelf life Physical and chemical instability  Freeze dry and pH adjustment Low “Pay Load” - poor encapsulation Low “Pay Load” - poor encapsula Polar drugs and drugs without opposite charge Modifications Possibility of new side effects Doxil “hand and foot syndrome” 80
  • 81. Future Studies with insulin show that liposomes may be an effective way to package proteins and peptides for use Clinical Trials for several liposomal formulations More studies on the manipulation of liposomes 81