SlideShare uma empresa Scribd logo
1 de 19
Baixar para ler offline
Chet Haibel ©2013 Hobbs Engineering Corporation
Reliability
Math and the
Exponential
Distribution
0
0
Chet Haibel ©2013 Hobbs Engineering Corporation
General Reliability Function, R(t)
Fraction of a group surviving until a certain time.
Probability of one unit surviving until a certain time.
Monotonic downward, assuming failed things stay failed.
0
0.2
0.4
0.6
0.8
1
0 10 20 30 40 50
1
Chet Haibel ©2013 Hobbs Engineering Corporation
General Cumulative Distribution Function, F(t)
Fraction of a group failing before a certain time.
Probability of one unit failing before a certain time.
Monotonic upward, assuming failed things stay failed.
What fraction fails at 20 (arbitrary time units)?
0
0.2
0.4
0.6
0.8
1
0 10 20 30 40 50
2
Chet Haibel ©2013 Hobbs Engineering Corporation
The probability of one unit failing between two times is found by
subtracting the CDF for the two times, in this case perhaps 0.49
minus 0.41 equals 0.08 or 8%.
0
0.2
0.4
0.6
0.8
1
0 10 20 30 40 50
General Cumulative Distribution Function, F(t)
3
Chet Haibel ©2013 Hobbs Engineering Corporation
This is the time derivative (the slope) of F(t).
This is a histogram of when failures occur.
The height is the fraction failing per unit time.
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0 10 20 30 40 50
General Probability Density Function, f(t)
4
Chet Haibel ©2013 Hobbs Engineering Corporation
The height is the fraction failing per unit time.
The area under the pdf between two times gives the probability
of failure during this time interval, in this case perhaps 0.008
high by 10 units long for an area of 8%.
0.00
0.02
0.04
0.06
0.08
0.10
0.12
0 10 20 30 40 50
General Probability Density Function, f(t)
5
Chet Haibel ©2013 Hobbs Engineering Corporation
General Hazard Function, h(t)
The conditional probability density of failure, given that the
product has survived up to this point in time.
The fraction of the survivors failing per unit time.
0
5
10
15
20
0 10 20 30 40 50
6
Chet Haibel ©2013 Hobbs Engineering Corporation 7
Bathtub Curve
Operating Time (t)
HazardRate-h(t)
Useful-Life
Failures
Early-Life
Failures
aka
infant
mortalities
Wear-Out
Failures
aka
end-of-life
failures
Life to the Beginning of Wear-Out
Random-in-Time Failures
Chet Haibel ©2013 Hobbs Engineering Corporation
Summary of Functions Always True
R(t) = Reliability function
probability of surviving until some time
F(t) = Cumulative distribution function
probability of failure before some time
R(t) + F(t) = 1
f(t) = Probability density function failure rate
h(t) = Hazard function = f(t) / R(t)
conditional (normalized) failure rate
 
dt
F(t)d

8
Chet Haibel ©2013 Hobbs Engineering Corporation
Relations Among Functions Always True
All functions are not defined for t < 0
All parts, subassemblies, products, and systems are
assumed to be working at t = 0
R(t) & F(t) are probabilities and lie between 0 and 1
R(t) & F(t) are monotonic, assuming things “stay failed”
f(t) the pdf is the derivative of the CDF
where h(t)
 
dt
F(t)d

 

t
0
dh
eR(t)

R(t)
f(t)

9
Chet Haibel ©2013 Hobbs Engineering Corporation
Is the most widely used (and sometimes misused) failure distribution for
reliability analysis for complex electronic systems.
Is applicable when the hazard rate is constant. The hazard rate is the
surviving fraction failing per unit of time or equivalent; such as percent
per million cycles, or failures per billion (109) hours (FITs).
Requires the knowledge of only one parameter for its application.
Is used to describe steady-state failure rate conditions.
Models device performance after the Early-Life
(infant mortality) period and prior to the Wear-Out
(end-of-life) period of the Bathtub Curve.
The Exponential Failure Distribution
10
Chet Haibel ©2013 Hobbs Engineering Corporation
Life of 10 Constant Hazard Rate Devices
Life in Hours
11
Chet Haibel ©2013 Hobbs Engineering Corporation
Sort from First to Last 10 Constant Hazard Rate Devices
Life in Hours
12
How do the
devices know to
fail this way?
Chet Haibel ©2013 Hobbs Engineering Corporation
Fraction Surviving over Time Exponential Distribution
Exponential Distribution
 = Constant Hazard Rate
t
etR 
)(
13
Life in Hours
Chet Haibel ©2013 Hobbs Engineering Corporation 14
Reliability Function Exponential Distribution
R(t) = e-t
Extending the initial
slope intersects the
x-axis at the mean
MTTF = 1/
Life in Hours
Chet Haibel ©2013 Hobbs Engineering Corporation
R(t) = e-t
F(t) = 1-e-t
f(t) = e-t
h(t) = 







 θ
t
e







 θ
t
e
θ
1







 θ
t
e1
θ
1

Functions Exponential Distribution
15
Chet Haibel ©2013 Hobbs Engineering Corporation
Functions Exponential Distribution
pdf
Operating
Time
t
f t e t
( )  
 
CDF
Operating
Time
t
PROBABILITY DENSITY FUNCTION CULMULATIVE DISTRIBUTION
FUNCTION
F t e t
( )   
1 
t
pdf
Operating
Time
t
f t e t
( )  
 
CDF
Operating
Time
t
PROBABILITY DENSITY FUNCTION CULMULATIVE DISTRIBUTION
FUNCTION
F t e t
( )   
1 
R(t)
Operating
Time
t
THE RELIABILITY FUNCTION
R t e t
( )  
h(t)
Operating
Time
t
THE HAZARD RATE

Operating Time
t
Operating Time
t
PROBABILITY DENSITY FUNCTION CULMULATIVE DISTRIBUTION
FUNCTION
R(t)
Operating Time
t
THE RELIABILITY FUNCTION
R t e t
( )  
h(t)
Operating Time
t
THE HAZARD RATE

1 ------
 ------
h(t) = 
1 ------
16
Chet Haibel ©2013 Hobbs Engineering Corporation
For REPAIRABLE products, there is no limit to how many
failures one can have!
Percent of Failures Over Time
(shown for 3%per month failure rate)
0%
20%
40%
60%
80%
100%
120%
140%
160%
180%
200%
0
12
24
36
48
60
72
84
96
Months in Service
Repairable
Non-Repairable
H(t)
F(t)
Repairable & Non Repairable Systems Exponential Distribution
17
Chet Haibel ©2013 Hobbs Engineering Corporation
Mean is:
Standard deviation is:
To get the “point estimate” of 
λ
1
θμ 
failuresofnumbertotal
not)or(failedhoursofnumbertotal
or MTBFMTTFθ 
λ
1
θσ 
Mean & Standard Deviation Exponential Distribution
18

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Elastic plastic fracture mechanics
Elastic plastic fracture mechanicsElastic plastic fracture mechanics
Elastic plastic fracture mechanics
 
Risk-benefit analysis
Risk-benefit analysisRisk-benefit analysis
Risk-benefit analysis
 
MILNE'S PREDICTOR CORRECTOR METHOD
MILNE'S PREDICTOR CORRECTOR METHODMILNE'S PREDICTOR CORRECTOR METHOD
MILNE'S PREDICTOR CORRECTOR METHOD
 
Creep & fatigue
Creep & fatigueCreep & fatigue
Creep & fatigue
 
Stochastic Processes - part 1
Stochastic Processes - part 1Stochastic Processes - part 1
Stochastic Processes - part 1
 
application of differential equations
application of differential equationsapplication of differential equations
application of differential equations
 
4 stochastic processes
4 stochastic processes4 stochastic processes
4 stochastic processes
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Laplace transform
Laplace transformLaplace transform
Laplace transform
 
Laplace transform
Laplace  transform   Laplace  transform
Laplace transform
 
Failure analysis
Failure analysisFailure analysis
Failure analysis
 
Application of fourier series
Application of fourier seriesApplication of fourier series
Application of fourier series
 
Taylor series
Taylor seriesTaylor series
Taylor series
 
Finite Element Method
Finite Element MethodFinite Element Method
Finite Element Method
 
3814931 creep resistance
3814931 creep resistance3814931 creep resistance
3814931 creep resistance
 
TIME DOMAIN ANALYSIS
TIME DOMAIN ANALYSISTIME DOMAIN ANALYSIS
TIME DOMAIN ANALYSIS
 
Numerical method (curve fitting)
Numerical method (curve fitting)Numerical method (curve fitting)
Numerical method (curve fitting)
 
Fourier series
Fourier seriesFourier series
Fourier series
 
Chapter 2 laplace transform
Chapter 2 laplace transformChapter 2 laplace transform
Chapter 2 laplace transform
 
Exercise 1a transfer functions - solutions
Exercise 1a   transfer functions - solutionsExercise 1a   transfer functions - solutions
Exercise 1a transfer functions - solutions
 

Destaque

Exponential probability distribution
Exponential probability distributionExponential probability distribution
Exponential probability distributionMuhammad Bilal Tariq
 
Gamma, Expoential, Poisson And Chi Squared Distributions
Gamma, Expoential, Poisson And Chi Squared DistributionsGamma, Expoential, Poisson And Chi Squared Distributions
Gamma, Expoential, Poisson And Chi Squared DistributionsDataminingTools Inc
 
Continous random variable.
Continous random variable.Continous random variable.
Continous random variable.Shakeel Nouman
 
The Math of Reliability - Avishai Ish-Shalom, fewbytes - DevOpsDays Tel Aviv ...
The Math of Reliability - Avishai Ish-Shalom, fewbytes - DevOpsDays Tel Aviv ...The Math of Reliability - Avishai Ish-Shalom, fewbytes - DevOpsDays Tel Aviv ...
The Math of Reliability - Avishai Ish-Shalom, fewbytes - DevOpsDays Tel Aviv ...DevOpsDays Tel Aviv
 
Narrativa educativa
Narrativa educativaNarrativa educativa
Narrativa educativaangiep11
 
NOT ENOUGH SAMPLES FOR RELIABILITY?
NOT ENOUGH SAMPLES FOR RELIABILITY?NOT ENOUGH SAMPLES FOR RELIABILITY?
NOT ENOUGH SAMPLES FOR RELIABILITY?Allyson Hartzell
 
The reliability of the OEE indicator
The reliability of the OEE indicatorThe reliability of the OEE indicator
The reliability of the OEE indicatorJoão Leite
 
Opciones de Cobertura de Salud Para las Familias Inmigrantes: ¡Tres Preguntas...
Opciones de Cobertura de Salud Para las Familias Inmigrantes: ¡Tres Preguntas...Opciones de Cobertura de Salud Para las Familias Inmigrantes: ¡Tres Preguntas...
Opciones de Cobertura de Salud Para las Familias Inmigrantes: ¡Tres Preguntas...Alejandrina E. Ricardez
 
Chapter 2 discrete_random_variable_2009
Chapter 2 discrete_random_variable_2009Chapter 2 discrete_random_variable_2009
Chapter 2 discrete_random_variable_2009ayimsevenfold
 
Reliability engineering chapter-2 reliability of systems
Reliability engineering chapter-2 reliability of systemsReliability engineering chapter-2 reliability of systems
Reliability engineering chapter-2 reliability of systemsCharlton Inao
 
Continuous Random variable
Continuous Random variableContinuous Random variable
Continuous Random variableJay Patel
 
Continuous probability Business Statistics, Management
Continuous probability Business Statistics, ManagementContinuous probability Business Statistics, Management
Continuous probability Business Statistics, ManagementDebjit Das
 
Fundamentals of reliability engineering and applications part1of3
Fundamentals of reliability engineering and applications part1of3Fundamentals of reliability engineering and applications part1of3
Fundamentals of reliability engineering and applications part1of3ASQ Reliability Division
 

Destaque (20)

DFR Methods Survey 2014
DFR Methods Survey 2014DFR Methods Survey 2014
DFR Methods Survey 2014
 
Exponential probability distribution
Exponential probability distributionExponential probability distribution
Exponential probability distribution
 
Gamma, Expoential, Poisson And Chi Squared Distributions
Gamma, Expoential, Poisson And Chi Squared DistributionsGamma, Expoential, Poisson And Chi Squared Distributions
Gamma, Expoential, Poisson And Chi Squared Distributions
 
Continous random variable.
Continous random variable.Continous random variable.
Continous random variable.
 
Chap007
Chap007Chap007
Chap007
 
Reliability engineering ppt-Internship
Reliability engineering ppt-InternshipReliability engineering ppt-Internship
Reliability engineering ppt-Internship
 
The Math of Reliability - Avishai Ish-Shalom, fewbytes - DevOpsDays Tel Aviv ...
The Math of Reliability - Avishai Ish-Shalom, fewbytes - DevOpsDays Tel Aviv ...The Math of Reliability - Avishai Ish-Shalom, fewbytes - DevOpsDays Tel Aviv ...
The Math of Reliability - Avishai Ish-Shalom, fewbytes - DevOpsDays Tel Aviv ...
 
Narrativa educativa
Narrativa educativaNarrativa educativa
Narrativa educativa
 
NOT ENOUGH SAMPLES FOR RELIABILITY?
NOT ENOUGH SAMPLES FOR RELIABILITY?NOT ENOUGH SAMPLES FOR RELIABILITY?
NOT ENOUGH SAMPLES FOR RELIABILITY?
 
The reliability of the OEE indicator
The reliability of the OEE indicatorThe reliability of the OEE indicator
The reliability of the OEE indicator
 
Opciones de Cobertura de Salud Para las Familias Inmigrantes: ¡Tres Preguntas...
Opciones de Cobertura de Salud Para las Familias Inmigrantes: ¡Tres Preguntas...Opciones de Cobertura de Salud Para las Familias Inmigrantes: ¡Tres Preguntas...
Opciones de Cobertura de Salud Para las Familias Inmigrantes: ¡Tres Preguntas...
 
Continuous distributions
Continuous distributionsContinuous distributions
Continuous distributions
 
Chapter 2 discrete_random_variable_2009
Chapter 2 discrete_random_variable_2009Chapter 2 discrete_random_variable_2009
Chapter 2 discrete_random_variable_2009
 
Reliability engineering chapter-2 reliability of systems
Reliability engineering chapter-2 reliability of systemsReliability engineering chapter-2 reliability of systems
Reliability engineering chapter-2 reliability of systems
 
Continuous Random variable
Continuous Random variableContinuous Random variable
Continuous Random variable
 
Weibull analysis
Weibull analysisWeibull analysis
Weibull analysis
 
Smart antenna
Smart antennaSmart antenna
Smart antenna
 
Continuous probability Business Statistics, Management
Continuous probability Business Statistics, ManagementContinuous probability Business Statistics, Management
Continuous probability Business Statistics, Management
 
Fundamentals of reliability engineering and applications part1of3
Fundamentals of reliability engineering and applications part1of3Fundamentals of reliability engineering and applications part1of3
Fundamentals of reliability engineering and applications part1of3
 
Normal Distribution
Normal DistributionNormal Distribution
Normal Distribution
 

Mais de Accendo Reliability

Should RCM be applied to all assets.pdf
Should RCM be applied to all assets.pdfShould RCM be applied to all assets.pdf
Should RCM be applied to all assets.pdfAccendo Reliability
 
T or F Must have failure data.pdf
T or F Must have failure data.pdfT or F Must have failure data.pdf
T or F Must have failure data.pdfAccendo Reliability
 
Should RCM Templates be used.pdf
Should RCM Templates be used.pdfShould RCM Templates be used.pdf
Should RCM Templates be used.pdfAccendo Reliability
 
12-RCM NOT a Maintenance Program.pdf
12-RCM NOT a Maintenance Program.pdf12-RCM NOT a Maintenance Program.pdf
12-RCM NOT a Maintenance Program.pdfAccendo Reliability
 
09-Myth RCM only product is maintenance.pdf
09-Myth RCM only product is maintenance.pdf09-Myth RCM only product is maintenance.pdf
09-Myth RCM only product is maintenance.pdfAccendo Reliability
 
10-RCM has serious weaknesses industrial environment.pdf
10-RCM has serious weaknesses industrial environment.pdf10-RCM has serious weaknesses industrial environment.pdf
10-RCM has serious weaknesses industrial environment.pdfAccendo Reliability
 
08-Master the basics carousel.pdf
08-Master the basics carousel.pdf08-Master the basics carousel.pdf
08-Master the basics carousel.pdfAccendo Reliability
 
07-Manufacturer Recommended Maintenance.pdf
07-Manufacturer Recommended Maintenance.pdf07-Manufacturer Recommended Maintenance.pdf
07-Manufacturer Recommended Maintenance.pdfAccendo Reliability
 
06-Is a Criticality Analysis Required.pdf
06-Is a Criticality Analysis Required.pdf06-Is a Criticality Analysis Required.pdf
06-Is a Criticality Analysis Required.pdfAccendo Reliability
 
05-Failure Modes Right Detail.pdf
05-Failure Modes Right Detail.pdf05-Failure Modes Right Detail.pdf
05-Failure Modes Right Detail.pdfAccendo Reliability
 
04-Equipment Experts Couldn't believe response.pdf
04-Equipment Experts Couldn't believe response.pdf04-Equipment Experts Couldn't believe response.pdf
04-Equipment Experts Couldn't believe response.pdfAccendo Reliability
 
Reliability Engineering Management course flyer
Reliability Engineering Management course flyerReliability Engineering Management course flyer
Reliability Engineering Management course flyerAccendo Reliability
 
How to Create an Accelerated Life Test
How to Create an Accelerated Life TestHow to Create an Accelerated Life Test
How to Create an Accelerated Life TestAccendo Reliability
 

Mais de Accendo Reliability (20)

Should RCM be applied to all assets.pdf
Should RCM be applied to all assets.pdfShould RCM be applied to all assets.pdf
Should RCM be applied to all assets.pdf
 
T or F Must have failure data.pdf
T or F Must have failure data.pdfT or F Must have failure data.pdf
T or F Must have failure data.pdf
 
Should RCM Templates be used.pdf
Should RCM Templates be used.pdfShould RCM Templates be used.pdf
Should RCM Templates be used.pdf
 
12-RCM NOT a Maintenance Program.pdf
12-RCM NOT a Maintenance Program.pdf12-RCM NOT a Maintenance Program.pdf
12-RCM NOT a Maintenance Program.pdf
 
13-RCM Reduces Maintenance.pdf
13-RCM Reduces Maintenance.pdf13-RCM Reduces Maintenance.pdf
13-RCM Reduces Maintenance.pdf
 
11-RCM is like a diet.pdf
11-RCM is like a diet.pdf11-RCM is like a diet.pdf
11-RCM is like a diet.pdf
 
09-Myth RCM only product is maintenance.pdf
09-Myth RCM only product is maintenance.pdf09-Myth RCM only product is maintenance.pdf
09-Myth RCM only product is maintenance.pdf
 
10-RCM has serious weaknesses industrial environment.pdf
10-RCM has serious weaknesses industrial environment.pdf10-RCM has serious weaknesses industrial environment.pdf
10-RCM has serious weaknesses industrial environment.pdf
 
08-Master the basics carousel.pdf
08-Master the basics carousel.pdf08-Master the basics carousel.pdf
08-Master the basics carousel.pdf
 
07-Manufacturer Recommended Maintenance.pdf
07-Manufacturer Recommended Maintenance.pdf07-Manufacturer Recommended Maintenance.pdf
07-Manufacturer Recommended Maintenance.pdf
 
06-Is a Criticality Analysis Required.pdf
06-Is a Criticality Analysis Required.pdf06-Is a Criticality Analysis Required.pdf
06-Is a Criticality Analysis Required.pdf
 
05-Failure Modes Right Detail.pdf
05-Failure Modes Right Detail.pdf05-Failure Modes Right Detail.pdf
05-Failure Modes Right Detail.pdf
 
03-3 Ways to Do RCM.pdf
03-3 Ways to Do RCM.pdf03-3 Ways to Do RCM.pdf
03-3 Ways to Do RCM.pdf
 
04-Equipment Experts Couldn't believe response.pdf
04-Equipment Experts Couldn't believe response.pdf04-Equipment Experts Couldn't believe response.pdf
04-Equipment Experts Couldn't believe response.pdf
 
02-5 RCM Myths Carousel.pdf
02-5 RCM Myths Carousel.pdf02-5 RCM Myths Carousel.pdf
02-5 RCM Myths Carousel.pdf
 
01-5 CBM Facts.pdf
01-5 CBM Facts.pdf01-5 CBM Facts.pdf
01-5 CBM Facts.pdf
 
Lean Manufacturing
Lean ManufacturingLean Manufacturing
Lean Manufacturing
 
Reliability Engineering Management course flyer
Reliability Engineering Management course flyerReliability Engineering Management course flyer
Reliability Engineering Management course flyer
 
How to Create an Accelerated Life Test
How to Create an Accelerated Life TestHow to Create an Accelerated Life Test
How to Create an Accelerated Life Test
 
Reliability Programs
Reliability ProgramsReliability Programs
Reliability Programs
 

Último

Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsRizwan Syed
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxLoriGlavin3
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfMounikaPolabathina
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .Alan Dix
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxLoriGlavin3
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfPrecisely
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESmohitsingh558521
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024BookNet Canada
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024BookNet Canada
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenHervé Boutemy
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationSlibray Presentation
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningLars Bell
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Mark Simos
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteDianaGray10
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionDilum Bandara
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxNavinnSomaal
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr BaganFwdays
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxLoriGlavin3
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubKalema Edgar
 

Último (20)

Scanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL CertsScanning the Internet for External Cloud Exposures via SSL Certs
Scanning the Internet for External Cloud Exposures via SSL Certs
 
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptxUse of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
Use of FIDO in the Payments and Identity Landscape: FIDO Paris Seminar.pptx
 
What is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdfWhat is DBT - The Ultimate Data Build Tool.pdf
What is DBT - The Ultimate Data Build Tool.pdf
 
From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .From Family Reminiscence to Scholarly Archive .
From Family Reminiscence to Scholarly Archive .
 
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptxA Deep Dive on Passkeys: FIDO Paris Seminar.pptx
A Deep Dive on Passkeys: FIDO Paris Seminar.pptx
 
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdfHyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
Hyperautomation and AI/ML: A Strategy for Digital Transformation Success.pdf
 
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICESSALESFORCE EDUCATION CLOUD | FEXLE SERVICES
SALESFORCE EDUCATION CLOUD | FEXLE SERVICES
 
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
New from BookNet Canada for 2024: BNC CataList - Tech Forum 2024
 
DMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special EditionDMCC Future of Trade Web3 - Special Edition
DMCC Future of Trade Web3 - Special Edition
 
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
Transcript: New from BookNet Canada for 2024: Loan Stars - Tech Forum 2024
 
DevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache MavenDevoxxFR 2024 Reproducible Builds with Apache Maven
DevoxxFR 2024 Reproducible Builds with Apache Maven
 
Connect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck PresentationConnect Wave/ connectwave Pitch Deck Presentation
Connect Wave/ connectwave Pitch Deck Presentation
 
DSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine TuningDSPy a system for AI to Write Prompts and Do Fine Tuning
DSPy a system for AI to Write Prompts and Do Fine Tuning
 
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
Tampa BSides - Chef's Tour of Microsoft Security Adoption Framework (SAF)
 
Take control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test SuiteTake control of your SAP testing with UiPath Test Suite
Take control of your SAP testing with UiPath Test Suite
 
Advanced Computer Architecture – An Introduction
Advanced Computer Architecture – An IntroductionAdvanced Computer Architecture – An Introduction
Advanced Computer Architecture – An Introduction
 
SAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptxSAP Build Work Zone - Overview L2-L3.pptx
SAP Build Work Zone - Overview L2-L3.pptx
 
"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan"ML in Production",Oleksandr Bagan
"ML in Production",Oleksandr Bagan
 
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptxMerck Moving Beyond Passwords: FIDO Paris Seminar.pptx
Merck Moving Beyond Passwords: FIDO Paris Seminar.pptx
 
Unleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding ClubUnleash Your Potential - Namagunga Girls Coding Club
Unleash Your Potential - Namagunga Girls Coding Club
 

Reliability math and the exponential distribution

  • 1. Chet Haibel ©2013 Hobbs Engineering Corporation Reliability Math and the Exponential Distribution 0 0
  • 2. Chet Haibel ©2013 Hobbs Engineering Corporation General Reliability Function, R(t) Fraction of a group surviving until a certain time. Probability of one unit surviving until a certain time. Monotonic downward, assuming failed things stay failed. 0 0.2 0.4 0.6 0.8 1 0 10 20 30 40 50 1
  • 3. Chet Haibel ©2013 Hobbs Engineering Corporation General Cumulative Distribution Function, F(t) Fraction of a group failing before a certain time. Probability of one unit failing before a certain time. Monotonic upward, assuming failed things stay failed. What fraction fails at 20 (arbitrary time units)? 0 0.2 0.4 0.6 0.8 1 0 10 20 30 40 50 2
  • 4. Chet Haibel ©2013 Hobbs Engineering Corporation The probability of one unit failing between two times is found by subtracting the CDF for the two times, in this case perhaps 0.49 minus 0.41 equals 0.08 or 8%. 0 0.2 0.4 0.6 0.8 1 0 10 20 30 40 50 General Cumulative Distribution Function, F(t) 3
  • 5. Chet Haibel ©2013 Hobbs Engineering Corporation This is the time derivative (the slope) of F(t). This is a histogram of when failures occur. The height is the fraction failing per unit time. 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0 10 20 30 40 50 General Probability Density Function, f(t) 4
  • 6. Chet Haibel ©2013 Hobbs Engineering Corporation The height is the fraction failing per unit time. The area under the pdf between two times gives the probability of failure during this time interval, in this case perhaps 0.008 high by 10 units long for an area of 8%. 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0 10 20 30 40 50 General Probability Density Function, f(t) 5
  • 7. Chet Haibel ©2013 Hobbs Engineering Corporation General Hazard Function, h(t) The conditional probability density of failure, given that the product has survived up to this point in time. The fraction of the survivors failing per unit time. 0 5 10 15 20 0 10 20 30 40 50 6
  • 8. Chet Haibel ©2013 Hobbs Engineering Corporation 7 Bathtub Curve Operating Time (t) HazardRate-h(t) Useful-Life Failures Early-Life Failures aka infant mortalities Wear-Out Failures aka end-of-life failures Life to the Beginning of Wear-Out Random-in-Time Failures
  • 9. Chet Haibel ©2013 Hobbs Engineering Corporation Summary of Functions Always True R(t) = Reliability function probability of surviving until some time F(t) = Cumulative distribution function probability of failure before some time R(t) + F(t) = 1 f(t) = Probability density function failure rate h(t) = Hazard function = f(t) / R(t) conditional (normalized) failure rate   dt F(t)d  8
  • 10. Chet Haibel ©2013 Hobbs Engineering Corporation Relations Among Functions Always True All functions are not defined for t < 0 All parts, subassemblies, products, and systems are assumed to be working at t = 0 R(t) & F(t) are probabilities and lie between 0 and 1 R(t) & F(t) are monotonic, assuming things “stay failed” f(t) the pdf is the derivative of the CDF where h(t)   dt F(t)d     t 0 dh eR(t)  R(t) f(t)  9
  • 11. Chet Haibel ©2013 Hobbs Engineering Corporation Is the most widely used (and sometimes misused) failure distribution for reliability analysis for complex electronic systems. Is applicable when the hazard rate is constant. The hazard rate is the surviving fraction failing per unit of time or equivalent; such as percent per million cycles, or failures per billion (109) hours (FITs). Requires the knowledge of only one parameter for its application. Is used to describe steady-state failure rate conditions. Models device performance after the Early-Life (infant mortality) period and prior to the Wear-Out (end-of-life) period of the Bathtub Curve. The Exponential Failure Distribution 10
  • 12. Chet Haibel ©2013 Hobbs Engineering Corporation Life of 10 Constant Hazard Rate Devices Life in Hours 11
  • 13. Chet Haibel ©2013 Hobbs Engineering Corporation Sort from First to Last 10 Constant Hazard Rate Devices Life in Hours 12 How do the devices know to fail this way?
  • 14. Chet Haibel ©2013 Hobbs Engineering Corporation Fraction Surviving over Time Exponential Distribution Exponential Distribution  = Constant Hazard Rate t etR  )( 13 Life in Hours
  • 15. Chet Haibel ©2013 Hobbs Engineering Corporation 14 Reliability Function Exponential Distribution R(t) = e-t Extending the initial slope intersects the x-axis at the mean MTTF = 1/ Life in Hours
  • 16. Chet Haibel ©2013 Hobbs Engineering Corporation R(t) = e-t F(t) = 1-e-t f(t) = e-t h(t) =          θ t e         θ t e θ 1         θ t e1 θ 1  Functions Exponential Distribution 15
  • 17. Chet Haibel ©2013 Hobbs Engineering Corporation Functions Exponential Distribution pdf Operating Time t f t e t ( )     CDF Operating Time t PROBABILITY DENSITY FUNCTION CULMULATIVE DISTRIBUTION FUNCTION F t e t ( )    1  t pdf Operating Time t f t e t ( )     CDF Operating Time t PROBABILITY DENSITY FUNCTION CULMULATIVE DISTRIBUTION FUNCTION F t e t ( )    1  R(t) Operating Time t THE RELIABILITY FUNCTION R t e t ( )   h(t) Operating Time t THE HAZARD RATE  Operating Time t Operating Time t PROBABILITY DENSITY FUNCTION CULMULATIVE DISTRIBUTION FUNCTION R(t) Operating Time t THE RELIABILITY FUNCTION R t e t ( )   h(t) Operating Time t THE HAZARD RATE  1 ------  ------ h(t) =  1 ------ 16
  • 18. Chet Haibel ©2013 Hobbs Engineering Corporation For REPAIRABLE products, there is no limit to how many failures one can have! Percent of Failures Over Time (shown for 3%per month failure rate) 0% 20% 40% 60% 80% 100% 120% 140% 160% 180% 200% 0 12 24 36 48 60 72 84 96 Months in Service Repairable Non-Repairable H(t) F(t) Repairable & Non Repairable Systems Exponential Distribution 17
  • 19. Chet Haibel ©2013 Hobbs Engineering Corporation Mean is: Standard deviation is: To get the “point estimate” of  λ 1 θμ  failuresofnumbertotal not)or(failedhoursofnumbertotal or MTBFMTTFθ  λ 1 θσ  Mean & Standard Deviation Exponential Distribution 18