SlideShare uma empresa Scribd logo
1 de 52
Baixar para ler offline
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 1/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
Francisco M. Gonzalez-Longatt, Dr.Sc
Manchester, UK, November, 2009
Tutorial:
Introduction to Modal
Analysis
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 2/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
This tutorial is a simple theoretical introduction to modal
analysis
Tutorial:
Introduction to Modal Analysis
Francisco M. Gonzalez-Longatt, Dr.Sc
fglogatt@fglongatt.org.ve
Manchester, 28th October 2009
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 3/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
1. Introduction
Introduction to Modal Analysis in Power
System
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 4/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
1. Introduction: Small Signal Stability
• Small signal stability is the ability of the power system to
maintain synchronism when subjected to small
disturbances [1].
• A disturbance is considered to be small if the equations
that describe the resulting response of power system
may be linearized for the purpose of analysis.
• Instability that result can be of two forms [1]:
– Steady increase in generator rotor angle due to lack
synchronizing torque,
– Rotor oscillation of increasing amplitude due to lack of sufficient
damping torque.
[1] P. Kundur, Power System Stability and Control. New York: McGraw- Hill, 1994.
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 5/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
1. Introduction: Small Signal Stability
Instable
• TS Negative
• TDPositive
δ∆ ST∆
DT∆eT∆
ω∆
δ∆
P
0 t
δ∆
P
0 t
Stable
• TS Positive
• TDPositive
δ∆
ST∆
DT∆ eT∆
ω∆
(a) With constant field voltage
Non-oscillatory
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 6/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
1. Introduction: Small Signal Stability
δ∆
P
0 t
Stable
• TS Positive
• TDPositive
δ∆
ST∆
DT∆ eT∆
ω∆
δ∆
P
0 t
Instable
• TS Positive
• TD Negative δ∆ST∆
DT∆
eT∆
ω∆
(b) With excitation control
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 7/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
1. Introduction: Small Signal Stability
• ln today's practical power systems, the small-signal
stability problem is usually one of insufficient damping of
system oscillations.
• Small signal inherent analysis using linear techniques
provides valuable information about the dynamic
characteristics of the power system and assists its
design.
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 8/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
2. Fundamental
Concepts of Small
Signal Stability
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 9/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
2. State-Space Representation
• The behaviour of a dynamic system, such as a power
system, may be described by a set of n first order non-
linear ordinary differential equations.
• This can be written using vector-matrix notation [1]:
where:
( )t,,uxfx =












=
nx
x
x

2
1
x












=
ru
u
u

2
1
u












=
nf
f
f

2
1
f
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 10/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
2. State Space Representation
• The column vector x is deferred to as the state vector.
• xi are referred as state variables.
The column vector u is the vector of inputs to the
system.
• u are the external signal that influence the performance
of the system.
• t denote time
• is the derivate of a state variable respect to time.












=
nx
x
x

2
1
x












=
ru
u
u

2
1
u












=
nf
f
f

2
1
f
x
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 11/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
2. State Space Representation
• The system is called autonomous if the derivatives of
the stated variables are not explicit functions of time.
• The output variables can be observed in the system.
• These may be expressed in terms of the state variables
and the inputs variables [1]:
• where:
( )uxfx ,=
( )uxgy ,=












=
my
y
y

2
1
y












=
rg
g
g

2
1
g
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 12/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
2. State Space Representation
• The column vector y is the vector of outputs
• g is a vector of non-linear factions relating state and
input variables to output variables.












=
my
y
y

2
1
y












=
rg
g
g

2
1
g
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 13/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
2.1. State Concept
• The concept of state is fundamental to the state-space
approach.
• The state of a system represents the minimum amount
of information about the system at any instant in time t0
that is necessary so that its future behaviour can be
determined without the input before t0.
• Any set of n linearly independent system variables may
be used to describe the state of the system –state
variables [1].
• State variables form a minimal set of dynamic variables
that, along with the inputs to the system, provide a
complete description of the system behaviour
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 14/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
2.1. State-Space Concept
• The system state may be represented in a n-dimensional
Euclidean space, called state space.
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 15/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
2.2. Equilibrium (or singular) points
• Those points where all derivatives of state variables are
simultaneously zero [1].
• They define the points on the trajectory with zero
velocity.
• This system is at rest since all the variables are constant
and unvarying with time.












=
=
=
=
0
0
0
2
1
nx
x
x




x
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 16/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
2.2. Equilibrium (or singular) points
• The equilibrium or singular point must therefore satisfy
the equation:
where x0 is the state vecto x at the equilibrium point.
( ) 00 0 === xfx
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 17/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
2.3. Stability of a Dynamic System
• Linear system: stability is entirely independent of the
input.
• State of a stable system with zero input will always
return to the origin of the state space, independent of the
finite initial state.
• Non-linear system: Stability depends on the type and
magnitude of input and the initial state.
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 18/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
2.4. Classification of Stability
• Classification of stability of non-linear system, depending
on the region of state space in which the state vector
ranges:
– Local stability or stability in the small.
– Finite stability.
– Global stability or stability large.
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 19/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
2.4.a. Local Stability
• The system is locally stable about equilibrium point if,
when subjected to small perturbation, it remain within a
small region surrounding the equilibrium point.
• If, a t increase, the system return to the original state, it
is said to be asymptotically stable in the small.
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 20/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
2.4.b. Finite Stability
• If the state of a system remains within a finite region R, it
is said to be stable within R.
• If, further, the state of the system returns to the original
equilibrium point form any point within R, it is
asymptotically stable within the finite region R.
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 21/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
2.4.c. Global Stability
• The system is said to be globally stable if R include the
entire finite space.
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 22/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
3. Linealization
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 23/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
3. Linearization
• Let x0 be the initial state vector and u0 the input vector
corresponding to the equilibrium point [2] ,[3].
• Let include a perturbation from the above state
where the prefix Δ denote a small deviation.
• As the perturbations are assumed to be small, the
nonlinear functions f(x,u) can be expressed in terms of
Taylor’s series expansion.
( ) 0, 000 == uxfx
xxx ∆+= 0 uuu ∆+= 0
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 24/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
3. Linearization
• The original equations are [1]-[3]:
• The lienarized forms are:
– Δx is the state vector of dimension n
– Δy Is the output vector of dimension m
– Δu is the input vector of dimension r
– A is state of plant matrix of size nxn
– B is the control or input matrix of size nxr
– C is the output matrix of size mxn
– D is the (feedforward) matrix which defines the proportion of
inputs which appears directly in the output, size nxr
( )t,,uxfx =
( )uxgy ,=
uDxCy
uBxAx
ΔΔΔ
ΔΔΔ
+=
+=
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 25/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
3. Linearization
• Taking the Laplace transform the state equations in the
frequency domain are obtained:
uDxCy
uBxAx
ΔΔΔ
ΔΔΔ
+=
+=
( ) ( ) ( )
( ) ( ) ( )sΔsΔsΔ
sΔsΔΔsΔ
uDxCy
uBxAxx
+=
+=− 0
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 26/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
3. Linearization
• Block diagram of the state-space representation [1]-[3]
B
D
I
s
1
A
ΣΣ C
u∆
y∆
x∆x∆ +
+
+
+
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 27/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
3. Linearization
• The initial conditions are Δx(0) assumed zero.
• The solution of the state equations can be obtained [1]:
• The Laplace transform of Δx and Δy are seen to have
two components:
(i) Dependent on the initial conditions and
(ii) Dependent on the inputs.
• These are the Laplace transforms of the free and zero-
state components of the state and output vectors
( ) ( )
( )
( ) ( )[ ] ( )sΔsΔΔ
s
sadj
sΔ uDuBx
AI
AI
Cy ++
−
−
= 0
det
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 28/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
3. Linearization
• The poles of Δx and Δy are the roots of the equation:
• The values of s which satisfy this conditions are known
as eigenvalues of matrix A [1]-[3].
• The equation [1],[2]:
is referred as he characteristic equation of matrix A.
( ) 0det =− AIs
( ) 0det =− AIs
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 29/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
4. Eigenvalues and
Eigenvectors
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 30/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
4. Eigenvalues
• The eigenvalues of a matrix are given by the values of
the scalar parameter which there exist non-trivial
solutions to the equation [1]:
• For a non-trivial solution [2]:
• Expansion of the determinant give the characteristic
equation.
• The n solution of λ = λ1, λ2, …λn are the eigenvalues of A
[2].
( ) 0det =− AIs
( ) 0=− φλIA
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 31/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
4. Eigenvectors
• For every eigenvalue λi, there is an eigenvector ϕi which
satisfies:
• ϕi is called the right eigenvector of the state matrix A
associated with the eigenvalue λi.
• Each right eigenvector is a column vector with the length
equal to the number of the states.
• The right eigenvector is called mode shape.
iii φλφ =A
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 32/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
4. Eigenvectors
• Left eigenvector associated with the eigenvalue λi is the
n-row vector which satisfies:
• The right eigenvector describes how each mode of
oscillation is distributed among the system states.
• It indicates on which system variables the mode is
more observable.
• The left eigenvector, together with the system’s initial
state, determines the amplitude of the mode.
• A left eigenvector carries mode controllability
information.
iii ψλψ =A
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 33/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
4. Eigenvectors
The left eigenvector indicates on which system
variables the mode is more observable.
The right eigenvector is called mode shape.
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 34/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
5. Eigenvalues and
stability
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 35/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
5. Eigenvalues and Stability
• The stability of the system is determined by the
eigenvalues λi.
• Real eigenvalues: Non oscillatory mode.
– Negative real eigenvalue represent a decaying mode.
– Magnitude define the decay.
– Positive real eigenvalues represent aperiodic instability.
• Complex eigenvalues: Occurs in conjugate pair, and
each pairs correspond a oscillatory mode.
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 36/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
5. Eigenvalues and Stability
• For a complex pairs of eigenvalues [1]:
• The frequency of oscillation (f) in Hz is given by [1]:
• This represents the actual or damped frequency (f).
• T he damping ratio (ζ) is given by:
• The damping ratio ζ determines the rate of decay of the
amplitude of the oscillation [1]-[2].
ωσλ j±=
π
ω
2
=f
22
ωσ
σ
ς
+
−
=
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 37/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
5. Eigenvalues and Stability
σ
ωj
X
X
z1
z2
(a) Stable focus
Eigenvalues
ωσλ j±=
Trajectory Type of singularity
(b) Unstable focus
σ
ωj
X
X
z1
z2
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 38/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
5. Eigenvalues and Stability
(f) Vortex
Eigenvalues
ωσλ j±=
Trajectory Type of singularity
(g) Saddle
σ
ωj
X
X
z1
z2
σ
ωj
XX
z1
z2
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 39/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
5. Eigenvalues and Stability
(c) Stable focus
Eigenvalues
ωσλ j±=
Trajectory Type of singularity
(d) Unstable focus
σ
ωj
XX
z1
z2
σ
ωj
XX
z1
z2
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 40/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
6. Indexes
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 41/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
6. Indexes
• Numerous indices, can be calculated from eigenvectors
such as [4]:
– Participation factors,
– Transfer function residues and
– Mode sensitivities.
• Those are very useful in system analysis and controller
design.
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 42/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
6.1. Participation factors
• The Participation matrix (P), combine the right and left
eigenvectors [1]:
where
where ψki is the kth element in the ith row of the the left
eigenvector ψi, and φki is the kth element in the ith column
of the right eigenvector φi [4].
[ ]npppP 21=












=












=
nini
ii
ii
ni
i
i
p
p
p
ψφ
ψφ
ψφ

22
11
2
1
1p
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 43/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
6.1. Participation factors
• The participation factor pki is a measure of the relative
participation of the kth state variable in the ith mode, and
vice versa.
• The sensitivity of a particular eigenvalue λi to the
changes in the diagonal elements of the state matrix A.
kikikip ψφ=
kk
i
ki
a
p
∂
∂
=
λ
kikikip ψφ=
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 44/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
6.2. Controllability and observability
• The system response in presence of input is given as:
• Expressing in terms of the transform ed variables Z:
where Φ is the modal matrix of A.
• Then yield to:
uDxCy
uBxAx
ΔΔΔ
ΔΔΔ
+=
+=
zx Φ=Δ
uDzCy
uBxAz
ΔΔ
ΔΔ
+Φ=
+=Φ
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 45/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
6.2. Controllability and observability
• The state equations in the normal form (decoupled) may
therefore [1], [4]:
where:
• They are the modal controllability (B’) and modal
observability matrices (C’).
uDzCy
uBΛzzΦ
ΔΔ
Δ
+=
+=
'
'
CΦC
BΦB
=
= −
'
' 1
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 46/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
6.2. Controllability and observability
• If the ith row of matrix B’ is zero, the inputs have not
effect on the ith mode.
• ith mode is said to be uncontrollable [1]
• If the ith row of matrix C’ determines whether or not
variable zi contribute to the formation of outputs.
• If the ith Coolum of matrix C’ is zero, then the
corresponding mode is unobservable [1].
BΦB 1
' −
= Mode controllability matrix
CΦC =' Mode observability matrix
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 47/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
6.3. Residues
• For small-signal stability analysis of power systems, this
primarily is related on the eigenvalue of the state matrix.
• For control design the open-loop transfer function
between specific variables is useful [4].
• Consider transfer function between the variables y and
u:
• Let asume y is not direct function of u (D = 0)
xy
uxAx
cΔΔ
bΔΔΔ
=
+=
( ) ( )
( )su
sy
sG
∆
∆
=
( ) ( ) bAIc
1−
−= ssG
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 48/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
6.3. Residues
• G(s) can be factorized [1], [2], [4]:
• Using partial fractions:
where and Ri is known as the residue of G(s) function at
pole pi.
( ) ( )( ) ( )
( )( ) ( )n
l
pspsps
zszszs
KsG
−−−
−−−
=


21
21
( )
n
n
ps
R
ps
R
ps
R
sG
−
++
−
+
−
= 
2
2
1
1
( ) ( )
( )su
sy
sG
∆
∆
= ( ) [ ] ΨbΛIcΦG
1−
−= ss
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 49/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
6.3. Residues
• Since Λ is a diagonal matrix [4]:
• This equation gives the residues in terms of eigenvalues.
( ) ∑= −
=
n
j j
j
s
R
sG
1 λ
bΨcΦ iiiR =
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 50/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
7. References
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 51/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
7. References
[1] P. Kundur, Power System Stability and Control. New
York: McGraw- Hill, 1994.
[2] J. Arrillaga and C.P. Arnold, Computer Modelling of
Electrical Power Systems, John Wiley & Sons, 1983.
[3] P.M. Anderson and A.A. Fouad, Power System Control
and Stability, The Iowa State University Press, 1977.
[4] R.Sadikovi’c, Use of FACTS Devices for Power Flow
Control and Damping of Oscillations in Power Systems.
PhD Thesis in Swiss federal Institute of Technology,
Zurich, 2006.
Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 52/63
Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor.
Copyright©2009.http:www.fglongatt.org.ve
Please visit:
http://www.fglongatt.org.ve
Comments and suggestion are welcome:
fglongatt@fglongatt.org.ve

Mais conteúdo relacionado

Mais procurados

Creating and Using Study Cases in DIgSILENT PowerFactory. Case P.M. Anderson ...
Creating and Using Study Cases in DIgSILENT PowerFactory. Case P.M. Anderson ...Creating and Using Study Cases in DIgSILENT PowerFactory. Case P.M. Anderson ...
Creating and Using Study Cases in DIgSILENT PowerFactory. Case P.M. Anderson ...Francisco Gonzalez-Longatt
 
Power Quality Measurement Devices & Monotoring
Power Quality Measurement Devices & MonotoringPower Quality Measurement Devices & Monotoring
Power Quality Measurement Devices & MonotoringParth Patel
 
Different simulation softwares in power system
Different simulation softwares in power systemDifferent simulation softwares in power system
Different simulation softwares in power systemJitendra Bhadoriya
 
Doubly fed-induction-generator
Doubly fed-induction-generatorDoubly fed-induction-generator
Doubly fed-induction-generatorHarshad Karmarkar
 
Modelling Renewables Resources and Storage in PowerFactory V15.2, Universi...
Modelling Renewables Resources  and Storage in PowerFactory  V15.2, Universi...Modelling Renewables Resources  and Storage in PowerFactory  V15.2, Universi...
Modelling Renewables Resources and Storage in PowerFactory V15.2, Universi...Francisco Gonzalez-Longatt
 
Tutorial: Modelling and Simulations: Renewable Resources and Storage
Tutorial: Modelling and Simulations: Renewable Resources and StorageTutorial: Modelling and Simulations: Renewable Resources and Storage
Tutorial: Modelling and Simulations: Renewable Resources and StorageFrancisco Gonzalez-Longatt
 
Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...
Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...
Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...Francisco Gonzalez-Longatt
 
Grid integration issues and solutions
Grid integration issues and solutionsGrid integration issues and solutions
Grid integration issues and solutionsSwathi Venugopal
 
Voltage and Frequency Control of the Grid
Voltage and Frequency Control of the GridVoltage and Frequency Control of the Grid
Voltage and Frequency Control of the GridLeonardo ENERGY
 
Instantaneous Reactive Power Theory And Its Applications
Instantaneous Reactive Power Theory And Its ApplicationsInstantaneous Reactive Power Theory And Its Applications
Instantaneous Reactive Power Theory And Its Applicationsarunj89
 
Power electronic converter in wind turbine
Power electronic converter in wind turbinePower electronic converter in wind turbine
Power electronic converter in wind turbineSonuKumarBairwa
 
Frequency Control of Power Systems
Frequency Control of Power SystemsFrequency Control of Power Systems
Frequency Control of Power SystemsSatya Sahoo
 
Power system interconnection presentation
Power system interconnection presentationPower system interconnection presentation
Power system interconnection presentationAneeque Qaiser
 
Overcurrent and Distance Protection in DigSilent PowerFactory
Overcurrent and Distance Protection in DigSilent PowerFactoryOvercurrent and Distance Protection in DigSilent PowerFactory
Overcurrent and Distance Protection in DigSilent PowerFactoryAreeb Abdullah
 
Solutions manual -hadi saadat-power systems analysis - 2nd edition (2002)
Solutions manual -hadi saadat-power systems analysis - 2nd edition (2002)Solutions manual -hadi saadat-power systems analysis - 2nd edition (2002)
Solutions manual -hadi saadat-power systems analysis - 2nd edition (2002)Engr umar
 

Mais procurados (20)

Creating and Using Study Cases in DIgSILENT PowerFactory. Case P.M. Anderson ...
Creating and Using Study Cases in DIgSILENT PowerFactory. Case P.M. Anderson ...Creating and Using Study Cases in DIgSILENT PowerFactory. Case P.M. Anderson ...
Creating and Using Study Cases in DIgSILENT PowerFactory. Case P.M. Anderson ...
 
Power Quality Measurement Devices & Monotoring
Power Quality Measurement Devices & MonotoringPower Quality Measurement Devices & Monotoring
Power Quality Measurement Devices & Monotoring
 
Different simulation softwares in power system
Different simulation softwares in power systemDifferent simulation softwares in power system
Different simulation softwares in power system
 
Doubly fed-induction-generator
Doubly fed-induction-generatorDoubly fed-induction-generator
Doubly fed-induction-generator
 
Modelling Renewables Resources and Storage in PowerFactory V15.2, Universi...
Modelling Renewables Resources  and Storage in PowerFactory  V15.2, Universi...Modelling Renewables Resources  and Storage in PowerFactory  V15.2, Universi...
Modelling Renewables Resources and Storage in PowerFactory V15.2, Universi...
 
Tutorial: Modelling and Simulations: Renewable Resources and Storage
Tutorial: Modelling and Simulations: Renewable Resources and StorageTutorial: Modelling and Simulations: Renewable Resources and Storage
Tutorial: Modelling and Simulations: Renewable Resources and Storage
 
Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...
Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...
Workshop: PowerFactory Applications for Power System Analysis. Kasetsart Un...
 
Grid integration issues and solutions
Grid integration issues and solutionsGrid integration issues and solutions
Grid integration issues and solutions
 
Microgrid stability and control modes
Microgrid stability and control modes Microgrid stability and control modes
Microgrid stability and control modes
 
Voltage and Frequency Control of the Grid
Voltage and Frequency Control of the GridVoltage and Frequency Control of the Grid
Voltage and Frequency Control of the Grid
 
Introduction to Microgrid
Introduction to Microgrid Introduction to Microgrid
Introduction to Microgrid
 
DFIG_report
DFIG_reportDFIG_report
DFIG_report
 
Instantaneous Reactive Power Theory And Its Applications
Instantaneous Reactive Power Theory And Its ApplicationsInstantaneous Reactive Power Theory And Its Applications
Instantaneous Reactive Power Theory And Its Applications
 
Power electronic converter in wind turbine
Power electronic converter in wind turbinePower electronic converter in wind turbine
Power electronic converter in wind turbine
 
Frequency Control of Power Systems
Frequency Control of Power SystemsFrequency Control of Power Systems
Frequency Control of Power Systems
 
STATCOM
STATCOMSTATCOM
STATCOM
 
Power system interconnection presentation
Power system interconnection presentationPower system interconnection presentation
Power system interconnection presentation
 
upfc
upfcupfc
upfc
 
Overcurrent and Distance Protection in DigSilent PowerFactory
Overcurrent and Distance Protection in DigSilent PowerFactoryOvercurrent and Distance Protection in DigSilent PowerFactory
Overcurrent and Distance Protection in DigSilent PowerFactory
 
Solutions manual -hadi saadat-power systems analysis - 2nd edition (2002)
Solutions manual -hadi saadat-power systems analysis - 2nd edition (2002)Solutions manual -hadi saadat-power systems analysis - 2nd edition (2002)
Solutions manual -hadi saadat-power systems analysis - 2nd edition (2002)
 

Mais de Francisco Gonzalez-Longatt

I. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia SystemsI. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia SystemsFrancisco Gonzalez-Longatt
 
I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR) I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR) Francisco Gonzalez-Longatt
 
I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system Francisco Gonzalez-Longatt
 
I. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency ConntrolI. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency ConntrolFrancisco Gonzalez-Longatt
 
Frequency Control and Inertia Response schemes for the future power networks
Frequency Control and Inertia Response schemes for the future power networksFrequency Control and Inertia Response schemes for the future power networks
Frequency Control and Inertia Response schemes for the future power networksFrancisco Gonzalez-Longatt
 
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion DistribuidaCapitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion DistribuidaCapitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion DistribuidaCapitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion DistribuidaCapitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion DistribuidaCapitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion DistribuidaCapitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...Francisco Gonzalez-Longatt
 
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...Francisco Gonzalez-Longatt
 
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion DistribuidaCapitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion DistribuidaFrancisco Gonzalez-Longatt
 
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...Francisco Gonzalez-Longatt
 
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...Francisco Gonzalez-Longatt
 
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...Francisco Gonzalez-Longatt
 

Mais de Francisco Gonzalez-Longatt (20)

I. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia SystemsI. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia Systems
 
I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR) I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR)
 
I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system
 
I. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency ConntrolI. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency Conntrol
 
0. Introduction to future energy systems
0. Introduction to future energy systems0. Introduction to future energy systems
0. Introduction to future energy systems
 
Challenges in the Future Power Network
Challenges in the Future Power NetworkChallenges in the Future Power Network
Challenges in the Future Power Network
 
Frequency Control and Inertia Response schemes for the future power networks
Frequency Control and Inertia Response schemes for the future power networksFrequency Control and Inertia Response schemes for the future power networks
Frequency Control and Inertia Response schemes for the future power networks
 
Future Smart-er Grid: Challenges
Future Smart-er Grid: Challenges Future Smart-er Grid: Challenges
Future Smart-er Grid: Challenges
 
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion DistribuidaCapitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
 
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion DistribuidaCapitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
 
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion DistribuidaCapitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
 
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion DistribuidaCapitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
 
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion DistribuidaCapitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
 
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion DistribuidaCapitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
 
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
 
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
 
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion DistribuidaCapitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
 
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
 
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
 
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
 

Último

Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...ranjana rawat
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingrknatarajan
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordAsst.prof M.Gokilavani
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 

Último (20)

(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
(INDIRA) Call Girl Aurangabad Call Now 8617697112 Aurangabad Escorts 24x7
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
The Most Attractive Pune Call Girls Budhwar Peth 8250192130 Will You Miss Thi...
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and workingUNIT-V FMM.HYDRAULIC TURBINE - Construction and working
UNIT-V FMM.HYDRAULIC TURBINE - Construction and working
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete RecordCCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
CCS335 _ Neural Networks and Deep Learning Laboratory_Lab Complete Record
 
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service NashikCall Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
Call Girls Service Nashik Vaishnavi 7001305949 Independent Escort Service Nashik
 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 

Introduction to Modal Analysis in Power Systems

  • 1. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 1/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve Francisco M. Gonzalez-Longatt, Dr.Sc Manchester, UK, November, 2009 Tutorial: Introduction to Modal Analysis
  • 2. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 2/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve This tutorial is a simple theoretical introduction to modal analysis Tutorial: Introduction to Modal Analysis Francisco M. Gonzalez-Longatt, Dr.Sc fglogatt@fglongatt.org.ve Manchester, 28th October 2009
  • 3. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 3/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 1. Introduction Introduction to Modal Analysis in Power System
  • 4. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 4/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 1. Introduction: Small Signal Stability • Small signal stability is the ability of the power system to maintain synchronism when subjected to small disturbances [1]. • A disturbance is considered to be small if the equations that describe the resulting response of power system may be linearized for the purpose of analysis. • Instability that result can be of two forms [1]: – Steady increase in generator rotor angle due to lack synchronizing torque, – Rotor oscillation of increasing amplitude due to lack of sufficient damping torque. [1] P. Kundur, Power System Stability and Control. New York: McGraw- Hill, 1994.
  • 5. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 5/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 1. Introduction: Small Signal Stability Instable • TS Negative • TDPositive δ∆ ST∆ DT∆eT∆ ω∆ δ∆ P 0 t δ∆ P 0 t Stable • TS Positive • TDPositive δ∆ ST∆ DT∆ eT∆ ω∆ (a) With constant field voltage Non-oscillatory
  • 6. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 6/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 1. Introduction: Small Signal Stability δ∆ P 0 t Stable • TS Positive • TDPositive δ∆ ST∆ DT∆ eT∆ ω∆ δ∆ P 0 t Instable • TS Positive • TD Negative δ∆ST∆ DT∆ eT∆ ω∆ (b) With excitation control
  • 7. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 7/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 1. Introduction: Small Signal Stability • ln today's practical power systems, the small-signal stability problem is usually one of insufficient damping of system oscillations. • Small signal inherent analysis using linear techniques provides valuable information about the dynamic characteristics of the power system and assists its design.
  • 8. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 8/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 2. Fundamental Concepts of Small Signal Stability
  • 9. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 9/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 2. State-Space Representation • The behaviour of a dynamic system, such as a power system, may be described by a set of n first order non- linear ordinary differential equations. • This can be written using vector-matrix notation [1]: where: ( )t,,uxfx =             = nx x x  2 1 x             = ru u u  2 1 u             = nf f f  2 1 f
  • 10. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 10/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 2. State Space Representation • The column vector x is deferred to as the state vector. • xi are referred as state variables. The column vector u is the vector of inputs to the system. • u are the external signal that influence the performance of the system. • t denote time • is the derivate of a state variable respect to time.             = nx x x  2 1 x             = ru u u  2 1 u             = nf f f  2 1 f x
  • 11. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 11/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 2. State Space Representation • The system is called autonomous if the derivatives of the stated variables are not explicit functions of time. • The output variables can be observed in the system. • These may be expressed in terms of the state variables and the inputs variables [1]: • where: ( )uxfx ,= ( )uxgy ,=             = my y y  2 1 y             = rg g g  2 1 g
  • 12. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 12/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 2. State Space Representation • The column vector y is the vector of outputs • g is a vector of non-linear factions relating state and input variables to output variables.             = my y y  2 1 y             = rg g g  2 1 g
  • 13. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 13/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 2.1. State Concept • The concept of state is fundamental to the state-space approach. • The state of a system represents the minimum amount of information about the system at any instant in time t0 that is necessary so that its future behaviour can be determined without the input before t0. • Any set of n linearly independent system variables may be used to describe the state of the system –state variables [1]. • State variables form a minimal set of dynamic variables that, along with the inputs to the system, provide a complete description of the system behaviour
  • 14. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 14/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 2.1. State-Space Concept • The system state may be represented in a n-dimensional Euclidean space, called state space.
  • 15. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 15/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 2.2. Equilibrium (or singular) points • Those points where all derivatives of state variables are simultaneously zero [1]. • They define the points on the trajectory with zero velocity. • This system is at rest since all the variables are constant and unvarying with time.             = = = = 0 0 0 2 1 nx x x     x
  • 16. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 16/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 2.2. Equilibrium (or singular) points • The equilibrium or singular point must therefore satisfy the equation: where x0 is the state vecto x at the equilibrium point. ( ) 00 0 === xfx
  • 17. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 17/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 2.3. Stability of a Dynamic System • Linear system: stability is entirely independent of the input. • State of a stable system with zero input will always return to the origin of the state space, independent of the finite initial state. • Non-linear system: Stability depends on the type and magnitude of input and the initial state.
  • 18. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 18/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 2.4. Classification of Stability • Classification of stability of non-linear system, depending on the region of state space in which the state vector ranges: – Local stability or stability in the small. – Finite stability. – Global stability or stability large.
  • 19. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 19/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 2.4.a. Local Stability • The system is locally stable about equilibrium point if, when subjected to small perturbation, it remain within a small region surrounding the equilibrium point. • If, a t increase, the system return to the original state, it is said to be asymptotically stable in the small.
  • 20. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 20/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 2.4.b. Finite Stability • If the state of a system remains within a finite region R, it is said to be stable within R. • If, further, the state of the system returns to the original equilibrium point form any point within R, it is asymptotically stable within the finite region R.
  • 21. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 21/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 2.4.c. Global Stability • The system is said to be globally stable if R include the entire finite space.
  • 22. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 22/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 3. Linealization
  • 23. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 23/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 3. Linearization • Let x0 be the initial state vector and u0 the input vector corresponding to the equilibrium point [2] ,[3]. • Let include a perturbation from the above state where the prefix Δ denote a small deviation. • As the perturbations are assumed to be small, the nonlinear functions f(x,u) can be expressed in terms of Taylor’s series expansion. ( ) 0, 000 == uxfx xxx ∆+= 0 uuu ∆+= 0
  • 24. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 24/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 3. Linearization • The original equations are [1]-[3]: • The lienarized forms are: – Δx is the state vector of dimension n – Δy Is the output vector of dimension m – Δu is the input vector of dimension r – A is state of plant matrix of size nxn – B is the control or input matrix of size nxr – C is the output matrix of size mxn – D is the (feedforward) matrix which defines the proportion of inputs which appears directly in the output, size nxr ( )t,,uxfx = ( )uxgy ,= uDxCy uBxAx ΔΔΔ ΔΔΔ += +=
  • 25. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 25/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 3. Linearization • Taking the Laplace transform the state equations in the frequency domain are obtained: uDxCy uBxAx ΔΔΔ ΔΔΔ += += ( ) ( ) ( ) ( ) ( ) ( )sΔsΔsΔ sΔsΔΔsΔ uDxCy uBxAxx += +=− 0
  • 26. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 26/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 3. Linearization • Block diagram of the state-space representation [1]-[3] B D I s 1 A ΣΣ C u∆ y∆ x∆x∆ + + + +
  • 27. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 27/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 3. Linearization • The initial conditions are Δx(0) assumed zero. • The solution of the state equations can be obtained [1]: • The Laplace transform of Δx and Δy are seen to have two components: (i) Dependent on the initial conditions and (ii) Dependent on the inputs. • These are the Laplace transforms of the free and zero- state components of the state and output vectors ( ) ( ) ( ) ( ) ( )[ ] ( )sΔsΔΔ s sadj sΔ uDuBx AI AI Cy ++ − − = 0 det
  • 28. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 28/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 3. Linearization • The poles of Δx and Δy are the roots of the equation: • The values of s which satisfy this conditions are known as eigenvalues of matrix A [1]-[3]. • The equation [1],[2]: is referred as he characteristic equation of matrix A. ( ) 0det =− AIs ( ) 0det =− AIs
  • 29. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 29/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 4. Eigenvalues and Eigenvectors
  • 30. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 30/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 4. Eigenvalues • The eigenvalues of a matrix are given by the values of the scalar parameter which there exist non-trivial solutions to the equation [1]: • For a non-trivial solution [2]: • Expansion of the determinant give the characteristic equation. • The n solution of λ = λ1, λ2, …λn are the eigenvalues of A [2]. ( ) 0det =− AIs ( ) 0=− φλIA
  • 31. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 31/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 4. Eigenvectors • For every eigenvalue λi, there is an eigenvector ϕi which satisfies: • ϕi is called the right eigenvector of the state matrix A associated with the eigenvalue λi. • Each right eigenvector is a column vector with the length equal to the number of the states. • The right eigenvector is called mode shape. iii φλφ =A
  • 32. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 32/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 4. Eigenvectors • Left eigenvector associated with the eigenvalue λi is the n-row vector which satisfies: • The right eigenvector describes how each mode of oscillation is distributed among the system states. • It indicates on which system variables the mode is more observable. • The left eigenvector, together with the system’s initial state, determines the amplitude of the mode. • A left eigenvector carries mode controllability information. iii ψλψ =A
  • 33. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 33/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 4. Eigenvectors The left eigenvector indicates on which system variables the mode is more observable. The right eigenvector is called mode shape.
  • 34. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 34/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 5. Eigenvalues and stability
  • 35. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 35/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 5. Eigenvalues and Stability • The stability of the system is determined by the eigenvalues λi. • Real eigenvalues: Non oscillatory mode. – Negative real eigenvalue represent a decaying mode. – Magnitude define the decay. – Positive real eigenvalues represent aperiodic instability. • Complex eigenvalues: Occurs in conjugate pair, and each pairs correspond a oscillatory mode.
  • 36. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 36/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 5. Eigenvalues and Stability • For a complex pairs of eigenvalues [1]: • The frequency of oscillation (f) in Hz is given by [1]: • This represents the actual or damped frequency (f). • T he damping ratio (ζ) is given by: • The damping ratio ζ determines the rate of decay of the amplitude of the oscillation [1]-[2]. ωσλ j±= π ω 2 =f 22 ωσ σ ς + − =
  • 37. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 37/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 5. Eigenvalues and Stability σ ωj X X z1 z2 (a) Stable focus Eigenvalues ωσλ j±= Trajectory Type of singularity (b) Unstable focus σ ωj X X z1 z2
  • 38. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 38/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 5. Eigenvalues and Stability (f) Vortex Eigenvalues ωσλ j±= Trajectory Type of singularity (g) Saddle σ ωj X X z1 z2 σ ωj XX z1 z2
  • 39. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 39/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 5. Eigenvalues and Stability (c) Stable focus Eigenvalues ωσλ j±= Trajectory Type of singularity (d) Unstable focus σ ωj XX z1 z2 σ ωj XX z1 z2
  • 40. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 40/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 6. Indexes
  • 41. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 41/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 6. Indexes • Numerous indices, can be calculated from eigenvectors such as [4]: – Participation factors, – Transfer function residues and – Mode sensitivities. • Those are very useful in system analysis and controller design.
  • 42. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 42/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 6.1. Participation factors • The Participation matrix (P), combine the right and left eigenvectors [1]: where where ψki is the kth element in the ith row of the the left eigenvector ψi, and φki is the kth element in the ith column of the right eigenvector φi [4]. [ ]npppP 21=             =             = nini ii ii ni i i p p p ψφ ψφ ψφ  22 11 2 1 1p
  • 43. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 43/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 6.1. Participation factors • The participation factor pki is a measure of the relative participation of the kth state variable in the ith mode, and vice versa. • The sensitivity of a particular eigenvalue λi to the changes in the diagonal elements of the state matrix A. kikikip ψφ= kk i ki a p ∂ ∂ = λ kikikip ψφ=
  • 44. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 44/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 6.2. Controllability and observability • The system response in presence of input is given as: • Expressing in terms of the transform ed variables Z: where Φ is the modal matrix of A. • Then yield to: uDxCy uBxAx ΔΔΔ ΔΔΔ += += zx Φ=Δ uDzCy uBxAz ΔΔ ΔΔ +Φ= +=Φ
  • 45. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 45/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 6.2. Controllability and observability • The state equations in the normal form (decoupled) may therefore [1], [4]: where: • They are the modal controllability (B’) and modal observability matrices (C’). uDzCy uBΛzzΦ ΔΔ Δ += += ' ' CΦC BΦB = = − ' ' 1
  • 46. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 46/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 6.2. Controllability and observability • If the ith row of matrix B’ is zero, the inputs have not effect on the ith mode. • ith mode is said to be uncontrollable [1] • If the ith row of matrix C’ determines whether or not variable zi contribute to the formation of outputs. • If the ith Coolum of matrix C’ is zero, then the corresponding mode is unobservable [1]. BΦB 1 ' − = Mode controllability matrix CΦC =' Mode observability matrix
  • 47. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 47/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 6.3. Residues • For small-signal stability analysis of power systems, this primarily is related on the eigenvalue of the state matrix. • For control design the open-loop transfer function between specific variables is useful [4]. • Consider transfer function between the variables y and u: • Let asume y is not direct function of u (D = 0) xy uxAx cΔΔ bΔΔΔ = += ( ) ( ) ( )su sy sG ∆ ∆ = ( ) ( ) bAIc 1− −= ssG
  • 48. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 48/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 6.3. Residues • G(s) can be factorized [1], [2], [4]: • Using partial fractions: where and Ri is known as the residue of G(s) function at pole pi. ( ) ( )( ) ( ) ( )( ) ( )n l pspsps zszszs KsG −−− −−− =   21 21 ( ) n n ps R ps R ps R sG − ++ − + − =  2 2 1 1 ( ) ( ) ( )su sy sG ∆ ∆ = ( ) [ ] ΨbΛIcΦG 1− −= ss
  • 49. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 49/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 6.3. Residues • Since Λ is a diagonal matrix [4]: • This equation gives the residues in terms of eigenvalues. ( ) ∑= − = n j j j s R sG 1 λ bΨcΦ iiiR =
  • 50. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 50/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 7. References
  • 51. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 51/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve 7. References [1] P. Kundur, Power System Stability and Control. New York: McGraw- Hill, 1994. [2] J. Arrillaga and C.P. Arnold, Computer Modelling of Electrical Power Systems, John Wiley & Sons, 1983. [3] P.M. Anderson and A.A. Fouad, Power System Control and Stability, The Iowa State University Press, 1977. [4] R.Sadikovi’c, Use of FACTS Devices for Power Flow Control and Damping of Oscillations in Power Systems. PhD Thesis in Swiss federal Institute of Technology, Zurich, 2006.
  • 52. Dr. Francisco M. Gonzalez-Longatt, fglongatt@ieee.org .Copyright © 2009 52/63 Allrightsreserved.Nopartofthispublicationmaybereproducedordistributedinanyformwithoutpermissionoftheauthor. Copyright©2009.http:www.fglongatt.org.ve Please visit: http://www.fglongatt.org.ve Comments and suggestion are welcome: fglongatt@fglongatt.org.ve