SlideShare uma empresa Scribd logo
1 de 41
Baixar para ler offline
Dr. Francisco M. Gonzalez-Longatt 1/41ELB044 Electrotechnology
ELB044 Electrotechnology
Lecture 18
Induction Machines
Dr Francisco M. Gonzalez-Longatt
f.gonzalez-longatt@lboro.ac.uk
http://www.fglongatt.org
Dr. Francisco M. Gonzalez-Longatt 2/41ELB044 Electrotechnology
Agenda
• Lecture Outline
– Lesson Opening
– Objectives
– Rotating Magnetic Field
– Induction Machine
– Questions and Answers
– Lesson closing and summary
Dr. Francisco M. Gonzalez-Longatt 3/41ELB044 Electrotechnology
Lesson Opening
Electrical Machines
Rotating Machines Transformers (static machines)
AC MachinesDC Machines
Operation Mode:
• Generator
• Motor
Separately Excited
Series
Shunt or Parallel
Compounds: Series+Parallel
Synchronous
Machines
Operation Mode:
• Generator
• Motor
Asynchronous
Machines or
Induction
Machines
Squirrel-Cage
Wound Rotor
Cylindrical Rotor
Salient Pole Rotor
Today’s
Lesson
Last Week Lesson
Why???
Dr. Francisco M. Gonzalez-Longatt 4/41ELB044 Electrotechnology
ELB044 Electrotechnology
General objective
Understand the most basic structure of
induction machine and to generation of
rotating magnetic field produced due to three
coils using AC current
Dr. Francisco M. Gonzalez-Longatt 5/41ELB044 Electrotechnology
ELB044 Electrotechnology
Specific Objectives
1) Identify the main components of induction
machine.
(2) Recognize the generation of rotating magnetic
field produced due to three coils using AC current
Dr. Francisco M. Gonzalez-Longatt 6/41ELB044 Electrotechnology
ELB044 Electrotechnology
An Introduction to
Induction Machines (IM)
How does it work…
Dr. Francisco M. Gonzalez-Longatt 7/41ELB044 Electrotechnology
How does it work…
Asynchronous Induction Motor. How does it work.avi. Category: Education, Licence: Standard YouTube Licence
Source: https://www.youtube.com/watch?v=N8LUOTQKXlk
Dr. Francisco M. Gonzalez-Longatt 8/41ELB044 Electrotechnology
ELB044 Electrotechnology
Structure of an Induction
Machine
Dr. Francisco M. Gonzalez-Longatt 9/41ELB044 Electrotechnology
Stator and Rotor
• Every induction machine (motor or generator) has
two main parts:
• Rotating part (rotor) and
• Stationary part (stator).
Stator
Rotor
Machine Shaft
Schematic Diagram
Physical Structure
Dr. Francisco M. Gonzalez-Longatt 10/41ELB044 Electrotechnology
Additional Components
• Additional components with specific uses.
Steel
Frame
Dr. Francisco M. Gonzalez-Longatt 11/41ELB044 Electrotechnology
Stator
• A stationary stator:
– Consisting of a steel frame that supports a hollow,
cylindrical core.
– Core, constructed from stacked laminations, having a
number of evenly spaced slots, providing the space for
the stator winding.
Dr. Francisco M. Gonzalez-Longatt 12/41ELB044 Electrotechnology
Rotor
• A Revolving Rotor:
– Composed of punched laminations, stacked to create a
series of rotor slots, providing space for the rotor
winding.
Single Cage Rotor Wounded Rotor
Dr. Francisco M. Gonzalez-Longatt 13/41ELB044 Electrotechnology
Rotor Winding
• One of two types of rotor windings.
– Conventional 3-phase windings made of insulated wire
(wound-rotor) similar to the winding on the stator.
– Aluminum bus bars shorted together at the ends by two
aluminum rings, forming a squirrel-cage shaped
circuit (squirrel-cage).
Welds at all
joints
Shaft
Iron Core
Cooper or aluminium bars
Welds holding copper or
aluminium bars to end
ring
Aluminiu
m or
copper end
rings
Rotor Core
Rotor
winding
Slip rings
Ball bearings
Cooling Fan
Ball bearings
Squirrel Cage
Rotor
Wound Rotor
Dr. Francisco M. Gonzalez-Longatt 14/41ELB044 Electrotechnology
ELB044 Electrotechnology
Rotating Magnetic Field
Dr. Francisco M. Gonzalez-Longatt 15/41ELB044 Electrotechnology
The Rotating Magnetic Field
• The basic idea of an electric machine is to
generate two magnetic fields:
– Rotor magnetic field (Br) and
– Stator magnetic field (Bs) and make the
stator field rotating.
rB
b
'
a
'
c
a
'
b
c sB
This Section presents the
fundamentals behind the
stator magnetic field a
rotating magnetic field
Dr. Francisco M. Gonzalez-Longatt 16/41ELB044 Electrotechnology
Single Coil (1/2)
• Single coil AA’:
➀
➁
➂
➀ ➁ ➂
'( ) sinAA Mi t I t
' 0AA RMSI I  
Time domain Representation
Phasor domain Representation
'( )AAi t
'( )AAB t
The dark green plot in the phase diagrams is the resulting relative
magnitude of the magnetic field created by the sine wave source
currents. Within the vector plots, the red ball represents the time
position and the dashed black vector is the resultant vector when the
phases are added togetherSouce: ACRotatingMagneticFieldPrinciple.cdf
Dr. Francisco M. Gonzalez-Longatt 17/41ELB044 Electrotechnology
Single Coil (2/2)
Magnetic flux
density (BAA’)
is fixed in the
space and
changing
magnitude and
direction
Souce: ACRotatingMagneticFieldPrinciple.cdf
"AC Rotating Magnetic Field Principle"
from the Wolfram Demonstrations
Project http://demonstrations.wolfram.co
m/ACRotatingMagneticFieldPrinciple/
Dr. Francisco M. Gonzalez-Longatt 18/41ELB044 Electrotechnology
Two Coils (1/2)
• Two coils AA’ and BB’:
➀ ➁ ➂
 
'
'
( ) sin
( ) sin 90
AA M
BB M
i t I t
i t I t



  
'
'
0
90
AA RMS
BB RMS
I I
I I
  
  
Time domain Representation
Phasor domain Representation
'( )AAi t
( )sB t
The dark green plot in the phase diagrams is the resulting relative
magnitude of the magnetic field created by the sine wave source
currents. Within the vector plots, the red ball represents the time
position and the dashed black vector is the resultant vector when the
phases are added togetherSouce: ACRotatingMagneticFieldPrinciple.cdf
➀
➁➂
'( )BBi t
sB
'AAB
'BBB
Dr. Francisco M. Gonzalez-Longatt 19/41ELB044 Electrotechnology
Two Coils (2/2)
Two magnetic flux
density (BAA’ and
BBB’) are fixed in
the space and
changing
magnitude and
direction
Souce: ACRotatingMagneticFieldPrinciple.cdf
Total magnetic flux
density in the
stator (BS) is
rotating and
constant
amplitude
"AC Rotating Magnetic Field Principle"
from the Wolfram Demonstrations
Project http://demonstrations.wolfram.co
m/ACRotatingMagneticFieldPrinciple/
Dr. Francisco M. Gonzalez-Longatt 20/41ELB044 Electrotechnology
Three Coils (1/2)
• Three coils AA’, BB’, and CC’:
➀ ➁ ➂
 
 
'
'
'
( ) sin
( ) sin 120
( ) sin 120
AA M
BB M
CC M
i t I t
i t I t
i t I t




  
  
'
'
'
0
120
120
AA RMS
BB RMS
CC RMS
I I
I I
I I
  
  
   
Time domain Representation
Phasor domain Representation
( )sB t
The dark green plot in the phase diagrams is the resulting relative
magnitude of the magnetic field created by the sine wave source
currents. Within the vector plots, the red ball represents the time
position and the dashed black vector is the resultant vector when the
phases are added togetherSouce: ACRotatingMagneticFieldPrinciple.cdf
➀
➁➂
'( )BBi t
sB
'AAB
'BBB
'CCB
'BBB
'( )CCi t
'( )AAi t
Dr. Francisco M. Gonzalez-Longatt 21/41ELB044 Electrotechnology
Three Coils (2/2)
Three magnetic
flux density (BAA’
BBB’ and BCC’) are
fixed in the space
and changing
magnitude and
direction
Souce: ACRotatingMagneticFieldPrinciple.cdf
Total magnetic flux
density in the
stator (BS) is
rotating and
constant
amplitude
"AC Rotating Magnetic Field Principle"
from the Wolfram Demonstrations
Project http://demonstrations.wolfram.co
m/ACRotatingMagneticFieldPrinciple/
Dr. Francisco M. Gonzalez-Longatt 22/41ELB044 Electrotechnology
The Rotating Magnetic Field (1/6)
• Simple stator made of three pairs of coils around
iron pole pieces.
Iron Pole
Pieces
Phase connections
A’
A
B
B’
C
C’
Iron
Stator
Ring
Phase
Coils
Current enters coil
A and leaves coils
A’
Magnetic flux set
up in coils with
North Pole at the
bottom and South
Pole at the top
Dr. Francisco M. Gonzalez-Longatt 23/41ELB044 Electrotechnology
The Rotating Magnetic Field (2/6)
• Changing which coils are energised alters
direction of magnetic flux
AA’ energised CC’ energised BB’ energised
N
S
C
B’
C’
A
B
A’
C
B’
C’
A
B
A’
C
B’
C’
A
B
A’
Dr. Francisco M. Gonzalez-Longatt 24/41ELB044 Electrotechnology
The Rotating Magnetic Field (3/6)
• Energizing two sets of coils together in sequence
•
• Compass settles half way between poles
Dr. Francisco M. Gonzalez-Longatt 25/41ELB044 Electrotechnology
The Rotating Magnetic Field (4/6)
• Sequence produces one complete rotation of the
magnetic field
➀ CC’ & B’B
➁ AA’ & B’B
➂ AA’ & C’C
➃ BB’ & C’C
➄ BB’ & A’A
➅ CC’ & A’A
➆ CC’ & B’B
Dr. Francisco M. Gonzalez-Longatt 26/41ELB044 Electrotechnology
The Rotating Magnetic Field (5/6)
• Three-Phase supply provides the correct sequence
for stator coils
➀ CC’ & B’B
➁ AA’ & B’B
➂ AA’ & C’C
➃ BB’ & C’C
➄ BB’ & A’A
➅ CC’ & A’A
➆ CC’ & B’B0AI 
0AI 
0CI 
0CI 
0BI 
0BI 
Dr. Francisco M. Gonzalez-Longatt 27/41ELB044 Electrotechnology
The Rotating Magnetic Field (6/6)
• Three-Phase supply provides the correct sequence
for stator coils
➀ CC’ & B’B
➁ AA’ & B’B
➂ AA’ & C’C
➃ BB’ & C’C
➄ BB’ & A’A
➅ CC’ & A’A
➆ CC’ & B’B
0AI 
0AI 
0CI 
0CI 
0BI 
0BI 
0AI 
0AI 
Dr. Francisco M. Gonzalez-Longatt 28/41ELB044 Electrotechnology
Animation
http://www.ece.umn.edu/users/riaz/animations/spacevecmovie.html
Dr. Francisco M. Gonzalez-Longatt 29/41ELB044 Electrotechnology
Rotational Speed (1/4)
• Relationship between electrical frequency
and speed of field rotation
• The stator rotating magnetic (BS) field can be
represented as a north pole and a south pole.
a’
b
c’
a
b’
c
ω
N
ω
S
SB
ω
These magnetic poles
complete one
mechanical rotation
around the stator
surface for each
electrical cycle of
current.
N S
Dr. Francisco M. Gonzalez-Longatt 30/41ELB044 Electrotechnology
Rotational Speed (2/4)
• The mechanical speed of rotation of the magnetic
field equals to the electrical frequency (Two Pole
Machine) a’
b
c’
a
b’
c
ω
N
ω
S
SB
ω[ ] [ ] mf Hz f rps
[ ] [ ]
sec sec
e m
rad rad
  
Two
Poles
Machine N S
Dr. Francisco M. Gonzalez-Longatt 31/41ELB044 Electrotechnology
Rotational Speed (3/4)
• What if 3 additional windings will be added? The
new sequence will be: a-c’-b-a’-c-b’-a-c’-b-a’-c-b’ and, when
3-phase current is applied to the stator, two north poles
and two south poles will be produced.
In this winding, a pole moves only halfway around the
stator. 2a
'
1b
1c
'
1a
1b
'
2c
1a
'
2b
2c
'
2a
2b
'
1ca’
b
c’
a
b’
c
One south Pole
One North Pole
Two south Pole
Two North Pole
Dr. Francisco M. Gonzalez-Longatt 32/41ELB044 Electrotechnology
Rotational Speed (4/4)
• The relationship between the electrical angle e
(current’s phase change) and the mechanical angle m
(at which the magnetic field rotates) in this situation is:
• Therefore, for a four-pole stator:
2a
'
1b
1c
'
1a
1b
'
2c
1a
'
2b
2c
'
2a
2b
'
1c
mB B
B B
S
S N
N
m
m
m
2e m 
[ ] [ ]  mf Hz f rps
[ ] [ ]
sec sec
e m
rad rad
  
Four
Poles
Machine
Dr. Francisco M. Gonzalez-Longatt 33/41ELB044 Electrotechnology
Rotational Speed: General Case
• Relationship between electrical frequency
and speed of field rotation:
- For an AC machine with Npoles in its stator:
- Relating the electrical frequency to the machine
speed in rpm:
2
  poles
e m
N
2
 poles
m
N
f f
2
  poles
e m
N
120
 polesN
f n
Dr. Francisco M. Gonzalez-Longatt 34/41ELB044 Electrotechnology
Rotational Speed: General Case
• A rotating magnetic field with constant
magnitude is produced, rotating with a speed.
Npoles 50 Hz 60 Hz
2 3000 3600
4 1500 1800
6 1000 1200
8 750 900
10 600 720
12 500 600
120 e
sync
poles
f
n rpm
N

Dr. Francisco M. Gonzalez-Longatt 35/41ELB044 Electrotechnology
ELB044 Electrotechnology
Example
Demonstrative example of rotational magnetic field
Dr. Francisco M. Gonzalez-Longatt 36/41ELB044 Electrotechnology
Example:
• What is the frequency (f) of a four-pole alternator
operating at a speed of n = 1500 rpm?
• Applying the mathematical definition for the
frequency on AC machine:
where Npoles = 4 and mec = 1500 rpm, then
 4 1500
120
f 120
polesN
f n 50f Hz
120
poles
e
N
f n
50f HzAnswer
Dr. Francisco M. Gonzalez-Longatt 37/41ELB044 Electrotechnology
ELB044 Electrotechnology
Closure and Summary
Dr. Francisco M. Gonzalez-Longatt 38/41ELB044 Electrotechnology
Induction Machines
• Basic structure
• How does it work…
Rotor
Stator
Faraday's law of induction
Stator created a
rotating magnetic field
Dr. Francisco M. Gonzalez-Longatt 39/41ELB044 Electrotechnology
ELB044 Electrotechnology
Suggested Readings
Dr. Francisco M. Gonzalez-Longatt 40/41ELB044 Electrotechnology
Suggested Readings
• S. J. Chapman, Electric machinery fundamentals,
4th Edition. New York, NY: McGraw-Hill Higher
Education, 2005. Chapter 7.
• A. E. Fitzgerald, C. Kingsley, and S. D. Umans,
Electric machinery, 6th Edition. Boston, Mass.:
McGraw-Hill, 2003. Chapter 6.
• I. L. Kosow, Electric Machinery and Transformers,
2nd Edition: Prentice Hall, 2007. Chapter 9.
Dr. Francisco M. Gonzalez-Longatt 41/41ELB044 Electrotechnology
ELB044 Electrotechnology
Any Question?
Lecture 18
Induction Machines
Dr Francisco M. Gonzalez-Longatt
f.gonzalez-longatt@lboro.ac.uk
http://www.fglongatt.org

Mais conteúdo relacionado

Mais procurados

Mais procurados (20)

Contigency analysis and security system taking different cases
Contigency analysis  and security system taking different casesContigency analysis  and security system taking different cases
Contigency analysis and security system taking different cases
 
Power factor & Power factor correction
Power factor & Power factor correctionPower factor & Power factor correction
Power factor & Power factor correction
 
A dual active bridge dc-dc converter for application in a smart user network
A dual active bridge dc-dc converter for application in a smart user networkA dual active bridge dc-dc converter for application in a smart user network
A dual active bridge dc-dc converter for application in a smart user network
 
Basic Configurations of Thyristor Controlled Phase Shifting Transformer or Ph...
Basic Configurations of Thyristor Controlled Phase Shifting Transformer or Ph...Basic Configurations of Thyristor Controlled Phase Shifting Transformer or Ph...
Basic Configurations of Thyristor Controlled Phase Shifting Transformer or Ph...
 
Hv module 3 Impulse voltage generation
Hv module 3 Impulse voltage generationHv module 3 Impulse voltage generation
Hv module 3 Impulse voltage generation
 
A Hybrid AC/DC Micro grid and Its Coordination Control
A Hybrid AC/DC Micro grid and Its Coordination ControlA Hybrid AC/DC Micro grid and Its Coordination Control
A Hybrid AC/DC Micro grid and Its Coordination Control
 
ECNG 3015 Power System Protection
ECNG 3015    Power System ProtectionECNG 3015    Power System Protection
ECNG 3015 Power System Protection
 
Computer Application in Power system: Chapter two - load flow analysis
Computer Application in Power system: Chapter two - load flow analysisComputer Application in Power system: Chapter two - load flow analysis
Computer Application in Power system: Chapter two - load flow analysis
 
Unit-2 AC-DC converter
Unit-2 AC-DC converter Unit-2 AC-DC converter
Unit-2 AC-DC converter
 
Comparision of svc and statcom
Comparision of svc and statcomComparision of svc and statcom
Comparision of svc and statcom
 
Permanent magnet brushless dc motors ppt
Permanent magnet brushless dc motors pptPermanent magnet brushless dc motors ppt
Permanent magnet brushless dc motors ppt
 
Computer Application in Power system chapter one - introduction
Computer Application in Power system chapter one - introductionComputer Application in Power system chapter one - introduction
Computer Application in Power system chapter one - introduction
 
Active_Power_Filter
Active_Power_FilterActive_Power_Filter
Active_Power_Filter
 
AC GENERATOR.pptx
AC  GENERATOR.pptxAC  GENERATOR.pptx
AC GENERATOR.pptx
 
Reactive power consumption in modern power system
Reactive power consumption in modern power systemReactive power consumption in modern power system
Reactive power consumption in modern power system
 
Relay
RelayRelay
Relay
 
Load modelling in distributed generation planning
Load modelling in distributed generation planningLoad modelling in distributed generation planning
Load modelling in distributed generation planning
 
Choice of converter configuration
Choice of converter configurationChoice of converter configuration
Choice of converter configuration
 
Spinning reserve
Spinning reserveSpinning reserve
Spinning reserve
 
ETAP - Load flow and panel rev2014-1
ETAP - Load flow and panel   rev2014-1ETAP - Load flow and panel   rev2014-1
ETAP - Load flow and panel rev2014-1
 

Destaque

Chapter 3 induction machine
Chapter 3 induction machineChapter 3 induction machine
Chapter 3 induction machine
mkazree
 
Ccccccccccccccccccc
CccccccccccccccccccCcccccccccccccccccc
Ccccccccccccccccccc
Musi Raju
 
Induction Motor Circle Diagrams_GP Technologies White Paper_Rev0_19 October 2016
Induction Motor Circle Diagrams_GP Technologies White Paper_Rev0_19 October 2016Induction Motor Circle Diagrams_GP Technologies White Paper_Rev0_19 October 2016
Induction Motor Circle Diagrams_GP Technologies White Paper_Rev0_19 October 2016
Daniel Lang, P.Eng.
 
Power electronics question bank
Power electronics question bankPower electronics question bank
Power electronics question bank
mcpriya04
 
WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...
WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...
WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...
Francisco Gonzalez-Longatt
 

Destaque (20)

Apprenticeship and traineeship programs at skills tech australia
Apprenticeship and traineeship programs at skills tech australiaApprenticeship and traineeship programs at skills tech australia
Apprenticeship and traineeship programs at skills tech australia
 
Chapter 3 induction machine
Chapter 3 induction machineChapter 3 induction machine
Chapter 3 induction machine
 
Induction machines
Induction machinesInduction machines
Induction machines
 
Numerical examples
Numerical examplesNumerical examples
Numerical examples
 
Root locus method
Root locus methodRoot locus method
Root locus method
 
Ccccccccccccccccccc
CccccccccccccccccccCcccccccccccccccccc
Ccccccccccccccccccc
 
Thesis458
Thesis458Thesis458
Thesis458
 
Induction Motor Circle Diagrams_GP Technologies White Paper_Rev0_19 October 2016
Induction Motor Circle Diagrams_GP Technologies White Paper_Rev0_19 October 2016Induction Motor Circle Diagrams_GP Technologies White Paper_Rev0_19 October 2016
Induction Motor Circle Diagrams_GP Technologies White Paper_Rev0_19 October 2016
 
Accessing to Two-Dimensional Matrix of Turbine ElmDsl
Accessing to Two-Dimensional Matrix of Turbine ElmDsl Accessing to Two-Dimensional Matrix of Turbine ElmDsl
Accessing to Two-Dimensional Matrix of Turbine ElmDsl
 
Data Management in DIgSILENT PowerFactory 2010
Data Management in DIgSILENT PowerFactory 2010Data Management in DIgSILENT PowerFactory 2010
Data Management in DIgSILENT PowerFactory 2010
 
Frequency response
Frequency responseFrequency response
Frequency response
 
polyphase induction motor
polyphase induction motorpolyphase induction motor
polyphase induction motor
 
Creating and Using Study Cases in DIgSILENT PowerFactory. Case P.M. Anderson ...
Creating and Using Study Cases in DIgSILENT PowerFactory. Case P.M. Anderson ...Creating and Using Study Cases in DIgSILENT PowerFactory. Case P.M. Anderson ...
Creating and Using Study Cases in DIgSILENT PowerFactory. Case P.M. Anderson ...
 
Frequency Response Analysis and Bode Diagrams for First Order Systems
Frequency Response Analysis and Bode Diagrams for First Order SystemsFrequency Response Analysis and Bode Diagrams for First Order Systems
Frequency Response Analysis and Bode Diagrams for First Order Systems
 
No-load & blocked rotor test, Equivalent circuit, Phasor diagram
No-load & blocked rotor test, Equivalent circuit, Phasor diagramNo-load & blocked rotor test, Equivalent circuit, Phasor diagram
No-load & blocked rotor test, Equivalent circuit, Phasor diagram
 
Induction motors
Induction motorsInduction motors
Induction motors
 
Power electronics question bank
Power electronics question bankPower electronics question bank
Power electronics question bank
 
WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...
WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...
WORKSHOP: Frequency Control Schemes and Frequency Response of Power Systems c...
 
Modelling Renewables Resources and Storage in PowerFactory V15.2, Universi...
Modelling Renewables Resources  and Storage in PowerFactory  V15.2, Universi...Modelling Renewables Resources  and Storage in PowerFactory  V15.2, Universi...
Modelling Renewables Resources and Storage in PowerFactory V15.2, Universi...
 
Importing/Exporting a project using DIgSILENT PowerFactory
Importing/Exporting a project using DIgSILENT PowerFactoryImporting/Exporting a project using DIgSILENT PowerFactory
Importing/Exporting a project using DIgSILENT PowerFactory
 

Semelhante a ELB044 Lecture 18. Introduction to Induction Machines

INDUCTION MOTOR
INDUCTION MOTORINDUCTION MOTOR
INDUCTION MOTOR
student
 
L10 superconductivity
L10 superconductivityL10 superconductivity
L10 superconductivity
mphilip1
 
dc generator ece
dc generator ecedc generator ece
dc generator ece
student
 

Semelhante a ELB044 Lecture 18. Introduction to Induction Machines (20)

EMC II.pptx
EMC II.pptxEMC II.pptx
EMC II.pptx
 
Alternator / Synchronous Generator
Alternator / Synchronous GeneratorAlternator / Synchronous Generator
Alternator / Synchronous Generator
 
Electrical Power Systems 3 phase apparatus
Electrical Power Systems 3 phase apparatusElectrical Power Systems 3 phase apparatus
Electrical Power Systems 3 phase apparatus
 
INDUCTION MOTOR
INDUCTION MOTORINDUCTION MOTOR
INDUCTION MOTOR
 
Spiral & coaxial generator
Spiral & coaxial generatorSpiral & coaxial generator
Spiral & coaxial generator
 
Unit 1
Unit 1Unit 1
Unit 1
 
UNIT-5.pptx
UNIT-5.pptxUNIT-5.pptx
UNIT-5.pptx
 
Dr Tan Guan Hong PhD Thesis 1980.pdf
Dr Tan Guan Hong PhD Thesis 1980.pdfDr Tan Guan Hong PhD Thesis 1980.pdf
Dr Tan Guan Hong PhD Thesis 1980.pdf
 
Eet ch6
Eet ch6Eet ch6
Eet ch6
 
L10 superconductivity
L10 superconductivityL10 superconductivity
L10 superconductivity
 
dc generator ece
dc generator ecedc generator ece
dc generator ece
 
dc-generators-unit-1.ppt
dc-generators-unit-1.pptdc-generators-unit-1.ppt
dc-generators-unit-1.ppt
 
ec8353 Edc unit2
ec8353 Edc unit2ec8353 Edc unit2
ec8353 Edc unit2
 
Dc generator
Dc generator Dc generator
Dc generator
 
Mesin ac ch4
Mesin ac ch4Mesin ac ch4
Mesin ac ch4
 
SG lecture 1&2.pdf
SG lecture 1&2.pdfSG lecture 1&2.pdf
SG lecture 1&2.pdf
 
SYNCHRONOUS GENERATOR.pptx
SYNCHRONOUS GENERATOR.pptxSYNCHRONOUS GENERATOR.pptx
SYNCHRONOUS GENERATOR.pptx
 
Electron config
Electron configElectron config
Electron config
 
Incomplete PPT on first topic.pptx [Autosaved] [Autosaved].ppt
Incomplete PPT on first topic.pptx [Autosaved] [Autosaved].pptIncomplete PPT on first topic.pptx [Autosaved] [Autosaved].ppt
Incomplete PPT on first topic.pptx [Autosaved] [Autosaved].ppt
 
Introduction to bjt npn &pnp
Introduction to bjt npn &pnpIntroduction to bjt npn &pnp
Introduction to bjt npn &pnp
 

Mais de Francisco Gonzalez-Longatt

I. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia SystemsI. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia Systems
Francisco Gonzalez-Longatt
 
I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR) I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR)
Francisco Gonzalez-Longatt
 
I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system
Francisco Gonzalez-Longatt
 
I. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency ConntrolI. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency Conntrol
Francisco Gonzalez-Longatt
 
Frequency Control and Inertia Response schemes for the future power networks
Frequency Control and Inertia Response schemes for the future power networksFrequency Control and Inertia Response schemes for the future power networks
Frequency Control and Inertia Response schemes for the future power networks
Francisco Gonzalez-Longatt
 

Mais de Francisco Gonzalez-Longatt (20)

I. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia SystemsI. Section 4. Frequency control and Low Inertia Systems
I. Section 4. Frequency control and Low Inertia Systems
 
I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR) I. Section. 3. System Frequency Response (SFR)
I. Section. 3. System Frequency Response (SFR)
 
I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system I. Section 2. Frequency control in power system
I. Section 2. Frequency control in power system
 
I. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency ConntrolI. Section 1 Introduction to Frequency Conntrol
I. Section 1 Introduction to Frequency Conntrol
 
0. Introduction to future energy systems
0. Introduction to future energy systems0. Introduction to future energy systems
0. Introduction to future energy systems
 
Challenges in the Future Power Network
Challenges in the Future Power NetworkChallenges in the Future Power Network
Challenges in the Future Power Network
 
Frequency Control and Inertia Response schemes for the future power networks
Frequency Control and Inertia Response schemes for the future power networksFrequency Control and Inertia Response schemes for the future power networks
Frequency Control and Inertia Response schemes for the future power networks
 
Future Smart-er Grid: Challenges
Future Smart-er Grid: Challenges Future Smart-er Grid: Challenges
Future Smart-er Grid: Challenges
 
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion DistribuidaCapitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
Capitulo 2.6: Sistemas Eólicos - Sistemas de Generacion Distribuida
 
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion DistribuidaCapitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
Capitulo 2.5: Sistemas Fotovoltaicos, Sistemas de Generacion Distribuida
 
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion DistribuidaCapitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
Capitulo 2.4: Celdas de Combustible - Sistemas de Generacion Distribuida
 
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion DistribuidaCapitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
Capitulo 2.3: Microturbina - Sistemas de Generacion Distribuida
 
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion DistribuidaCapitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
Capitulo 2.2: Turbinas a gas - Sistemas de Generacion Distribuida
 
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion DistribuidaCapitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
Capitulo 2.1: Maquinas Térmicas - Sistemas de Generacion Distribuida
 
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
Capitulo 2. Tecnologías empleadas en la Generación Distribuida - Sistemas de ...
 
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
Capitulo 1. Conceptualización de la Generación Distribuida. Sistemas de Gener...
 
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion DistribuidaCapitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
Capitulo 1. Historia de la Electricidad. Sistemas de Generacion Distribuida
 
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
Planificación y Descripción General del Curso. Sistemas de Generacion Distrib...
 
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...Modelling Renewables Resources  and Storage in PowerFactory  V15.2, 9 June 2...
Modelling Renewables Resources and Storage in PowerFactory V15.2, 9 June 2...
 
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
Modelación y Simulación de Sistemas de Potencia Empleando DIgSILENT PowerFact...
 

Último

Último (20)

Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Fostering Friendships - Enhancing Social Bonds in the Classroom
Fostering Friendships - Enhancing Social Bonds  in the ClassroomFostering Friendships - Enhancing Social Bonds  in the Classroom
Fostering Friendships - Enhancing Social Bonds in the Classroom
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.ICT role in 21st century education and it's challenges.
ICT role in 21st century education and it's challenges.
 
Holdier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdfHoldier Curriculum Vitae (April 2024).pdf
Holdier Curriculum Vitae (April 2024).pdf
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
2024-NATIONAL-LEARNING-CAMP-AND-OTHER.pptx
 
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptxCOMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
COMMUNICATING NEGATIVE NEWS - APPROACHES .pptx
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)Jamworks pilot and AI at Jisc (20/03/2024)
Jamworks pilot and AI at Jisc (20/03/2024)
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Wellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptxWellbeing inclusion and digital dystopias.pptx
Wellbeing inclusion and digital dystopias.pptx
 

ELB044 Lecture 18. Introduction to Induction Machines

  • 1. Dr. Francisco M. Gonzalez-Longatt 1/41ELB044 Electrotechnology ELB044 Electrotechnology Lecture 18 Induction Machines Dr Francisco M. Gonzalez-Longatt f.gonzalez-longatt@lboro.ac.uk http://www.fglongatt.org
  • 2. Dr. Francisco M. Gonzalez-Longatt 2/41ELB044 Electrotechnology Agenda • Lecture Outline – Lesson Opening – Objectives – Rotating Magnetic Field – Induction Machine – Questions and Answers – Lesson closing and summary
  • 3. Dr. Francisco M. Gonzalez-Longatt 3/41ELB044 Electrotechnology Lesson Opening Electrical Machines Rotating Machines Transformers (static machines) AC MachinesDC Machines Operation Mode: • Generator • Motor Separately Excited Series Shunt or Parallel Compounds: Series+Parallel Synchronous Machines Operation Mode: • Generator • Motor Asynchronous Machines or Induction Machines Squirrel-Cage Wound Rotor Cylindrical Rotor Salient Pole Rotor Today’s Lesson Last Week Lesson Why???
  • 4. Dr. Francisco M. Gonzalez-Longatt 4/41ELB044 Electrotechnology ELB044 Electrotechnology General objective Understand the most basic structure of induction machine and to generation of rotating magnetic field produced due to three coils using AC current
  • 5. Dr. Francisco M. Gonzalez-Longatt 5/41ELB044 Electrotechnology ELB044 Electrotechnology Specific Objectives 1) Identify the main components of induction machine. (2) Recognize the generation of rotating magnetic field produced due to three coils using AC current
  • 6. Dr. Francisco M. Gonzalez-Longatt 6/41ELB044 Electrotechnology ELB044 Electrotechnology An Introduction to Induction Machines (IM) How does it work…
  • 7. Dr. Francisco M. Gonzalez-Longatt 7/41ELB044 Electrotechnology How does it work… Asynchronous Induction Motor. How does it work.avi. Category: Education, Licence: Standard YouTube Licence Source: https://www.youtube.com/watch?v=N8LUOTQKXlk
  • 8. Dr. Francisco M. Gonzalez-Longatt 8/41ELB044 Electrotechnology ELB044 Electrotechnology Structure of an Induction Machine
  • 9. Dr. Francisco M. Gonzalez-Longatt 9/41ELB044 Electrotechnology Stator and Rotor • Every induction machine (motor or generator) has two main parts: • Rotating part (rotor) and • Stationary part (stator). Stator Rotor Machine Shaft Schematic Diagram Physical Structure
  • 10. Dr. Francisco M. Gonzalez-Longatt 10/41ELB044 Electrotechnology Additional Components • Additional components with specific uses. Steel Frame
  • 11. Dr. Francisco M. Gonzalez-Longatt 11/41ELB044 Electrotechnology Stator • A stationary stator: – Consisting of a steel frame that supports a hollow, cylindrical core. – Core, constructed from stacked laminations, having a number of evenly spaced slots, providing the space for the stator winding.
  • 12. Dr. Francisco M. Gonzalez-Longatt 12/41ELB044 Electrotechnology Rotor • A Revolving Rotor: – Composed of punched laminations, stacked to create a series of rotor slots, providing space for the rotor winding. Single Cage Rotor Wounded Rotor
  • 13. Dr. Francisco M. Gonzalez-Longatt 13/41ELB044 Electrotechnology Rotor Winding • One of two types of rotor windings. – Conventional 3-phase windings made of insulated wire (wound-rotor) similar to the winding on the stator. – Aluminum bus bars shorted together at the ends by two aluminum rings, forming a squirrel-cage shaped circuit (squirrel-cage). Welds at all joints Shaft Iron Core Cooper or aluminium bars Welds holding copper or aluminium bars to end ring Aluminiu m or copper end rings Rotor Core Rotor winding Slip rings Ball bearings Cooling Fan Ball bearings Squirrel Cage Rotor Wound Rotor
  • 14. Dr. Francisco M. Gonzalez-Longatt 14/41ELB044 Electrotechnology ELB044 Electrotechnology Rotating Magnetic Field
  • 15. Dr. Francisco M. Gonzalez-Longatt 15/41ELB044 Electrotechnology The Rotating Magnetic Field • The basic idea of an electric machine is to generate two magnetic fields: – Rotor magnetic field (Br) and – Stator magnetic field (Bs) and make the stator field rotating. rB b ' a ' c a ' b c sB This Section presents the fundamentals behind the stator magnetic field a rotating magnetic field
  • 16. Dr. Francisco M. Gonzalez-Longatt 16/41ELB044 Electrotechnology Single Coil (1/2) • Single coil AA’: ➀ ➁ ➂ ➀ ➁ ➂ '( ) sinAA Mi t I t ' 0AA RMSI I   Time domain Representation Phasor domain Representation '( )AAi t '( )AAB t The dark green plot in the phase diagrams is the resulting relative magnitude of the magnetic field created by the sine wave source currents. Within the vector plots, the red ball represents the time position and the dashed black vector is the resultant vector when the phases are added togetherSouce: ACRotatingMagneticFieldPrinciple.cdf
  • 17. Dr. Francisco M. Gonzalez-Longatt 17/41ELB044 Electrotechnology Single Coil (2/2) Magnetic flux density (BAA’) is fixed in the space and changing magnitude and direction Souce: ACRotatingMagneticFieldPrinciple.cdf "AC Rotating Magnetic Field Principle" from the Wolfram Demonstrations Project http://demonstrations.wolfram.co m/ACRotatingMagneticFieldPrinciple/
  • 18. Dr. Francisco M. Gonzalez-Longatt 18/41ELB044 Electrotechnology Two Coils (1/2) • Two coils AA’ and BB’: ➀ ➁ ➂   ' ' ( ) sin ( ) sin 90 AA M BB M i t I t i t I t       ' ' 0 90 AA RMS BB RMS I I I I       Time domain Representation Phasor domain Representation '( )AAi t ( )sB t The dark green plot in the phase diagrams is the resulting relative magnitude of the magnetic field created by the sine wave source currents. Within the vector plots, the red ball represents the time position and the dashed black vector is the resultant vector when the phases are added togetherSouce: ACRotatingMagneticFieldPrinciple.cdf ➀ ➁➂ '( )BBi t sB 'AAB 'BBB
  • 19. Dr. Francisco M. Gonzalez-Longatt 19/41ELB044 Electrotechnology Two Coils (2/2) Two magnetic flux density (BAA’ and BBB’) are fixed in the space and changing magnitude and direction Souce: ACRotatingMagneticFieldPrinciple.cdf Total magnetic flux density in the stator (BS) is rotating and constant amplitude "AC Rotating Magnetic Field Principle" from the Wolfram Demonstrations Project http://demonstrations.wolfram.co m/ACRotatingMagneticFieldPrinciple/
  • 20. Dr. Francisco M. Gonzalez-Longatt 20/41ELB044 Electrotechnology Three Coils (1/2) • Three coils AA’, BB’, and CC’: ➀ ➁ ➂     ' ' ' ( ) sin ( ) sin 120 ( ) sin 120 AA M BB M CC M i t I t i t I t i t I t           ' ' ' 0 120 120 AA RMS BB RMS CC RMS I I I I I I           Time domain Representation Phasor domain Representation ( )sB t The dark green plot in the phase diagrams is the resulting relative magnitude of the magnetic field created by the sine wave source currents. Within the vector plots, the red ball represents the time position and the dashed black vector is the resultant vector when the phases are added togetherSouce: ACRotatingMagneticFieldPrinciple.cdf ➀ ➁➂ '( )BBi t sB 'AAB 'BBB 'CCB 'BBB '( )CCi t '( )AAi t
  • 21. Dr. Francisco M. Gonzalez-Longatt 21/41ELB044 Electrotechnology Three Coils (2/2) Three magnetic flux density (BAA’ BBB’ and BCC’) are fixed in the space and changing magnitude and direction Souce: ACRotatingMagneticFieldPrinciple.cdf Total magnetic flux density in the stator (BS) is rotating and constant amplitude "AC Rotating Magnetic Field Principle" from the Wolfram Demonstrations Project http://demonstrations.wolfram.co m/ACRotatingMagneticFieldPrinciple/
  • 22. Dr. Francisco M. Gonzalez-Longatt 22/41ELB044 Electrotechnology The Rotating Magnetic Field (1/6) • Simple stator made of three pairs of coils around iron pole pieces. Iron Pole Pieces Phase connections A’ A B B’ C C’ Iron Stator Ring Phase Coils Current enters coil A and leaves coils A’ Magnetic flux set up in coils with North Pole at the bottom and South Pole at the top
  • 23. Dr. Francisco M. Gonzalez-Longatt 23/41ELB044 Electrotechnology The Rotating Magnetic Field (2/6) • Changing which coils are energised alters direction of magnetic flux AA’ energised CC’ energised BB’ energised N S C B’ C’ A B A’ C B’ C’ A B A’ C B’ C’ A B A’
  • 24. Dr. Francisco M. Gonzalez-Longatt 24/41ELB044 Electrotechnology The Rotating Magnetic Field (3/6) • Energizing two sets of coils together in sequence • • Compass settles half way between poles
  • 25. Dr. Francisco M. Gonzalez-Longatt 25/41ELB044 Electrotechnology The Rotating Magnetic Field (4/6) • Sequence produces one complete rotation of the magnetic field ➀ CC’ & B’B ➁ AA’ & B’B ➂ AA’ & C’C ➃ BB’ & C’C ➄ BB’ & A’A ➅ CC’ & A’A ➆ CC’ & B’B
  • 26. Dr. Francisco M. Gonzalez-Longatt 26/41ELB044 Electrotechnology The Rotating Magnetic Field (5/6) • Three-Phase supply provides the correct sequence for stator coils ➀ CC’ & B’B ➁ AA’ & B’B ➂ AA’ & C’C ➃ BB’ & C’C ➄ BB’ & A’A ➅ CC’ & A’A ➆ CC’ & B’B0AI  0AI  0CI  0CI  0BI  0BI 
  • 27. Dr. Francisco M. Gonzalez-Longatt 27/41ELB044 Electrotechnology The Rotating Magnetic Field (6/6) • Three-Phase supply provides the correct sequence for stator coils ➀ CC’ & B’B ➁ AA’ & B’B ➂ AA’ & C’C ➃ BB’ & C’C ➄ BB’ & A’A ➅ CC’ & A’A ➆ CC’ & B’B 0AI  0AI  0CI  0CI  0BI  0BI  0AI  0AI 
  • 28. Dr. Francisco M. Gonzalez-Longatt 28/41ELB044 Electrotechnology Animation http://www.ece.umn.edu/users/riaz/animations/spacevecmovie.html
  • 29. Dr. Francisco M. Gonzalez-Longatt 29/41ELB044 Electrotechnology Rotational Speed (1/4) • Relationship between electrical frequency and speed of field rotation • The stator rotating magnetic (BS) field can be represented as a north pole and a south pole. a’ b c’ a b’ c ω N ω S SB ω These magnetic poles complete one mechanical rotation around the stator surface for each electrical cycle of current. N S
  • 30. Dr. Francisco M. Gonzalez-Longatt 30/41ELB044 Electrotechnology Rotational Speed (2/4) • The mechanical speed of rotation of the magnetic field equals to the electrical frequency (Two Pole Machine) a’ b c’ a b’ c ω N ω S SB ω[ ] [ ] mf Hz f rps [ ] [ ] sec sec e m rad rad    Two Poles Machine N S
  • 31. Dr. Francisco M. Gonzalez-Longatt 31/41ELB044 Electrotechnology Rotational Speed (3/4) • What if 3 additional windings will be added? The new sequence will be: a-c’-b-a’-c-b’-a-c’-b-a’-c-b’ and, when 3-phase current is applied to the stator, two north poles and two south poles will be produced. In this winding, a pole moves only halfway around the stator. 2a ' 1b 1c ' 1a 1b ' 2c 1a ' 2b 2c ' 2a 2b ' 1ca’ b c’ a b’ c One south Pole One North Pole Two south Pole Two North Pole
  • 32. Dr. Francisco M. Gonzalez-Longatt 32/41ELB044 Electrotechnology Rotational Speed (4/4) • The relationship between the electrical angle e (current’s phase change) and the mechanical angle m (at which the magnetic field rotates) in this situation is: • Therefore, for a four-pole stator: 2a ' 1b 1c ' 1a 1b ' 2c 1a ' 2b 2c ' 2a 2b ' 1c mB B B B S S N N m m m 2e m  [ ] [ ]  mf Hz f rps [ ] [ ] sec sec e m rad rad    Four Poles Machine
  • 33. Dr. Francisco M. Gonzalez-Longatt 33/41ELB044 Electrotechnology Rotational Speed: General Case • Relationship between electrical frequency and speed of field rotation: - For an AC machine with Npoles in its stator: - Relating the electrical frequency to the machine speed in rpm: 2   poles e m N 2  poles m N f f 2   poles e m N 120  polesN f n
  • 34. Dr. Francisco M. Gonzalez-Longatt 34/41ELB044 Electrotechnology Rotational Speed: General Case • A rotating magnetic field with constant magnitude is produced, rotating with a speed. Npoles 50 Hz 60 Hz 2 3000 3600 4 1500 1800 6 1000 1200 8 750 900 10 600 720 12 500 600 120 e sync poles f n rpm N 
  • 35. Dr. Francisco M. Gonzalez-Longatt 35/41ELB044 Electrotechnology ELB044 Electrotechnology Example Demonstrative example of rotational magnetic field
  • 36. Dr. Francisco M. Gonzalez-Longatt 36/41ELB044 Electrotechnology Example: • What is the frequency (f) of a four-pole alternator operating at a speed of n = 1500 rpm? • Applying the mathematical definition for the frequency on AC machine: where Npoles = 4 and mec = 1500 rpm, then  4 1500 120 f 120 polesN f n 50f Hz 120 poles e N f n 50f HzAnswer
  • 37. Dr. Francisco M. Gonzalez-Longatt 37/41ELB044 Electrotechnology ELB044 Electrotechnology Closure and Summary
  • 38. Dr. Francisco M. Gonzalez-Longatt 38/41ELB044 Electrotechnology Induction Machines • Basic structure • How does it work… Rotor Stator Faraday's law of induction Stator created a rotating magnetic field
  • 39. Dr. Francisco M. Gonzalez-Longatt 39/41ELB044 Electrotechnology ELB044 Electrotechnology Suggested Readings
  • 40. Dr. Francisco M. Gonzalez-Longatt 40/41ELB044 Electrotechnology Suggested Readings • S. J. Chapman, Electric machinery fundamentals, 4th Edition. New York, NY: McGraw-Hill Higher Education, 2005. Chapter 7. • A. E. Fitzgerald, C. Kingsley, and S. D. Umans, Electric machinery, 6th Edition. Boston, Mass.: McGraw-Hill, 2003. Chapter 6. • I. L. Kosow, Electric Machinery and Transformers, 2nd Edition: Prentice Hall, 2007. Chapter 9.
  • 41. Dr. Francisco M. Gonzalez-Longatt 41/41ELB044 Electrotechnology ELB044 Electrotechnology Any Question? Lecture 18 Induction Machines Dr Francisco M. Gonzalez-Longatt f.gonzalez-longatt@lboro.ac.uk http://www.fglongatt.org