SlideShare uma empresa Scribd logo
1 de 561
Baixar para ler offline
Solutions Manual Errata for
                   Electronics, 2nd ed. by Allan R. Hambley

Problem 1.17
      In line two, change 3.135 W to 3.125 W.

Problem 1.29
      In line one, inside the first integral, delete the exponent 2 on i1.

         In line four, change
                               20 / 2
                                        to
                                            (
                                           20 / 2
                                                  .
                                                     )
                                                     2


                                  8           8
         In line five, change Iiavg to I1avg.

Problem 1.49
      Toward the end of the solution, change “when Rs changes from 1 MΩ to 10
kΩ” to “when RL changes from 1 MΩ to 10 kΩ”.

Problem 1.50
      Change “when Rs changes from 0 to 100 Ω” to “when RL changes from 0 to
100 Ω”.

Problem 1.62
                                           1
         In line two of Part (b), change     (G + Gm 2 )RL to (Gm 1 − Gm 2 )RL . Make the
                                           2 m1
same change in line two of Part (c).

Problem 2.12
                                   1             1
         In Part (d), change             to            .
                               jω (99C )    jω (101C )
         In the last paragraph, change 99-pF to 101-pF.

Problem 2.14
      After the figure, change vo = 8vin to vo = –8vin and change the gain from 8
to –8.

Problem 2.16
         At the end of the solution, after “For AOL = 105”, change Av = –9.998 to Av
= –9.9989 and change –R2/R1 = 10 to –R2/R1 = –10.
Problem 2.33
      The problem statement should have specified Wspace = 10 µm instead of 5
µm.

Problem 2.38
       In the figure, change the upper 10-kΩ resistor (connecting the inverting
input to the output of the first op amp) to 15 kΩ.

Problem 2.43
      In Part (b), Equation (4), change R1 to R2. In Part (c), in the first equation
after the figure, change vi to –vi.

Problem 2.53
      In the first line, change f0CL to fBCL.

Problem 2.73
       Before the figure, add the sentence: “The PSpice simulation is stored in the
file named P2_73.”

Problem 2.75
      Delete the sentence stating that the plot of vo(t) is on the next page.

Problem 3.10
      In line three (an equation), change iD/R to vD/R.

Problem 3.53
      In the sentence beginning with “The dynamic resistance”, change nVT/ICQ to
nVT/IDQ.

Problem 3.56
      In Part (a), change nVT/ICQ to nVT/IDQ.

Problem 3.57
      The solution uses rd for the diode resistance rather than rz as specified in
the problem statement.
Problem 3.58
      In Part (c), line two (an equation), change the minus sign inside the
parentheses to a plus sign.

Problem 3.70
      In line one, change “electon” to “atom”.

Problem 3.90
      In Part (c), line one, change the denominator of the fraction in parentheses
from IR to –IR.

Problem 3.92
      At the end of the solution, add: “Larger capacitance produces less output
voltage ripple and higher peak diode current”.

Problem 4.10
      In line five of the solution (an equation), change “10 − 0.6585” to “0.6585 −
10”.

Problem 4.25
      In the equation for Is (line seven of the solution), each of the two
denominators should end with ) − 1 instead of − 1).

Problem 4.34
      In the line for part (d) with β = 100, we should have I = 9.53 mA (instead of
10 mA) and V = 9.53 V (rather than 10 V).

Problem 4.45
      Change Avo = −βRL/rπ to Avo = −βRC/rπ.

Problem 4.50
       At the end of step one, add: “Set all other independent signal sources to
zero.”

Problem 4.54
      Next to the figure, change V EQ to VBEQ .
Problem 4.60
      In the first line after the figure, second equation, change IBEQ to IBQ.

Problem 4.65
      In the first line after the figure, insert an equals sign after IB.

Problem 5.3
      Calculation of the drain currents was omitted. The drain currents are:
                          2                            2
      (a) iD = K(vGS – Vto) = (W/L)(KP/2)(vGS – Vto) = 2.25 mA
                                        2
      (b) iD = K[2(vGS – Vto)vDS – (vDS) ]
                                                  2
             = (W/L)(KP/2)[2(vGS – Vto)vDS – (vDS) ]
             = 2 mA
      (c) iD = 0

Problem 5.7
                                                           2
      In the last sentence, change K = 25 to K = 25 µA/V .

Problems 5.23
      The last line of part (a) should read: VDSQ = 20 – 2IDQ = 12 V.

Problem 5.25
      Change the second equation from RSIDSQ = 6 V to RSIDQ ≅ 6 V.

Problem 5.46
      Change “greater than zero” to “greater than unity”.

Problem 5.65
                                                                            2
      In the third-to-last sentence, change K(vGS5 – Vto) to K(vGS5 – Vto) .

Problem 5.74
      In the sentence after the opening equation, change “saturation” to “triode
region”. In part (c) before the table, insert “Using the value of C given in part (d)
of the problem, we have:”
Problem 6.16
      At the beginning of the solution, insert “The following solution is for an
inverter operating at 400 MHz.” At the end of the solution, add “For an inverter
                                          –10
operating at 400 Hz, Pdynamic = 3.6 х 10        W.”

Problem 6.23
      In the third line, change “IOL = –1 mA” to “IOL = 1 mA”.

Problems 6.24
      In the first line, change “Pdynamic = If “ to “Pdynamic = Kf”.

Problem 6.25
      In the equation for Energy, change (42 – 12) to (52 – 02) and change 150 pJ to
250 pJ. In the equation for Pdynamic, change 150 to 250 and change 3.75 mW to
6.25 mW.

Problem 6.32
      In the circuit diagram, the device should be an enhancement MOSFET
rather than a depletion MOSFET.

Problem 6.36
      Change the middle of the fourth line to read “VIH = 2.04 V, VIL = 1.08 V”.

Problem 6.51
       At the end of the first paragraph, just before the figure, insert the
following: [Note: The solution assumes (W/L)p = 1. On the other hand for (W/L)p =
2, we would need (W/L)n = 16.]

Problem 7.1
      Delete the comma after the phrase “high precision”.

Problem 7.11
      In the first sentence, change “below” to “on the next page”.

Problem 7.18
      Toward the end of the main paragraph, in the equation for R2,
insert a left-hand parenthesis the before 26mV.

Problem 7.20
      Actually the current decreases when β decreases. Thus, the percentage
increase should be stated as -0.99%.

Problem 7.22
      At the beginning of part (a), add the following: (Note: The problem should
have asked for proof that IO, rather than IC2, is independent of VBE.)

Problem 7.25
      In the first line, change VCC in the fraction numerator to 10.

Problem 7.28
      In the first sentence after the diagram, change P7_27 to P7_28.

Problem 7.37
      In the third line, change (15 + VGS1 – VGS3) to (15 – VGS1 – VGS3).

Problem 7.38
      At the beginning of the solution, add the following: “The problem statement
should refer to Figure P7.38, not P7.36.”

Problems 7.60 and 7.61
      In the next-to-last sentence of each solution, change Acm to Avcm.

Problem 7.65
      In the first paragraph, change the value found for Av1 from 64.6 to 36.23.
At the end of the solution, change the value found for the overall gain Av from
20.4 × 103 to 11.5 × 103.

Problem 7.66
      At the end of the solution, add the following sentence: “The pnp stage drops
the dc level down so it comes out zero after the last (Q6) stage.”

Problem 7.67
      Throughout the solution, change all occurrences of 2000πt to 200πt.
Problem 7.71
       After the diagram, add the following: (Note: For the transistors to operate
in the active region, the emitters of the current sinks must be connected to -VEE
rather than to ground.)
       In the third line of the main paragaph, change “Q3 is a simple mirror”
to “Q8 is a simple mirror”.

Problem 7.74
      In the the top line of page 327, change (10 µA)/β to (100 µA)/β.

Problem 7.75
      At the very end, change the value found for A1/A2 from 0.953 to 0.926.

Problem 8.8
       In part (a) of the solution, the components of the phase plot are incorrectly
added. The correct phase plot should show a phase of +90° for low f , 0° for high
f, and should decrease in a straight line between 3.18 MHz and 318 MHz.

Problem 8.14
      In the first line of part (b), change “drain” to “source”. Notice that the
expression abbreviated as B simplifies to Cgs(Rsig + RL′ ) + CgdRsig(gm RL′ + 1), and
the expression abbreviated as A simplifies to CgsCgdRsig RL′ .


Problem 8.18
      In part (e), change “rd = ∞ (because λ = 0)” to “rd ≅ 1/λIDQ = 40 kΩ”.
Change the sentence about the break frequency to read simply: “The break
frequency is 251 kHz.”

Problem 8.24
      Change the table to appear thus:

                             RL          1 kΩ          10 kΩ
                             RL′        995 Ω         9.52 kΩ
                             Av         –4.99          –9.05
                          Rin,Miller    33.4 kΩ       19.9 kΩ
                             Rx         25.0 kΩ       16.6 kΩ
Problem 8.25
      Change the second line after the first figure to read:
           Rin = Ri||Rin,Miller ≅ 0.1 Ω.

Problem 8.30
      Change “Equations 8.41 and 8.42” to “Equations 8.42 and 8.43”.

Problem 8.33
       In the second line change “Problem 8.33” to “Problem 8.32”. In the equation
for ic, change 50sin(2000πt) to 500sin(2000πt). Change the value found for
Ic,rms to 354 µA.

Problem 8.36
                                                                    1
      Note that in the equation for hoe, the current term                is small, and has
                                                                 rπ + rµ
been ignored.

Problem 8.40
      In the first line of part (a), in the equation for IBQ, change “100” to
“(1mA)/100”.

Problem 8.42
      In the table, change the units of the right-column value of RE from mΩ to
MΩ.

Problem 8.43
      In the middle of part (a), “Solving Equation (2) for vo” should read
“Solving Equation (2) for vπ”. In part (b), REF should be RE1.

Problem 8.56
      In the second circuit diagram, change Rsig = Rsig||RD to Rsig = Rsig||RG.
                                              ′                  ′


Problem 8.66
      The derivation of C1 should read as follows:

Thus, the input resistance of the amplifier is
      Rin = RB||[rπ1 + (β + 1)(RE1||RE2||re2)] = 1046 Ω
The resistance in series with C1 is Rin + Rs = 1096 Ω.
      C1 = 1/(2πf11096) = 1/(2π10 × 1096) = 14.5 µF

Also, in the equation for C2, change “1/(2πf21168)” to “1/(2πf21020)”.

Problem 9.7
      In part (a) of the solution, the final equation should read
                  X       A1A2f            A1A2
            Af = o =                =
                  X s 1 + β2A1A2f 1 + β1A2 + β2A1A2

Also, in line four of part (b) change A2 to A3 and change “a a gain” to “a gain”.

Problem 9.10
      Change > to >>.

Problem 9.14
      Part (a) uses | VBE | = 0.7 V in saturation, not 0.6 V as specified in the
problem.

Problem 9.35
      In the first line, delete the second occurrence of ii.

Problem 9.44
      In the last line, change “parallel” to “voltage”.

Problem 9.45
      The last sentence, should read: “Since we want Aß to be very large in
magnitude, we choose small resistances for a current feedback network.”

Problem 9.47
      At the very end of the solution, change the units of the value found for Rof
from Ω to kΩ.

Problem 9.49
      The problem should have called for Rmf = –5000 Ω. In the solution, change
the units of the value found for Rif from MΩ to Ω.
Problem 9.51
      In the third line of part (a), delete the second occurrence of vi.

Problem 9.52
      In part (a) change the equation that begins line four to
                               RL
            vo/ii = −Av Ri ×         = –417 MΩ
                             Ro + RL

In the last line of part (a), add a negative sign in front of the value found for β. In
the fourth line of part (b), change β = 1/Rf to β = –1/Rf.

Problem 9.53
      In the third line of part (a), add a negative sign in front of AvoRi. At the
end of part (a), change the value found for β to –2.16 × 10–5. In part (b), in the
first line after the diagram, add a negative sign after the = and before the
fraction.

Problem 9.59
      In part (d), change both instances of “1000t” to “100t”.

Problem 9.64
      In the last line, change 3500 Hz to 350 Hz.

Problem 9.66
      In the next-to-last line, change “imaginary” to “complex”.

Problem 9.72
      In the next-to-last line, change 180° to –180°.

Problem 9.86
      In part (c), the last two sentences should read: “Finally setting Aß = 1 yields
A = -29 and ω = 6 /(RC ) . Thus an inverting amplifier is needed.”
      In part (d), change the sign on the last term from – to + in the denominator
of the second equation.
Problem 10.11
      Delete the closing parenthesis after 0.0025 in the middle of the first
equation. Change the value found for θJA to 150 °C/W.

Problem 10.23
      The trigonometric identity should read 2sin2(x) = 1 – cos(2x). In the integral
equation that follows, change 10sin(4000πt) to 10cos(4000πt).

Problem 10.27
      In the fifth line, change the integrand to [1 – cos(2ωt)].

Problem 10.35
      In part (a), change ( CC / 2 )RL to ( CC / 2 )2 /RL .
                          V               V

Problem 10.37
      In part (d), the final equation should read
            PQ1max = (VCC/2) × VCC/(2RL) = VCC /(4RL) = 7.03 W.
                                             2




Problem 10.45
                                          R2                         R + R2
       In Equation 10.49 in the text,           should be replaced by 1     .
                                        R1 + R2                         R2

Problem 10.50
      In the second line of the solution, change “op amp” to “transistor”.

Problem 10.63
      In the second line, change “on the next page” to “below”.

Problem 11.16
      In the equation for C, insert a closing square bracket after the L.

Problem 11.21
      In the third line of the solution, change ωR = 3ω0 to fR = 3f0 .
Problem 11.37
      In the first line after the last set of diagrams, change
Q2 = RL / Rs to Q2 = RL / Rs .
  2




      Also note that in the first diagram of the solution, Rs represents the
internal source resistance, while in the rest of the solution, Rs represents the
series equivalent of RL.

Problem 11.38
      Note that Rs represents the series equivalent of RL. In the second line, note
that QC = 10 and change the value found for Rs to 5 Ω. In the third line, change
4.47 to 3.16, change 1423.5 to 1006.6, and change 409.77 to 465.2. Then the
simulation results closely match predictions.

Problem 11.39
      Note that Rs represents the series equivalent of RL. In the second line,
change the value found for Rs to 50 mΩ. (Note that QC = 100.)

Problem 11.45
      In part (c), change 256.51 pF to 316.43 pF and change 20.21 nF to 1269 pF.

Problem 11.50
      Note that in the solution rd has been taken to be very large.

Problem 11.54
      At the end of the solution sentence, change the period to a comma and add
“or approximately 20 MHz. The third overtone frequency is about 30 MHz.”

Problem 11.57
      Note that “antiresonant frequency” means the same thing as “parallel-
resonant frequency.”

Problem 12.11
      Note that in the solution, “node 2” refers to the noninverting input.
Problem 12.12
      After the first paragraph, change vo = VB + 4.7 to vo = VB – 4.7. After the
second paragraph, change vo = VB – 4.7 to vo = VB + 4.7 and change vin > VB to vin <
VB. In the plot at the end of the solution, change   –1.3 on the y-axis to –1.7.

Problem 12.17
      Note that in the problem statement, the v2 referenced in the ninth line
should be v1 .

Problem 12.40
      At the end of the solution, change ioR/2 to –ioR/2 and change 9.96 V to –
9.96 V.
Errata for the first printing of Electronics, 2nd edition
                          by Allan R. Hambley


Page     Location              Correction (underlined)
ix       Line 5                …Chapters 4 and 5 can be reversed…
80       Figure 2.23           Delete the vertical line through the
                               voltage source v1.
83       Sentence above        The voltage across R1 is given by
         Equation 2.25
125      D2.33 line 8          Wspace = 10 μm . (For consistency with the
                               solutions manual.)
301      First margin          using SPICE to play with circuits.
         comment
476      Problem 7.20 line 5   percentage does IC2 change?
476      Problem 7.22 line 3   Derive an expression for the current IO
                               for the circuit
479      Problem 7.38 line 2   Figure P7.38. Allow...
563      Line 4                Interchange pnp and npn.
592      Lines 9 and 10        …Rif = 24.6 MΩ
651      D9.40 line 2          Insert magnitude bars around beta: β
651      D9.49 line 3          ...with a gain magnitude ...
653      Problem 9.78          Should refer to Problem 9.76 rather than
                               Problem 9.75.
703      Equation 10.49                    R2         R + R2
                               Replace           with 1      .
                                         R1 + R2        R2
717      Line 6                10.8 Repeat Example 10.8, …
721      Problem 10.10         The third sentence of the problem should
                               read: "The case-to-sink thermal resistance
                               is θCS = 0.5NC/W."
725      Hint for problem      The input terminals do not need to be
         D10.50                interchanged.
750      Line 2 from bottom    fL = 6.96 MHz
777      Line 12               RL = -1.875 MΩ
791      Problem 11.2          Write the transfer function magnitude…
844      Figure 12.48          There are 2n – 1 comparators not 2n-1 as
                               indicated in the figure.
852       Problem 12.17 line 9   Replace v2 with v1.



Please contact the author at arhamble@mtu.edu with any additional
corrections.

Mais conteúdo relacionado

Mais procurados

Electrical Engineering - 2006 Unsolved Paper
Electrical Engineering - 2006 Unsolved PaperElectrical Engineering - 2006 Unsolved Paper
Electrical Engineering - 2006 Unsolved PaperVasista Vinuthan
 
Electrical Engineering - 2009 Unsolved Paper
Electrical Engineering - 2009 Unsolved PaperElectrical Engineering - 2009 Unsolved Paper
Electrical Engineering - 2009 Unsolved PaperVasista Vinuthan
 
Analog circuits
Analog circuitsAnalog circuits
Analog circuitsMangi Lal
 
Electrical Engineering - 2010 Unsolved Paper
Electrical Engineering - 2010 Unsolved PaperElectrical Engineering - 2010 Unsolved Paper
Electrical Engineering - 2010 Unsolved PaperVasista Vinuthan
 
Electrical circuits &amp; fields
Electrical circuits &amp; fieldsElectrical circuits &amp; fields
Electrical circuits &amp; fieldsKumaraswamy81
 
VIT - Physics -2007 Unsolved Paper
VIT - Physics -2007 Unsolved PaperVIT - Physics -2007 Unsolved Paper
VIT - Physics -2007 Unsolved PaperVasista Vinuthan
 
Electrical Circuits Objective Type Questions - Mathan
Electrical Circuits Objective Type Questions -  MathanElectrical Circuits Objective Type Questions -  Mathan
Electrical Circuits Objective Type Questions - MathanMathankumar S
 
Class 12 Cbse Physics Sample Paper 2013 Model 2
Class 12 Cbse Physics Sample Paper 2013 Model 2Class 12 Cbse Physics Sample Paper 2013 Model 2
Class 12 Cbse Physics Sample Paper 2013 Model 2Sunaina Rawat
 
Electric Circuits (Multi Choice Questions or Objective type Questions)
Electric Circuits (Multi Choice Questions or Objective type Questions)Electric Circuits (Multi Choice Questions or Objective type Questions)
Electric Circuits (Multi Choice Questions or Objective type Questions)Mathankumar S
 
UPSEE - Physics -2007 Unsolved Paper
UPSEE - Physics -2007 Unsolved PaperUPSEE - Physics -2007 Unsolved Paper
UPSEE - Physics -2007 Unsolved PaperVasista Vinuthan
 
AP PGECET Electrical Engineering 2016 question paper
AP PGECET Electrical Engineering 2016 question paperAP PGECET Electrical Engineering 2016 question paper
AP PGECET Electrical Engineering 2016 question paperEneutron
 

Mais procurados (20)

Electrical Engineering - 2006 Unsolved Paper
Electrical Engineering - 2006 Unsolved PaperElectrical Engineering - 2006 Unsolved Paper
Electrical Engineering - 2006 Unsolved Paper
 
Impedance in transmission line
Impedance in transmission lineImpedance in transmission line
Impedance in transmission line
 
CAT -2010 Unsolved Paper
CAT -2010 Unsolved PaperCAT -2010 Unsolved Paper
CAT -2010 Unsolved Paper
 
Electrical Engineering - 2009 Unsolved Paper
Electrical Engineering - 2009 Unsolved PaperElectrical Engineering - 2009 Unsolved Paper
Electrical Engineering - 2009 Unsolved Paper
 
Analog circuits
Analog circuitsAnalog circuits
Analog circuits
 
Electrical Engineering - 2010 Unsolved Paper
Electrical Engineering - 2010 Unsolved PaperElectrical Engineering - 2010 Unsolved Paper
Electrical Engineering - 2010 Unsolved Paper
 
Electrical circuits &amp; fields
Electrical circuits &amp; fieldsElectrical circuits &amp; fields
Electrical circuits &amp; fields
 
VIT - Physics -2007 Unsolved Paper
VIT - Physics -2007 Unsolved PaperVIT - Physics -2007 Unsolved Paper
VIT - Physics -2007 Unsolved Paper
 
Electrical Circuits Objective Type Questions - Mathan
Electrical Circuits Objective Type Questions -  MathanElectrical Circuits Objective Type Questions -  Mathan
Electrical Circuits Objective Type Questions - Mathan
 
Class 12 Cbse Physics Sample Paper 2013 Model 2
Class 12 Cbse Physics Sample Paper 2013 Model 2Class 12 Cbse Physics Sample Paper 2013 Model 2
Class 12 Cbse Physics Sample Paper 2013 Model 2
 
Dc circuits MCQ's
Dc circuits  MCQ'sDc circuits  MCQ's
Dc circuits MCQ's
 
Telegrapher's Equation
Telegrapher's EquationTelegrapher's Equation
Telegrapher's Equation
 
Distortionless Transmission Line
Distortionless Transmission LineDistortionless Transmission Line
Distortionless Transmission Line
 
EEE 3
EEE 3EEE 3
EEE 3
 
capt 38
capt 38capt 38
capt 38
 
Electric Circuits (Multi Choice Questions or Objective type Questions)
Electric Circuits (Multi Choice Questions or Objective type Questions)Electric Circuits (Multi Choice Questions or Objective type Questions)
Electric Circuits (Multi Choice Questions or Objective type Questions)
 
Electromagnetic Wave Propagations
Electromagnetic Wave PropagationsElectromagnetic Wave Propagations
Electromagnetic Wave Propagations
 
Mosfet
MosfetMosfet
Mosfet
 
UPSEE - Physics -2007 Unsolved Paper
UPSEE - Physics -2007 Unsolved PaperUPSEE - Physics -2007 Unsolved Paper
UPSEE - Physics -2007 Unsolved Paper
 
AP PGECET Electrical Engineering 2016 question paper
AP PGECET Electrical Engineering 2016 question paperAP PGECET Electrical Engineering 2016 question paper
AP PGECET Electrical Engineering 2016 question paper
 

Destaque

Diseño de la linea de transmision a 138 kv
Diseño de la linea de transmision a 138 kvDiseño de la linea de transmision a 138 kv
Diseño de la linea de transmision a 138 kvfedericoblanco
 
Chapter 16analisis costo efectividad
Chapter 16analisis costo efectividadChapter 16analisis costo efectividad
Chapter 16analisis costo efectividadfedericoblanco
 
Calculo de corrientes de cortocircuito
Calculo de corrientes de cortocircuitoCalculo de corrientes de cortocircuito
Calculo de corrientes de cortocircuitofedericoblanco
 
Chapter 07 retorno econòmico
Chapter 07 retorno econòmicoChapter 07 retorno econòmico
Chapter 07 retorno econòmicofedericoblanco
 
Chapter 09depreciaciòn
Chapter 09depreciaciònChapter 09depreciaciòn
Chapter 09depreciaciònfedericoblanco
 
Chapter 10generac flujo caja
Chapter 10generac flujo cajaChapter 10generac flujo caja
Chapter 10generac flujo cajafedericoblanco
 
Chapter 15financiaciòn
Chapter 15financiaciònChapter 15financiaciòn
Chapter 15financiaciònfedericoblanco
 
Chapter 01 decisiones econòmicas 1
Chapter 01 decisiones econòmicas 1Chapter 01 decisiones econòmicas 1
Chapter 01 decisiones econòmicas 1federicoblanco
 
Chapter 05analisis valor presente
Chapter 05analisis valor presenteChapter 05analisis valor presente
Chapter 05analisis valor presentefedericoblanco
 
Electircidad cargas desequilibradas
Electircidad  cargas  desequilibradasElectircidad  cargas  desequilibradas
Electircidad cargas desequilibradasfedericoblanco
 
Chapter 12analisis dec sensibilidad
Chapter 12analisis dec sensibilidadChapter 12analisis dec sensibilidad
Chapter 12analisis dec sensibilidadfedericoblanco
 
Chapter 14costo de oprtunidad
Chapter 14costo de oprtunidadChapter 14costo de oprtunidad
Chapter 14costo de oprtunidadfedericoblanco
 
Vademecum de formulas de electrotecnia
Vademecum  de  formulas  de  electrotecniaVademecum  de  formulas  de  electrotecnia
Vademecum de formulas de electrotecniafedericoblanco
 

Destaque (20)

Diseño de la linea de transmision a 138 kv
Diseño de la linea de transmision a 138 kvDiseño de la linea de transmision a 138 kv
Diseño de la linea de transmision a 138 kv
 
Chapter 16analisis costo efectividad
Chapter 16analisis costo efectividadChapter 16analisis costo efectividad
Chapter 16analisis costo efectividad
 
700 libros tecnicos
700 libros tecnicos700 libros tecnicos
700 libros tecnicos
 
Calculo de corrientes de cortocircuito
Calculo de corrientes de cortocircuitoCalculo de corrientes de cortocircuito
Calculo de corrientes de cortocircuito
 
Chapter 07 retorno econòmico
Chapter 07 retorno econòmicoChapter 07 retorno econòmico
Chapter 07 retorno econòmico
 
Chapter 09depreciaciòn
Chapter 09depreciaciònChapter 09depreciaciòn
Chapter 09depreciaciòn
 
Articulo 16
Articulo 16Articulo 16
Articulo 16
 
Chapter 10generac flujo caja
Chapter 10generac flujo cajaChapter 10generac flujo caja
Chapter 10generac flujo caja
 
Canalizaciones
CanalizacionesCanalizaciones
Canalizaciones
 
Chapter 15financiaciòn
Chapter 15financiaciònChapter 15financiaciòn
Chapter 15financiaciòn
 
Cap1
Cap1Cap1
Cap1
 
Chapter 11inflaciòn
Chapter 11inflaciònChapter 11inflaciòn
Chapter 11inflaciòn
 
Chapter 01 decisiones econòmicas 1
Chapter 01 decisiones econòmicas 1Chapter 01 decisiones econòmicas 1
Chapter 01 decisiones econòmicas 1
 
Chapter 08costos
Chapter 08costosChapter 08costos
Chapter 08costos
 
Chapter 05analisis valor presente
Chapter 05analisis valor presenteChapter 05analisis valor presente
Chapter 05analisis valor presente
 
66869 masters 2e-sm
66869 masters 2e-sm66869 masters 2e-sm
66869 masters 2e-sm
 
Electircidad cargas desequilibradas
Electircidad  cargas  desequilibradasElectircidad  cargas  desequilibradas
Electircidad cargas desequilibradas
 
Chapter 12analisis dec sensibilidad
Chapter 12analisis dec sensibilidadChapter 12analisis dec sensibilidad
Chapter 12analisis dec sensibilidad
 
Chapter 14costo de oprtunidad
Chapter 14costo de oprtunidadChapter 14costo de oprtunidad
Chapter 14costo de oprtunidad
 
Vademecum de formulas de electrotecnia
Vademecum  de  formulas  de  electrotecniaVademecum  de  formulas  de  electrotecnia
Vademecum de formulas de electrotecnia
 

Semelhante a Electronics hambley2nd

5 a new technique of pwm boost inverter for solar home application
5 a new technique of pwm boost inverter for solar home application5 a new technique of pwm boost inverter for solar home application
5 a new technique of pwm boost inverter for solar home applicationAbdo Brahmi
 
A High Step Up Hybrid Switch Converter Connected With PV Array For High Volt...
A High Step Up Hybrid Switch Converter  Connected With PV Array For High Volt...A High Step Up Hybrid Switch Converter  Connected With PV Array For High Volt...
A High Step Up Hybrid Switch Converter Connected With PV Array For High Volt...ijitjournal
 
Physica curckts
Physica curcktsPhysica curckts
Physica curckts12B-129-El
 
EE452_Open Loop Buck Converter
EE452_Open Loop Buck ConverterEE452_Open Loop Buck Converter
EE452_Open Loop Buck Converterki hei chan
 
Stability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptStability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptZahid Yousaf
 
Questions From 1st Unit Nagrath
Questions From 1st Unit NagrathQuestions From 1st Unit Nagrath
Questions From 1st Unit NagrathAbha Tripathi
 
A High Step Up Hybrid Switch Converter Connected With PV Array For High Volta...
A High Step Up Hybrid Switch Converter Connected With PV Array For High Volta...A High Step Up Hybrid Switch Converter Connected With PV Array For High Volta...
A High Step Up Hybrid Switch Converter Connected With PV Array For High Volta...IJNLC Int.Jour on Natural Lang computing
 
Vlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.pptVlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.pptNikhilKumarJaiswal2
 
#SolarMOOC Random Problems from 2009 NABCEP STUDY GUIDE
#SolarMOOC Random Problems from 2009 NABCEP STUDY GUIDE#SolarMOOC Random Problems from 2009 NABCEP STUDY GUIDE
#SolarMOOC Random Problems from 2009 NABCEP STUDY GUIDEsolpowerpeople
 
L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)Pradeep Godara
 
Electronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptElectronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptmuhammadzaid733820
 

Semelhante a Electronics hambley2nd (20)

Errata
ErrataErrata
Errata
 
Errata
ErrataErrata
Errata
 
Lecture 8
Lecture 8Lecture 8
Lecture 8
 
5 a new technique of pwm boost inverter for solar home application
5 a new technique of pwm boost inverter for solar home application5 a new technique of pwm boost inverter for solar home application
5 a new technique of pwm boost inverter for solar home application
 
A High Step Up Hybrid Switch Converter Connected With PV Array For High Volt...
A High Step Up Hybrid Switch Converter  Connected With PV Array For High Volt...A High Step Up Hybrid Switch Converter  Connected With PV Array For High Volt...
A High Step Up Hybrid Switch Converter Connected With PV Array For High Volt...
 
Physica curckts
Physica curcktsPhysica curckts
Physica curckts
 
EE452_Open Loop Buck Converter
EE452_Open Loop Buck ConverterEE452_Open Loop Buck Converter
EE452_Open Loop Buck Converter
 
Stability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.pptStability with analysis and psa and load flow.ppt
Stability with analysis and psa and load flow.ppt
 
Questions From 1st Unit Nagrath
Questions From 1st Unit NagrathQuestions From 1st Unit Nagrath
Questions From 1st Unit Nagrath
 
A High Step Up Hybrid Switch Converter Connected With PV Array For High Volta...
A High Step Up Hybrid Switch Converter Connected With PV Array For High Volta...A High Step Up Hybrid Switch Converter Connected With PV Array For High Volta...
A High Step Up Hybrid Switch Converter Connected With PV Array For High Volta...
 
Vlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.pptVlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
Vlsi DEsign with buck-boost converter using Matlab Simulink software.ppt
 
Lecture 2
Lecture 2Lecture 2
Lecture 2
 
#SolarMOOC Random Problems from 2009 NABCEP STUDY GUIDE
#SolarMOOC Random Problems from 2009 NABCEP STUDY GUIDE#SolarMOOC Random Problems from 2009 NABCEP STUDY GUIDE
#SolarMOOC Random Problems from 2009 NABCEP STUDY GUIDE
 
L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)L 09(gdr)(et) ((ee)nptel)
L 09(gdr)(et) ((ee)nptel)
 
EEE 1
EEE 1EEE 1
EEE 1
 
Report_AKbar_PDF
Report_AKbar_PDFReport_AKbar_PDF
Report_AKbar_PDF
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
 
powerflowproblem.ppt
powerflowproblem.pptpowerflowproblem.ppt
powerflowproblem.ppt
 
Electronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.pptElectronics and communication engineering_Lect14.ppt
Electronics and communication engineering_Lect14.ppt
 
ECE4762011_Lect14.ppt
ECE4762011_Lect14.pptECE4762011_Lect14.ppt
ECE4762011_Lect14.ppt
 

Mais de federicoblanco

Esp oil mantenimiento de subestaciones electricas
Esp oil   mantenimiento de subestaciones electricasEsp oil   mantenimiento de subestaciones electricas
Esp oil mantenimiento de subestaciones electricasfedericoblanco
 
Electronica conceptos basicos-de_electricidad (1)
Electronica conceptos basicos-de_electricidad (1)Electronica conceptos basicos-de_electricidad (1)
Electronica conceptos basicos-de_electricidad (1)federicoblanco
 
Electronica 100-circuitos
Electronica 100-circuitosElectronica 100-circuitos
Electronica 100-circuitosfedericoblanco
 
Electronica enciclopedia_de
Electronica  enciclopedia_deElectronica  enciclopedia_de
Electronica enciclopedia_defedericoblanco
 
Electronica(2)baja libros
Electronica(2)baja librosElectronica(2)baja libros
Electronica(2)baja librosfedericoblanco
 
Electronica industrial timothy j. maloney
Electronica industrial   timothy j. maloneyElectronica industrial   timothy j. maloney
Electronica industrial timothy j. maloneyfedericoblanco
 
Electronica & pc's todos los conectores (spanish) by porru
Electronica & pc's   todos los conectores (spanish) by porruElectronica & pc's   todos los conectores (spanish) by porru
Electronica & pc's todos los conectores (spanish) by porrufedericoblanco
 
Electricidad sistemas puesta_a_tierra
Electricidad sistemas puesta_a_tierraElectricidad sistemas puesta_a_tierra
Electricidad sistemas puesta_a_tierrafedericoblanco
 
E book tecnologia electrica
E book tecnologia electricaE book tecnologia electrica
E book tecnologia electricafedericoblanco
 
E book sistemas electricos de potencia (grainger)
E book sistemas electricos de potencia (grainger)E book sistemas electricos de potencia (grainger)
E book sistemas electricos de potencia (grainger)federicoblanco
 
E book electronica industrial
E book electronica industrialE book electronica industrial
E book electronica industrialfedericoblanco
 
Diccionario electricidad[1]
Diccionario electricidad[1]Diccionario electricidad[1]
Diccionario electricidad[1]federicoblanco
 
Diapositivas instalacion de contadores
Diapositivas instalacion de contadoresDiapositivas instalacion de contadores
Diapositivas instalacion de contadoresfedericoblanco
 
Curso de electronica iv fee 01 libro de texto
Curso de electronica iv fee 01 libro de texto Curso de electronica iv fee 01 libro de texto
Curso de electronica iv fee 01 libro de texto federicoblanco
 
Curso de electronica iii fee 01 libro de texto
Curso de electronica iii fee 01 libro de texto Curso de electronica iii fee 01 libro de texto
Curso de electronica iii fee 01 libro de texto federicoblanco
 
Curso de electronica ii fee 01 libro de texto
Curso de electronica ii fee 01 libro de texto Curso de electronica ii fee 01 libro de texto
Curso de electronica ii fee 01 libro de texto federicoblanco
 
Curso de electronica i fee 01 libro de texto
Curso de electronica i fee 01 libro de texto Curso de electronica i fee 01 libro de texto
Curso de electronica i fee 01 libro de texto federicoblanco
 
Conductores baja tensiòn
Conductores baja tensiònConductores baja tensiòn
Conductores baja tensiònfedericoblanco
 
Chapter 13opciones financieras
Chapter 13opciones financierasChapter 13opciones financieras
Chapter 13opciones financierasfedericoblanco
 
Chapter 06anualid flujo caja
Chapter 06anualid flujo cajaChapter 06anualid flujo caja
Chapter 06anualid flujo cajafedericoblanco
 

Mais de federicoblanco (20)

Esp oil mantenimiento de subestaciones electricas
Esp oil   mantenimiento de subestaciones electricasEsp oil   mantenimiento de subestaciones electricas
Esp oil mantenimiento de subestaciones electricas
 
Electronica conceptos basicos-de_electricidad (1)
Electronica conceptos basicos-de_electricidad (1)Electronica conceptos basicos-de_electricidad (1)
Electronica conceptos basicos-de_electricidad (1)
 
Electronica 100-circuitos
Electronica 100-circuitosElectronica 100-circuitos
Electronica 100-circuitos
 
Electronica enciclopedia_de
Electronica  enciclopedia_deElectronica  enciclopedia_de
Electronica enciclopedia_de
 
Electronica(2)baja libros
Electronica(2)baja librosElectronica(2)baja libros
Electronica(2)baja libros
 
Electronica industrial timothy j. maloney
Electronica industrial   timothy j. maloneyElectronica industrial   timothy j. maloney
Electronica industrial timothy j. maloney
 
Electronica & pc's todos los conectores (spanish) by porru
Electronica & pc's   todos los conectores (spanish) by porruElectronica & pc's   todos los conectores (spanish) by porru
Electronica & pc's todos los conectores (spanish) by porru
 
Electricidad sistemas puesta_a_tierra
Electricidad sistemas puesta_a_tierraElectricidad sistemas puesta_a_tierra
Electricidad sistemas puesta_a_tierra
 
E book tecnologia electrica
E book tecnologia electricaE book tecnologia electrica
E book tecnologia electrica
 
E book sistemas electricos de potencia (grainger)
E book sistemas electricos de potencia (grainger)E book sistemas electricos de potencia (grainger)
E book sistemas electricos de potencia (grainger)
 
E book electronica industrial
E book electronica industrialE book electronica industrial
E book electronica industrial
 
Diccionario electricidad[1]
Diccionario electricidad[1]Diccionario electricidad[1]
Diccionario electricidad[1]
 
Diapositivas instalacion de contadores
Diapositivas instalacion de contadoresDiapositivas instalacion de contadores
Diapositivas instalacion de contadores
 
Curso de electronica iv fee 01 libro de texto
Curso de electronica iv fee 01 libro de texto Curso de electronica iv fee 01 libro de texto
Curso de electronica iv fee 01 libro de texto
 
Curso de electronica iii fee 01 libro de texto
Curso de electronica iii fee 01 libro de texto Curso de electronica iii fee 01 libro de texto
Curso de electronica iii fee 01 libro de texto
 
Curso de electronica ii fee 01 libro de texto
Curso de electronica ii fee 01 libro de texto Curso de electronica ii fee 01 libro de texto
Curso de electronica ii fee 01 libro de texto
 
Curso de electronica i fee 01 libro de texto
Curso de electronica i fee 01 libro de texto Curso de electronica i fee 01 libro de texto
Curso de electronica i fee 01 libro de texto
 
Conductores baja tensiòn
Conductores baja tensiònConductores baja tensiòn
Conductores baja tensiòn
 
Chapter 13opciones financieras
Chapter 13opciones financierasChapter 13opciones financieras
Chapter 13opciones financieras
 
Chapter 06anualid flujo caja
Chapter 06anualid flujo cajaChapter 06anualid flujo caja
Chapter 06anualid flujo caja
 

Electronics hambley2nd

  • 1. Solutions Manual Errata for Electronics, 2nd ed. by Allan R. Hambley Problem 1.17 In line two, change 3.135 W to 3.125 W. Problem 1.29 In line one, inside the first integral, delete the exponent 2 on i1. In line four, change 20 / 2 to ( 20 / 2 . ) 2 8 8 In line five, change Iiavg to I1avg. Problem 1.49 Toward the end of the solution, change “when Rs changes from 1 MΩ to 10 kΩ” to “when RL changes from 1 MΩ to 10 kΩ”. Problem 1.50 Change “when Rs changes from 0 to 100 Ω” to “when RL changes from 0 to 100 Ω”. Problem 1.62 1 In line two of Part (b), change (G + Gm 2 )RL to (Gm 1 − Gm 2 )RL . Make the 2 m1 same change in line two of Part (c). Problem 2.12 1 1 In Part (d), change to . jω (99C ) jω (101C ) In the last paragraph, change 99-pF to 101-pF. Problem 2.14 After the figure, change vo = 8vin to vo = –8vin and change the gain from 8 to –8. Problem 2.16 At the end of the solution, after “For AOL = 105”, change Av = –9.998 to Av = –9.9989 and change –R2/R1 = 10 to –R2/R1 = –10.
  • 2. Problem 2.33 The problem statement should have specified Wspace = 10 µm instead of 5 µm. Problem 2.38 In the figure, change the upper 10-kΩ resistor (connecting the inverting input to the output of the first op amp) to 15 kΩ. Problem 2.43 In Part (b), Equation (4), change R1 to R2. In Part (c), in the first equation after the figure, change vi to –vi. Problem 2.53 In the first line, change f0CL to fBCL. Problem 2.73 Before the figure, add the sentence: “The PSpice simulation is stored in the file named P2_73.” Problem 2.75 Delete the sentence stating that the plot of vo(t) is on the next page. Problem 3.10 In line three (an equation), change iD/R to vD/R. Problem 3.53 In the sentence beginning with “The dynamic resistance”, change nVT/ICQ to nVT/IDQ. Problem 3.56 In Part (a), change nVT/ICQ to nVT/IDQ. Problem 3.57 The solution uses rd for the diode resistance rather than rz as specified in the problem statement.
  • 3. Problem 3.58 In Part (c), line two (an equation), change the minus sign inside the parentheses to a plus sign. Problem 3.70 In line one, change “electon” to “atom”. Problem 3.90 In Part (c), line one, change the denominator of the fraction in parentheses from IR to –IR. Problem 3.92 At the end of the solution, add: “Larger capacitance produces less output voltage ripple and higher peak diode current”. Problem 4.10 In line five of the solution (an equation), change “10 − 0.6585” to “0.6585 − 10”. Problem 4.25 In the equation for Is (line seven of the solution), each of the two denominators should end with ) − 1 instead of − 1). Problem 4.34 In the line for part (d) with β = 100, we should have I = 9.53 mA (instead of 10 mA) and V = 9.53 V (rather than 10 V). Problem 4.45 Change Avo = −βRL/rπ to Avo = −βRC/rπ. Problem 4.50 At the end of step one, add: “Set all other independent signal sources to zero.” Problem 4.54 Next to the figure, change V EQ to VBEQ .
  • 4. Problem 4.60 In the first line after the figure, second equation, change IBEQ to IBQ. Problem 4.65 In the first line after the figure, insert an equals sign after IB. Problem 5.3 Calculation of the drain currents was omitted. The drain currents are: 2 2 (a) iD = K(vGS – Vto) = (W/L)(KP/2)(vGS – Vto) = 2.25 mA 2 (b) iD = K[2(vGS – Vto)vDS – (vDS) ] 2 = (W/L)(KP/2)[2(vGS – Vto)vDS – (vDS) ] = 2 mA (c) iD = 0 Problem 5.7 2 In the last sentence, change K = 25 to K = 25 µA/V . Problems 5.23 The last line of part (a) should read: VDSQ = 20 – 2IDQ = 12 V. Problem 5.25 Change the second equation from RSIDSQ = 6 V to RSIDQ ≅ 6 V. Problem 5.46 Change “greater than zero” to “greater than unity”. Problem 5.65 2 In the third-to-last sentence, change K(vGS5 – Vto) to K(vGS5 – Vto) . Problem 5.74 In the sentence after the opening equation, change “saturation” to “triode region”. In part (c) before the table, insert “Using the value of C given in part (d) of the problem, we have:”
  • 5. Problem 6.16 At the beginning of the solution, insert “The following solution is for an inverter operating at 400 MHz.” At the end of the solution, add “For an inverter –10 operating at 400 Hz, Pdynamic = 3.6 х 10 W.” Problem 6.23 In the third line, change “IOL = –1 mA” to “IOL = 1 mA”. Problems 6.24 In the first line, change “Pdynamic = If “ to “Pdynamic = Kf”. Problem 6.25 In the equation for Energy, change (42 – 12) to (52 – 02) and change 150 pJ to 250 pJ. In the equation for Pdynamic, change 150 to 250 and change 3.75 mW to 6.25 mW. Problem 6.32 In the circuit diagram, the device should be an enhancement MOSFET rather than a depletion MOSFET. Problem 6.36 Change the middle of the fourth line to read “VIH = 2.04 V, VIL = 1.08 V”. Problem 6.51 At the end of the first paragraph, just before the figure, insert the following: [Note: The solution assumes (W/L)p = 1. On the other hand for (W/L)p = 2, we would need (W/L)n = 16.] Problem 7.1 Delete the comma after the phrase “high precision”. Problem 7.11 In the first sentence, change “below” to “on the next page”. Problem 7.18 Toward the end of the main paragraph, in the equation for R2,
  • 6. insert a left-hand parenthesis the before 26mV. Problem 7.20 Actually the current decreases when β decreases. Thus, the percentage increase should be stated as -0.99%. Problem 7.22 At the beginning of part (a), add the following: (Note: The problem should have asked for proof that IO, rather than IC2, is independent of VBE.) Problem 7.25 In the first line, change VCC in the fraction numerator to 10. Problem 7.28 In the first sentence after the diagram, change P7_27 to P7_28. Problem 7.37 In the third line, change (15 + VGS1 – VGS3) to (15 – VGS1 – VGS3). Problem 7.38 At the beginning of the solution, add the following: “The problem statement should refer to Figure P7.38, not P7.36.” Problems 7.60 and 7.61 In the next-to-last sentence of each solution, change Acm to Avcm. Problem 7.65 In the first paragraph, change the value found for Av1 from 64.6 to 36.23. At the end of the solution, change the value found for the overall gain Av from 20.4 × 103 to 11.5 × 103. Problem 7.66 At the end of the solution, add the following sentence: “The pnp stage drops the dc level down so it comes out zero after the last (Q6) stage.” Problem 7.67 Throughout the solution, change all occurrences of 2000πt to 200πt.
  • 7. Problem 7.71 After the diagram, add the following: (Note: For the transistors to operate in the active region, the emitters of the current sinks must be connected to -VEE rather than to ground.) In the third line of the main paragaph, change “Q3 is a simple mirror” to “Q8 is a simple mirror”. Problem 7.74 In the the top line of page 327, change (10 µA)/β to (100 µA)/β. Problem 7.75 At the very end, change the value found for A1/A2 from 0.953 to 0.926. Problem 8.8 In part (a) of the solution, the components of the phase plot are incorrectly added. The correct phase plot should show a phase of +90° for low f , 0° for high f, and should decrease in a straight line between 3.18 MHz and 318 MHz. Problem 8.14 In the first line of part (b), change “drain” to “source”. Notice that the expression abbreviated as B simplifies to Cgs(Rsig + RL′ ) + CgdRsig(gm RL′ + 1), and the expression abbreviated as A simplifies to CgsCgdRsig RL′ . Problem 8.18 In part (e), change “rd = ∞ (because λ = 0)” to “rd ≅ 1/λIDQ = 40 kΩ”. Change the sentence about the break frequency to read simply: “The break frequency is 251 kHz.” Problem 8.24 Change the table to appear thus: RL 1 kΩ 10 kΩ RL′ 995 Ω 9.52 kΩ Av –4.99 –9.05 Rin,Miller 33.4 kΩ 19.9 kΩ Rx 25.0 kΩ 16.6 kΩ
  • 8. Problem 8.25 Change the second line after the first figure to read: Rin = Ri||Rin,Miller ≅ 0.1 Ω. Problem 8.30 Change “Equations 8.41 and 8.42” to “Equations 8.42 and 8.43”. Problem 8.33 In the second line change “Problem 8.33” to “Problem 8.32”. In the equation for ic, change 50sin(2000πt) to 500sin(2000πt). Change the value found for Ic,rms to 354 µA. Problem 8.36 1 Note that in the equation for hoe, the current term is small, and has rπ + rµ been ignored. Problem 8.40 In the first line of part (a), in the equation for IBQ, change “100” to “(1mA)/100”. Problem 8.42 In the table, change the units of the right-column value of RE from mΩ to MΩ. Problem 8.43 In the middle of part (a), “Solving Equation (2) for vo” should read “Solving Equation (2) for vπ”. In part (b), REF should be RE1. Problem 8.56 In the second circuit diagram, change Rsig = Rsig||RD to Rsig = Rsig||RG. ′ ′ Problem 8.66 The derivation of C1 should read as follows: Thus, the input resistance of the amplifier is Rin = RB||[rπ1 + (β + 1)(RE1||RE2||re2)] = 1046 Ω
  • 9. The resistance in series with C1 is Rin + Rs = 1096 Ω. C1 = 1/(2πf11096) = 1/(2π10 × 1096) = 14.5 µF Also, in the equation for C2, change “1/(2πf21168)” to “1/(2πf21020)”. Problem 9.7 In part (a) of the solution, the final equation should read X A1A2f A1A2 Af = o = = X s 1 + β2A1A2f 1 + β1A2 + β2A1A2 Also, in line four of part (b) change A2 to A3 and change “a a gain” to “a gain”. Problem 9.10 Change > to >>. Problem 9.14 Part (a) uses | VBE | = 0.7 V in saturation, not 0.6 V as specified in the problem. Problem 9.35 In the first line, delete the second occurrence of ii. Problem 9.44 In the last line, change “parallel” to “voltage”. Problem 9.45 The last sentence, should read: “Since we want Aß to be very large in magnitude, we choose small resistances for a current feedback network.” Problem 9.47 At the very end of the solution, change the units of the value found for Rof from Ω to kΩ. Problem 9.49 The problem should have called for Rmf = –5000 Ω. In the solution, change the units of the value found for Rif from MΩ to Ω.
  • 10. Problem 9.51 In the third line of part (a), delete the second occurrence of vi. Problem 9.52 In part (a) change the equation that begins line four to RL vo/ii = −Av Ri × = –417 MΩ Ro + RL In the last line of part (a), add a negative sign in front of the value found for β. In the fourth line of part (b), change β = 1/Rf to β = –1/Rf. Problem 9.53 In the third line of part (a), add a negative sign in front of AvoRi. At the end of part (a), change the value found for β to –2.16 × 10–5. In part (b), in the first line after the diagram, add a negative sign after the = and before the fraction. Problem 9.59 In part (d), change both instances of “1000t” to “100t”. Problem 9.64 In the last line, change 3500 Hz to 350 Hz. Problem 9.66 In the next-to-last line, change “imaginary” to “complex”. Problem 9.72 In the next-to-last line, change 180° to –180°. Problem 9.86 In part (c), the last two sentences should read: “Finally setting Aß = 1 yields A = -29 and ω = 6 /(RC ) . Thus an inverting amplifier is needed.” In part (d), change the sign on the last term from – to + in the denominator of the second equation.
  • 11. Problem 10.11 Delete the closing parenthesis after 0.0025 in the middle of the first equation. Change the value found for θJA to 150 °C/W. Problem 10.23 The trigonometric identity should read 2sin2(x) = 1 – cos(2x). In the integral equation that follows, change 10sin(4000πt) to 10cos(4000πt). Problem 10.27 In the fifth line, change the integrand to [1 – cos(2ωt)]. Problem 10.35 In part (a), change ( CC / 2 )RL to ( CC / 2 )2 /RL . V V Problem 10.37 In part (d), the final equation should read PQ1max = (VCC/2) × VCC/(2RL) = VCC /(4RL) = 7.03 W. 2 Problem 10.45 R2 R + R2 In Equation 10.49 in the text, should be replaced by 1 . R1 + R2 R2 Problem 10.50 In the second line of the solution, change “op amp” to “transistor”. Problem 10.63 In the second line, change “on the next page” to “below”. Problem 11.16 In the equation for C, insert a closing square bracket after the L. Problem 11.21 In the third line of the solution, change ωR = 3ω0 to fR = 3f0 .
  • 12. Problem 11.37 In the first line after the last set of diagrams, change Q2 = RL / Rs to Q2 = RL / Rs . 2 Also note that in the first diagram of the solution, Rs represents the internal source resistance, while in the rest of the solution, Rs represents the series equivalent of RL. Problem 11.38 Note that Rs represents the series equivalent of RL. In the second line, note that QC = 10 and change the value found for Rs to 5 Ω. In the third line, change 4.47 to 3.16, change 1423.5 to 1006.6, and change 409.77 to 465.2. Then the simulation results closely match predictions. Problem 11.39 Note that Rs represents the series equivalent of RL. In the second line, change the value found for Rs to 50 mΩ. (Note that QC = 100.) Problem 11.45 In part (c), change 256.51 pF to 316.43 pF and change 20.21 nF to 1269 pF. Problem 11.50 Note that in the solution rd has been taken to be very large. Problem 11.54 At the end of the solution sentence, change the period to a comma and add “or approximately 20 MHz. The third overtone frequency is about 30 MHz.” Problem 11.57 Note that “antiresonant frequency” means the same thing as “parallel- resonant frequency.” Problem 12.11 Note that in the solution, “node 2” refers to the noninverting input.
  • 13. Problem 12.12 After the first paragraph, change vo = VB + 4.7 to vo = VB – 4.7. After the second paragraph, change vo = VB – 4.7 to vo = VB + 4.7 and change vin > VB to vin < VB. In the plot at the end of the solution, change –1.3 on the y-axis to –1.7. Problem 12.17 Note that in the problem statement, the v2 referenced in the ninth line should be v1 . Problem 12.40 At the end of the solution, change ioR/2 to –ioR/2 and change 9.96 V to – 9.96 V.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.
  • 22.
  • 23.
  • 24.
  • 25.
  • 26.
  • 27.
  • 28.
  • 29.
  • 30.
  • 31.
  • 32.
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.
  • 41.
  • 42.
  • 43.
  • 44.
  • 45.
  • 46.
  • 47.
  • 48.
  • 49.
  • 50.
  • 51.
  • 52.
  • 53.
  • 54.
  • 55.
  • 56.
  • 57.
  • 58.
  • 59.
  • 60.
  • 61.
  • 62.
  • 63.
  • 64.
  • 65.
  • 66.
  • 67.
  • 68.
  • 69.
  • 70.
  • 71.
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77.
  • 78.
  • 79.
  • 80.
  • 81.
  • 82.
  • 83.
  • 84.
  • 85.
  • 86.
  • 87.
  • 88.
  • 89.
  • 90.
  • 91.
  • 92.
  • 93.
  • 94.
  • 95.
  • 96.
  • 97.
  • 98.
  • 99.
  • 100.
  • 101.
  • 102.
  • 103.
  • 104.
  • 105.
  • 106.
  • 107.
  • 108.
  • 109.
  • 110.
  • 111.
  • 112.
  • 113.
  • 114.
  • 115.
  • 116.
  • 117.
  • 118.
  • 119.
  • 120.
  • 121.
  • 122.
  • 123.
  • 124.
  • 125.
  • 126.
  • 127.
  • 128.
  • 129.
  • 130.
  • 131.
  • 132.
  • 133.
  • 134.
  • 135.
  • 136.
  • 137.
  • 138.
  • 139.
  • 140.
  • 141.
  • 142.
  • 143.
  • 144.
  • 145.
  • 146.
  • 147.
  • 148.
  • 149.
  • 150.
  • 151.
  • 152.
  • 153.
  • 154.
  • 155.
  • 156.
  • 157.
  • 158.
  • 159.
  • 160.
  • 161.
  • 162.
  • 163.
  • 164.
  • 165.
  • 166.
  • 167.
  • 168.
  • 169.
  • 170.
  • 171.
  • 172.
  • 173.
  • 174.
  • 175.
  • 176.
  • 177.
  • 178.
  • 179.
  • 180.
  • 181.
  • 182.
  • 183.
  • 184.
  • 185.
  • 186.
  • 187.
  • 188.
  • 189.
  • 190.
  • 191.
  • 192.
  • 193.
  • 194.
  • 195.
  • 196.
  • 197.
  • 198.
  • 199.
  • 200.
  • 201.
  • 202.
  • 203.
  • 204.
  • 205.
  • 206.
  • 207.
  • 208.
  • 209.
  • 210.
  • 211.
  • 212.
  • 213.
  • 214.
  • 215.
  • 216.
  • 217.
  • 218.
  • 219.
  • 220.
  • 221.
  • 222.
  • 223.
  • 224.
  • 225.
  • 226.
  • 227.
  • 228.
  • 229.
  • 230.
  • 231.
  • 232.
  • 233.
  • 234.
  • 235.
  • 236.
  • 237.
  • 238.
  • 239.
  • 240.
  • 241.
  • 242.
  • 243.
  • 244.
  • 245.
  • 246.
  • 247.
  • 248.
  • 249.
  • 250.
  • 251.
  • 252.
  • 253.
  • 254.
  • 255.
  • 256.
  • 257.
  • 258.
  • 259.
  • 260.
  • 261.
  • 262.
  • 263.
  • 264.
  • 265.
  • 266.
  • 267.
  • 268.
  • 269.
  • 270.
  • 271.
  • 272.
  • 273.
  • 274.
  • 275.
  • 276.
  • 277.
  • 278.
  • 279.
  • 280.
  • 281.
  • 282.
  • 283.
  • 284.
  • 285.
  • 286.
  • 287.
  • 288.
  • 289.
  • 290.
  • 291.
  • 292.
  • 293.
  • 294.
  • 295.
  • 296.
  • 297.
  • 298.
  • 299.
  • 300.
  • 301.
  • 302.
  • 303.
  • 304.
  • 305.
  • 306.
  • 307.
  • 308.
  • 309.
  • 310.
  • 311.
  • 312.
  • 313.
  • 314.
  • 315.
  • 316.
  • 317.
  • 318.
  • 319.
  • 320.
  • 321.
  • 322.
  • 323.
  • 324.
  • 325.
  • 326.
  • 327.
  • 328.
  • 329.
  • 330.
  • 331.
  • 332.
  • 333.
  • 334.
  • 335.
  • 336.
  • 337.
  • 338.
  • 339.
  • 340.
  • 341.
  • 342.
  • 343.
  • 344.
  • 345.
  • 346.
  • 347.
  • 348.
  • 349.
  • 350.
  • 351.
  • 352.
  • 353.
  • 354.
  • 355.
  • 356.
  • 357.
  • 358.
  • 359.
  • 360.
  • 361.
  • 362.
  • 363.
  • 364.
  • 365.
  • 366.
  • 367.
  • 368.
  • 369.
  • 370.
  • 371.
  • 372.
  • 373.
  • 374.
  • 375.
  • 376.
  • 377.
  • 378.
  • 379.
  • 380.
  • 381.
  • 382.
  • 383.
  • 384.
  • 385.
  • 386.
  • 387.
  • 388.
  • 389.
  • 390.
  • 391.
  • 392.
  • 393.
  • 394.
  • 395.
  • 396.
  • 397.
  • 398.
  • 399.
  • 400.
  • 401.
  • 402.
  • 403.
  • 404.
  • 405.
  • 406.
  • 407.
  • 408.
  • 409.
  • 410.
  • 411.
  • 412.
  • 413.
  • 414.
  • 415.
  • 416.
  • 417.
  • 418.
  • 419.
  • 420.
  • 421.
  • 422.
  • 423.
  • 424.
  • 425.
  • 426.
  • 427.
  • 428.
  • 429.
  • 430.
  • 431.
  • 432.
  • 433.
  • 434.
  • 435.
  • 436.
  • 437.
  • 438.
  • 439.
  • 440.
  • 441.
  • 442.
  • 443.
  • 444.
  • 445.
  • 446.
  • 447.
  • 448.
  • 449.
  • 450.
  • 451.
  • 452.
  • 453.
  • 454.
  • 455.
  • 456.
  • 457.
  • 458.
  • 459.
  • 460.
  • 461.
  • 462.
  • 463.
  • 464.
  • 465.
  • 466.
  • 467.
  • 468.
  • 469.
  • 470.
  • 471.
  • 472.
  • 473.
  • 474.
  • 475.
  • 476.
  • 477.
  • 478.
  • 479.
  • 480.
  • 481.
  • 482.
  • 483.
  • 484.
  • 485.
  • 486.
  • 487.
  • 488.
  • 489.
  • 490.
  • 491.
  • 492.
  • 493.
  • 494.
  • 495.
  • 496.
  • 497.
  • 498.
  • 499.
  • 500.
  • 501.
  • 502.
  • 503.
  • 504.
  • 505.
  • 506.
  • 507.
  • 508.
  • 509.
  • 510.
  • 511.
  • 512.
  • 513.
  • 514.
  • 515.
  • 516.
  • 517.
  • 518.
  • 519.
  • 520.
  • 521.
  • 522.
  • 523.
  • 524.
  • 525.
  • 526.
  • 527.
  • 528.
  • 529.
  • 530.
  • 531.
  • 532.
  • 533.
  • 534.
  • 535.
  • 536.
  • 537.
  • 538.
  • 539.
  • 540.
  • 541.
  • 542.
  • 543.
  • 544.
  • 545.
  • 546.
  • 547.
  • 548.
  • 549.
  • 550.
  • 551.
  • 552.
  • 553.
  • 554.
  • 555.
  • 556.
  • 557.
  • 558.
  • 559.
  • 560. Errata for the first printing of Electronics, 2nd edition by Allan R. Hambley Page Location Correction (underlined) ix Line 5 …Chapters 4 and 5 can be reversed… 80 Figure 2.23 Delete the vertical line through the voltage source v1. 83 Sentence above The voltage across R1 is given by Equation 2.25 125 D2.33 line 8 Wspace = 10 μm . (For consistency with the solutions manual.) 301 First margin using SPICE to play with circuits. comment 476 Problem 7.20 line 5 percentage does IC2 change? 476 Problem 7.22 line 3 Derive an expression for the current IO for the circuit 479 Problem 7.38 line 2 Figure P7.38. Allow... 563 Line 4 Interchange pnp and npn. 592 Lines 9 and 10 …Rif = 24.6 MΩ 651 D9.40 line 2 Insert magnitude bars around beta: β 651 D9.49 line 3 ...with a gain magnitude ... 653 Problem 9.78 Should refer to Problem 9.76 rather than Problem 9.75. 703 Equation 10.49 R2 R + R2 Replace with 1 . R1 + R2 R2 717 Line 6 10.8 Repeat Example 10.8, … 721 Problem 10.10 The third sentence of the problem should read: "The case-to-sink thermal resistance is θCS = 0.5NC/W." 725 Hint for problem The input terminals do not need to be D10.50 interchanged. 750 Line 2 from bottom fL = 6.96 MHz 777 Line 12 RL = -1.875 MΩ 791 Problem 11.2 Write the transfer function magnitude… 844 Figure 12.48 There are 2n – 1 comparators not 2n-1 as indicated in the figure.
  • 561. 852 Problem 12.17 line 9 Replace v2 with v1. Please contact the author at arhamble@mtu.edu with any additional corrections.