SlideShare uma empresa Scribd logo
1 de 39
DISEÑO DE UN SISTEMA DESCENTRALIZADO INTEGRADO Y SOSTENIBLE  PARA EL DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENEFICIADERO DE CAFÉ <br />                            <br />José Miguel González   -  2006135580<br />Liseth Nayibe Javela     -  2006135130<br />UNIVERSIDAD SURCOLOMBIANA<br />FACULTAD DE INGENIERIA<br />PROGRAMA DE INGENIERIA AGRICOLA<br />SANEAMIENTO RURAL. B- 2009 <br />Neiva - Huila<br />DISEÑO DE UN SISTEMA DESCENTRALIZADO INTEGRADO Y SOSTENIBLE  PARA EL DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENEFICIADERO DE CAFÉ <br />                            <br />José Miguel González   -  2006135580<br />Liseth Nayibe Javela     -  2006135130<br />Presentado a:<br />Msc. EDUARDO VALENCIA GRANADA<br />UNIVERSIDAD SURCOLOMBIANA<br />FACULTAD DE INGENIERIA<br />PROGRAMA DE INGENIERIA AGRICOLA<br />SANEAMIENTO RURAL. B- 2009 <br />Neiva - Huila<br />CONTENIDO<br />INTRODUCCION<br />PROPUESTA  <br />Trampa de Grasas<br />Desnatador<br />Filtro en arena o filtro vertical<br />Alberca Biológica<br />GENERALIDADES<br />Propuesta<br />Localización<br />DISEÑO <br />Esquema General de la PTAR<br />Propuesta 1. Sistema de tratamiento de Aguas residuales Domesticas<br />Información Básica<br />Cálculos Básicos<br />Diseño Conceptual<br />Diseño Físico<br />Diseño de la Trampa de Grasas<br />Diseño de la Alberca Biológica<br />Diseño del canal con buchón de agua<br />Propuesta 2. Sistema de Tratamiento de Aguas residuales provenientes del beneficio de café<br />Diseño Conceptual<br />Diseño Físico<br />Diseño del desnatador<br />Diseño del filtro vertical<br />Diseño del canal con buchón de agua<br />Ventajas del Proyecto <br />PRESUPUESTO<br />CONCLUSIONES<br />BIBLIOGRAFÍA<br />PLANOS<br />LISTA DE ABREVIATURAS<br />Af=Afluente<br />Ef=Efluente<br />QAR=Caudal de agua residual<br />L=Largo<br />bl=Borde Libre<br />h= Altura<br />a =Ancho<br />b= base<br />V=Volumen <br />THR=Tiempo de Retención Hidráulica<br />As= Área superficial<br />PTAR=Planta de Tratamiento de Aguas Residuales<br />DBO=Demanda Bioquímica de Oxigeno<br />SS=Sólidos Suspendidos<br />CF=Coliformes Fecales<br />N=Nitrógeno<br />P=Fosforo<br />AR=Aguas Residuales<br />mm=Milímetros<br />L=Litros<br />T.S.A.M=Tanque Séptico de Acción Múltiple<br /> <br />LISTA DE TABLAS<br />Tabla 1. Caracterización de Aguas residuales domésticas.<br />Tabla 2. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila.<br />Tabla 3. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila.<br />Tabla 4. Valores de los parámetros de las aguas residuales domésticas del sector rural del departamento del Huila.<br />Tabla 5. Eficiencias teóricas de sistemas de tratamiento de ARD utilizando   Alberca Biológica.<br />Tabla 6. Dimensiones de las Unidades del sistema de tratamiento de ARD.<br />Tabla 7. Caracterización de las Aguas Residuales del Café<br />La tabla 8, muestra las eficiencias reales para el sistema de tratamiento de aguas residuales del beneficio del café utilizando filtros verticales y desnatadores. <br />Tabla 9. Dimensiones de las Unidades del sistema de tratamiento de Aguas Residuales del Beneficio del Café.<br />Tabla 10. Beneficios de la PTAR<br />LISTA DE FIGURAS<br />Figura 1. Sistema General de la PTAR<br />Figura 2. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de ARD.<br />Figura 3. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de tratamiento de ARD<br />Figura 4. Diagrama de Subproductos del sistema de tratamiento de ARD.<br />Figura 5. Vista. Planta y corte longitudinal de la Trampa de Grasas.<br />Figura 6. Esquemas vista planta, corte longitudinal y corte transversal de la Alberca Biológica. <br />Figura 7. Vista en planta, corte longitudinal y corte transversal de la Albercas Biológica para efectos de construcción.<br />Figura 8. Vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.<br />Figura 9. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de Aguas Residuales Del Beneficio Del Café.<br />Figura 10. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de tratamiento de Aguas Residuales Del Beneficio Del Café.   <br />Figura 11. Diagrama de Subproductos del sistema de tratamiento de Aguas Residuales Del Beneficio Del Café.<br />Figura 12. Vista planta y corte longitudinal del Filtro Vertical.<br />Figura 13. Vista planta y corte longitudinal del Desnatador.<br />Figura 14. Esquemas vista planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.<br />Figura 15. Vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.<br />INTRODUCCION<br />En la Vereda Santa Rita a 8 kilómetros del casco urbano del Municipio de Pitalito en el departamento del Huila, encontramos la finca de don Freddy Méndez un pequeño caficultor que cuenta con 5 hectáreas cultivadas en café, la producción de la zona se estima en 9000 Kg/ha – año de café cereza.<br />La problemática de la zona, es que la fuente  hídrica se esta viendo afectada por que el agua utilizada para el beneficio del café es arrojada sin ningún tratamiento a la quebrada la magdalena, y aguas abajo esta es tomada para el abastecimiento de la escuela de la vereda, no siendo poco los campesinos no solo vierten el agua del beneficio del café si no que también arrojan las AR de sus viviendas. Estas aguas se han convertido en un problema de salud pública para la región por que los alumnos de la escuela sin tener conocimiento del alto grado de contaminación del agua, beben de esta y por consecuencia se han visto dificultades de salud en los menores.<br />Don Freddy arraigado en sus costumbres comete el error de contaminar como el resto de campesinos, en vista de esto se le propone una alternativa para el tratamiento de las aguas residuales de su vivienda y de las aguas residuales del beneficio del café.<br />Para las aguas residuales del beneficio del café se mostrara el diseño de una PTAR integrada por un desnatador, un filtro vertical y un canal de plantas acuáticas y se le planteara la posibilidad de un reusó de estas aguas residuales,  así como también un reusó a las aguas residuales domesticas.<br />Se planteara una PTARD para las aguas que salen de la vivienda  y esta contara con una trampa de grasas, una alberca biológica y un canal con plantas acuáticas.<br />Con esto se busca disminuir la contaminación de la quebrada la magdalena y también reducir los volúmenes de agua de la quebrada Rio lindo que abastece a la finca, por que estas aguas residuales ya tratadas contribuirán al riego del cultivo de café y a otros usos agrícolas.<br />Propuesta<br />Implementar un sistema de tratamiento para darle solución a la contaminación generada por las aguas domesticas y las aguas procedentes del beneficio de café cuando estas son vertidas a la quebrada La Bonita sin ningún tipo de tratamiento, trayendo como efecto el deterioro de la fuente hídrica; para tal fin se desea realizar una PTAR con dos sistemas uno para ARD (aguas residuales domesticas) y una con Aguas residuales de café, el primero cuenta con trampa de grasas, alberca biológica y un canal con plantas y el segundo cuenta con lo anterior más un desnatador. A continuación se da la descripción de las unidades:<br />Trampa de Grasas<br />Las trampas de grasa son tanques pequeños, diseñados y construidos para separar la grasa y aceite de las aguas residuales. El agua residual llega caliente a la trampa de grasas, en donde, por choque térmico disminuye su temperatura, Los sólidos en suspensión o las partículas líquidas (aceites o grasas)  flotan debido a que su densidad es menor a la del agua. (González, 2009).<br />Desnatador <br />Un desnatador es un dispositivo usado para separar, por gravedad, las partículas en suspensión en una masa de agua. La sedimentación es un proceso muy importante, por esto se utiliza como un pretratamiento en lo sistemas, ya que las partículas que se encuentran en el agua pueden ser perjudiciales en los procesos de tratamiento, debido a que  elevadas turbiedades inhiben los procesos biológicos y se depositan en el medio filtrante causando pérdidas de carga y deterioro de la calidad del agua efluente de los filtros. En el sedimentador se remueven partículas inferiores a 0,2 mm y superiores a 0,05 mm. (OPS, 2005).<br />Filtro en Arena o filtro Vertical <br />Los filtros de arena o filtro vertical, son los elementos más utilizados para filtración de aguas con cargas bajas o medianas de contaminantes, que requieran una retención de partículas de hasta veinte micras de tamaño. Las partículas en suspensión que lleva el agua son retenidas durante su paso a través de un lecho filtrante de arena. Una vez que el filtro se haya cargado de impurezas, alcanzando una pérdida de carga prefijada, La calidad de la filtración depende de varios parámetros, entre otros, la forma del filtro, altura del lecho filtrante, características y granulometría de la masa filtrante, velocidad de filtración. http://www.sefiltra.com/filtros-de-arena.php <br />Alberca Biológica<br />Una alberca biológica Es un sistema de tratamiento de aguas residuales utilizado para el tratamiento de pequeños caudales, generalmente de tipo doméstico o de las explotaciones pecuarias; consiste en un tanque donde se siembran plantas acuáticas que son las que realizan  el  tratamiento y se complementa con un filtro (Almario, 2008)<br />Generalidades<br />Propuesta<br />Se proponen dos tipos de tratamientos uno para las ARD y el otro para las aguas provenientes del beneficio del café. <br />Alternativa  1.  Para las ARD, Como un tratamiento preliminar, se construirá una trampa de grasas, esta ayudara a remover todas las partículas en flotación, grasas y aceites. El tratamiento Primario será a cargo de una alberca biológica esta removerá un porcentaje de DBO, SS, N y F. En el tratamiento secundario se construirá un canal con plantas acuáticas, esta terminara de remover las concentraciones de DBO, SS, N, F y Cf. El tratamiento se concluye con un reusó de las AR tratadas en el cultivo del café.   <br />Alternativa 2. AR del beneficio del café, para el tratamiento preliminar se construirá un desnatador que ayudara a quitar las partículas en flotación, se complementara con un filtro vertical que removerá DBO y SS, ya el tratamiento secundario se realizara con un canal de plantas acuáticas esta estructura con ayuda de las plantas removerán el restante de DBO, SS, N, F y Cf. Este tratamiento culminara como el de las ARD, en un reusó en el cultivo del café. <br />Localización<br />La finca de Don Freddy Méndez esta ubica en la Vereda Santa Rita a 8 kilómetros del casco urbano del   Municipio de Pitalito. Cuenta con buenas vías de acceso y servicio de trasporte cada hora de una ruta de colectivo que llega hasta la finca. Cuenta con una extensión de 5 hectáreas sembradas en café, es una empresa familiar, y cuenta con una extensión de 32 hectáreas.   <br />La finca está ubicada en una zona cafetera,  la base de la economía siempre ha sido el café, auto sostenible, y actualmente se encuentra en el proceso de mejoramiento agroforestal para implementar el ecoturismo en esta zona. Cuenta con 5 hectáreas  que  están dedicadas al cultivo del café, el plátano, la yuca y especies menores que complementan la seguridad alimenticia de este grupo familiar conformado por doce personas. Las restantes 27 hectáreas constituyen una reserva forestal que la conservan y desean ampliarla para seguir siendo fuente generadora de agua y oxígeno para el mundo.  Los suelos son muy actos para la producción de café y presenta muy buena retención de agua, produciendo cafés especiales y con muy buena comercialización.<br />  <br />Diseño<br />Esquema General de la PTAR<br />En la Figura 1 se muestra el esquema general de la PTAR en donde se encuentran integrados el  sistema de tratamiento de ARD y el sistema de tratamiento de aguas provenientes del benéfico del café integrados, posteriormente cada sistema será analizada por separado.<br />Figura 1.  Esquema general de la PTAR<br />SISTEMA 1: SISTEMA DE TRATAMIENTO DE AGUAS ESIDUALES <br />                       DOMESTICAS<br />Información básica <br />Para caracterizar las aguas residuales, se tomo información de la literatura (ver tabla 1) y resultados de estudios realizados a algunos municipios del Huila (ver tablas 2, 3). Los valores finalmente seleccionados para este estudio se muestran en la tabla 4, semejándose a una agua residual media de acuerdo a Metcalf & Eddy.<br />Tabla 1. Caracterización de Aguas residuales domésticas. <br />PARAMETROUNIDADESCONCENTRACIÓNDEBILMEDIAFUERTEDBO5mg/L110220400DQOmg/L2505001000SSmg/L100220350STmg/L3507201200Grasasmg/L50100150Nmg/L204085Pmg/L4815CTN°/100 ml106 - 107107 - 108107 -109<br />            Fuente: González. 2009<br /> <br />Tabla 2. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila.<br />MUNICIPIOQTODDBO5DQOSSSTNPG-A CFL/s°Cmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/LUFC/100mlNMP/100mlAlgeciras14,825.91,07109198,71082943,51,29-1,6E+13Baraya19,88260,67112165245-0,0210,0632088500 Campoalegre16,8213284460,2272-44,55,78-16x108 Colombia4,8223.50,8223,5337,585-5,7--Hobo2523.51,032003272781640,222,19--Iquira6,3225.31,0110207310-116194-22,5Neiva61728-19235014547116,46,33,224x104 Palermo5,3--14735884-0,76--Rivera39,51241,1580157107-0,339,227,65-Santa maría13,38202,9158322188-20,51,59-14x108 Tello15,7-0,3231488185-1,21,6--Teruel21,54--105,31255,2593,25-----Villavieja4,17--245-180-----Yaguará13--3806294,16---18,2-<br />Fuente: Narváez. 2009<br />Tabla 3. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila.<br />PARAMETROUNIDADESPITALISNOSDBO5mg/L100216DQOmg/L344464SSmg/L233203STmg/L337347Pmg/L6.431.56<br />      Fuente: Narváez, Silva. 2009.<br />Tabla 4. Valores de los parámetros de las aguas residuales domésticas del sector rural del departamento del Huila.<br />PARAMETROUNIDADESCONCENTRACIÓNDBOmg/L200SSmg/L250Grasasmg/L100Nmg/L40Pmg/L8CFUFC/100 ml108<br />          Fuente: Narváez, Silva. 2009.<br />Población<br />Para las ARD, el número de habitantes en la vivienda de don Freddy es de 12 personas <br />Cálculos Básicos<br />Caudal de aguas residuales (QAR)<br />En el cálculo se utilizo la siguiente fórmula:<br />  <br />D: Dotación <br />CR: Coeficiente de retorno<br />P: Población <br />- Dotación (D): Tomando como base el RAS 2000 titulo B, tabla B2.2 y teniendo en cuenta que en el sector rural los consumos de aguas son mayores al sector urbano se adoptó: <br />D = 200 L/Hab-día<br />- Coeficiente de retorno (CR): Según el RAS 2000 titulo D, tabla D3.1 se adoptó:<br />CR = 0.8<br />QAR=1.92 m3/día<br />Caracterización de las aguas residuales del beneficio del café <br />El café maduro presenta una composición en la cual el grano, que es la parte aprovechable para el proceso, representa el 20% del volumen total de la fruta, de manera tal que, el procesamiento de beneficiado genera un 80% del volumen procesado en desechos. El café es procesado de varias formas, en el tradicional no es usado ningún tipo de tratamientos de aguas o subproductos de cosecha (cáscara). El ecológico si usa un proceso de tratamientos de aguas y subproductos del café. El beneficio tradicional utiliza 10 L de agua por Kg de café pergamino y el beneficio ecológico utiliza 1 L/Kg de café pergamino. (Cortes, 2009)<br />La tabla 5, presenta una caracterización de las aguas residuales del beneficio del café, realizada por el comité de cafeteros en el departamento del Huila. <br />Tabla 5. Caracterización de las Aguas Residuales del Café<br />ParámetrosUnidades Valor pHUnidades 4,06DBOmg/l9700DQOmg/l19800SSmg/l7000<br />                        Fuente: Laboratorio Agualimsu 2004<br />La cosecha dura dos meses y Don Freddy recoge un 60% de la producción en la cosecha por hectárea. Y en el beneficio tradicional utiliza 10 L de agua por Kg de café pergamino.<br />la producción de la zona se estima en 9000 Kg/ha – año de café cereza<br />Caudal de aguas residuales provenientes del beneficio del café (QAR)<br />En el cálculo se utilizo la siguiente fórmula:<br />  <br />D: Dotación <br />P: Producción  <br />- Dotación (D): De la tesis “Evaluación preliminar de los sistemas de tratamiento de aguas residuales del beneficio del café de la vereda villa Colombia. La Plata – Huila” de (Cortes y Ríos, 2009) se Tomo que en el beneficio tradicional se utiliza 10 L de agua por Kg de café pergamino: <br />- Producción (P): Producción de café cereza por cosecha en las 5 hectáreas de don Freddy.  <br />P=PCafe*% de recoleccion*# de ha <br />PCafe: Producción de café al año en la zona<br />- Producción (PCafe): En la zona se estima una producción de 9000 Kg/ha – año de café cereza, y don Freddy recoge un 60% de la producción en la cosecha por hectárea.<br />P= 9000Kgha-año *  60 %*5 ha=27000 Kgaño <br />QAR=10LKg*27000Kgaño=270000 Laño* 1m31000 L*1año60d=4.5 m3dia<br />QAR= 4.5 m3/día<br />Diseño Conceptual<br />La figura 2, muestra el esquema general, donde las aguas grises (lavaplatos, lavadero, lavamanos y ducha) provenientes de la vivienda pasan por una trampa de grasas que cumple la labor de atrapar grasas, aceites y  detergentes. El efluente de esta trampa de grasas, con el afluente de aguas negras (baterías sanitarias) de la vivienda se une y pasa por una alberca biológica donde se sembraran heliconias y su objetivo es remover los sólidos suspendidos, material flotante y parte de la concentración de DBO, F y N. El efluente de la alberca biológica pasa a un canal sembrado con Buchón de agua u otro cultivo, donde culminara de tratar las aguas residuales y les removerá el restante de la concentración de DBO, F, N, Nutrientes y Cf. Esta etapa se considera en el sistema como tratamiento. El efluente del canal con plantas es usado en el riego del cultivo de café, fase que se considera en el  sistema como reusó. Los Buchones van de nuevo a la vivienda para ser comercializadas, considerando esta fase en el sistema como producción.<br />Figura 2. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de ARD.<br />Diagrama de niveles de tratamientos de las unidades del sistema y de los procesos a realizar.<br />La figura 3, muestra el esquema de los tratamientos y los procesos que se espera se realicen en el sistema. En los procesos En forma descendente se encuentran las unidades, el proceso principal, el contaminante principal removido y los contaminantes secundarios. Un tratamiento preliminar (trampa de grasas), un tratamiento primario (alberca biológica) y un tratamiento secundario (Un canal con Buchón de Agua).<br />Figura 3. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de tratamiento de ARD<br />Diagrama de subproductos<br />En La figura 4, se enseña  el esquema de disposición de los subproductos del sistema, de forma descendente se muestran las unidades, el subproducto que se deriva y finalmente su disposición.<br />Figura 4. Diagrama de Subproductos del sistema de tratamiento de ARD.<br />Eficiencia teórica de sistemas de Tratamiento de ARD <br />Se tomo una tabla de eficiencias reales de un sistema de tratamiento de aguas residuales domesticas, que utiliza albercas bilógicas, trampa de grasas  para el tratamiento de las AR,  de la tesis “Sistemas Descentralizados Integrados y Sostenibles Para el Tratamiento De Aguas Residuales Domesticas En El Sector Rural Del Departamento Del Huila” de (Narváez y Silva, 2009). La tabla 6, muestra las eficiencias esperadas para el sistema de tratamiento.<br />Tabla 6. Eficiencias teóricas de sistemas de tratamiento de ARD utilizando   Alberca Biológica. (González, 2009).<br />PARAMETROAFLUENTEEFLUENTE% REMOCIONDBO (mg/L)20010,795SS (mg/L)250698GRASAS (mg/L)100496N (mg/L)406,285P (mg/L)83,754CF NMP/100ml10810499,9<br />           FUENTE: González. 2009.<br />DISEÑO FISICO<br />Se diseñó teniendo en cuenta los criterios propuestos en el RAS – 2000 y las albercas biológicas basadas en los criterios de la en la Tesis “Manejo de los Residuos de la Explotación Porcícola en la Institución Educativa El Tejar municipio  de Timaná Huila. Diseño de una Alberca Biológica”. (Medina, 2007). <br />3.1.4.1 Diseño De La Trampa De Grasas<br />Para el diseño de acuerdo al RAS, la trampa debe tener 0.25m2 por 1.0  L/s de agua residual.<br />QAR=caudal de aguas residuales (L/s)<br />A=Área (m2)<br />a=Ancho (m)<br />L=Longitud (m)<br />h=Altura (m)<br />Cálculo del área (m2)<br />QAR= 0.022L/s (Ya calculado)<br />A= 0.0055m2 <br />Cálculo de la longitud (L)<br />Si se calcula cuadrada    <br />                       L= 0.074 m<br />Por construcción las dimensiones serán las siguientes (González, 2009):<br />a= 0.6mh= 0.6mL= 0.6m<br />La figura 5 muestra el esquema de la vista en planta y corte longitudinal de la trampa de grasas. <br />                              Vista en planta                     Corte Longitudinal<br />Figura 5. Vista. Planta y corte longitudinal de la Trampa de Grasas.<br />3.1.4.2 Diseño De La Alberca Biológica <br />Relación largo ancho de los tanques con Buchón de Agua    L: a        2: 1<br />Altura de la Alberca biológica  h = 0.8m<br />La figura 6 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal de la Alberca Biológica.<br />Vista en planta<br />     <br />       Corte longitudinal                                   Detalle del Filtro                                                                              <br />                                                                                   <br />Figura 6. Esquemas vista planta, corte longitudinal y corte transversal de la Alberca Biológica. <br />Cálculos de las tanques con Buchón de Agua.<br />Se diseñó un solo tanque, el cual se divide en dos para aumentar su eficiencia; tomando como parámetro el tiempo de retención hidráulica (TRH). <br />V=Volumen (m3)<br />TRH=Tiempo de Retención Hidráulica (día)<br />QAR=Caudal de Aguas Residuales (m3/día)<br />As=Área superficial (m2)<br />h=Altura (m)<br />a=Ancho (m)<br />L=Largo (m)<br />Calculo del volumen (V)<br />QAR=1.92m3/día<br />TRH=1dia (Asumido con base al TRH de un Tanque Séptico)<br />                        V = 1.92 m3<br />Cálculo del área superficial (As)<br />              <br />Teniendo en cuenta la profundidad de las raíces del Buchón de agua, la profundidad de la alberca se adopta:<br />      h = 0.8 m <br />As = 2.4 m2           <br />Relación largo ancho<br />      <br />Cálculo del ancho (a)                                     <br />-1276353700780 <br />                     <br />                                         a=1.1 m                 <br />Cálculo del largo (L)<br />                                      L=2.2 m<br />                                            <br />Para efectos de construcción la longitud de cada tanque es:<br />L=1 m<br />Cálculo del Filtro Anaerobio  <br />El filtro anaerobio se diseño teniendo en cuenta el parámetro volumen per cápita de filtro.<br />Vf=Volumen del filtro (m3)<br />P=población (Hab)<br />Vp=Volumen per cápita de filtro (m3/hab)<br />C=Coeficiente de mayoración de volumen<br />hf=Altura del filtro (m)<br />hc=Perdida de cabeza (m)<br />hs= Altura del sobrenadante (m)<br />h1=Altura capa de Arena (m)<br />h2=Altura capa de Gravilla (m)<br />h3=Altura capa de Grava (m)<br />Lf=Largo del filtro (m)<br />af=Ancho del filtro (m)<br />Cálculo del Volumen del filtro (Vf).  <br /> <br />Vp =0.05m3/hab<br />P=12 Hab  <br />C=1.2 Equivalente al 20%<br />Vf = 0.7m3                     <br />Altura del filtro (hf)<br />hc=0.1m Por el paso del liquido por la intersección del filtro<br />hs=0.1m Por Sobrenadante<br />h=0.8 m<br />                                 hf=0.6 m<br />Para efectos de construcción:<br />h2 = 0.2m Gravillah1 = 0.2m Arenah3 = 0.2m Grava<br />Largo del filtro (Lf)<br />Por construcción tomamos el ancho del filtro, con el mismo valor del tanque.<br />      <br />                            Lf=1.2 m <br />  <br />El filtro se divide en dos compartimientos de L=0.6m, para asegurar el flujo descendente – ascendente. La figura 9 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal de la Alberca Biológica para efectos de construcción. <br />Vista en planta<br />                            Corte longitudinal                                Detalle del Filtro<br />                                                                                                <br />Figura 7. Vista en planta, corte longitudinal y corte transversal de la Albercas Biológica para efectos de construcción.<br />3.1.4.3 Diseño Del Canal Con Buchón de Agua<br />Se diseñó un solo tanque, el cual se divide en dos para aumentar su eficiencia; tomando como parámetro el tiempo de retención hidráulica (TRH). <br />V=Volumen (m3)<br />TRH=Tiempo de Retención Hidráulica (día)<br />QAR=Caudal de Aguas Residuales (m3/día)<br />As=Área superficial (m2)<br />h=Altura (m)<br />a=Ancho (m)<br />L=Largo (m)<br />Calculo del volumen (V)<br />QAR=1.92m3/día<br />TRH=1dia (Asumido con base al TRH de un Tanque Séptico)<br />                       V = 1.92 m3<br />Cálculo del área superficial (As)<br />              <br />Teniendo en cuenta la profundidad de las raíces del Buchón de Agua, la profundidad de la alberca se adopta:<br />      h = 0.8 m <br />As = 2.4 m2           <br />Relación largo ancho<br />      <br />Cálculo del ancho (a)<br />                                           <br /> 62865-4445                     <br />                                         a=1.1 m                 <br />Cálculo del largo (L)<br />                                      L=2.2 m<br />                                            <br />Para efectos de construcción la longitud del  tanque es:<br />L=2 m<br />La figura 8 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua, para efectos de construcción. <br />Vista en planta<br />Corte longitudinal<br />Figura 8. Vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.<br />La tabla 7 muestra las dimensiones de cada una de las unidades del sistema de tratamiento de ARD<br />Tabla 7. Dimensiones de las Unidades del sistema de tratamiento de ARD<br />UNIDAD PARAMETROMEDIDA (m)Trampa de grasasLongitud 0.6Ancho0.6Altura0.6Tanque 1 y 2Longitud 1.0Ancho1.0Altura0.8Filtro anaerobio Longitud 1.2 Ancho1.2Altura0.6Canal con Buchón de AguaLongitud 1.0Ancho1.0Altura0.8<br />               Fuente: Javela y Gonzalez. 2009<br />Propuesta 2:  SISTEMA  DE TRATAMIENTO DE AGUAS RESIDUALES <br />                             PROVENIENTES DEL BENEFICIO DEL CAFÉ<br />DISEÑO CONCEPTUAL<br />La figura 9, muestra el esquema general, donde las aguas provenientes del beneficio del café pasan por un desnatador y su objetivo es remover los sólidos suspendidos, material flotante de las AR.  El efluente de este desnatador, pasa por un filtro vertical cuya labor es remover parte de la concentración de DBO y S.S. El efluente del Filtro vertical pasa a un canal sembrado con Buchón de agua u otro cultivo, donde culminara de tratar las aguas residuales y les removerá el restante de la concentración de DBO, F, N, Nutrientes y Cf. Esta etapa se considera en el sistema como tratamiento. El efluente del canal con plantas es usado en el riego del cultivo de café, fase que se considera en el  sistema como reusó. Los Buchones van de nuevo a la vivienda para ser comercializadas, considerando esta fase en el sistema como producción.<br />Figura 9. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de Aguas Residuales Del Beneficio Del Café.<br />Diagrama de niveles de tratamientos de las unidades del sistema y de los procesos a realizar.<br />La figura 10, muestra el esquema de los tratamientos y los procesos que se espera se realicen en el sistema. En los procesos En forma descendente se encuentran las unidades, el proceso principal, el contaminante principal removido y los contaminantes secundarios. Un tratamiento preliminar (desnatador), un tratamiento primario (filtro vertical) y un tratamiento secundario (Un canal con Buchón de Agua).<br />Figura 10. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de tratamiento de Aguas Residuales Del Beneficio Del Café.   <br />Diagrama De Subproductos<br />En La figura 11, se enseña  el esquema de disposición de los subproductos del sistema, de forma descendente se muestran las unidades, el subproducto que se deriva y finalmente su disposición.<br />Figura 11. Diagrama de Subproductos del sistema de tratamiento de Aguas Residuales Del Beneficio Del Café.<br />Eficiencias Teórica del sistema de Tratamiento de Aguas Residuales Provenientes Del Beneficio Del Café.<br />Se tomo una tabla de eficiencias reales de un sistema de tratamiento de aguas residuales provenientes del beneficio del café, que utilizan desnatadores y filtros verticales para el tratamiento de las AR,  de la tesis “Evaluación preliminar de los sistemas de tratamiento de aguas residuales del beneficio del café de la vereda villa Colombia. La Plata – Huila” de (Cortes y Ríos, 2009). La tabla 8, muestra las eficiencias reales para el sistema de tratamiento de aguas residuales del beneficio del café utilizando filtros verticales y desnatadores. <br />Tabla 8. Eficiencias Reales en tratamiento de aguas de café <br />PARAMETRO AFLUENTE (Af) EFLUENTE (Ef) % REMOCIÓN DBO 2950 278 90 DQO 24270 1248 95 SS 9115 280 97 G y A 29.2 4.6 84 <br />Fuente: Ríos, 2009<br />DISEÑO FISICO<br />Se diseñó teniendo en cuenta los criterios propuestos en el RAS – 2000 y las albercas biológicas basadas en los criterios de la en la Tesis “Manejo de los Residuos de la Explotación Porcícola en la Institución Educativa El Tejar municipio  de Timaná Huila. Diseño de una Alberca Biológica”. (Medina, 2007). <br />3.2.2.1 Diseño Del Desnatador <br />El desnatador es utilizado en la propuesta 2 como tratamiento preliminar.<br />El desnatador se diseño teniendo en cuenta el parámetro de TRH.<br />Relación largo ancho 2:1<br />V=Volumen (m3)<br />TRH=Tiempo de Retención Hidráulica (días)<br />As=Área Superficial (m2)<br />L=largo (m)<br />a=Ancho (m)<br />h=Altura (m)<br />Cálculo del volumen (V)<br /> <br />V= 0.6m3TRH= 3 horas = 0.125 días        <br />        <br />Cálculo del área superficial (As)<br />La altura se asume:                          h = 0.6 m<br />As= 1 m2     <br />Cálculo de la ancho (a) <br />           <br />152401270             <br />a= 0.7m<br />L= 1.4 mCálculo de la longitud (L)<br />                                <br />La figura 12 muestra el esquema de la vista en planta y corte longitudinal del Desnatador.<br />                           Vista en planta                           Corte Longitudinal<br />Figura 12. Vista planta y corte longitudinal del Desnatador.<br />3.2.2.2  Diseño Del Filtro Vertical<br />Cálculo del Filtro Anaerobio  <br />El filtro anaerobio se diseño teniendo en cuenta el parámetro volumen per cápita de filtro.<br />Vf=Volumen del filtro (m3)<br />P=población (Hab)<br />Vp=Volumen per cápita de filtro (m3/hab)<br />C=Coeficiente de mayoración de volumen<br />hf=Altura del filtro (m)<br />hc=Perdida de cabeza (m)<br />hs= Altura del sobrenadante (m)<br />h1=Altura capa de Arena (m)<br />h2=Altura capa de Gravilla (m)<br />h3=Altura capa de Grava (m)<br />Lf=Largo del filtro (m)<br />af=Ancho del filtro (m)<br />Cálculo del Volumen del filtro (Vf).  <br /> <br />Vp =0.05m3/hab<br />P=25 Hab  <br />C=1.2 Equivalente al 20%<br />Vf = 1.5m3  <br />Altura del filtro (hf)<br />hc=0.1m Por el paso del liquido por la intersección del filtro<br />hs=0.1m Por Sobrenadante<br />h=1 m<br />hf=0.8 m    <br />Para efectos de construcción:<br />h1 = 0.3m Arenah3 = 0.2m Grava<br />h2 = 0.3m Gravilla<br />Largo del filtro (Lf)<br />Por construcción tomamos el ancho del filtro, con el mismo valor del tanque.<br />      <br />                            Lf=2 m <br />  <br />El filtro se divide en dos compartimientos de L= 1m, para asegurar el flujo descendente – ascendente.<br />La figura 13 muestra el esquema de la vista en planta y corte longitudinal del Filtro Vertical.<br />                      <br />                     Vista en planta                           Corte Longitudinal<br />Figura 13. Vista planta y corte longitudinal del Filtro Vertical.<br />3.2.2.3 Diseño del Canal con Buchón de Agua <br />Relación largo ancho de los tanques con Buchón de Agua    L: a        2: 1<br />Altura del Canal con Buchón de Agua h = 0.8m<br />La figura 14 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.<br />Vista en planta<br />      <br />                            Corte longitudinal                                   <br />                                                                                   <br />Figura 14. Esquemas vista planta y corte longitudinal del Canal Buchón de Agua <br /> <br />Cálculos del tanque con Buchón de Agua.<br />Se diseñó un solo tanque, tomando como parámetro el tiempo de retención hidráulica (TRH). <br />V=Volumen (m3)<br />TRH=Tiempo de Retención Hidráulica (día)<br />QAR=Caudal de Aguas Residuales (m3/día)<br />As=Área superficial (m2)<br />h=Altura (m)<br />a=Ancho (m)<br />L=Largo (m)<br />Calculo del volumen (V)<br />QAR=4.5m3/día<br />TRH=1dia (Asumido con base al TRH de un Tanque Séptico)<br />                          V = 4.5 m3<br />Cálculo del área superficial (As)<br />              <br />Teniendo en cuenta la profundidad de las raíces de las heliconias, la profundidad de la alberca se adopta:<br />      h = 0.8 m <br />As = 5.6 m2           <br />Relación largo ancho<br />      <br />Cálculo del ancho (a)<br />-8001045085                                           <br />                     <br />                                         a=1.7 m                 <br />Cálculo del largo (L)<br />                                      L=3.4 m<br />                                            <br />Para efectos de construcción la longitud del tanque es:<br />L=3.5 m<br />La figura 15 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal del Canal con Heliconias para efectos de construcción. <br />Vista en planta<br />Corte longitudinal<br />Figura 15. Vista en planta y corte longitudinal del Canal con Buchón de Agua.<br />La tabla 9 muestra las dimensiones de cada una de las unidades del sistema de tratamiento de las Aguas Residuales del Beneficio del Café.<br />Tabla 9. Dimensiones de las Unidades del sistema de tratamiento de Aguas Residuales del Beneficio del Café.<br />UNIDAD PARAMETROMEDIDA (m)DesnatadorLongitud 1,4Ancho0,7Altura0.6Filtro VerticalLongitud 1.0Ancho1.0Altura1Canal con heliconiasLongitud 3,5Ancho3,5Altura0.8<br />             Fuente: Javela y González. 2009<br />  VENTAJAS DEL PROYECTO<br />Tabla 10. Ventajas de la PTAR<br />VENTAJADESCRIPCIÓNEN LO SOCIALEl proyectos trae benéficos en lo social puesto que a las aguas de la quebrada la Bonita ya no llegara la carga contaminante que actualmente es vertida a esta y se disminuirán los riesgos de contraer enfermedades por la posible utilización de esta por parte de las personas y los animales.Se disminuyen los malos olores e insectos hasta su desaparición que son generados del vertimiento de las aguas no tratadas, dándole un mejor aspecto a la finca.Se gozara de una agua de mejor calidad que contribuirá al mejoramiento de la calidad de vida de las personas que habitan en la finca y en la región EN LO AMBIENTALEl tratamiento de las aguas y su reutilización elimina la carga contaminante que se le estaba vertiendo a la quebrada por lo que la calidad del agua es mejor y además se está ayudando a la conservación del agua.Debido a la disminución de la contaminación los animales y plantas acuáticas que muy posiblemente se estaban afectando y estaban desapareciendo, tendrán muchas más posibilidades de vivir, aquí se está ayudando a la conservación de la fauna existente en la zona<br />Presupuesto<br />PRESUPUESTO DEL SISTEMA DESCENTRALIZADO, INTEGRADO Y SOSTENIBLE PARA TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS<br />Propuesta 1. Sistema de Tratamiento de ARDITEMDESCRIPCION UNICANTIDADVr. UnitarioVr. Parcial1Tratamiento Preliminar                                                       Trampa de grasas     Concreto 3000 Psim30,1269,5126,2 Muro de ladrillo tolete m22,4929,9674,6 pañete m3 0,24231,5155,33 tuberia PVC Ø 2quot;
ml0,74,272,99 Codo 90 PVC Aguas Negras Ø 2quot;
UND22,264,52 Tapa de Cemento m20,8138,931,51 VALOR PARCIAL195,152Tratamiento Primario                                                          Alberca Biológica     Concreto 3000 Psim30,585269,511157,664 Varilla corrugadaml732,403175,441 Concreto Ciclopeom31,5683,715130,596 Muro de ladrillo tolete m21329,96389,477 pañete m31,44231,511333,375 tuberia PVC Ø 3quot;
ml24,278,54 Codo 90 PVC Aguas Negras Ø 3quot;
UND22,2624,524 Arena para filtro anaerobiom30,2408 Grava para filtro anaerobiom30,2357 Gravilla para filtro anaerobiom30,25010 VALOR PARCIAL1.224,623Tratamiento Secundario                                                         Canal Con Plantas Acuáticas     Concreto 3000 Psim30,585269,511157,664 Varilla corrugadaml732,403175,441 Concreto Ciclopeom31,5683,715130,596 Muro de ladrillo tolete m21329,96389,477 pañete m31,44231,511333,375 tuberia PVC Ø 3quot;
ml24,278,54 Codo 90 PVC Aguas Negras Ø 3quot;
UND22,2624,524 VALOR PARCIAL1.199,62 SUMATORIA DE VALORES PARCIALES 2.619,38 ADMINISTRACION E IMPREVISTOS (15%)392,908 UTILIDAD (5%)130,969 IVA SOBRE UTILIDAD (16%)20,955 COSTO TOTAL DEL PROYECTO3.164,22<br />PRESUPUESTO DEL SISTEMA DESCENTRALIZADO, INTEGRADO Y SOSTENIBLE PARA TRATAMIENTO DE AGUAS RESIDUALES PROVENIENTES DEL BENEFICIO DEL CAFÉ<br />Propuesta 2. Sistema de Tratamiento de Aguas Residuales Provenientes Del Beneficio Del CaféITEMDESCRIPCION UNICANTIDADVr. UnitarioVr. Parcial1Tratamiento Preliminar                                                              Desnatador     Concreto 3000 Psim30,1269,5126,2 Muro de ladrillo tolete m22,4929,9674,6 pañete m3 0,24231,5155,33 tuberia PVC Ø 2quot;
ml0,74,272,99 Codo 90 PVC Aguas Negras Ø 2quot;
UND22,264,52 Tapa de Cemento m20,8138,931,51 VALOR PARCIAL195,152Tratamiento Primario                                                                       Filtro Vertical     Concreto 3000 Psim30,585269,511157,664 Varilla corrugadaml732,403175,441 Concreto Ciclopeom31,5683,715130,596 Muro de ladrillo tolete m21329,96389,477 pañete m31,44231,511333,375 tuberia PVC Ø 3quot;
ml24,278,54 Codo 90 PVC Aguas Negras Ø 3quot;
UND22,2624,524 Arena para filtro anaerobiom30,2408 Grava para filtro anaerobiom30,2357 Gravilla para filtro anaerobiom30,25010 VALOR PARCIAL1.224,623Tratamiento Secundario                                                                   Canal Con Plantas Acuáticas     Concreto 3000 Psim30,585269,511157,664 Varilla corrugadaml732,403175,441 Concreto Ciclopeom31,5683,715130,596 Muro de ladrillo tolete m21329,96389,477 pañete m31,44231,511333,375 tuberia PVC Ø 3quot;
ml24,278,54 Codo 90 PVC Aguas Negras Ø 3quot;
UND22,2624,524 VALOR PARCIAL1.199,62 SUMATORIA DE VALORES PARCIALES 2.619,38 ADMINISTRACION E IMPREVISTOS (15%)392,908 UTILIDAD (5%)130,969 IVA SOBRE UTILIDAD (16%)20,955 COSTO TOTAL DEL PROYECTO3.164,22<br />CONCLUSIONES<br />Los sistemas descentralizados integrados y sostenibles para el tratamiento de aguas residuales, disminuyen la contaminación de ríos y quebradas. Además reducen los riesgos sobre la salud de los habitantes del sector rural, mejorando su calidad de vida y el entorno.<br />Los  sistemas descentralizados integrados y sostenibles son de fácil construcción, operación y mantenimiento comparados con otros sistemas convencionales de alto costo; sin embargo para que conserven su eficiencia, se requiere realizar actividades de operación y mantenimiento.<br />Las eficiencias teóricas de remoción de contaminantes de los sistemas descentralizados integrados y sostenibles propuestos en estudio, se consideran altas por que están alrededor del 80% en DBO, S.S, G y A y el 50% en  N y P.<br />La inversión inicial de los sistemas propuestos en este proyecto, oscilan en $1’800.000. Es una cifra que se puede considerar alta para un campesino de la zona de minifundio del departamento del Huila, sin embargo, la inversión puede recuperar con los productos obtenidos del proceso (reusó – producción) y los ahorros en pago de tasa retributiva.<br />.<br />BIBLIOGRAFÍA<br />VALENCIA G. E. OLAYA M. M., Generalidades sobre Saneamiento rural, Universidad Surcolombiana, Programa Ingeniería Agrícola. Neiva, 1997. <br />CORTES M. A. RIOS A. T., Evaluación preliminar de los sistemas de tratamiento de aguas residuales del beneficio del café de la vereda villa Colombia. La Plata – Huila, Universidad Surcolombiana, Programa Ingeniería Agrícola. Neiva, 2009<br />NARVAEZ C. P. SILVA. I. J., Evaluación preliminar de los sistemas de tratamiento de aguas residuales del beneficio del café de la vereda villa Colombia. La Plata – Huila, Universidad Surcolombiana, Programa Ingeniería Agrícola. Neiva 2009<br />MEDINA P. A., Manejo de dos residuos de da explotación Porcina en la Institución Educativa El Tejar municipio de Timaná Huila. Diseño de una alberca biológica. Tesis. Universidad Surcolombiana. Neiva, 2007.  <br />OPS, Organización Panamericana de la Salud, CEPIS, Guía para el diseño de tanques sépticos, tanques imhoff y lagunas de estabilización. Lima. 2005.<br />ALMARIO. L. F., Diseño De Albercas Biológicas Y Filtros Biológicos Como Sistema De Tratamiento De Aguas Residuales Para La Institución Educativa Guacirco. Neiva-Huila. Universidad Surcolombiana, Programa Ingeniería Agrícola. Neiva, 2008<br />Sitio oficial de Sefiltra. Alcobendas (Madrid). [ref. De 20 enero 2010] web: http://www.sefiltra.com/filtros-de-arena.php<br />Sitio oficial de Wikipedia [ref. De 20 enero 2010] web: http://es.wikipedia.org/wiki/Tratamiento_de_aguas_residuales.<br />PLANOS<br />
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene
50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Mais conteúdo relacionado

Mais procurados

Fitorremediación de metales pesados
Fitorremediación de metales pesadosFitorremediación de metales pesados
Fitorremediación de metales pesadosTahis Vilain
 
tanque septicos
 tanque septicos tanque septicos
tanque septicos24341575yc
 
Aguas Residuales: Domésticas e Industriales
Aguas Residuales: Domésticas e IndustrialesAguas Residuales: Domésticas e Industriales
Aguas Residuales: Domésticas e IndustrialesIngridciita Chóez Alava
 
Efectos y Tratamiento de aguas residuales
Efectos y Tratamiento de aguas residualesEfectos y Tratamiento de aguas residuales
Efectos y Tratamiento de aguas residualesQuimtiaMedioAmbiente
 
Tratamiento primario de aguas residuales
Tratamiento primario de aguas residualesTratamiento primario de aguas residuales
Tratamiento primario de aguas residualesLuis
 
Estudio de Impacto Ambiental Dragado C.G.S.A.
Estudio de Impacto Ambiental Dragado C.G.S.A.Estudio de Impacto Ambiental Dragado C.G.S.A.
Estudio de Impacto Ambiental Dragado C.G.S.A.Sambito
 
Tema 3.0 Calidad Del Agua Expo Jaen
Tema 3.0 Calidad Del Agua  Expo JaenTema 3.0 Calidad Del Agua  Expo Jaen
Tema 3.0 Calidad Del Agua Expo Jaenguest9f00bd1
 
Iii.gestion de la calidad de aire
Iii.gestion de la calidad de aireIii.gestion de la calidad de aire
Iii.gestion de la calidad de aireyjsalcedo1814
 
Tanque septico
Tanque septicoTanque septico
Tanque septicoDuglimar
 
Aprovechamiento Hidroeléctrico del Río Grande. Proyecto Rositas
Aprovechamiento Hidroeléctrico del Río Grande. Proyecto RositasAprovechamiento Hidroeléctrico del Río Grande. Proyecto Rositas
Aprovechamiento Hidroeléctrico del Río Grande. Proyecto RositasEptisa
 
Tratamiento de aguas residuales
Tratamiento de aguas residualesTratamiento de aguas residuales
Tratamiento de aguas residualesAngel Muñoz
 

Mais procurados (20)

Fitorremediación de metales pesados
Fitorremediación de metales pesadosFitorremediación de metales pesados
Fitorremediación de metales pesados
 
tanque septicos
 tanque septicos tanque septicos
tanque septicos
 
Aguas Residuales: Domésticas e Industriales
Aguas Residuales: Domésticas e IndustrialesAguas Residuales: Domésticas e Industriales
Aguas Residuales: Domésticas e Industriales
 
Efectos y Tratamiento de aguas residuales
Efectos y Tratamiento de aguas residualesEfectos y Tratamiento de aguas residuales
Efectos y Tratamiento de aguas residuales
 
Tratamiento primario de aguas residuales
Tratamiento primario de aguas residualesTratamiento primario de aguas residuales
Tratamiento primario de aguas residuales
 
Humedales artificiales
Humedales artificialesHumedales artificiales
Humedales artificiales
 
Estudio de Impacto Ambiental Dragado C.G.S.A.
Estudio de Impacto Ambiental Dragado C.G.S.A.Estudio de Impacto Ambiental Dragado C.G.S.A.
Estudio de Impacto Ambiental Dragado C.G.S.A.
 
Tanque septico
Tanque septicoTanque septico
Tanque septico
 
Manejo De Lodos
Manejo De LodosManejo De Lodos
Manejo De Lodos
 
Relleno sanitario
Relleno sanitarioRelleno sanitario
Relleno sanitario
 
agua potable
agua potableagua potable
agua potable
 
Tema 3.0 Calidad Del Agua Expo Jaen
Tema 3.0 Calidad Del Agua  Expo JaenTema 3.0 Calidad Del Agua  Expo Jaen
Tema 3.0 Calidad Del Agua Expo Jaen
 
Iii.gestion de la calidad de aire
Iii.gestion de la calidad de aireIii.gestion de la calidad de aire
Iii.gestion de la calidad de aire
 
Impacto Ambiental 7
Impacto Ambiental 7Impacto Ambiental 7
Impacto Ambiental 7
 
Demanda Bioquímica de oxígeno (DBO5)
Demanda Bioquímica de oxígeno (DBO5)Demanda Bioquímica de oxígeno (DBO5)
Demanda Bioquímica de oxígeno (DBO5)
 
Marco legal de los EIA
Marco legal de los EIAMarco legal de los EIA
Marco legal de los EIA
 
Tanque septico
Tanque septicoTanque septico
Tanque septico
 
Filtros percoladores
Filtros percoladoresFiltros percoladores
Filtros percoladores
 
Aprovechamiento Hidroeléctrico del Río Grande. Proyecto Rositas
Aprovechamiento Hidroeléctrico del Río Grande. Proyecto RositasAprovechamiento Hidroeléctrico del Río Grande. Proyecto Rositas
Aprovechamiento Hidroeléctrico del Río Grande. Proyecto Rositas
 
Tratamiento de aguas residuales
Tratamiento de aguas residualesTratamiento de aguas residuales
Tratamiento de aguas residuales
 

Destaque

Ras 2000 (presentacion)
Ras 2000 (presentacion)Ras 2000 (presentacion)
Ras 2000 (presentacion)UFPSO
 
Diseño tanques sépticos_imhoff_lagunas_estabilización
Diseño tanques sépticos_imhoff_lagunas_estabilizaciónDiseño tanques sépticos_imhoff_lagunas_estabilización
Diseño tanques sépticos_imhoff_lagunas_estabilizaciónMAYKOL OLORTEGUI
 
Exposición tratamiento biologico aguas residuales arequipa 2
Exposición tratamiento biologico aguas residuales   arequipa 2Exposición tratamiento biologico aguas residuales   arequipa 2
Exposición tratamiento biologico aguas residuales arequipa 2Karla Castillo
 
Diseño de planta de tratamiento de aguas residuales
Diseño de planta de tratamiento de aguas residualesDiseño de planta de tratamiento de aguas residuales
Diseño de planta de tratamiento de aguas residualesGary Fonseca
 
diseño de un modelo para una planta de tratamiento de aguas residuales
diseño de un modelo para una planta de tratamiento de aguas residualesdiseño de un modelo para una planta de tratamiento de aguas residuales
diseño de un modelo para una planta de tratamiento de aguas residualesVictor Medina
 
TITULO A Y D RAS 2000
TITULO A Y D RAS 2000TITULO A Y D RAS 2000
TITULO A Y D RAS 2000Juan Padilla
 
TRATAMIENTOS AEROBICOS EN AGUAS RESIDUALES
TRATAMIENTOS AEROBICOS EN AGUAS RESIDUALESTRATAMIENTOS AEROBICOS EN AGUAS RESIDUALES
TRATAMIENTOS AEROBICOS EN AGUAS RESIDUALESAlfredo Martinez Cruz
 
Cartilla[1] Tratamiento de Aguas residuales
Cartilla[1] Tratamiento de Aguas residualesCartilla[1] Tratamiento de Aguas residuales
Cartilla[1] Tratamiento de Aguas residualesBituima56
 
Filtración de aguas residuales por método convencional
Filtración de aguas residuales por método convencionalFiltración de aguas residuales por método convencional
Filtración de aguas residuales por método convencionaldec-admin
 
Planta de tratamiento-memoria_tecnica
Planta de tratamiento-memoria_tecnicaPlanta de tratamiento-memoria_tecnica
Planta de tratamiento-memoria_tecnicaMarcos Ticona Huamán
 
Guia para el manejo, tratamiento y disposición de lodos residuales en plantas
Guia para el manejo, tratamiento y disposición de lodos residuales en plantasGuia para el manejo, tratamiento y disposición de lodos residuales en plantas
Guia para el manejo, tratamiento y disposición de lodos residuales en plantasTatto Akino
 
Estudio de plantas de tratamiento peru
Estudio de plantas de tratamiento peruEstudio de plantas de tratamiento peru
Estudio de plantas de tratamiento peruRaul Cordova Ch.
 

Destaque (20)

Titulo b
Titulo bTitulo b
Titulo b
 
Ras 2000 (presentacion)
Ras 2000 (presentacion)Ras 2000 (presentacion)
Ras 2000 (presentacion)
 
Diseño tanques sépticos_imhoff_lagunas_estabilización
Diseño tanques sépticos_imhoff_lagunas_estabilizaciónDiseño tanques sépticos_imhoff_lagunas_estabilización
Diseño tanques sépticos_imhoff_lagunas_estabilización
 
Exposición tratamiento biologico aguas residuales arequipa 2
Exposición tratamiento biologico aguas residuales   arequipa 2Exposición tratamiento biologico aguas residuales   arequipa 2
Exposición tratamiento biologico aguas residuales arequipa 2
 
Diseño de planta de tratamiento de aguas residuales
Diseño de planta de tratamiento de aguas residualesDiseño de planta de tratamiento de aguas residuales
Diseño de planta de tratamiento de aguas residuales
 
Ptar.pequeñas
Ptar.pequeñasPtar.pequeñas
Ptar.pequeñas
 
RAS 2000
RAS 2000RAS 2000
RAS 2000
 
diseño de un modelo para una planta de tratamiento de aguas residuales
diseño de un modelo para una planta de tratamiento de aguas residualesdiseño de un modelo para una planta de tratamiento de aguas residuales
diseño de un modelo para una planta de tratamiento de aguas residuales
 
TITULO A Y D RAS 2000
TITULO A Y D RAS 2000TITULO A Y D RAS 2000
TITULO A Y D RAS 2000
 
fim
fimfim
fim
 
TRATAMIENTOS AEROBICOS EN AGUAS RESIDUALES
TRATAMIENTOS AEROBICOS EN AGUAS RESIDUALESTRATAMIENTOS AEROBICOS EN AGUAS RESIDUALES
TRATAMIENTOS AEROBICOS EN AGUAS RESIDUALES
 
Principios del Pre-Tratamiento en Plating
Principios del Pre-Tratamiento en PlatingPrincipios del Pre-Tratamiento en Plating
Principios del Pre-Tratamiento en Plating
 
Cartilla[1] Tratamiento de Aguas residuales
Cartilla[1] Tratamiento de Aguas residualesCartilla[1] Tratamiento de Aguas residuales
Cartilla[1] Tratamiento de Aguas residuales
 
Manual de oper ptar zina
Manual de oper ptar zinaManual de oper ptar zina
Manual de oper ptar zina
 
Filtración de aguas residuales por método convencional
Filtración de aguas residuales por método convencionalFiltración de aguas residuales por método convencional
Filtración de aguas residuales por método convencional
 
Presentación Tecnología Aita
Presentación Tecnología AitaPresentación Tecnología Aita
Presentación Tecnología Aita
 
Planta de tratamiento-memoria_tecnica
Planta de tratamiento-memoria_tecnicaPlanta de tratamiento-memoria_tecnica
Planta de tratamiento-memoria_tecnica
 
Guia para el manejo, tratamiento y disposición de lodos residuales en plantas
Guia para el manejo, tratamiento y disposición de lodos residuales en plantasGuia para el manejo, tratamiento y disposición de lodos residuales en plantas
Guia para el manejo, tratamiento y disposición de lodos residuales en plantas
 
Estudio de plantas de tratamiento peru
Estudio de plantas de tratamiento peruEstudio de plantas de tratamiento peru
Estudio de plantas de tratamiento peru
 
Pozo septico
Pozo septicoPozo septico
Pozo septico
 

Semelhante a 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

Tratamiento Aguas Residuales
Tratamiento Aguas ResidualesTratamiento Aguas Residuales
Tratamiento Aguas Residualesinghaimar
 
Presentación trabajo colaborativo grupo #2. aguas residuales
Presentación trabajo colaborativo grupo #2. aguas  residualesPresentación trabajo colaborativo grupo #2. aguas  residuales
Presentación trabajo colaborativo grupo #2. aguas residualeshumberto1819
 
Tratamiento de aguas residuales en procesos productivos wiki 7
Tratamiento de aguas residuales en procesos productivos wiki 7Tratamiento de aguas residuales en procesos productivos wiki 7
Tratamiento de aguas residuales en procesos productivos wiki 7Jenny Garcia
 
Tratamiento de aguas residuales en procesos productivos wiki 7
Tratamiento de aguas residuales en procesos productivos wiki 7Tratamiento de aguas residuales en procesos productivos wiki 7
Tratamiento de aguas residuales en procesos productivos wiki 7Jenny Garcia
 
Amaya cortes presentación_aportecolectivo
Amaya cortes presentación_aportecolectivoAmaya cortes presentación_aportecolectivo
Amaya cortes presentación_aportecolectivoAlejandro Amaya C
 
Construccion colectiva tratamiento de aguas residuales wiki 1
Construccion colectiva tratamiento de aguas residuales wiki 1Construccion colectiva tratamiento de aguas residuales wiki 1
Construccion colectiva tratamiento de aguas residuales wiki 1dicaera
 
Tratamiento de aguas residuales (1)
Tratamiento de aguas residuales (1)Tratamiento de aguas residuales (1)
Tratamiento de aguas residuales (1)luiselesez
 
Trabajo colaborativo wiki15
Trabajo colaborativo wiki15Trabajo colaborativo wiki15
Trabajo colaborativo wiki15vickyaleja
 
Tarapues ana tratamiento de agua residual beneficio de café
Tarapues ana tratamiento de agua residual beneficio de caféTarapues ana tratamiento de agua residual beneficio de café
Tarapues ana tratamiento de agua residual beneficio de caféAna Tarapuez
 
Cámaras de curado accesibles para el uso sostenible del agua en la elaboració...
Cámaras de curado accesibles para el uso sostenible del agua en la elaboració...Cámaras de curado accesibles para el uso sostenible del agua en la elaboració...
Cámaras de curado accesibles para el uso sostenible del agua en la elaboració...JOHANAPeralta9
 
Proyecto de ambiental
Proyecto de ambientalProyecto de ambiental
Proyecto de ambientalalvarez82
 
PTAR LA ESCALERILLA: El Agua y el Desarrollo Sostenible
PTAR LA ESCALERILLA: El Agua y el Desarrollo SosteniblePTAR LA ESCALERILLA: El Agua y el Desarrollo Sostenible
PTAR LA ESCALERILLA: El Agua y el Desarrollo Sostenibleacciona
 
Tratamiento de aguas residuales industria Nariño wiki 4
Tratamiento de aguas residuales industria Nariño wiki 4Tratamiento de aguas residuales industria Nariño wiki 4
Tratamiento de aguas residuales industria Nariño wiki 4jhonmayag
 
Trabajo final 102058 189
Trabajo final 102058 189Trabajo final 102058 189
Trabajo final 102058 189Unadtatiana
 
Tratamiento de agua Residuales
Tratamiento de agua ResidualesTratamiento de agua Residuales
Tratamiento de agua Residualesbioquicadat
 
Actividad Colaborativa Wiki 13 - Manejo Integrado del Agua
Actividad Colaborativa Wiki 13 - Manejo Integrado del AguaActividad Colaborativa Wiki 13 - Manejo Integrado del Agua
Actividad Colaborativa Wiki 13 - Manejo Integrado del AguaHarold Moreno
 
Final proyecto (1)
Final proyecto (1)Final proyecto (1)
Final proyecto (1)mdiaz4978
 

Semelhante a 50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene (20)

Tratamiento Aguas Residuales
Tratamiento Aguas ResidualesTratamiento Aguas Residuales
Tratamiento Aguas Residuales
 
Presentación trabajo colaborativo grupo #2. aguas residuales
Presentación trabajo colaborativo grupo #2. aguas  residualesPresentación trabajo colaborativo grupo #2. aguas  residuales
Presentación trabajo colaborativo grupo #2. aguas residuales
 
Tratamiento de aguas residuales en procesos productivos wiki 7
Tratamiento de aguas residuales en procesos productivos wiki 7Tratamiento de aguas residuales en procesos productivos wiki 7
Tratamiento de aguas residuales en procesos productivos wiki 7
 
Tratamiento de aguas residuales en procesos productivos wiki 7
Tratamiento de aguas residuales en procesos productivos wiki 7Tratamiento de aguas residuales en procesos productivos wiki 7
Tratamiento de aguas residuales en procesos productivos wiki 7
 
Amaya cortes presentación_aportecolectivo
Amaya cortes presentación_aportecolectivoAmaya cortes presentación_aportecolectivo
Amaya cortes presentación_aportecolectivo
 
Tratamiento del agua para abastecimiento
Tratamiento del agua para abastecimientoTratamiento del agua para abastecimiento
Tratamiento del agua para abastecimiento
 
Construccion colectiva tratamiento de aguas residuales wiki 1
Construccion colectiva tratamiento de aguas residuales wiki 1Construccion colectiva tratamiento de aguas residuales wiki 1
Construccion colectiva tratamiento de aguas residuales wiki 1
 
Tratamiento de aguas residuales (1)
Tratamiento de aguas residuales (1)Tratamiento de aguas residuales (1)
Tratamiento de aguas residuales (1)
 
Trabajo colaborativo wiki15
Trabajo colaborativo wiki15Trabajo colaborativo wiki15
Trabajo colaborativo wiki15
 
Tarapues ana tratamiento de agua residual beneficio de café
Tarapues ana tratamiento de agua residual beneficio de caféTarapues ana tratamiento de agua residual beneficio de café
Tarapues ana tratamiento de agua residual beneficio de café
 
Cámaras de curado accesibles para el uso sostenible del agua en la elaboració...
Cámaras de curado accesibles para el uso sostenible del agua en la elaboració...Cámaras de curado accesibles para el uso sostenible del agua en la elaboració...
Cámaras de curado accesibles para el uso sostenible del agua en la elaboració...
 
Proyecto de ambiental
Proyecto de ambientalProyecto de ambiental
Proyecto de ambiental
 
PTAR LA ESCALERILLA: El Agua y el Desarrollo Sostenible
PTAR LA ESCALERILLA: El Agua y el Desarrollo SosteniblePTAR LA ESCALERILLA: El Agua y el Desarrollo Sostenible
PTAR LA ESCALERILLA: El Agua y el Desarrollo Sostenible
 
Tratamiento de aguas residuales industria Nariño wiki 4
Tratamiento de aguas residuales industria Nariño wiki 4Tratamiento de aguas residuales industria Nariño wiki 4
Tratamiento de aguas residuales industria Nariño wiki 4
 
Trabajo final 102058 189
Trabajo final 102058 189Trabajo final 102058 189
Trabajo final 102058 189
 
20 Gestión de aguas residuales en ecuador - SENAGUA
20 Gestión de aguas residuales en ecuador - SENAGUA20 Gestión de aguas residuales en ecuador - SENAGUA
20 Gestión de aguas residuales en ecuador - SENAGUA
 
Tratamiento de agua Residuales
Tratamiento de agua ResidualesTratamiento de agua Residuales
Tratamiento de agua Residuales
 
Actividad colaborativa grupo 4
Actividad colaborativa grupo 4Actividad colaborativa grupo 4
Actividad colaborativa grupo 4
 
Actividad Colaborativa Wiki 13 - Manejo Integrado del Agua
Actividad Colaborativa Wiki 13 - Manejo Integrado del AguaActividad Colaborativa Wiki 13 - Manejo Integrado del Agua
Actividad Colaborativa Wiki 13 - Manejo Integrado del Agua
 
Final proyecto (1)
Final proyecto (1)Final proyecto (1)
Final proyecto (1)
 

Último

pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITMaricarmen Sánchez Ruiz
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan JosephBRAYANJOSEPHPEREZGOM
 
Desarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfDesarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfJulian Lamprea
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíassuserf18419
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricKeyla Dolores Méndez
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)GDGSucre
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx241521559
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveFagnerLisboa3
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...silviayucra2
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxLolaBunny11
 

Último (10)

pruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNITpruebas unitarias unitarias en java con JUNIT
pruebas unitarias unitarias en java con JUNIT
 
guía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Josephguía de registro de slideshare por Brayan Joseph
guía de registro de slideshare por Brayan Joseph
 
Desarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdfDesarrollo Web Moderno con Svelte 2024.pdf
Desarrollo Web Moderno con Svelte 2024.pdf
 
Trabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnologíaTrabajo Mas Completo De Excel en clase tecnología
Trabajo Mas Completo De Excel en clase tecnología
 
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft FabricGlobal Azure Lima 2024 - Integración de Datos con Microsoft Fabric
Global Azure Lima 2024 - Integración de Datos con Microsoft Fabric
 
International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)International Women's Day Sucre 2024 (IWD)
International Women's Day Sucre 2024 (IWD)
 
Proyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptxProyecto integrador. Las TIC en la sociedad S4.pptx
Proyecto integrador. Las TIC en la sociedad S4.pptx
 
EPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial UninoveEPA-pdf resultado da prova presencial Uninove
EPA-pdf resultado da prova presencial Uninove
 
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
POWER POINT YUCRAElabore una PRESENTACIÓN CORTA sobre el video película: La C...
 
Presentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptxPresentación guía sencilla en Microsoft Excel.pptx
Presentación guía sencilla en Microsoft Excel.pptx
 

50150022 diseno-de-un-sistema-de-tratamiento-de-aguas-residuales-domesticas-y-aguas-procedentes-de-un-bene

  • 1. DISEÑO DE UN SISTEMA DESCENTRALIZADO INTEGRADO Y SOSTENIBLE PARA EL DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENEFICIADERO DE CAFÉ <br /> <br />José Miguel González - 2006135580<br />Liseth Nayibe Javela - 2006135130<br />UNIVERSIDAD SURCOLOMBIANA<br />FACULTAD DE INGENIERIA<br />PROGRAMA DE INGENIERIA AGRICOLA<br />SANEAMIENTO RURAL. B- 2009 <br />Neiva - Huila<br />DISEÑO DE UN SISTEMA DESCENTRALIZADO INTEGRADO Y SOSTENIBLE PARA EL DE TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS Y AGUAS PROCEDENTES DE UN BENEFICIADERO DE CAFÉ <br /> <br />José Miguel González - 2006135580<br />Liseth Nayibe Javela - 2006135130<br />Presentado a:<br />Msc. EDUARDO VALENCIA GRANADA<br />UNIVERSIDAD SURCOLOMBIANA<br />FACULTAD DE INGENIERIA<br />PROGRAMA DE INGENIERIA AGRICOLA<br />SANEAMIENTO RURAL. B- 2009 <br />Neiva - Huila<br />CONTENIDO<br />INTRODUCCION<br />PROPUESTA <br />Trampa de Grasas<br />Desnatador<br />Filtro en arena o filtro vertical<br />Alberca Biológica<br />GENERALIDADES<br />Propuesta<br />Localización<br />DISEÑO <br />Esquema General de la PTAR<br />Propuesta 1. Sistema de tratamiento de Aguas residuales Domesticas<br />Información Básica<br />Cálculos Básicos<br />Diseño Conceptual<br />Diseño Físico<br />Diseño de la Trampa de Grasas<br />Diseño de la Alberca Biológica<br />Diseño del canal con buchón de agua<br />Propuesta 2. Sistema de Tratamiento de Aguas residuales provenientes del beneficio de café<br />Diseño Conceptual<br />Diseño Físico<br />Diseño del desnatador<br />Diseño del filtro vertical<br />Diseño del canal con buchón de agua<br />Ventajas del Proyecto <br />PRESUPUESTO<br />CONCLUSIONES<br />BIBLIOGRAFÍA<br />PLANOS<br />LISTA DE ABREVIATURAS<br />Af=Afluente<br />Ef=Efluente<br />QAR=Caudal de agua residual<br />L=Largo<br />bl=Borde Libre<br />h= Altura<br />a =Ancho<br />b= base<br />V=Volumen <br />THR=Tiempo de Retención Hidráulica<br />As= Área superficial<br />PTAR=Planta de Tratamiento de Aguas Residuales<br />DBO=Demanda Bioquímica de Oxigeno<br />SS=Sólidos Suspendidos<br />CF=Coliformes Fecales<br />N=Nitrógeno<br />P=Fosforo<br />AR=Aguas Residuales<br />mm=Milímetros<br />L=Litros<br />T.S.A.M=Tanque Séptico de Acción Múltiple<br /> <br />LISTA DE TABLAS<br />Tabla 1. Caracterización de Aguas residuales domésticas.<br />Tabla 2. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila.<br />Tabla 3. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila.<br />Tabla 4. Valores de los parámetros de las aguas residuales domésticas del sector rural del departamento del Huila.<br />Tabla 5. Eficiencias teóricas de sistemas de tratamiento de ARD utilizando Alberca Biológica.<br />Tabla 6. Dimensiones de las Unidades del sistema de tratamiento de ARD.<br />Tabla 7. Caracterización de las Aguas Residuales del Café<br />La tabla 8, muestra las eficiencias reales para el sistema de tratamiento de aguas residuales del beneficio del café utilizando filtros verticales y desnatadores. <br />Tabla 9. Dimensiones de las Unidades del sistema de tratamiento de Aguas Residuales del Beneficio del Café.<br />Tabla 10. Beneficios de la PTAR<br />LISTA DE FIGURAS<br />Figura 1. Sistema General de la PTAR<br />Figura 2. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de ARD.<br />Figura 3. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de tratamiento de ARD<br />Figura 4. Diagrama de Subproductos del sistema de tratamiento de ARD.<br />Figura 5. Vista. Planta y corte longitudinal de la Trampa de Grasas.<br />Figura 6. Esquemas vista planta, corte longitudinal y corte transversal de la Alberca Biológica. <br />Figura 7. Vista en planta, corte longitudinal y corte transversal de la Albercas Biológica para efectos de construcción.<br />Figura 8. Vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.<br />Figura 9. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de Aguas Residuales Del Beneficio Del Café.<br />Figura 10. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de tratamiento de Aguas Residuales Del Beneficio Del Café. <br />Figura 11. Diagrama de Subproductos del sistema de tratamiento de Aguas Residuales Del Beneficio Del Café.<br />Figura 12. Vista planta y corte longitudinal del Filtro Vertical.<br />Figura 13. Vista planta y corte longitudinal del Desnatador.<br />Figura 14. Esquemas vista planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.<br />Figura 15. Vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.<br />INTRODUCCION<br />En la Vereda Santa Rita a 8 kilómetros del casco urbano del Municipio de Pitalito en el departamento del Huila, encontramos la finca de don Freddy Méndez un pequeño caficultor que cuenta con 5 hectáreas cultivadas en café, la producción de la zona se estima en 9000 Kg/ha – año de café cereza.<br />La problemática de la zona, es que la fuente hídrica se esta viendo afectada por que el agua utilizada para el beneficio del café es arrojada sin ningún tratamiento a la quebrada la magdalena, y aguas abajo esta es tomada para el abastecimiento de la escuela de la vereda, no siendo poco los campesinos no solo vierten el agua del beneficio del café si no que también arrojan las AR de sus viviendas. Estas aguas se han convertido en un problema de salud pública para la región por que los alumnos de la escuela sin tener conocimiento del alto grado de contaminación del agua, beben de esta y por consecuencia se han visto dificultades de salud en los menores.<br />Don Freddy arraigado en sus costumbres comete el error de contaminar como el resto de campesinos, en vista de esto se le propone una alternativa para el tratamiento de las aguas residuales de su vivienda y de las aguas residuales del beneficio del café.<br />Para las aguas residuales del beneficio del café se mostrara el diseño de una PTAR integrada por un desnatador, un filtro vertical y un canal de plantas acuáticas y se le planteara la posibilidad de un reusó de estas aguas residuales, así como también un reusó a las aguas residuales domesticas.<br />Se planteara una PTARD para las aguas que salen de la vivienda y esta contara con una trampa de grasas, una alberca biológica y un canal con plantas acuáticas.<br />Con esto se busca disminuir la contaminación de la quebrada la magdalena y también reducir los volúmenes de agua de la quebrada Rio lindo que abastece a la finca, por que estas aguas residuales ya tratadas contribuirán al riego del cultivo de café y a otros usos agrícolas.<br />Propuesta<br />Implementar un sistema de tratamiento para darle solución a la contaminación generada por las aguas domesticas y las aguas procedentes del beneficio de café cuando estas son vertidas a la quebrada La Bonita sin ningún tipo de tratamiento, trayendo como efecto el deterioro de la fuente hídrica; para tal fin se desea realizar una PTAR con dos sistemas uno para ARD (aguas residuales domesticas) y una con Aguas residuales de café, el primero cuenta con trampa de grasas, alberca biológica y un canal con plantas y el segundo cuenta con lo anterior más un desnatador. A continuación se da la descripción de las unidades:<br />Trampa de Grasas<br />Las trampas de grasa son tanques pequeños, diseñados y construidos para separar la grasa y aceite de las aguas residuales. El agua residual llega caliente a la trampa de grasas, en donde, por choque térmico disminuye su temperatura, Los sólidos en suspensión o las partículas líquidas (aceites o grasas) flotan debido a que su densidad es menor a la del agua. (González, 2009).<br />Desnatador <br />Un desnatador es un dispositivo usado para separar, por gravedad, las partículas en suspensión en una masa de agua. La sedimentación es un proceso muy importante, por esto se utiliza como un pretratamiento en lo sistemas, ya que las partículas que se encuentran en el agua pueden ser perjudiciales en los procesos de tratamiento, debido a que elevadas turbiedades inhiben los procesos biológicos y se depositan en el medio filtrante causando pérdidas de carga y deterioro de la calidad del agua efluente de los filtros. En el sedimentador se remueven partículas inferiores a 0,2 mm y superiores a 0,05 mm. (OPS, 2005).<br />Filtro en Arena o filtro Vertical <br />Los filtros de arena o filtro vertical, son los elementos más utilizados para filtración de aguas con cargas bajas o medianas de contaminantes, que requieran una retención de partículas de hasta veinte micras de tamaño. Las partículas en suspensión que lleva el agua son retenidas durante su paso a través de un lecho filtrante de arena. Una vez que el filtro se haya cargado de impurezas, alcanzando una pérdida de carga prefijada, La calidad de la filtración depende de varios parámetros, entre otros, la forma del filtro, altura del lecho filtrante, características y granulometría de la masa filtrante, velocidad de filtración. http://www.sefiltra.com/filtros-de-arena.php <br />Alberca Biológica<br />Una alberca biológica Es un sistema de tratamiento de aguas residuales utilizado para el tratamiento de pequeños caudales, generalmente de tipo doméstico o de las explotaciones pecuarias; consiste en un tanque donde se siembran plantas acuáticas que son las que realizan el tratamiento y se complementa con un filtro (Almario, 2008)<br />Generalidades<br />Propuesta<br />Se proponen dos tipos de tratamientos uno para las ARD y el otro para las aguas provenientes del beneficio del café. <br />Alternativa 1. Para las ARD, Como un tratamiento preliminar, se construirá una trampa de grasas, esta ayudara a remover todas las partículas en flotación, grasas y aceites. El tratamiento Primario será a cargo de una alberca biológica esta removerá un porcentaje de DBO, SS, N y F. En el tratamiento secundario se construirá un canal con plantas acuáticas, esta terminara de remover las concentraciones de DBO, SS, N, F y Cf. El tratamiento se concluye con un reusó de las AR tratadas en el cultivo del café. <br />Alternativa 2. AR del beneficio del café, para el tratamiento preliminar se construirá un desnatador que ayudara a quitar las partículas en flotación, se complementara con un filtro vertical que removerá DBO y SS, ya el tratamiento secundario se realizara con un canal de plantas acuáticas esta estructura con ayuda de las plantas removerán el restante de DBO, SS, N, F y Cf. Este tratamiento culminara como el de las ARD, en un reusó en el cultivo del café. <br />Localización<br />La finca de Don Freddy Méndez esta ubica en la Vereda Santa Rita a 8 kilómetros del casco urbano del Municipio de Pitalito. Cuenta con buenas vías de acceso y servicio de trasporte cada hora de una ruta de colectivo que llega hasta la finca. Cuenta con una extensión de 5 hectáreas sembradas en café, es una empresa familiar, y cuenta con una extensión de 32 hectáreas. <br />La finca está ubicada en una zona cafetera, la base de la economía siempre ha sido el café, auto sostenible, y actualmente se encuentra en el proceso de mejoramiento agroforestal para implementar el ecoturismo en esta zona. Cuenta con 5 hectáreas que están dedicadas al cultivo del café, el plátano, la yuca y especies menores que complementan la seguridad alimenticia de este grupo familiar conformado por doce personas. Las restantes 27 hectáreas constituyen una reserva forestal que la conservan y desean ampliarla para seguir siendo fuente generadora de agua y oxígeno para el mundo. Los suelos son muy actos para la producción de café y presenta muy buena retención de agua, produciendo cafés especiales y con muy buena comercialización.<br /> <br />Diseño<br />Esquema General de la PTAR<br />En la Figura 1 se muestra el esquema general de la PTAR en donde se encuentran integrados el sistema de tratamiento de ARD y el sistema de tratamiento de aguas provenientes del benéfico del café integrados, posteriormente cada sistema será analizada por separado.<br />Figura 1. Esquema general de la PTAR<br />SISTEMA 1: SISTEMA DE TRATAMIENTO DE AGUAS ESIDUALES <br /> DOMESTICAS<br />Información básica <br />Para caracterizar las aguas residuales, se tomo información de la literatura (ver tabla 1) y resultados de estudios realizados a algunos municipios del Huila (ver tablas 2, 3). Los valores finalmente seleccionados para este estudio se muestran en la tabla 4, semejándose a una agua residual media de acuerdo a Metcalf & Eddy.<br />Tabla 1. Caracterización de Aguas residuales domésticas. <br />PARAMETROUNIDADESCONCENTRACIÓNDEBILMEDIAFUERTEDBO5mg/L110220400DQOmg/L2505001000SSmg/L100220350STmg/L3507201200Grasasmg/L50100150Nmg/L204085Pmg/L4815CTN°/100 ml106 - 107107 - 108107 -109<br /> Fuente: González. 2009<br /> <br />Tabla 2. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila.<br />MUNICIPIOQTODDBO5DQOSSSTNPG-A CFL/s°Cmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/Lmg/LUFC/100mlNMP/100mlAlgeciras14,825.91,07109198,71082943,51,29-1,6E+13Baraya19,88260,67112165245-0,0210,0632088500 Campoalegre16,8213284460,2272-44,55,78-16x108 Colombia4,8223.50,8223,5337,585-5,7--Hobo2523.51,032003272781640,222,19--Iquira6,3225.31,0110207310-116194-22,5Neiva61728-19235014547116,46,33,224x104 Palermo5,3--14735884-0,76--Rivera39,51241,1580157107-0,339,227,65-Santa maría13,38202,9158322188-20,51,59-14x108 Tello15,7-0,3231488185-1,21,6--Teruel21,54--105,31255,2593,25-----Villavieja4,17--245-180-----Yaguará13--3806294,16---18,2-<br />Fuente: Narváez. 2009<br />Tabla 3. Caracterización de las Aguas residuales domésticas de algunas cabeceras municipales del departamento del Huila.<br />PARAMETROUNIDADESPITALISNOSDBO5mg/L100216DQOmg/L344464SSmg/L233203STmg/L337347Pmg/L6.431.56<br /> Fuente: Narváez, Silva. 2009.<br />Tabla 4. Valores de los parámetros de las aguas residuales domésticas del sector rural del departamento del Huila.<br />PARAMETROUNIDADESCONCENTRACIÓNDBOmg/L200SSmg/L250Grasasmg/L100Nmg/L40Pmg/L8CFUFC/100 ml108<br /> Fuente: Narváez, Silva. 2009.<br />Población<br />Para las ARD, el número de habitantes en la vivienda de don Freddy es de 12 personas <br />Cálculos Básicos<br />Caudal de aguas residuales (QAR)<br />En el cálculo se utilizo la siguiente fórmula:<br /> <br />D: Dotación <br />CR: Coeficiente de retorno<br />P: Población <br />- Dotación (D): Tomando como base el RAS 2000 titulo B, tabla B2.2 y teniendo en cuenta que en el sector rural los consumos de aguas son mayores al sector urbano se adoptó: <br />D = 200 L/Hab-día<br />- Coeficiente de retorno (CR): Según el RAS 2000 titulo D, tabla D3.1 se adoptó:<br />CR = 0.8<br />QAR=1.92 m3/día<br />Caracterización de las aguas residuales del beneficio del café <br />El café maduro presenta una composición en la cual el grano, que es la parte aprovechable para el proceso, representa el 20% del volumen total de la fruta, de manera tal que, el procesamiento de beneficiado genera un 80% del volumen procesado en desechos. El café es procesado de varias formas, en el tradicional no es usado ningún tipo de tratamientos de aguas o subproductos de cosecha (cáscara). El ecológico si usa un proceso de tratamientos de aguas y subproductos del café. El beneficio tradicional utiliza 10 L de agua por Kg de café pergamino y el beneficio ecológico utiliza 1 L/Kg de café pergamino. (Cortes, 2009)<br />La tabla 5, presenta una caracterización de las aguas residuales del beneficio del café, realizada por el comité de cafeteros en el departamento del Huila. <br />Tabla 5. Caracterización de las Aguas Residuales del Café<br />ParámetrosUnidades Valor pHUnidades 4,06DBOmg/l9700DQOmg/l19800SSmg/l7000<br /> Fuente: Laboratorio Agualimsu 2004<br />La cosecha dura dos meses y Don Freddy recoge un 60% de la producción en la cosecha por hectárea. Y en el beneficio tradicional utiliza 10 L de agua por Kg de café pergamino.<br />la producción de la zona se estima en 9000 Kg/ha – año de café cereza<br />Caudal de aguas residuales provenientes del beneficio del café (QAR)<br />En el cálculo se utilizo la siguiente fórmula:<br /> <br />D: Dotación <br />P: Producción <br />- Dotación (D): De la tesis “Evaluación preliminar de los sistemas de tratamiento de aguas residuales del beneficio del café de la vereda villa Colombia. La Plata – Huila” de (Cortes y Ríos, 2009) se Tomo que en el beneficio tradicional se utiliza 10 L de agua por Kg de café pergamino: <br />- Producción (P): Producción de café cereza por cosecha en las 5 hectáreas de don Freddy. <br />P=PCafe*% de recoleccion*# de ha <br />PCafe: Producción de café al año en la zona<br />- Producción (PCafe): En la zona se estima una producción de 9000 Kg/ha – año de café cereza, y don Freddy recoge un 60% de la producción en la cosecha por hectárea.<br />P= 9000Kgha-año * 60 %*5 ha=27000 Kgaño <br />QAR=10LKg*27000Kgaño=270000 Laño* 1m31000 L*1año60d=4.5 m3dia<br />QAR= 4.5 m3/día<br />Diseño Conceptual<br />La figura 2, muestra el esquema general, donde las aguas grises (lavaplatos, lavadero, lavamanos y ducha) provenientes de la vivienda pasan por una trampa de grasas que cumple la labor de atrapar grasas, aceites y detergentes. El efluente de esta trampa de grasas, con el afluente de aguas negras (baterías sanitarias) de la vivienda se une y pasa por una alberca biológica donde se sembraran heliconias y su objetivo es remover los sólidos suspendidos, material flotante y parte de la concentración de DBO, F y N. El efluente de la alberca biológica pasa a un canal sembrado con Buchón de agua u otro cultivo, donde culminara de tratar las aguas residuales y les removerá el restante de la concentración de DBO, F, N, Nutrientes y Cf. Esta etapa se considera en el sistema como tratamiento. El efluente del canal con plantas es usado en el riego del cultivo de café, fase que se considera en el sistema como reusó. Los Buchones van de nuevo a la vivienda para ser comercializadas, considerando esta fase en el sistema como producción.<br />Figura 2. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de ARD.<br />Diagrama de niveles de tratamientos de las unidades del sistema y de los procesos a realizar.<br />La figura 3, muestra el esquema de los tratamientos y los procesos que se espera se realicen en el sistema. En los procesos En forma descendente se encuentran las unidades, el proceso principal, el contaminante principal removido y los contaminantes secundarios. Un tratamiento preliminar (trampa de grasas), un tratamiento primario (alberca biológica) y un tratamiento secundario (Un canal con Buchón de Agua).<br />Figura 3. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de tratamiento de ARD<br />Diagrama de subproductos<br />En La figura 4, se enseña el esquema de disposición de los subproductos del sistema, de forma descendente se muestran las unidades, el subproducto que se deriva y finalmente su disposición.<br />Figura 4. Diagrama de Subproductos del sistema de tratamiento de ARD.<br />Eficiencia teórica de sistemas de Tratamiento de ARD <br />Se tomo una tabla de eficiencias reales de un sistema de tratamiento de aguas residuales domesticas, que utiliza albercas bilógicas, trampa de grasas para el tratamiento de las AR, de la tesis “Sistemas Descentralizados Integrados y Sostenibles Para el Tratamiento De Aguas Residuales Domesticas En El Sector Rural Del Departamento Del Huila” de (Narváez y Silva, 2009). La tabla 6, muestra las eficiencias esperadas para el sistema de tratamiento.<br />Tabla 6. Eficiencias teóricas de sistemas de tratamiento de ARD utilizando Alberca Biológica. (González, 2009).<br />PARAMETROAFLUENTEEFLUENTE% REMOCIONDBO (mg/L)20010,795SS (mg/L)250698GRASAS (mg/L)100496N (mg/L)406,285P (mg/L)83,754CF NMP/100ml10810499,9<br /> FUENTE: González. 2009.<br />DISEÑO FISICO<br />Se diseñó teniendo en cuenta los criterios propuestos en el RAS – 2000 y las albercas biológicas basadas en los criterios de la en la Tesis “Manejo de los Residuos de la Explotación Porcícola en la Institución Educativa El Tejar municipio de Timaná Huila. Diseño de una Alberca Biológica”. (Medina, 2007). <br />3.1.4.1 Diseño De La Trampa De Grasas<br />Para el diseño de acuerdo al RAS, la trampa debe tener 0.25m2 por 1.0 L/s de agua residual.<br />QAR=caudal de aguas residuales (L/s)<br />A=Área (m2)<br />a=Ancho (m)<br />L=Longitud (m)<br />h=Altura (m)<br />Cálculo del área (m2)<br />QAR= 0.022L/s (Ya calculado)<br />A= 0.0055m2 <br />Cálculo de la longitud (L)<br />Si se calcula cuadrada <br /> L= 0.074 m<br />Por construcción las dimensiones serán las siguientes (González, 2009):<br />a= 0.6mh= 0.6mL= 0.6m<br />La figura 5 muestra el esquema de la vista en planta y corte longitudinal de la trampa de grasas. <br /> Vista en planta Corte Longitudinal<br />Figura 5. Vista. Planta y corte longitudinal de la Trampa de Grasas.<br />3.1.4.2 Diseño De La Alberca Biológica <br />Relación largo ancho de los tanques con Buchón de Agua L: a 2: 1<br />Altura de la Alberca biológica h = 0.8m<br />La figura 6 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal de la Alberca Biológica.<br />Vista en planta<br /> <br /> Corte longitudinal Detalle del Filtro <br /> <br />Figura 6. Esquemas vista planta, corte longitudinal y corte transversal de la Alberca Biológica. <br />Cálculos de las tanques con Buchón de Agua.<br />Se diseñó un solo tanque, el cual se divide en dos para aumentar su eficiencia; tomando como parámetro el tiempo de retención hidráulica (TRH). <br />V=Volumen (m3)<br />TRH=Tiempo de Retención Hidráulica (día)<br />QAR=Caudal de Aguas Residuales (m3/día)<br />As=Área superficial (m2)<br />h=Altura (m)<br />a=Ancho (m)<br />L=Largo (m)<br />Calculo del volumen (V)<br />QAR=1.92m3/día<br />TRH=1dia (Asumido con base al TRH de un Tanque Séptico)<br /> V = 1.92 m3<br />Cálculo del área superficial (As)<br /> <br />Teniendo en cuenta la profundidad de las raíces del Buchón de agua, la profundidad de la alberca se adopta:<br /> h = 0.8 m <br />As = 2.4 m2 <br />Relación largo ancho<br /> <br />Cálculo del ancho (a) <br />-1276353700780 <br /> <br /> a=1.1 m <br />Cálculo del largo (L)<br /> L=2.2 m<br /> <br />Para efectos de construcción la longitud de cada tanque es:<br />L=1 m<br />Cálculo del Filtro Anaerobio <br />El filtro anaerobio se diseño teniendo en cuenta el parámetro volumen per cápita de filtro.<br />Vf=Volumen del filtro (m3)<br />P=población (Hab)<br />Vp=Volumen per cápita de filtro (m3/hab)<br />C=Coeficiente de mayoración de volumen<br />hf=Altura del filtro (m)<br />hc=Perdida de cabeza (m)<br />hs= Altura del sobrenadante (m)<br />h1=Altura capa de Arena (m)<br />h2=Altura capa de Gravilla (m)<br />h3=Altura capa de Grava (m)<br />Lf=Largo del filtro (m)<br />af=Ancho del filtro (m)<br />Cálculo del Volumen del filtro (Vf). <br /> <br />Vp =0.05m3/hab<br />P=12 Hab <br />C=1.2 Equivalente al 20%<br />Vf = 0.7m3 <br />Altura del filtro (hf)<br />hc=0.1m Por el paso del liquido por la intersección del filtro<br />hs=0.1m Por Sobrenadante<br />h=0.8 m<br /> hf=0.6 m<br />Para efectos de construcción:<br />h2 = 0.2m Gravillah1 = 0.2m Arenah3 = 0.2m Grava<br />Largo del filtro (Lf)<br />Por construcción tomamos el ancho del filtro, con el mismo valor del tanque.<br /> <br /> Lf=1.2 m <br /> <br />El filtro se divide en dos compartimientos de L=0.6m, para asegurar el flujo descendente – ascendente. La figura 9 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal de la Alberca Biológica para efectos de construcción. <br />Vista en planta<br /> Corte longitudinal Detalle del Filtro<br /> <br />Figura 7. Vista en planta, corte longitudinal y corte transversal de la Albercas Biológica para efectos de construcción.<br />3.1.4.3 Diseño Del Canal Con Buchón de Agua<br />Se diseñó un solo tanque, el cual se divide en dos para aumentar su eficiencia; tomando como parámetro el tiempo de retención hidráulica (TRH). <br />V=Volumen (m3)<br />TRH=Tiempo de Retención Hidráulica (día)<br />QAR=Caudal de Aguas Residuales (m3/día)<br />As=Área superficial (m2)<br />h=Altura (m)<br />a=Ancho (m)<br />L=Largo (m)<br />Calculo del volumen (V)<br />QAR=1.92m3/día<br />TRH=1dia (Asumido con base al TRH de un Tanque Séptico)<br /> V = 1.92 m3<br />Cálculo del área superficial (As)<br /> <br />Teniendo en cuenta la profundidad de las raíces del Buchón de Agua, la profundidad de la alberca se adopta:<br /> h = 0.8 m <br />As = 2.4 m2 <br />Relación largo ancho<br /> <br />Cálculo del ancho (a)<br /> <br /> 62865-4445 <br /> a=1.1 m <br />Cálculo del largo (L)<br /> L=2.2 m<br /> <br />Para efectos de construcción la longitud del tanque es:<br />L=2 m<br />La figura 8 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua, para efectos de construcción. <br />Vista en planta<br />Corte longitudinal<br />Figura 8. Vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.<br />La tabla 7 muestra las dimensiones de cada una de las unidades del sistema de tratamiento de ARD<br />Tabla 7. Dimensiones de las Unidades del sistema de tratamiento de ARD<br />UNIDAD PARAMETROMEDIDA (m)Trampa de grasasLongitud 0.6Ancho0.6Altura0.6Tanque 1 y 2Longitud 1.0Ancho1.0Altura0.8Filtro anaerobio Longitud 1.2 Ancho1.2Altura0.6Canal con Buchón de AguaLongitud 1.0Ancho1.0Altura0.8<br /> Fuente: Javela y Gonzalez. 2009<br />Propuesta 2: SISTEMA DE TRATAMIENTO DE AGUAS RESIDUALES <br /> PROVENIENTES DEL BENEFICIO DEL CAFÉ<br />DISEÑO CONCEPTUAL<br />La figura 9, muestra el esquema general, donde las aguas provenientes del beneficio del café pasan por un desnatador y su objetivo es remover los sólidos suspendidos, material flotante de las AR. El efluente de este desnatador, pasa por un filtro vertical cuya labor es remover parte de la concentración de DBO y S.S. El efluente del Filtro vertical pasa a un canal sembrado con Buchón de agua u otro cultivo, donde culminara de tratar las aguas residuales y les removerá el restante de la concentración de DBO, F, N, Nutrientes y Cf. Esta etapa se considera en el sistema como tratamiento. El efluente del canal con plantas es usado en el riego del cultivo de café, fase que se considera en el sistema como reusó. Los Buchones van de nuevo a la vivienda para ser comercializadas, considerando esta fase en el sistema como producción.<br />Figura 9. Sistema descentralizado, Integrado y sostenible Para el Tratamiento de Aguas Residuales Del Beneficio Del Café.<br />Diagrama de niveles de tratamientos de las unidades del sistema y de los procesos a realizar.<br />La figura 10, muestra el esquema de los tratamientos y los procesos que se espera se realicen en el sistema. En los procesos En forma descendente se encuentran las unidades, el proceso principal, el contaminante principal removido y los contaminantes secundarios. Un tratamiento preliminar (desnatador), un tratamiento primario (filtro vertical) y un tratamiento secundario (Un canal con Buchón de Agua).<br />Figura 10. Diagrama de niveles de tratamiento y de procesos del sistema del sistema de tratamiento de Aguas Residuales Del Beneficio Del Café. <br />Diagrama De Subproductos<br />En La figura 11, se enseña el esquema de disposición de los subproductos del sistema, de forma descendente se muestran las unidades, el subproducto que se deriva y finalmente su disposición.<br />Figura 11. Diagrama de Subproductos del sistema de tratamiento de Aguas Residuales Del Beneficio Del Café.<br />Eficiencias Teórica del sistema de Tratamiento de Aguas Residuales Provenientes Del Beneficio Del Café.<br />Se tomo una tabla de eficiencias reales de un sistema de tratamiento de aguas residuales provenientes del beneficio del café, que utilizan desnatadores y filtros verticales para el tratamiento de las AR, de la tesis “Evaluación preliminar de los sistemas de tratamiento de aguas residuales del beneficio del café de la vereda villa Colombia. La Plata – Huila” de (Cortes y Ríos, 2009). La tabla 8, muestra las eficiencias reales para el sistema de tratamiento de aguas residuales del beneficio del café utilizando filtros verticales y desnatadores. <br />Tabla 8. Eficiencias Reales en tratamiento de aguas de café <br />PARAMETRO AFLUENTE (Af) EFLUENTE (Ef) % REMOCIÓN DBO 2950 278 90 DQO 24270 1248 95 SS 9115 280 97 G y A 29.2 4.6 84 <br />Fuente: Ríos, 2009<br />DISEÑO FISICO<br />Se diseñó teniendo en cuenta los criterios propuestos en el RAS – 2000 y las albercas biológicas basadas en los criterios de la en la Tesis “Manejo de los Residuos de la Explotación Porcícola en la Institución Educativa El Tejar municipio de Timaná Huila. Diseño de una Alberca Biológica”. (Medina, 2007). <br />3.2.2.1 Diseño Del Desnatador <br />El desnatador es utilizado en la propuesta 2 como tratamiento preliminar.<br />El desnatador se diseño teniendo en cuenta el parámetro de TRH.<br />Relación largo ancho 2:1<br />V=Volumen (m3)<br />TRH=Tiempo de Retención Hidráulica (días)<br />As=Área Superficial (m2)<br />L=largo (m)<br />a=Ancho (m)<br />h=Altura (m)<br />Cálculo del volumen (V)<br /> <br />V= 0.6m3TRH= 3 horas = 0.125 días <br /> <br />Cálculo del área superficial (As)<br />La altura se asume: h = 0.6 m<br />As= 1 m2 <br />Cálculo de la ancho (a) <br /> <br />152401270 <br />a= 0.7m<br />L= 1.4 mCálculo de la longitud (L)<br /> <br />La figura 12 muestra el esquema de la vista en planta y corte longitudinal del Desnatador.<br /> Vista en planta Corte Longitudinal<br />Figura 12. Vista planta y corte longitudinal del Desnatador.<br />3.2.2.2 Diseño Del Filtro Vertical<br />Cálculo del Filtro Anaerobio <br />El filtro anaerobio se diseño teniendo en cuenta el parámetro volumen per cápita de filtro.<br />Vf=Volumen del filtro (m3)<br />P=población (Hab)<br />Vp=Volumen per cápita de filtro (m3/hab)<br />C=Coeficiente de mayoración de volumen<br />hf=Altura del filtro (m)<br />hc=Perdida de cabeza (m)<br />hs= Altura del sobrenadante (m)<br />h1=Altura capa de Arena (m)<br />h2=Altura capa de Gravilla (m)<br />h3=Altura capa de Grava (m)<br />Lf=Largo del filtro (m)<br />af=Ancho del filtro (m)<br />Cálculo del Volumen del filtro (Vf). <br /> <br />Vp =0.05m3/hab<br />P=25 Hab <br />C=1.2 Equivalente al 20%<br />Vf = 1.5m3 <br />Altura del filtro (hf)<br />hc=0.1m Por el paso del liquido por la intersección del filtro<br />hs=0.1m Por Sobrenadante<br />h=1 m<br />hf=0.8 m <br />Para efectos de construcción:<br />h1 = 0.3m Arenah3 = 0.2m Grava<br />h2 = 0.3m Gravilla<br />Largo del filtro (Lf)<br />Por construcción tomamos el ancho del filtro, con el mismo valor del tanque.<br /> <br /> Lf=2 m <br /> <br />El filtro se divide en dos compartimientos de L= 1m, para asegurar el flujo descendente – ascendente.<br />La figura 13 muestra el esquema de la vista en planta y corte longitudinal del Filtro Vertical.<br /> <br /> Vista en planta Corte Longitudinal<br />Figura 13. Vista planta y corte longitudinal del Filtro Vertical.<br />3.2.2.3 Diseño del Canal con Buchón de Agua <br />Relación largo ancho de los tanques con Buchón de Agua L: a 2: 1<br />Altura del Canal con Buchón de Agua h = 0.8m<br />La figura 14 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal del Canal con Buchón de Agua.<br />Vista en planta<br /> <br /> Corte longitudinal <br /> <br />Figura 14. Esquemas vista planta y corte longitudinal del Canal Buchón de Agua <br /> <br />Cálculos del tanque con Buchón de Agua.<br />Se diseñó un solo tanque, tomando como parámetro el tiempo de retención hidráulica (TRH). <br />V=Volumen (m3)<br />TRH=Tiempo de Retención Hidráulica (día)<br />QAR=Caudal de Aguas Residuales (m3/día)<br />As=Área superficial (m2)<br />h=Altura (m)<br />a=Ancho (m)<br />L=Largo (m)<br />Calculo del volumen (V)<br />QAR=4.5m3/día<br />TRH=1dia (Asumido con base al TRH de un Tanque Séptico)<br /> V = 4.5 m3<br />Cálculo del área superficial (As)<br /> <br />Teniendo en cuenta la profundidad de las raíces de las heliconias, la profundidad de la alberca se adopta:<br /> h = 0.8 m <br />As = 5.6 m2 <br />Relación largo ancho<br /> <br />Cálculo del ancho (a)<br />-8001045085 <br /> <br /> a=1.7 m <br />Cálculo del largo (L)<br /> L=3.4 m<br /> <br />Para efectos de construcción la longitud del tanque es:<br />L=3.5 m<br />La figura 15 muestra los esquemas de la vista en planta, corte longitudinal y corte transversal del Canal con Heliconias para efectos de construcción. <br />Vista en planta<br />Corte longitudinal<br />Figura 15. Vista en planta y corte longitudinal del Canal con Buchón de Agua.<br />La tabla 9 muestra las dimensiones de cada una de las unidades del sistema de tratamiento de las Aguas Residuales del Beneficio del Café.<br />Tabla 9. Dimensiones de las Unidades del sistema de tratamiento de Aguas Residuales del Beneficio del Café.<br />UNIDAD PARAMETROMEDIDA (m)DesnatadorLongitud 1,4Ancho0,7Altura0.6Filtro VerticalLongitud 1.0Ancho1.0Altura1Canal con heliconiasLongitud 3,5Ancho3,5Altura0.8<br /> Fuente: Javela y González. 2009<br /> VENTAJAS DEL PROYECTO<br />Tabla 10. Ventajas de la PTAR<br />VENTAJADESCRIPCIÓNEN LO SOCIALEl proyectos trae benéficos en lo social puesto que a las aguas de la quebrada la Bonita ya no llegara la carga contaminante que actualmente es vertida a esta y se disminuirán los riesgos de contraer enfermedades por la posible utilización de esta por parte de las personas y los animales.Se disminuyen los malos olores e insectos hasta su desaparición que son generados del vertimiento de las aguas no tratadas, dándole un mejor aspecto a la finca.Se gozara de una agua de mejor calidad que contribuirá al mejoramiento de la calidad de vida de las personas que habitan en la finca y en la región EN LO AMBIENTALEl tratamiento de las aguas y su reutilización elimina la carga contaminante que se le estaba vertiendo a la quebrada por lo que la calidad del agua es mejor y además se está ayudando a la conservación del agua.Debido a la disminución de la contaminación los animales y plantas acuáticas que muy posiblemente se estaban afectando y estaban desapareciendo, tendrán muchas más posibilidades de vivir, aquí se está ayudando a la conservación de la fauna existente en la zona<br />Presupuesto<br />PRESUPUESTO DEL SISTEMA DESCENTRALIZADO, INTEGRADO Y SOSTENIBLE PARA TRATAMIENTO DE AGUAS RESIDUALES DOMESTICAS<br />Propuesta 1. Sistema de Tratamiento de ARDITEMDESCRIPCION UNICANTIDADVr. UnitarioVr. Parcial1Tratamiento Preliminar Trampa de grasas     Concreto 3000 Psim30,1269,5126,2 Muro de ladrillo tolete m22,4929,9674,6 pañete m3 0,24231,5155,33 tuberia PVC Ø 2quot; ml0,74,272,99 Codo 90 PVC Aguas Negras Ø 2quot; UND22,264,52 Tapa de Cemento m20,8138,931,51 VALOR PARCIAL195,152Tratamiento Primario Alberca Biológica     Concreto 3000 Psim30,585269,511157,664 Varilla corrugadaml732,403175,441 Concreto Ciclopeom31,5683,715130,596 Muro de ladrillo tolete m21329,96389,477 pañete m31,44231,511333,375 tuberia PVC Ø 3quot; ml24,278,54 Codo 90 PVC Aguas Negras Ø 3quot; UND22,2624,524 Arena para filtro anaerobiom30,2408 Grava para filtro anaerobiom30,2357 Gravilla para filtro anaerobiom30,25010 VALOR PARCIAL1.224,623Tratamiento Secundario Canal Con Plantas Acuáticas     Concreto 3000 Psim30,585269,511157,664 Varilla corrugadaml732,403175,441 Concreto Ciclopeom31,5683,715130,596 Muro de ladrillo tolete m21329,96389,477 pañete m31,44231,511333,375 tuberia PVC Ø 3quot; ml24,278,54 Codo 90 PVC Aguas Negras Ø 3quot; UND22,2624,524 VALOR PARCIAL1.199,62 SUMATORIA DE VALORES PARCIALES 2.619,38 ADMINISTRACION E IMPREVISTOS (15%)392,908 UTILIDAD (5%)130,969 IVA SOBRE UTILIDAD (16%)20,955 COSTO TOTAL DEL PROYECTO3.164,22<br />PRESUPUESTO DEL SISTEMA DESCENTRALIZADO, INTEGRADO Y SOSTENIBLE PARA TRATAMIENTO DE AGUAS RESIDUALES PROVENIENTES DEL BENEFICIO DEL CAFÉ<br />Propuesta 2. Sistema de Tratamiento de Aguas Residuales Provenientes Del Beneficio Del CaféITEMDESCRIPCION UNICANTIDADVr. UnitarioVr. Parcial1Tratamiento Preliminar Desnatador     Concreto 3000 Psim30,1269,5126,2 Muro de ladrillo tolete m22,4929,9674,6 pañete m3 0,24231,5155,33 tuberia PVC Ø 2quot; ml0,74,272,99 Codo 90 PVC Aguas Negras Ø 2quot; UND22,264,52 Tapa de Cemento m20,8138,931,51 VALOR PARCIAL195,152Tratamiento Primario Filtro Vertical     Concreto 3000 Psim30,585269,511157,664 Varilla corrugadaml732,403175,441 Concreto Ciclopeom31,5683,715130,596 Muro de ladrillo tolete m21329,96389,477 pañete m31,44231,511333,375 tuberia PVC Ø 3quot; ml24,278,54 Codo 90 PVC Aguas Negras Ø 3quot; UND22,2624,524 Arena para filtro anaerobiom30,2408 Grava para filtro anaerobiom30,2357 Gravilla para filtro anaerobiom30,25010 VALOR PARCIAL1.224,623Tratamiento Secundario Canal Con Plantas Acuáticas     Concreto 3000 Psim30,585269,511157,664 Varilla corrugadaml732,403175,441 Concreto Ciclopeom31,5683,715130,596 Muro de ladrillo tolete m21329,96389,477 pañete m31,44231,511333,375 tuberia PVC Ø 3quot; ml24,278,54 Codo 90 PVC Aguas Negras Ø 3quot; UND22,2624,524 VALOR PARCIAL1.199,62 SUMATORIA DE VALORES PARCIALES 2.619,38 ADMINISTRACION E IMPREVISTOS (15%)392,908 UTILIDAD (5%)130,969 IVA SOBRE UTILIDAD (16%)20,955 COSTO TOTAL DEL PROYECTO3.164,22<br />CONCLUSIONES<br />Los sistemas descentralizados integrados y sostenibles para el tratamiento de aguas residuales, disminuyen la contaminación de ríos y quebradas. Además reducen los riesgos sobre la salud de los habitantes del sector rural, mejorando su calidad de vida y el entorno.<br />Los sistemas descentralizados integrados y sostenibles son de fácil construcción, operación y mantenimiento comparados con otros sistemas convencionales de alto costo; sin embargo para que conserven su eficiencia, se requiere realizar actividades de operación y mantenimiento.<br />Las eficiencias teóricas de remoción de contaminantes de los sistemas descentralizados integrados y sostenibles propuestos en estudio, se consideran altas por que están alrededor del 80% en DBO, S.S, G y A y el 50% en N y P.<br />La inversión inicial de los sistemas propuestos en este proyecto, oscilan en $1’800.000. Es una cifra que se puede considerar alta para un campesino de la zona de minifundio del departamento del Huila, sin embargo, la inversión puede recuperar con los productos obtenidos del proceso (reusó – producción) y los ahorros en pago de tasa retributiva.<br />.<br />BIBLIOGRAFÍA<br />VALENCIA G. E. OLAYA M. M., Generalidades sobre Saneamiento rural, Universidad Surcolombiana, Programa Ingeniería Agrícola. Neiva, 1997. <br />CORTES M. A. RIOS A. T., Evaluación preliminar de los sistemas de tratamiento de aguas residuales del beneficio del café de la vereda villa Colombia. La Plata – Huila, Universidad Surcolombiana, Programa Ingeniería Agrícola. Neiva, 2009<br />NARVAEZ C. P. SILVA. I. J., Evaluación preliminar de los sistemas de tratamiento de aguas residuales del beneficio del café de la vereda villa Colombia. La Plata – Huila, Universidad Surcolombiana, Programa Ingeniería Agrícola. Neiva 2009<br />MEDINA P. A., Manejo de dos residuos de da explotación Porcina en la Institución Educativa El Tejar municipio de Timaná Huila. Diseño de una alberca biológica. Tesis. Universidad Surcolombiana. Neiva, 2007. <br />OPS, Organización Panamericana de la Salud, CEPIS, Guía para el diseño de tanques sépticos, tanques imhoff y lagunas de estabilización. Lima. 2005.<br />ALMARIO. L. F., Diseño De Albercas Biológicas Y Filtros Biológicos Como Sistema De Tratamiento De Aguas Residuales Para La Institución Educativa Guacirco. Neiva-Huila. Universidad Surcolombiana, Programa Ingeniería Agrícola. Neiva, 2008<br />Sitio oficial de Sefiltra. Alcobendas (Madrid). [ref. De 20 enero 2010] web: http://www.sefiltra.com/filtros-de-arena.php<br />Sitio oficial de Wikipedia [ref. De 20 enero 2010] web: http://es.wikipedia.org/wiki/Tratamiento_de_aguas_residuales.<br />PLANOS<br />