SlideShare uma empresa Scribd logo
1 de 14
Baixar para ler offline
ESTÁTICA DOS CORPOS RÍGIDOS
1. Forças no plano
A Força representa a ação de um corpo sobre o outro e é caracterizada pelo seu
ponto de aplicação, sua intensidade, direção e sentido.
A intensidade de uma força é expressa em Newton (N) no Sistema Internacional de
Unidades (SI).
A direção de uma força é definida por sua linha de ação, ou seja, é a reta ao longo
da qual a força atua, sendo caracterizada pelo ângulo que forma com algum eixo fixo,
como indicado na Figura 1 abaixo.
F
α
F
α
Figura 2.1
O sentido da força é indicado por uma seta (vetor).
Denomina-se Grupo de forças, o conjunto de forças aplicadas em um único ponto
de um corpo.
Sistema de forças é o conjunto de forças aplicadas simultaneamente em pontos
diversos de um mesmo corpo.
2. Equilíbrio de um ponto material
Ponto material é uma pequena porção de matéria que pode ser considerada como se
ocupasse um ponto no espaço.
Quando a resultante de todas as forças que atuam sobre um ponto material é nula,
este ponto está em equilíbrio. Este princípio é conseqüência da primeira lei de Newton: “se
a força resultante que atua sobre um ponto material é zero, este ponto permanece em
repouso (se estava originalmente em repouso) ou move-se ao longo de uma reta com
velocidade constante (se originalmente estava em movimento)”.
Para exprimir algebricamente as condições de equilíbrio de um ponto material,
escreve-se:
0==Σ RF
onde:
F = força
R = resultante das forças
Curso Prático & Objetivo
Direitos Autorais Reservados
01Curso Prático & Objetivo
Direitos Autorais Reservados
A representação gráfica de todas as
forças que atuam em um ponto material
pode ser representada por um diagrama de
corpo livre, como indica a figura ao lado.
F3
F2
A
F4 F1
Figura 2.2
Exemplo: verificar se o sistema de forças indicado está em equilíbrio
As condições necessárias e suficientes
para o equilíbrio são:
0=Σ xF
0º302000º3010001500 =−−=Σ sensenFx
010005001500 =−−=Σ xF ok
0=Σ yF
0866º30cos1000º30cos2000 =−−=Σ yF
08668661732 =−−=Σ yF ok
xA F = 1500N1
F = 1000N3 F = 866N2
30°
y
F = 2000N4
30°
Resposta: O sistema de forças está em equilíbrio
3. Resultante de uma força
Constata-se experimentalmente que duas forças P e Q que atuam sobre um ponto
material podem ser substituídas por uma única força R que tenha o mesmo efeito sobre
esse ponto material. Essa força é chamada de resultante de P e Q. Portanto, a resultante de
um grupo de forças é a força que, atuando sozinha, produz ação idêntica à produzida pelo
grupo ou sistema de forças. A resultante pode ser determinada por soluções gráficas ou
analíticas.
a) Soluções gráficas: quando um ponto material está em equilíbrio sob a ação de mais de
três forças o problema pode ser resolvido graficamente pelo desenho de um polígono de
forças, como indicado nas figuras abaixo.
Regra do paralelogramo
Q
A P A P
Q
R R
Curso Prático & Objetivo
Direitos Autorais Reservados
02Curso Prático & Objetivo
Direitos Autorais Reservados
Regra do Triângulo
A
Q
A
R=P+Q
P
Q
P
R=P+Q
Composição de forças
R=F1+F2-F3
F3
R=F1+F2
F1
F1
R=F1+F2+F3
F2
F3
F3
F2 F3
Decomposição de forças F
Fx
y
x
y
F
b) Soluções analíticas: os métodos analíticos utilizam a trigonometria e as equações de
equilíbrio.
Exemplos
Determinar a Resultante das duas forças P e
Q agem sobre o parafuso A.
Q=60 N
25º
20ºA P=40 N
Curso Prático & Objetivo
Direitos Autorais Reservados
03Curso Prático & Objetivo
Direitos Autorais Reservados
a. Soluções gráficas
35.0°
R=98 N
A 20º
25º
P=40 N
Q=60 N
R=98 N
Q=60 N
A
P=40 N
35.0°
Regra do paralelogramo Regra do triângulo
b. Solução analítica: trigonometria
Cálculo da força resultante:
Lei dos cossenos: BPQQPR cos2222
−+=
º155cos604024060 222
×××−+=R
NR 7,97=
Cálculo do ângulo α
Lei dos senos
R
senB
Q
senA
=
7,97
º155
60
sensenA
=
25,0=senA º15=A
º20+= Aα º35º20º15 =+=α
A
R
Q=60 N
α
P=40 N
B
155°
C
Sabendo-se que o parafuso está fixo, portanto em equilíbrio, existem forças de
reação que equilibram as forças Q e P. Este princípio é explicado pela terceira lei de
Newton: “A toda ação corresponde uma reação, com a mesma intensidade, mesma direção
e sentido contrário”.
Portanto, o parafuso está
reagindo por uma força de
mesma intensidade da resultante
de P e Q, mas em sentido
contrário. A força de reação
pode ser decomposta em duas
forças Fx e Fy, que são suas
projeções sobre os eixos (x e y).
NFx 80º35cos7,97 =×=
NsenFy 56º357,97 =×=
A
R=97,7 N
35°
Fx=80 N 20º
Fy=56 N
R=97,7 N
P=40 N
25º
Q=60 N
35.0°
Curso Prático & Objetivo
Direitos Autorais Reservados
04Curso Prático & Objetivo
Direitos Autorais Reservados
Verificação do equilíbrio do ponto A
Para que o ponto A esteja em equilíbrio é necessário que a somatória de todas as forças que
agem no ponto A sejam nulas, ou seja: 0
1
=∑=
n
i
nF
y
Q=60 N
Fy=56 N
x
25º
20ºA
Fx=80 N P=40 N
∑ = 0xF
∑ =−×+×= 080º20cos40º45cos60xF
00 = ok
∑ = 0yF
∑ =−×+×= 056º2040º4560 sensenFy
00 = ok
Um caso particular da terceira lei de Newton é a lei da gravitação que trata da
atração da Terra sobre um ponto material localizado em sua superfície. A força de atração
exercida pela Terra sobre o ponto material é definida como o seu peso (P). a intensidade do
peso P de um ponto material de massa m é expresso como.
gmP ⋅=
onde g=9,81 m/s2
é a aceleração da gravidade.
2. Determinar as forças
nos cabos.
gmP ⋅=
( )2
/81,9)(75 smkgP ×=
NP 736=
30°50° A
75 kg
C
B
736 N
80°
60°
ACT
40°
TAB
solução gráfica: desenho do polígono de forças.
º80
736
º40º60 sensen
T
sen
T ACAB
==
TAB = 647 N e TAC = 480 N
Curso Prático & Objetivo
Direitos Autorais Reservados
05Curso Prático & Objetivo
Direitos Autorais Reservados
50°
30°
A
736 N
TAB
ACT
solução analítica: equações de equilíbrio.
0=Σ xF
0º50cosº30cos =⋅−⋅ ABAC TT
º30cos
º50cos⋅
= AB
AC
T
T (1)
0=Σ yF
0736º30º50 =−⋅+⋅ senTsenT ACAB
Substituindo TAC pela relação (1), tem-se
736º30
º30cos
º50cos
º50 =⋅
⋅
+⋅ sen
T
senT AB
AB
TAB = 647 N e TAC = 480 N
Exercícios
1. Determinar a força F e o ângulo α.
A
AT =2,5 kN BT = 2,5 kN
F
y
α
x
50°20°
C
20° B50°
α
F
Respostas: F=2,85 kN e α = 74,7º
2. Determinar as forças nos cabos
x
y
60°
20°
AT
TB
P
m=50 kg
A
60°
20°
B
Respostas: TA = 761,3 N e TB = 381 N
3. Determinar a resultante do
sistema de forças indicado e o seu
ângulo de inclinação em relação ao
eixo x.
70°
F = 15 N3
F = 10 N1
x50°
F = 20 N2
Curso Prático & Objetivo
Direitos Autorais Reservados
06Curso Prático & Objetivo
Direitos Autorais Reservados
Roteiro:
a. Determinar inicialmente a resultante entre as forças F1 e F2 e seu respectivo ângulo (α12)
em relação ao eixo x. Chamar a resultante de R12;
b. Em seguida, determinar a resultante de todo o sistema, chamando-a de R123 (R123 é a
resultante entre R12 e F3);
c. Finalmente, determinar o ângulo (α123) de R123 em relação ao eixo x.
Respostas: R123 = 32,19 N e α123 = 61,46º
4. Determinar o valor da força F.
a)
y
x
159,65 N
300 N
20°
60°
F
b)
x
F
60°
346,41 N
30°
200 N y
Resp. F = 314,41 N Resp. F = 400 N
c)
F
y
x
45°
45°
141,42 N
141,42 N
d)
y
x
F30°
60°
45°
250 N
120 N
91,9 N
Resp. F = 200 N Resp. F = 255,45 N
e)
329,36 N
100 N
100 N
F
60°
70°
45°
x
y
f)
65°
61 kg
45°
F
450 N
Resp. F = 321,74 N Resp. F=268,95 N
Curso Prático & Objetivo
Direitos Autorais Reservados
07Curso Prático & Objetivo
Direitos Autorais Reservados
4. Momento de uma força
Define-se Momento como a tendência de uma força F fazer girar um corpo rígido
em torno de um eixo fixo. O Momento depende do módulo de F e da distância de F em ao
eixo fixo.
Considere-se uma força F que atua em um
corpo rígido fixo no ponto 0, como indicado na
figura.
A força F é representada por um vetor que
define seu módulo, direção e sentido. O vetor d é a
distância perpendicular de 0 à linha de ação de F.
0
A
d
M0
F
Define-se o momento escalar do vetor F em relação a 0, como sendo
dFM ×=0
onde: M0= momento escalar do vetor F em relação ao ponto 0
0 = pólo ou centro de momento
d= distância perpendicular de 0 à linha de ação de F, também chamada de braço de
alavanca
O momento M0 é sempre perpendicular ao plano que contém o ponto 0. O sentido
de M0 é definido pelo sentido de rotação imposto pelo vetor F.
Convenciona-se momento positivo
se a força F tender a girar o corpo no
sentido anti-horário e negativo, se tender a
girar o corpo no sentido horário.
M-M+
No SI, onde a força é expressa em newtons (N) e a distância em metros (m).
Portanto, o momento é expresso em newtons × metros (N × m).
4.1. Momento de um sistema de forças coplanares
Chama-se Momento de um sistema de forças coplanares S={(F1,A1),....,(Fn,An)} em
relação ao ponto 0, à soma algébrica dos Momentos de cada força em relação ao mesmo
ponto 0.
0
A
A
F F
3
1
1 2
A2
b1 b2
b3
F3
∑=
=
n
i
FS i
MM
1
0,0,
4.2. Teorema de Varignon
Seja R a resultante do sistema de forças S. “O
Momento da resultante de um sistema de forças em relação a
um ponto é igual ao momento do sistema ou seja, a soma
algébrica dos Momentos de todas as forças componentes em
relação ao mesmo ponto O”.
∑=
==
n
i
FSR i
MMM
1
0,0,0,
Curso Prático & Objetivo
Direitos Autorais Reservados
08Curso Prático & Objetivo
Direitos Autorais Reservados
4.3. Momento de um binário
Duas forças F e –F que tenham o mesmo módulo, linhas de ação paralelas e
sentidos opostos formam um binário. A soma das componentes das duas forças em
qualquer direção é zero. Entretanto, a soma dos momentos das duas forças em relação a um
dado ponto não é zero. Apesar de as duas forças não transladarem o corpo no qual atuam,
tendem a fazê-lo girar.
b
1-F
2A
A1 F1
Exemplos
1. Uma força de 450 N é aplicada no ponto A como ilustrado na figura. Determinar:
a) o momento da força em relação a D;
b) a menor força aplicada em D que ocasiona
o mesmo momento em relação a D;
c) o módulo e o sentido da força vertical que,
aplicada em C, produz o mesmo momento em
relação a D;
d) a menor força que, aplicada em C,
ocasiona o mesmo momento em relação a D.
B
30°
A
D
225mm
225mm C
125mm
300mm
450 N
30°
B
197.3mm
225mm
C225mm
52.6°
D
125mm
300mm
37.4°325
30°
22.6°
A
450 N
Solução
a) braço de alavanca 197,3 mm
Momento M=F×b
M=450×197,3= 88785 N.mm ou
M= 88,8 N.m
B
30°
A
225mm
375 mm
225mm C
53.1°
36.9°
125mm
D
300mm
450 N b) Para se obter a menor força aplicada
em B que ocasiona o mesmo momento
em relação a D, deve-se utilizar o
maior braço de alavanca, ou seja:
375300225 22
=+=b mm
b
M
F = 8,236
375,0
8,88
==F N
c)
b
M
F = 7,394
225,0
8,88
==F N
Curso Prático & Objetivo
Direitos Autorais Reservados
09Curso Prático & Objetivo
Direitos Autorais Reservados
d) A menor força que, aplicada em C,
ocasiona o mesmo momento em relação a D é
aquela cujo braço de alavanca é o maior
possível, ou seja:
2,318225225 22
=+=b mm
b
M
F = 279
3182,0
8,88
==F N
30°
318,2
m
m
225mm
C225mm
D
125mm
300mm
B
A
450 N
2. A figura abaixo representa uma junta rebitada, composta por dois rebites de mesmo
diâmetro. Determinar as forças horizontais e verticais atuantes nos rebites.
Como os rebites são iguais, as cargas e as reações verticais em cada rebite também
são iguais: RAV= RBV= 3000÷2= 1500 N.
O rebite A está sendo “puxado” para a direita, portanto, possuirá uma reação
horizontal para a esquerda;
O rebite B está sendo
“empurrado” para a esquerda,
portanto, possuirá uma reação
horizontal para a direita.
Determinação dos esforços
horizontais:
∑ = 0AM
RBH×200=3000×600 = 9000 N
RAH= RBH=9000 N
B
RBV
ARAH
RAV
RBH
200mm
600mm
3000 N
3. Determinar o Momento em A devido ao
binário de forças ilustrado na figura
MA= F×b
MA= 500×0,12 = 60 N.m
300mm
120mm
F1=500 N
F2=500 N
A
30°
B
Curso Prático & Objetivo
Direitos Autorais Reservados
10Curso Prático & Objetivo
Direitos Autorais Reservados
4. Substituir o binário da figura por uma
força F vertical aplicada no ponto B.
F1=F2= 500 N
MA= F×b
b
M
F = 400
15,0
60
==F N
300mm
150mm
A
M =60N.m
120mm
A
30°
F=400 N
B
5. Substituir o binário e a força F ilustrados
na figura por uma única força F=400 N,
aplicada no ponto C da alavanca.
Determinar a distância do eixo ao ponto de
aplicação desta força.
MA= (400×0,15) + (200×0,12) = 84 N.m
F
M
d = 21,0
400
84
==d m = 210 mm
420
º60cos
210
==AC mm
300mm
120mm
A
M
200 N
200 N
d=210mm
150mm
A
30°
F=400 N
AC
B
C
5. Determinar a intensidade da força F para que
atue no parafuso o torque (momento) de 40 N.m.
217
º23cos
200
==a mm = 0,217 m
MA= F×b
b
M
F = 1,184
217,0
40
==F N
6. Um grifo é utilizado para rosquear um tubo de φ 20 mm a uma luva, como mostra a
figura. Determinar a intensidade da força F exercida pelo grifo no tubo, quando a força
aplicada no aperto for 40 N.
∑ = 0AM
40 × 180 = F × 30
240
30
18040
=
×
=F N
Curso Prático & Objetivo
Direitos Autorais Reservados
11Curso Prático & Objetivo
Direitos Autorais Reservados
4.4. Equilíbrio de corpos rígidos
Um corpo rígido está em equilíbrio quando todas as forças externas que atuam
sobre ele formam um sistema de forças equivalente a zero, isto é, quando todas as forças
externas podem ser reduzidas a uma força nula e a um binário nulo.
0=ΣF 00=ΣM
As expressões acima definem as equações fundamentais de Estática.
Decompondo cada força e cada momento em suas componentes cartesianas,
encontram-se as condições necessárias e suficientes para o equilíbrio de um corpo rígido
no espaço:
x
0
y
z
0=Σ xF 0=Σ yF 0=Σ zF
0=Σ xM 0=Σ yM 0=Σ zM
Equilíbrio ou em duas dimensões
As condições de equilíbrio de um corpo rígido simplificam-se consideravelmente
no caso de uma estrutura bidimensional. Escolhendo os eixos x e y no plano da estrutura,
tem-se:
x
0
y
0=zF 0== yx MM 0MM z=
para cada uma das forças aplicadas ao corpo rígido, então as seis equações de equilíbrio no
espaço reduzem-se a:
0=Σ xF 0=Σ yF 0=Σ AM
onde A é um ponto qualquer no plano da estrutura. Estas três equações podem ser
resolvidas para um máximo de três incógnitas.
O equilíbrio em duas dimensões é também conhecido como equilíbrio no plano.
Curso Prático & Objetivo
Direitos Autorais Reservados
12Curso Prático & Objetivo
Direitos Autorais Reservados
5. Apoios
Para o estudo do equilíbrio dos corpos rígidos não bastam conhecer somente as
forças externas que agem sobre ele, mas também é necessário conhecer como este corpo
rígido está apoiado.
Apoios ou vínculos são elementos que restringem os movimentos das estruturas e
recebem a seguinte classificação:
Apoio móvel
ou
• Impede movimento na direção normal (perpendicular) ao
plano do apoio;
• Permite movimento na direção paralela ao plano do
apoio;
• Permite rotação.
Apoio fixo
• Impede movimento na direção normal ao plano do apoio;
• Impede movimento na direção paralela ao plano do
apoio;
• Permite rotação.
Engastamento
• Impede movimento na direção normal ao plano do apoio;
• Impede movimento na direção paralela ao plano do
apoio;
• Impede rotação.
Curso Prático & Objetivo
Direitos Autorais Reservados
13Curso Prático & Objetivo
Direitos Autorais Reservados
14
6. Tipos de Estruturas
As estruturas são classificadas em função do número de reações de apoio ou
vínculos que possuem. Cada reação constitui uma incógnita a ser determinada.
Para as estruturas planas, a Estática fornece três equações fundamentais:
0=Σ xF 0=Σ yF 0=Σ AM
6.1. Estruturas hipostáticas
Estruturas hipostáticas são aquelas cujo número de reações de apoio ou vínculos é
inferior ao número de equações fornecidas pelas condições de equilíbrio da Estática.
A figura ao lado ilustra um tipo de estrutura
hipostática. As incógnitas são duas: RA e RB. Esta
estrutura não possui restrição a movimentos
horizontais. L
P
A RB
B
R
A
6.2. Estruturas isostáticas
Estruturas isostáticas são aquelas cujo número de reações de apoio ou vínculos é
igual ao número de equações fornecidas pelas condições de equilíbrio da Estática.
No exemplo da estrutura da figura, as
incógnitas são três: RA, RB e HA. Esta estrutura está
fixa; suas incógnitas podem ser resolvidas somente
pelas equações fundamentais da Estática.
RA
A
HA
L
P
RB
B
6.3. Estruturas hiperestáticas
Estruturas hiperestáticas são aquelas cujo número de reações de apoio ou vínculos é
superior ao número de equações fornecidas pelas condições de equilíbrio da Estática.
Um tipo de estrutura hiperestática es’ta
ilustrado na figura ao lado. As incógnitas são quatro:
RA, RB, HA e MA. As equações fundamentais da
Estática não são suficientes para resolver as equações
de equilíbrio. São necessárias outras condições
relativas ao comportamento da estrutura, como, p.
ex., a sua deformabilidade para determinar todas as
incógnitas. RA RB
HA
A
AM
L
P
B
Curso Prático & Objetivo
Direitos Autorais Reservados
Curso Prático & Objetivo
Direitos Autorais Reservados

Mais conteúdo relacionado

Mais procurados

Aula 1 resultante de um sistema de forças
Aula 1   resultante de um sistema de forçasAula 1   resultante de um sistema de forças
Aula 1 resultante de um sistema de forçasFrancisco Netto
 
Mecanica exercicios resolvidos
Mecanica exercicios resolvidosMecanica exercicios resolvidos
Mecanica exercicios resolvidoswedson Oliveira
 
43640380 mecanica-vetorial2-130410152247-phpapp02
43640380 mecanica-vetorial2-130410152247-phpapp0243640380 mecanica-vetorial2-130410152247-phpapp02
43640380 mecanica-vetorial2-130410152247-phpapp02Fabiana Medeiros
 
08 Trabalho e Potência
08 Trabalho e Potência08 Trabalho e Potência
08 Trabalho e PotênciaEletrons
 
M3 f2 - apontamentos de resistencia dos-materiais
M3 f2 - apontamentos de resistencia dos-materiaisM3 f2 - apontamentos de resistencia dos-materiais
M3 f2 - apontamentos de resistencia dos-materiaisMiguel Casimiro
 
Estatica corpo-extenso-fisica-2-e.m
Estatica corpo-extenso-fisica-2-e.mEstatica corpo-extenso-fisica-2-e.m
Estatica corpo-extenso-fisica-2-e.mWilsonPassos6
 
Aula 05 mecância - dinâmica - leis de newton
Aula 05   mecância - dinâmica - leis de newtonAula 05   mecância - dinâmica - leis de newton
Aula 05 mecância - dinâmica - leis de newtonBruno San
 
Impulsoequantidadedemovimento
Impulsoequantidadedemovimento Impulsoequantidadedemovimento
Impulsoequantidadedemovimento Valmiro Menezes
 
360693996 lista-de-exercicios-extras-para-p1-de-vibracoes-i-r
360693996 lista-de-exercicios-extras-para-p1-de-vibracoes-i-r360693996 lista-de-exercicios-extras-para-p1-de-vibracoes-i-r
360693996 lista-de-exercicios-extras-para-p1-de-vibracoes-i-rMax Patricio
 
10ºano unidade 2 fisica para 11ºano revisão
10ºano unidade 2 fisica para 11ºano revisão10ºano unidade 2 fisica para 11ºano revisão
10ºano unidade 2 fisica para 11ºano revisãoadelinoqueiroz
 
Estatica dos-corpos-rigidos parte3
Estatica dos-corpos-rigidos parte3Estatica dos-corpos-rigidos parte3
Estatica dos-corpos-rigidos parte3Emerson Assis
 

Mais procurados (17)

Momento de uma força
Momento de uma forçaMomento de uma força
Momento de uma força
 
Aula 1 resultante de um sistema de forças
Aula 1   resultante de um sistema de forçasAula 1   resultante de um sistema de forças
Aula 1 resultante de um sistema de forças
 
Estatica 2008
Estatica 2008Estatica 2008
Estatica 2008
 
Mecanica exercicios resolvidos
Mecanica exercicios resolvidosMecanica exercicios resolvidos
Mecanica exercicios resolvidos
 
Estatica corpos rigidos
Estatica corpos rigidosEstatica corpos rigidos
Estatica corpos rigidos
 
Aula 3 - Biomecânica - trigonometria
Aula 3 - Biomecânica - trigonometriaAula 3 - Biomecânica - trigonometria
Aula 3 - Biomecânica - trigonometria
 
43640380 mecanica-vetorial2-130410152247-phpapp02
43640380 mecanica-vetorial2-130410152247-phpapp0243640380 mecanica-vetorial2-130410152247-phpapp02
43640380 mecanica-vetorial2-130410152247-phpapp02
 
08 Trabalho e Potência
08 Trabalho e Potência08 Trabalho e Potência
08 Trabalho e Potência
 
Aula est+ítica
Aula est+íticaAula est+ítica
Aula est+ítica
 
M3 f2 - apontamentos de resistencia dos-materiais
M3 f2 - apontamentos de resistencia dos-materiaisM3 f2 - apontamentos de resistencia dos-materiais
M3 f2 - apontamentos de resistencia dos-materiais
 
Estatica corpo-extenso-fisica-2-e.m
Estatica corpo-extenso-fisica-2-e.mEstatica corpo-extenso-fisica-2-e.m
Estatica corpo-extenso-fisica-2-e.m
 
Aula 05 mecância - dinâmica - leis de newton
Aula 05   mecância - dinâmica - leis de newtonAula 05   mecância - dinâmica - leis de newton
Aula 05 mecância - dinâmica - leis de newton
 
Movimento harmonico
Movimento harmonicoMovimento harmonico
Movimento harmonico
 
Impulsoequantidadedemovimento
Impulsoequantidadedemovimento Impulsoequantidadedemovimento
Impulsoequantidadedemovimento
 
360693996 lista-de-exercicios-extras-para-p1-de-vibracoes-i-r
360693996 lista-de-exercicios-extras-para-p1-de-vibracoes-i-r360693996 lista-de-exercicios-extras-para-p1-de-vibracoes-i-r
360693996 lista-de-exercicios-extras-para-p1-de-vibracoes-i-r
 
10ºano unidade 2 fisica para 11ºano revisão
10ºano unidade 2 fisica para 11ºano revisão10ºano unidade 2 fisica para 11ºano revisão
10ºano unidade 2 fisica para 11ºano revisão
 
Estatica dos-corpos-rigidos parte3
Estatica dos-corpos-rigidos parte3Estatica dos-corpos-rigidos parte3
Estatica dos-corpos-rigidos parte3
 

Semelhante a Estatica corpos rigidos

Aula_1_1 REVISÃO SOBRE FORÇA resistencia 1.ppt
Aula_1_1 REVISÃO SOBRE FORÇA resistencia 1.pptAula_1_1 REVISÃO SOBRE FORÇA resistencia 1.ppt
Aula_1_1 REVISÃO SOBRE FORÇA resistencia 1.pptIgorLimaFernandes
 
Resultante sistema de_forcas_aula3_atualizada
Resultante sistema de_forcas_aula3_atualizadaResultante sistema de_forcas_aula3_atualizada
Resultante sistema de_forcas_aula3_atualizadaIvan Scholl Filho
 
Relatório física experimental 03 (condições de equilibrio)
Relatório física experimental 03 (condições de equilibrio)Relatório física experimental 03 (condições de equilibrio)
Relatório física experimental 03 (condições de equilibrio)Cleisianne Barbosa
 
Energia e Movimentos - 10ºano FQ A
Energia e Movimentos - 10ºano FQ AEnergia e Movimentos - 10ºano FQ A
Energia e Movimentos - 10ºano FQ Aadelinoqueiroz
 
Estatica dos-corpos-rigidos parte3
Estatica dos-corpos-rigidos parte3Estatica dos-corpos-rigidos parte3
Estatica dos-corpos-rigidos parte3José Wilson Coelho
 
Momento De Uma Força
Momento De Uma ForçaMomento De Uma Força
Momento De Uma ForçaProf. Sergio
 
07. trabalho e energia cinética
07. trabalho e energia cinética07. trabalho e energia cinética
07. trabalho e energia cinéticaleonardoenginer
 
aula de equilíbrio
aula de equilíbrio aula de equilíbrio
aula de equilíbrio Layon Souza
 
Leisdenewton 120303064334-phpapp01
Leisdenewton 120303064334-phpapp01Leisdenewton 120303064334-phpapp01
Leisdenewton 120303064334-phpapp01marcianunes33
 
Introdução a mecânica i 10 dias de mecânica
Introdução a mecânica i   10 dias de mecânicaIntrodução a mecânica i   10 dias de mecânica
Introdução a mecânica i 10 dias de mecânicaHelder Guerreiro
 
2º simulado periódico 2016 física
2º simulado periódico 2016   física2º simulado periódico 2016   física
2º simulado periódico 2016 físicaGustavo Mendonça
 
Aula 2 vetores hibbler
Aula 2 vetores hibblerAula 2 vetores hibbler
Aula 2 vetores hibblerK Miranda
 

Semelhante a Estatica corpos rigidos (20)

Aula_1_1 REVISÃO SOBRE FORÇA resistencia 1.ppt
Aula_1_1 REVISÃO SOBRE FORÇA resistencia 1.pptAula_1_1 REVISÃO SOBRE FORÇA resistencia 1.ppt
Aula_1_1 REVISÃO SOBRE FORÇA resistencia 1.ppt
 
Resultante sistema de_forcas_aula3_atualizada
Resultante sistema de_forcas_aula3_atualizadaResultante sistema de_forcas_aula3_atualizada
Resultante sistema de_forcas_aula3_atualizada
 
Relatório física experimental 03 (condições de equilibrio)
Relatório física experimental 03 (condições de equilibrio)Relatório física experimental 03 (condições de equilibrio)
Relatório física experimental 03 (condições de equilibrio)
 
Dica fisica afa
Dica fisica afaDica fisica afa
Dica fisica afa
 
Exercícios 2
Exercícios 2Exercícios 2
Exercícios 2
 
Energia e Movimentos - 10ºano FQ A
Energia e Movimentos - 10ºano FQ AEnergia e Movimentos - 10ºano FQ A
Energia e Movimentos - 10ºano FQ A
 
Estática2
Estática2Estática2
Estática2
 
Estatica dos-corpos-rigidos parte3
Estatica dos-corpos-rigidos parte3Estatica dos-corpos-rigidos parte3
Estatica dos-corpos-rigidos parte3
 
Momento De Uma ForçA
Momento De Uma ForçAMomento De Uma ForçA
Momento De Uma ForçA
 
Momento De Uma Força
Momento De Uma ForçaMomento De Uma Força
Momento De Uma Força
 
07. trabalho e energia cinética
07. trabalho e energia cinética07. trabalho e energia cinética
07. trabalho e energia cinética
 
aula de equilíbrio
aula de equilíbrio aula de equilíbrio
aula de equilíbrio
 
Vetores oficina - teoria
Vetores  oficina - teoriaVetores  oficina - teoria
Vetores oficina - teoria
 
Ae1 sebdiag
Ae1 sebdiagAe1 sebdiag
Ae1 sebdiag
 
Apostila fer
Apostila ferApostila fer
Apostila fer
 
Leisdenewton 120303064334-phpapp01
Leisdenewton 120303064334-phpapp01Leisdenewton 120303064334-phpapp01
Leisdenewton 120303064334-phpapp01
 
Introdução a mecânica i 10 dias de mecânica
Introdução a mecânica i   10 dias de mecânicaIntrodução a mecânica i   10 dias de mecânica
Introdução a mecânica i 10 dias de mecânica
 
2º simulado periódico 2016 física
2º simulado periódico 2016   física2º simulado periódico 2016   física
2º simulado periódico 2016 física
 
Aula 2 vetores hibbler
Aula 2 vetores hibblerAula 2 vetores hibbler
Aula 2 vetores hibbler
 
Aula 2 vetores
Aula 2 vetoresAula 2 vetores
Aula 2 vetores
 

Último

Eletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante TamandaréEletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante TamandaréGuilhermeLucio9
 
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdfLivro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdfSamuel Ramos
 
LEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurançaLEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurançaGuilhermeLucio9
 
Tecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade AnhangueraTecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade AnhangueraGuilhermeLucio9
 
A EXTENSÃO RURAL NO BRASIL Sociologia e Extensão 1 2014.ppt
A EXTENSÃO RURAL NO BRASIL Sociologia e Extensão 1 2014.pptA EXTENSÃO RURAL NO BRASIL Sociologia e Extensão 1 2014.ppt
A EXTENSÃO RURAL NO BRASIL Sociologia e Extensão 1 2014.pptssuserb964fe
 
A Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboralA Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboralFranciscaArrudadaSil
 
Treinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção IndividualTreinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção Individualpablocastilho3
 

Último (7)

Eletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante TamandaréEletricista instalador - Senai Almirante Tamandaré
Eletricista instalador - Senai Almirante Tamandaré
 
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdfLivro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
Livro Vibrações Mecânicas - Rao Singiresu - 4ª Ed.pdf
 
LEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurançaLEAN SIX SIGMA - Garantia da qualidade e segurança
LEAN SIX SIGMA - Garantia da qualidade e segurança
 
Tecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade AnhangueraTecnólogo em Mecatrônica - Universidade Anhanguera
Tecnólogo em Mecatrônica - Universidade Anhanguera
 
A EXTENSÃO RURAL NO BRASIL Sociologia e Extensão 1 2014.ppt
A EXTENSÃO RURAL NO BRASIL Sociologia e Extensão 1 2014.pptA EXTENSÃO RURAL NO BRASIL Sociologia e Extensão 1 2014.ppt
A EXTENSÃO RURAL NO BRASIL Sociologia e Extensão 1 2014.ppt
 
A Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboralA Importância dos EPI's no trabalho e no dia a dia laboral
A Importância dos EPI's no trabalho e no dia a dia laboral
 
Treinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção IndividualTreinamento de NR06 Equipamento de Proteção Individual
Treinamento de NR06 Equipamento de Proteção Individual
 

Estatica corpos rigidos

  • 1. ESTÁTICA DOS CORPOS RÍGIDOS 1. Forças no plano A Força representa a ação de um corpo sobre o outro e é caracterizada pelo seu ponto de aplicação, sua intensidade, direção e sentido. A intensidade de uma força é expressa em Newton (N) no Sistema Internacional de Unidades (SI). A direção de uma força é definida por sua linha de ação, ou seja, é a reta ao longo da qual a força atua, sendo caracterizada pelo ângulo que forma com algum eixo fixo, como indicado na Figura 1 abaixo. F α F α Figura 2.1 O sentido da força é indicado por uma seta (vetor). Denomina-se Grupo de forças, o conjunto de forças aplicadas em um único ponto de um corpo. Sistema de forças é o conjunto de forças aplicadas simultaneamente em pontos diversos de um mesmo corpo. 2. Equilíbrio de um ponto material Ponto material é uma pequena porção de matéria que pode ser considerada como se ocupasse um ponto no espaço. Quando a resultante de todas as forças que atuam sobre um ponto material é nula, este ponto está em equilíbrio. Este princípio é conseqüência da primeira lei de Newton: “se a força resultante que atua sobre um ponto material é zero, este ponto permanece em repouso (se estava originalmente em repouso) ou move-se ao longo de uma reta com velocidade constante (se originalmente estava em movimento)”. Para exprimir algebricamente as condições de equilíbrio de um ponto material, escreve-se: 0==Σ RF onde: F = força R = resultante das forças Curso Prático & Objetivo Direitos Autorais Reservados 01Curso Prático & Objetivo Direitos Autorais Reservados
  • 2. A representação gráfica de todas as forças que atuam em um ponto material pode ser representada por um diagrama de corpo livre, como indica a figura ao lado. F3 F2 A F4 F1 Figura 2.2 Exemplo: verificar se o sistema de forças indicado está em equilíbrio As condições necessárias e suficientes para o equilíbrio são: 0=Σ xF 0º302000º3010001500 =−−=Σ sensenFx 010005001500 =−−=Σ xF ok 0=Σ yF 0866º30cos1000º30cos2000 =−−=Σ yF 08668661732 =−−=Σ yF ok xA F = 1500N1 F = 1000N3 F = 866N2 30° y F = 2000N4 30° Resposta: O sistema de forças está em equilíbrio 3. Resultante de uma força Constata-se experimentalmente que duas forças P e Q que atuam sobre um ponto material podem ser substituídas por uma única força R que tenha o mesmo efeito sobre esse ponto material. Essa força é chamada de resultante de P e Q. Portanto, a resultante de um grupo de forças é a força que, atuando sozinha, produz ação idêntica à produzida pelo grupo ou sistema de forças. A resultante pode ser determinada por soluções gráficas ou analíticas. a) Soluções gráficas: quando um ponto material está em equilíbrio sob a ação de mais de três forças o problema pode ser resolvido graficamente pelo desenho de um polígono de forças, como indicado nas figuras abaixo. Regra do paralelogramo Q A P A P Q R R Curso Prático & Objetivo Direitos Autorais Reservados 02Curso Prático & Objetivo Direitos Autorais Reservados
  • 3. Regra do Triângulo A Q A R=P+Q P Q P R=P+Q Composição de forças R=F1+F2-F3 F3 R=F1+F2 F1 F1 R=F1+F2+F3 F2 F3 F3 F2 F3 Decomposição de forças F Fx y x y F b) Soluções analíticas: os métodos analíticos utilizam a trigonometria e as equações de equilíbrio. Exemplos Determinar a Resultante das duas forças P e Q agem sobre o parafuso A. Q=60 N 25º 20ºA P=40 N Curso Prático & Objetivo Direitos Autorais Reservados 03Curso Prático & Objetivo Direitos Autorais Reservados
  • 4. a. Soluções gráficas 35.0° R=98 N A 20º 25º P=40 N Q=60 N R=98 N Q=60 N A P=40 N 35.0° Regra do paralelogramo Regra do triângulo b. Solução analítica: trigonometria Cálculo da força resultante: Lei dos cossenos: BPQQPR cos2222 −+= º155cos604024060 222 ×××−+=R NR 7,97= Cálculo do ângulo α Lei dos senos R senB Q senA = 7,97 º155 60 sensenA = 25,0=senA º15=A º20+= Aα º35º20º15 =+=α A R Q=60 N α P=40 N B 155° C Sabendo-se que o parafuso está fixo, portanto em equilíbrio, existem forças de reação que equilibram as forças Q e P. Este princípio é explicado pela terceira lei de Newton: “A toda ação corresponde uma reação, com a mesma intensidade, mesma direção e sentido contrário”. Portanto, o parafuso está reagindo por uma força de mesma intensidade da resultante de P e Q, mas em sentido contrário. A força de reação pode ser decomposta em duas forças Fx e Fy, que são suas projeções sobre os eixos (x e y). NFx 80º35cos7,97 =×= NsenFy 56º357,97 =×= A R=97,7 N 35° Fx=80 N 20º Fy=56 N R=97,7 N P=40 N 25º Q=60 N 35.0° Curso Prático & Objetivo Direitos Autorais Reservados 04Curso Prático & Objetivo Direitos Autorais Reservados
  • 5. Verificação do equilíbrio do ponto A Para que o ponto A esteja em equilíbrio é necessário que a somatória de todas as forças que agem no ponto A sejam nulas, ou seja: 0 1 =∑= n i nF y Q=60 N Fy=56 N x 25º 20ºA Fx=80 N P=40 N ∑ = 0xF ∑ =−×+×= 080º20cos40º45cos60xF 00 = ok ∑ = 0yF ∑ =−×+×= 056º2040º4560 sensenFy 00 = ok Um caso particular da terceira lei de Newton é a lei da gravitação que trata da atração da Terra sobre um ponto material localizado em sua superfície. A força de atração exercida pela Terra sobre o ponto material é definida como o seu peso (P). a intensidade do peso P de um ponto material de massa m é expresso como. gmP ⋅= onde g=9,81 m/s2 é a aceleração da gravidade. 2. Determinar as forças nos cabos. gmP ⋅= ( )2 /81,9)(75 smkgP ×= NP 736= 30°50° A 75 kg C B 736 N 80° 60° ACT 40° TAB solução gráfica: desenho do polígono de forças. º80 736 º40º60 sensen T sen T ACAB == TAB = 647 N e TAC = 480 N Curso Prático & Objetivo Direitos Autorais Reservados 05Curso Prático & Objetivo Direitos Autorais Reservados
  • 6. 50° 30° A 736 N TAB ACT solução analítica: equações de equilíbrio. 0=Σ xF 0º50cosº30cos =⋅−⋅ ABAC TT º30cos º50cos⋅ = AB AC T T (1) 0=Σ yF 0736º30º50 =−⋅+⋅ senTsenT ACAB Substituindo TAC pela relação (1), tem-se 736º30 º30cos º50cos º50 =⋅ ⋅ +⋅ sen T senT AB AB TAB = 647 N e TAC = 480 N Exercícios 1. Determinar a força F e o ângulo α. A AT =2,5 kN BT = 2,5 kN F y α x 50°20° C 20° B50° α F Respostas: F=2,85 kN e α = 74,7º 2. Determinar as forças nos cabos x y 60° 20° AT TB P m=50 kg A 60° 20° B Respostas: TA = 761,3 N e TB = 381 N 3. Determinar a resultante do sistema de forças indicado e o seu ângulo de inclinação em relação ao eixo x. 70° F = 15 N3 F = 10 N1 x50° F = 20 N2 Curso Prático & Objetivo Direitos Autorais Reservados 06Curso Prático & Objetivo Direitos Autorais Reservados
  • 7. Roteiro: a. Determinar inicialmente a resultante entre as forças F1 e F2 e seu respectivo ângulo (α12) em relação ao eixo x. Chamar a resultante de R12; b. Em seguida, determinar a resultante de todo o sistema, chamando-a de R123 (R123 é a resultante entre R12 e F3); c. Finalmente, determinar o ângulo (α123) de R123 em relação ao eixo x. Respostas: R123 = 32,19 N e α123 = 61,46º 4. Determinar o valor da força F. a) y x 159,65 N 300 N 20° 60° F b) x F 60° 346,41 N 30° 200 N y Resp. F = 314,41 N Resp. F = 400 N c) F y x 45° 45° 141,42 N 141,42 N d) y x F30° 60° 45° 250 N 120 N 91,9 N Resp. F = 200 N Resp. F = 255,45 N e) 329,36 N 100 N 100 N F 60° 70° 45° x y f) 65° 61 kg 45° F 450 N Resp. F = 321,74 N Resp. F=268,95 N Curso Prático & Objetivo Direitos Autorais Reservados 07Curso Prático & Objetivo Direitos Autorais Reservados
  • 8. 4. Momento de uma força Define-se Momento como a tendência de uma força F fazer girar um corpo rígido em torno de um eixo fixo. O Momento depende do módulo de F e da distância de F em ao eixo fixo. Considere-se uma força F que atua em um corpo rígido fixo no ponto 0, como indicado na figura. A força F é representada por um vetor que define seu módulo, direção e sentido. O vetor d é a distância perpendicular de 0 à linha de ação de F. 0 A d M0 F Define-se o momento escalar do vetor F em relação a 0, como sendo dFM ×=0 onde: M0= momento escalar do vetor F em relação ao ponto 0 0 = pólo ou centro de momento d= distância perpendicular de 0 à linha de ação de F, também chamada de braço de alavanca O momento M0 é sempre perpendicular ao plano que contém o ponto 0. O sentido de M0 é definido pelo sentido de rotação imposto pelo vetor F. Convenciona-se momento positivo se a força F tender a girar o corpo no sentido anti-horário e negativo, se tender a girar o corpo no sentido horário. M-M+ No SI, onde a força é expressa em newtons (N) e a distância em metros (m). Portanto, o momento é expresso em newtons × metros (N × m). 4.1. Momento de um sistema de forças coplanares Chama-se Momento de um sistema de forças coplanares S={(F1,A1),....,(Fn,An)} em relação ao ponto 0, à soma algébrica dos Momentos de cada força em relação ao mesmo ponto 0. 0 A A F F 3 1 1 2 A2 b1 b2 b3 F3 ∑= = n i FS i MM 1 0,0, 4.2. Teorema de Varignon Seja R a resultante do sistema de forças S. “O Momento da resultante de um sistema de forças em relação a um ponto é igual ao momento do sistema ou seja, a soma algébrica dos Momentos de todas as forças componentes em relação ao mesmo ponto O”. ∑= == n i FSR i MMM 1 0,0,0, Curso Prático & Objetivo Direitos Autorais Reservados 08Curso Prático & Objetivo Direitos Autorais Reservados
  • 9. 4.3. Momento de um binário Duas forças F e –F que tenham o mesmo módulo, linhas de ação paralelas e sentidos opostos formam um binário. A soma das componentes das duas forças em qualquer direção é zero. Entretanto, a soma dos momentos das duas forças em relação a um dado ponto não é zero. Apesar de as duas forças não transladarem o corpo no qual atuam, tendem a fazê-lo girar. b 1-F 2A A1 F1 Exemplos 1. Uma força de 450 N é aplicada no ponto A como ilustrado na figura. Determinar: a) o momento da força em relação a D; b) a menor força aplicada em D que ocasiona o mesmo momento em relação a D; c) o módulo e o sentido da força vertical que, aplicada em C, produz o mesmo momento em relação a D; d) a menor força que, aplicada em C, ocasiona o mesmo momento em relação a D. B 30° A D 225mm 225mm C 125mm 300mm 450 N 30° B 197.3mm 225mm C225mm 52.6° D 125mm 300mm 37.4°325 30° 22.6° A 450 N Solução a) braço de alavanca 197,3 mm Momento M=F×b M=450×197,3= 88785 N.mm ou M= 88,8 N.m B 30° A 225mm 375 mm 225mm C 53.1° 36.9° 125mm D 300mm 450 N b) Para se obter a menor força aplicada em B que ocasiona o mesmo momento em relação a D, deve-se utilizar o maior braço de alavanca, ou seja: 375300225 22 =+=b mm b M F = 8,236 375,0 8,88 ==F N c) b M F = 7,394 225,0 8,88 ==F N Curso Prático & Objetivo Direitos Autorais Reservados 09Curso Prático & Objetivo Direitos Autorais Reservados
  • 10. d) A menor força que, aplicada em C, ocasiona o mesmo momento em relação a D é aquela cujo braço de alavanca é o maior possível, ou seja: 2,318225225 22 =+=b mm b M F = 279 3182,0 8,88 ==F N 30° 318,2 m m 225mm C225mm D 125mm 300mm B A 450 N 2. A figura abaixo representa uma junta rebitada, composta por dois rebites de mesmo diâmetro. Determinar as forças horizontais e verticais atuantes nos rebites. Como os rebites são iguais, as cargas e as reações verticais em cada rebite também são iguais: RAV= RBV= 3000÷2= 1500 N. O rebite A está sendo “puxado” para a direita, portanto, possuirá uma reação horizontal para a esquerda; O rebite B está sendo “empurrado” para a esquerda, portanto, possuirá uma reação horizontal para a direita. Determinação dos esforços horizontais: ∑ = 0AM RBH×200=3000×600 = 9000 N RAH= RBH=9000 N B RBV ARAH RAV RBH 200mm 600mm 3000 N 3. Determinar o Momento em A devido ao binário de forças ilustrado na figura MA= F×b MA= 500×0,12 = 60 N.m 300mm 120mm F1=500 N F2=500 N A 30° B Curso Prático & Objetivo Direitos Autorais Reservados 10Curso Prático & Objetivo Direitos Autorais Reservados
  • 11. 4. Substituir o binário da figura por uma força F vertical aplicada no ponto B. F1=F2= 500 N MA= F×b b M F = 400 15,0 60 ==F N 300mm 150mm A M =60N.m 120mm A 30° F=400 N B 5. Substituir o binário e a força F ilustrados na figura por uma única força F=400 N, aplicada no ponto C da alavanca. Determinar a distância do eixo ao ponto de aplicação desta força. MA= (400×0,15) + (200×0,12) = 84 N.m F M d = 21,0 400 84 ==d m = 210 mm 420 º60cos 210 ==AC mm 300mm 120mm A M 200 N 200 N d=210mm 150mm A 30° F=400 N AC B C 5. Determinar a intensidade da força F para que atue no parafuso o torque (momento) de 40 N.m. 217 º23cos 200 ==a mm = 0,217 m MA= F×b b M F = 1,184 217,0 40 ==F N 6. Um grifo é utilizado para rosquear um tubo de φ 20 mm a uma luva, como mostra a figura. Determinar a intensidade da força F exercida pelo grifo no tubo, quando a força aplicada no aperto for 40 N. ∑ = 0AM 40 × 180 = F × 30 240 30 18040 = × =F N Curso Prático & Objetivo Direitos Autorais Reservados 11Curso Prático & Objetivo Direitos Autorais Reservados
  • 12. 4.4. Equilíbrio de corpos rígidos Um corpo rígido está em equilíbrio quando todas as forças externas que atuam sobre ele formam um sistema de forças equivalente a zero, isto é, quando todas as forças externas podem ser reduzidas a uma força nula e a um binário nulo. 0=ΣF 00=ΣM As expressões acima definem as equações fundamentais de Estática. Decompondo cada força e cada momento em suas componentes cartesianas, encontram-se as condições necessárias e suficientes para o equilíbrio de um corpo rígido no espaço: x 0 y z 0=Σ xF 0=Σ yF 0=Σ zF 0=Σ xM 0=Σ yM 0=Σ zM Equilíbrio ou em duas dimensões As condições de equilíbrio de um corpo rígido simplificam-se consideravelmente no caso de uma estrutura bidimensional. Escolhendo os eixos x e y no plano da estrutura, tem-se: x 0 y 0=zF 0== yx MM 0MM z= para cada uma das forças aplicadas ao corpo rígido, então as seis equações de equilíbrio no espaço reduzem-se a: 0=Σ xF 0=Σ yF 0=Σ AM onde A é um ponto qualquer no plano da estrutura. Estas três equações podem ser resolvidas para um máximo de três incógnitas. O equilíbrio em duas dimensões é também conhecido como equilíbrio no plano. Curso Prático & Objetivo Direitos Autorais Reservados 12Curso Prático & Objetivo Direitos Autorais Reservados
  • 13. 5. Apoios Para o estudo do equilíbrio dos corpos rígidos não bastam conhecer somente as forças externas que agem sobre ele, mas também é necessário conhecer como este corpo rígido está apoiado. Apoios ou vínculos são elementos que restringem os movimentos das estruturas e recebem a seguinte classificação: Apoio móvel ou • Impede movimento na direção normal (perpendicular) ao plano do apoio; • Permite movimento na direção paralela ao plano do apoio; • Permite rotação. Apoio fixo • Impede movimento na direção normal ao plano do apoio; • Impede movimento na direção paralela ao plano do apoio; • Permite rotação. Engastamento • Impede movimento na direção normal ao plano do apoio; • Impede movimento na direção paralela ao plano do apoio; • Impede rotação. Curso Prático & Objetivo Direitos Autorais Reservados 13Curso Prático & Objetivo Direitos Autorais Reservados
  • 14. 14 6. Tipos de Estruturas As estruturas são classificadas em função do número de reações de apoio ou vínculos que possuem. Cada reação constitui uma incógnita a ser determinada. Para as estruturas planas, a Estática fornece três equações fundamentais: 0=Σ xF 0=Σ yF 0=Σ AM 6.1. Estruturas hipostáticas Estruturas hipostáticas são aquelas cujo número de reações de apoio ou vínculos é inferior ao número de equações fornecidas pelas condições de equilíbrio da Estática. A figura ao lado ilustra um tipo de estrutura hipostática. As incógnitas são duas: RA e RB. Esta estrutura não possui restrição a movimentos horizontais. L P A RB B R A 6.2. Estruturas isostáticas Estruturas isostáticas são aquelas cujo número de reações de apoio ou vínculos é igual ao número de equações fornecidas pelas condições de equilíbrio da Estática. No exemplo da estrutura da figura, as incógnitas são três: RA, RB e HA. Esta estrutura está fixa; suas incógnitas podem ser resolvidas somente pelas equações fundamentais da Estática. RA A HA L P RB B 6.3. Estruturas hiperestáticas Estruturas hiperestáticas são aquelas cujo número de reações de apoio ou vínculos é superior ao número de equações fornecidas pelas condições de equilíbrio da Estática. Um tipo de estrutura hiperestática es’ta ilustrado na figura ao lado. As incógnitas são quatro: RA, RB, HA e MA. As equações fundamentais da Estática não são suficientes para resolver as equações de equilíbrio. São necessárias outras condições relativas ao comportamento da estrutura, como, p. ex., a sua deformabilidade para determinar todas as incógnitas. RA RB HA A AM L P B Curso Prático & Objetivo Direitos Autorais Reservados Curso Prático & Objetivo Direitos Autorais Reservados