SlideShare a Scribd company logo
1 of 11
Download to read offline
Date:
20/05
Class:
12Bio
Time:
Pd2
Length of class:
1 hour
N/-students:
24
Achievement Objectives: (2-3 from NoS strand and learning area)
Nature of science strand – Level 7: Communicating in Science – Use accepted science
knowledge, vocabulary, symbols and conventions when evaluating accounts of the
natural world and consider the wider implications of the methods of communication
and/or representation employed.
Living world strand – Level 7: Life processes – Explore the diverse ways in which
animals and plants carry out life processes.
Key Competencies:
TRUMP
Science Background Information: Refer to notes at back
Specific Learning Outcomes:
(what science do I want the students to
learn?)
By the end of the lesson, students will be able
to:
1. Identify key differences between
plant and animal cells
2. Describe the functions of key
organelles in both plant and animal
cells
Achievement Criteria: (how will I
know the student has learnt the science I want
them to learn?)
By the end of the lesson, students can:
1. Identify that plant cells have a cell
wall (for support/like a human
skeleton) and chloroplasts (to
produce food), animal cells have
centrioles (to product spindle
fibres) and sometimes some
cilia/flagella.
2. Correctly answer questions about
plant and animal cells.
Assessment Methods (your data gathering methods): e.g. Appraising
the way students complete the prescribed tasks; listening to their discussions and evaluating their
discussion outcomes; listening to their verbal descriptions and their class/group participation and
comparing this data with the achievement criteria
Informally assessing homework completed by students
Listening to class discussion/questions
Quiz shows which students have a grasp on the content
Lesson Number: 8
Lesson Topic: Cell organelles (3)
LEARNING ACTIVITIES (in sequence)
Time line Introduction
Teacher moves Student moves
Learning intentions on the board:
Today we are going to:
1. Compare and contrast
plant and animal cells
2. Review cell organelle
definitions and functions
 Do now task: wordfind –
takes 5 mins (then can
finish in their own time)
 Hand out notes to
students who weren’t
here on
Wednesday/Friday to get
the notes on cells.
 Then go around and check
homework (write down
names of students who
haven’t done it that don’t
have the book).
Go over homework with the class,
should take 10 mins.
Students are given this after the
second bell. Will start completing
wordfind
Students who don’t have notes on all
the cell organelles will be given notes
Students have homework out to show
teacher
Students go over homework together
Time line Main activities
Teacher moves Student moves
Teacher numbers students off to
form groups of 3-4, or they get into
their own groups.
In their groups, students are
instructed to number themselves off
as a, b, c, d as well as come up with a
group name.
Rules go up on the board
Quiz activity: (refer to attached page
for questions)
 Give students 3-4 organelles,
some info about them (more
in depth than previously)
and give them 4-5 minutes
to read it and make notes
etc.
Teacher will either call out a letter or
get the whole group to answer a
question about a particular organelle
they have just read about.
Individuals earn points for their
team.
 After a few questions have
been asked, students get
new lot of information about
different organelles. Again,
they will have to read and
process this information
before being asked about it
individually or as a group.
 Team with the most points
at the end earn the prize!!
Bonus question at the end – teams
have to write down an answer
together about 1. What do plant
cells have that animal cells don’t. 2.
Why don’t animal cells have these?
And give to me to read and see who
wrote the best answer.
Students get into their groups
Students read information and
*hopefully* process some/most of it
through motivation to get team points
Time line Closing activity
Teacher moves Student moves
To end, students have to fill out a
ticket to leave, where they write
any suggestions for me about the
lessons so far & what they want
to do more of/don’t want to do.
Students fill out their tickets 
BACKUP PLAN
If lesson finished early: If lesson took too long:
Do a Chinese whisper (have this
prepared) for team points!!
Cut out a few questions of the quiz and
get the students to fill out the form
early
Materials/resources/equipment required:
Whiteboard markers
Powerpoint with quiz questions
Quiz answers!!!
Notes for students who have been away
Treats for the winning teams
Safety considerations:
References:
ESA study guide (Level 2 bio)
Biozone
ESA homework workbook
REFLECTION:
Evaluation of student learning: (how well the students met the AC with
examples/data/evidence to support and justify your judgements)
Students were engaged the entire lesson. Even going through the homework. This
could be due to the fact that Kathy was assessing my teaching and they didn’t want to
play up. In her notes Kathy did say that she liked my questioning technique as I went
through the questions with the students, and through my depth of knowledge was able
to explain answers to the students.
The students learned what I wanted through a collaborative activity that was fun but
educational at the same time. All up, they completed their word finds, got into groups,
came up with names, read the notes quietly, worked together to generate answers,
and left the class with a smile! That’s all I need.
Strengths and weaknesses of lesson plan: (comment on aspects of the lesson plan
such as the appropriateness of the level, usefulness of the AC, any modifications required, etc.)
I felt the plan did not take into account the time it would really take to answer all the
questions. This caused the end of my lesson to be rushed and I did not get through all
the content I wanted. Next time, I would make less questions for each group and thus
less reading material. Other than that I felt the lesson ran quite smoothly. I had planned
the lesson well, which was noted by my observing lecturer as part of a strong trend
when looking at my planning this far.
Evaluation of your teaching: (comment on: your ability to scaffold student learning in
terms of your science knowledge, the effectiveness of your various teaching skills and strategies
(e.g. questioning, formative assessment etc.), your behaviour management skills; and areas you
need to improve and how you will achieve this)
The lesson ran quite smoothly, I knew what I was talking about and when some
students answered a bit vaguely, I would probe their answers to get them thinking
more about what and why things were the way they were (e.g. why more Golgi bodies
are needed in secretory cells). Students who I thought would have to have some
behaviour management strategies directed towards them, actually behaved
surprisingly well which was great to see.
I need to improve on being more firm with the students, and not getting too excited. As
the teacher, I am the calm one and although the quiz activity was very exciting I have to
remember for the future not to get overwhelmed as this excites the class as well. This
was a comment given to me by my visiting lecturer and looking back now I see where
she is coming from. I aim to get better at waiting for complete silence before talking
(which is hard when I want to get going with the lesson!) and slow down my talking as
well as lowering my pitch.
Quiz Questions:
Mitochondria:
[a,b,c,d] Animal cells generally have more mitochondria in them compared to plant cells, because
the energy demands of animals are higher than plants. What is an example of a cell that contains
lots of mitochondria?
[a,b,c,d] What is the function of mitochondria?
[group] What is the difference between aerobic and anaerobic respiration?
[a,b,c,d] First person to draw a mitochondria on the board gets a point. Go!
Cilia/flagella:
[group] Name one type of cell that has a flagella and explain why it needs one?
[a,b,c,d] Cilia/flagella are found in all animal cells, true or false.
Ribosomes:
[a,b,c,d] How many subunits are ribosomes made up of?
[a,b,c,d] Where are the two places ribosomes can be found in a cell?
[group] What do we need proteins for?
Golgi body:
[a,b,c,d] Where are the two places that the transport vesicle takes the protein molecules?
[group] Why are golgi bodies commonly found in cells that secrete lots of enzymes/proteins?
Plasma membrane:
[a,b,c,d] The plasma membrane is made up of glycerol-phosphate heads and fatty acid tails. These
are hydrophobic and hydrophilic. What do these terms mean?
[group] What’s the point of microvilli?
[a,b,c,d] In what type cells are microvilli typically found?
Endo ret:
[a,b,c,d] is the difference between rough and smooth endoplasmic reticulum?
[a,b,c,d] Ovary cells produce lots of hormones, what type of endo reticulum would they have lots of?
[a,b,c,d] Besides making proteins and lipids, what else does the endo ret do?
Vacuole
[a,b,c,d] Name two things the vacuole stores.
[group] Why do plant cells a large vacuole but animal cells don’t? (glucose storage / skeleton)
Lysosome
[a,b,c,d] What do lysosomes contain?
[a,b,c,d] What do the enzymes from inside the lysosome break down?
[a,b,c,d] Why would sperm contain lysosomes?
Centriole
Name this organelle (picture)
[a,b,c,d] True or false: centrioles are found in both plant and animal cells – fix it?
[a,b,c,d] What do the spindle fibres do during cell division?
Chloroplasts
[a,b,c,d] Why are the leaves of plants green but their stems not so green?
[group] When photosynthesis occurs, what is the plant making?
Cell wall
[a,b,c,d] True or false: The cell wall is found only in animal cells.
[group] What could happen to a plant cell if it didn’t have a cell wall?
BONUS QUESTION
1. What do plant cells have that animal cells don’t. 2. Why don’t animal cells have these? Need a
written answer
Information given to students:
Mitochondria:
Mitochondria are organelles bounded by a double membrane. The inner-
most membrane is made up of cristae (the folds) which increase the
surface area for aerobic respiration to occur though.
They are the cell’s energy transformers and convert glucose into carbon
dioxide, water and ATP (adenosine triphosphate) – the ‘energy molecule’
Many cells have a single mitochondrion whereas others contains
thousands.
Mitochondria have their own DNA.
Aerobic respiration can only occur in the presence of oxygen.
Mitochondria are more common in animal than in plant cells, because
the demands of animal cells are typically higher, and are especially
common in cells with high energy demands (e.g. sperm, muscle, liver).
The higher the energy demands of the cell, the greater the number of
mitochondria.
Cilia/flagella:
Found in SOME animal cells but never in plant cells.
On the outside of the cell, always.
The cilia that line the cells of our respiratory
tract beat upward, propelling a current of mucus
that sweeps particles of dust, soot, pollen, and
so on to the throat, from where they can be
removed by swallowing.
Sperm cells of mammals move by a single
flagellum.
Ribosomes:
Ribosomes are the site of protein synthesis, where DNA is used to code for proteins.
Ribosomes can be free in the cytoplasm or attach
themselves to the endoplasmic reticulum (=rough er).
Ribosomes are made of 2 subunits that come together to
synthesise proteins.
We need proteins in order to make all the reactions happen
in our body, our muscles contract, food be digested,
infections fought, genes turned on and off etc.
First page
Golgi body:
Most animal cells only have one golgi body. It looks
similar to the ER but consists of a stack of membrane
sacs called cisternae (sister-nay).
After being made, most molecules get transported by a
TRANSPORT VESICLE to the cisternae.
They fuse together and the molecule is modified by
enzymes in the cicternae.
The TRANSPORT VESICLE then takes the molecules to
the cell membrane where it is released to the outside of the cell.
Golgi bodies are common in secretory cells, such as gland cells that produce hormones, or pancreatic
cells that produce enzymes. In such places, lots of protein molecules are made and therefore there
are lots to modify, so golgi = in demand.
Plasma membrane:
Made of a phospholipid (fos-fo-lipid) bi-layer. This
is made up of glycerol-phosphate ‘heads’ and
fatty-acid ‘tails’. The heads are hydrophilic (water-
loving) and the tails are hydrophobic (water-
hating)
Membranes are semi-permeable, meaning that
they only allow certain substances into the cell.
The membrane may be thrown up in many folds, known as microvilli, which greatly increase the
surface area of the plasma membrane. Microvilli are found in cells that are very active in secretion
(e.g. pancreatic cells) and absorption (e.g. small intestine).
Endoplasmic reticulum:
A network of membranes running through the cytoplasm, taking up
most of its space. ER with ribosomes attached = rough ER. I is involved
in protein production. Rough ER is therefore common in cells that
make and secrete proteins (e.g. digestive cells that produce enzymes,
white blood cells that produce antibodies). ER that does not have
ribosomes = smooth ER. It is associated with the production of lipids,
common in cells that produce hormones (e.g. oestrogen, progesterone,
testosterone). Ovary cells have lots of smooth ER.
Second pge
Vacuole
The vacuole stores organic compounds (sugars etc.), toxic wastes from metabolism, and water, as
well as toxic substances (in plants) to deter herbivores.
In plant cells, there is one large vacuole. It is like a fluid skeleton – water entering the cell by osmosis
collects in the vacuole, which swells and exerts pressure outwards on the cell membrane and cell
wall. This makes the cell rigid/turgid and acts as support to keep the plants with non-woody stems
upright. It also stores glucose, the food that plants make as well as toxic substances that deter
herbivores from eating the leaves.
Animals have a much smaller vacuole compared to plants, as they don’t need a ‘fluid skeleton’, and
although smaller, there are more vacuoles in an animal cell.
Lysosome
Lysosomes are vacuoles that contain enzymes and are formed from vesicles made by the golgi body.
They are used to break down work-out organelles (e.g. mitochondria), the chemicals released are
used to make new organelles or other needed products.
They are also used in the breakdown of cells of tissues during metamorphosis in insects and
amphibians (e.g. tails of tadpoles), as well as the membrane surrounding the ovum (egg) so sperm
can fertilise it.
Centriole
Found only in animal cells
Made of microtubules that form the spindle fibres needed for chromosomes to separate during
mitosis and meiosis.
Chloroplast
Large organelles found in leaf cells and cells in the outer layers of green stems (cells exposed to
light). They are the site of photosynthesis, where carbon dioxide and water are joined together to
become glucose. Mitochondria use this to produce energy in the cells.
Third page
Nucleus:
The nucleus is often called the control centre of the cell because it contains DNA, the genetic
material that organises ALL cell processes. DNA is scattered throughout the nucleus as chromatin
(looks like spaghetti), becoming chromosomes (chromatin condenses) just before the cell goes
through mitosis or meiosis.
Nucleolus:
Found inside the nucleus, where it produces ribosomal RNA (rRNA).
Cytoplasm:
Holds the organelles
Provides a medium for reactions in the cell to occur.
It is where many of the chemical reactions of the cell occur.
Cell wall:
Found in plant cells only, to provide structure for the cell. It also limits the cell volume, so it doesn’t
burst from having too much water in the cell etc. It is found outside the cell membrane. It is made of
cellulose which is a type of sugar.
Last page

More Related Content

Similar to Lesson 3 organelles review & quiz

Lesson plan shapes of molecules
Lesson plan   shapes of moleculesLesson plan   shapes of molecules
Lesson plan shapes of moleculesBeatrice McGoverne
 
Core Content Coaching Grade 7 Dichotomous Keys 14-15
Core Content Coaching Grade 7 Dichotomous Keys 14-15Core Content Coaching Grade 7 Dichotomous Keys 14-15
Core Content Coaching Grade 7 Dichotomous Keys 14-15raegan_witt-malandruccolo
 
DLL in SCIENCE Demo for Teacher's Guide
DLL in SCIENCE Demo for  Teacher's GuideDLL in SCIENCE Demo for  Teacher's Guide
DLL in SCIENCE Demo for Teacher's GuideJONLOUDALIDA
 
PDST Biology Workshop Spring 2014
PDST Biology Workshop Spring 2014PDST Biology Workshop Spring 2014
PDST Biology Workshop Spring 2014Martin Brown
 
กิจกรรมสอนวิทย์ด้วยภาษาอังกฤษ (Traning for trainer23 24 march 2013)
กิจกรรมสอนวิทย์ด้วยภาษาอังกฤษ (Traning for trainer23 24 march 2013)กิจกรรมสอนวิทย์ด้วยภาษาอังกฤษ (Traning for trainer23 24 march 2013)
กิจกรรมสอนวิทย์ด้วยภาษาอังกฤษ (Traning for trainer23 24 march 2013)กมลรัตน์ ฉิมพาลี
 
Ppt ii blooms
Ppt  ii bloomsPpt  ii blooms
Ppt ii bloomsHem Raj
 
DQB Izone Summer Retreat 7.18.18
DQB Izone Summer Retreat 7.18.18DQB Izone Summer Retreat 7.18.18
DQB Izone Summer Retreat 7.18.18tdparha
 
grade-k_day-8-pdlg-powerpoint.pptx
grade-k_day-8-pdlg-powerpoint.pptxgrade-k_day-8-pdlg-powerpoint.pptx
grade-k_day-8-pdlg-powerpoint.pptxAngelle Pantig
 
Plan unidad photosynthesis noveno
Plan unidad photosynthesis novenoPlan unidad photosynthesis noveno
Plan unidad photosynthesis novenoGalaxia Mercury
 
Os scope animal-systems-5 (1)
Os scope animal-systems-5 (1)Os scope animal-systems-5 (1)
Os scope animal-systems-5 (1)MrBohon
 
In this week’s lecture, we focused on the discipline of primatolog.docx
In this week’s lecture, we focused on the discipline of primatolog.docxIn this week’s lecture, we focused on the discipline of primatolog.docx
In this week’s lecture, we focused on the discipline of primatolog.docxjaggernaoma
 
English adm template-g7-10
English adm template-g7-10English adm template-g7-10
English adm template-g7-10rizavillarias1
 
Fostering scientific critical thinking and creativity in higher education – C...
Fostering scientific critical thinking and creativity in higher education – C...Fostering scientific critical thinking and creativity in higher education – C...
Fostering scientific critical thinking and creativity in higher education – C...EduSkills OECD
 
Differentiated Instruction with HOTS
Differentiated Instruction with HOTSDifferentiated Instruction with HOTS
Differentiated Instruction with HOTSBeth Amaral
 
Minggu 11 12. pengurusan & pengajaran pelajar
Minggu 11 12. pengurusan & pengajaran pelajarMinggu 11 12. pengurusan & pengajaran pelajar
Minggu 11 12. pengurusan & pengajaran pelajarMohd Zam
 
Information Literacy Lesson Plan
Information Literacy Lesson PlanInformation Literacy Lesson Plan
Information Literacy Lesson PlanRebecca West
 
Unit template
Unit templateUnit template
Unit templateInsel Lei
 

Similar to Lesson 3 organelles review & quiz (20)

Lesson plan shapes of molecules
Lesson plan   shapes of moleculesLesson plan   shapes of molecules
Lesson plan shapes of molecules
 
Core Content Coaching Grade 7 Dichotomous Keys 14-15
Core Content Coaching Grade 7 Dichotomous Keys 14-15Core Content Coaching Grade 7 Dichotomous Keys 14-15
Core Content Coaching Grade 7 Dichotomous Keys 14-15
 
FDRC Lesson Plan Class 9th.docx
FDRC Lesson Plan  Class 9th.docxFDRC Lesson Plan  Class 9th.docx
FDRC Lesson Plan Class 9th.docx
 
DLL in SCIENCE Demo for Teacher's Guide
DLL in SCIENCE Demo for  Teacher's GuideDLL in SCIENCE Demo for  Teacher's Guide
DLL in SCIENCE Demo for Teacher's Guide
 
PDST Biology Workshop Spring 2014
PDST Biology Workshop Spring 2014PDST Biology Workshop Spring 2014
PDST Biology Workshop Spring 2014
 
Lesson plan Biology
Lesson plan BiologyLesson plan Biology
Lesson plan Biology
 
กิจกรรมสอนวิทย์ด้วยภาษาอังกฤษ (Traning for trainer23 24 march 2013)
กิจกรรมสอนวิทย์ด้วยภาษาอังกฤษ (Traning for trainer23 24 march 2013)กิจกรรมสอนวิทย์ด้วยภาษาอังกฤษ (Traning for trainer23 24 march 2013)
กิจกรรมสอนวิทย์ด้วยภาษาอังกฤษ (Traning for trainer23 24 march 2013)
 
Ppt ii blooms
Ppt  ii bloomsPpt  ii blooms
Ppt ii blooms
 
DQB Izone Summer Retreat 7.18.18
DQB Izone Summer Retreat 7.18.18DQB Izone Summer Retreat 7.18.18
DQB Izone Summer Retreat 7.18.18
 
grade-k_day-8-pdlg-powerpoint.pptx
grade-k_day-8-pdlg-powerpoint.pptxgrade-k_day-8-pdlg-powerpoint.pptx
grade-k_day-8-pdlg-powerpoint.pptx
 
Questioning techniques
Questioning techniques Questioning techniques
Questioning techniques
 
Plan unidad photosynthesis noveno
Plan unidad photosynthesis novenoPlan unidad photosynthesis noveno
Plan unidad photosynthesis noveno
 
Os scope animal-systems-5 (1)
Os scope animal-systems-5 (1)Os scope animal-systems-5 (1)
Os scope animal-systems-5 (1)
 
In this week’s lecture, we focused on the discipline of primatolog.docx
In this week’s lecture, we focused on the discipline of primatolog.docxIn this week’s lecture, we focused on the discipline of primatolog.docx
In this week’s lecture, we focused on the discipline of primatolog.docx
 
English adm template-g7-10
English adm template-g7-10English adm template-g7-10
English adm template-g7-10
 
Fostering scientific critical thinking and creativity in higher education – C...
Fostering scientific critical thinking and creativity in higher education – C...Fostering scientific critical thinking and creativity in higher education – C...
Fostering scientific critical thinking and creativity in higher education – C...
 
Differentiated Instruction with HOTS
Differentiated Instruction with HOTSDifferentiated Instruction with HOTS
Differentiated Instruction with HOTS
 
Minggu 11 12. pengurusan & pengajaran pelajar
Minggu 11 12. pengurusan & pengajaran pelajarMinggu 11 12. pengurusan & pengajaran pelajar
Minggu 11 12. pengurusan & pengajaran pelajar
 
Information Literacy Lesson Plan
Information Literacy Lesson PlanInformation Literacy Lesson Plan
Information Literacy Lesson Plan
 
Unit template
Unit templateUnit template
Unit template
 

More from emmjay91

Philosophy of classroom management
Philosophy of classroom managementPhilosophy of classroom management
Philosophy of classroom managementemmjay91
 
73 suggestions
73 suggestions73 suggestions
73 suggestionsemmjay91
 
Seventy-three suggestions
Seventy-three suggestionsSeventy-three suggestions
Seventy-three suggestionsemmjay91
 
73 suggestions
73 suggestions73 suggestions
73 suggestionsemmjay91
 
Img 20130629 0003_new
Img 20130629 0003_newImg 20130629 0003_new
Img 20130629 0003_newemmjay91
 
Img 20130629 0003
Img 20130629 0003Img 20130629 0003
Img 20130629 0003emmjay91
 
Circ system diagram to label
Circ system diagram to labelCirc system diagram to label
Circ system diagram to labelemmjay91
 
Journal entry 9
Journal entry 9Journal entry 9
Journal entry 9emmjay91
 
Img 20130628 0001_new
Img 20130628 0001_newImg 20130628 0001_new
Img 20130628 0001_newemmjay91
 
Student feedback collage
Student feedback collageStudent feedback collage
Student feedback collageemmjay91
 
90944 ass-2011
90944 ass-201190944 ass-2011
90944 ass-2011emmjay91
 
90944 ass-2012
90944 ass-201290944 ass-2012
90944 ass-2012emmjay91
 
Do now answers
Do now answersDo now answers
Do now answersemmjay91
 
#extremenewsteam
#extremenewsteam #extremenewsteam
#extremenewsteam emmjay91
 
Year 10 Lesson on speed
Year 10 Lesson on speedYear 10 Lesson on speed
Year 10 Lesson on speedemmjay91
 

More from emmjay91 (16)

Philosophy of classroom management
Philosophy of classroom managementPhilosophy of classroom management
Philosophy of classroom management
 
73 suggestions
73 suggestions73 suggestions
73 suggestions
 
Seventy-three suggestions
Seventy-three suggestionsSeventy-three suggestions
Seventy-three suggestions
 
73 suggestions
73 suggestions73 suggestions
73 suggestions
 
Img 20130629 0003_new
Img 20130629 0003_newImg 20130629 0003_new
Img 20130629 0003_new
 
Img 20130629 0003
Img 20130629 0003Img 20130629 0003
Img 20130629 0003
 
Circ system diagram to label
Circ system diagram to labelCirc system diagram to label
Circ system diagram to label
 
Journal entry 9
Journal entry 9Journal entry 9
Journal entry 9
 
Img 20130628 0001_new
Img 20130628 0001_newImg 20130628 0001_new
Img 20130628 0001_new
 
Student feedback collage
Student feedback collageStudent feedback collage
Student feedback collage
 
90944 ass-2011
90944 ass-201190944 ass-2011
90944 ass-2011
 
90944 ass-2012
90944 ass-201290944 ass-2012
90944 ass-2012
 
Do now answers
Do now answersDo now answers
Do now answers
 
Do now
Do nowDo now
Do now
 
#extremenewsteam
#extremenewsteam #extremenewsteam
#extremenewsteam
 
Year 10 Lesson on speed
Year 10 Lesson on speedYear 10 Lesson on speed
Year 10 Lesson on speed
 

Recently uploaded

week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptxJonalynLegaspi2
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfPatidar M
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Association for Project Management
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataBabyAnnMotar
 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleCeline George
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management systemChristalin Nelson
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptxmary850239
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxMichelleTuguinay1
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmStan Meyer
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptxmary850239
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17Celine George
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxDhatriParmar
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfJemuel Francisco
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQuiz Club NITW
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdfMr Bounab Samir
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research DiscourseAnita GoswamiGiri
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxlancelewisportillo
 

Recently uploaded (20)

week 1 cookery 8 fourth - quarter .pptx
week 1 cookery 8  fourth  -  quarter .pptxweek 1 cookery 8  fourth  -  quarter .pptx
week 1 cookery 8 fourth - quarter .pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
Active Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdfActive Learning Strategies (in short ALS).pdf
Active Learning Strategies (in short ALS).pdf
 
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
Team Lead Succeed – Helping you and your team achieve high-performance teamwo...
 
Measures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped dataMeasures of Position DECILES for ungrouped data
Measures of Position DECILES for ungrouped data
 
Multi Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP ModuleMulti Domain Alias In the Odoo 17 ERP Module
Multi Domain Alias In the Odoo 17 ERP Module
 
Concurrency Control in Database Management system
Concurrency Control in Database Management systemConcurrency Control in Database Management system
Concurrency Control in Database Management system
 
Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"Mattingly "AI & Prompt Design: Large Language Models"
Mattingly "AI & Prompt Design: Large Language Models"
 
4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx4.11.24 Poverty and Inequality in America.pptx
4.11.24 Poverty and Inequality in America.pptx
 
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptxDIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
DIFFERENT BASKETRY IN THE PHILIPPINES PPT.pptx
 
Oppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and FilmOppenheimer Film Discussion for Philosophy and Film
Oppenheimer Film Discussion for Philosophy and Film
 
4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx4.16.24 21st Century Movements for Black Lives.pptx
4.16.24 21st Century Movements for Black Lives.pptx
 
How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17How to Fix XML SyntaxError in Odoo the 17
How to Fix XML SyntaxError in Odoo the 17
 
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptxMan or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
Man or Manufactured_ Redefining Humanity Through Biopunk Narratives.pptx
 
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdfGrade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
Grade 9 Quarter 4 Dll Grade 9 Quarter 4 DLL.pdf
 
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITWQ-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
Q-Factor HISPOL Quiz-6th April 2024, Quiz Club NITW
 
MS4 level being good citizen -imperative- (1) (1).pdf
MS4 level   being good citizen -imperative- (1) (1).pdfMS4 level   being good citizen -imperative- (1) (1).pdf
MS4 level being good citizen -imperative- (1) (1).pdf
 
Scientific Writing :Research Discourse
Scientific  Writing :Research  DiscourseScientific  Writing :Research  Discourse
Scientific Writing :Research Discourse
 
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptxQ4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
Q4-PPT-Music9_Lesson-1-Romantic-Opera.pptx
 

Lesson 3 organelles review & quiz

  • 1. Date: 20/05 Class: 12Bio Time: Pd2 Length of class: 1 hour N/-students: 24 Achievement Objectives: (2-3 from NoS strand and learning area) Nature of science strand – Level 7: Communicating in Science – Use accepted science knowledge, vocabulary, symbols and conventions when evaluating accounts of the natural world and consider the wider implications of the methods of communication and/or representation employed. Living world strand – Level 7: Life processes – Explore the diverse ways in which animals and plants carry out life processes. Key Competencies: TRUMP Science Background Information: Refer to notes at back Specific Learning Outcomes: (what science do I want the students to learn?) By the end of the lesson, students will be able to: 1. Identify key differences between plant and animal cells 2. Describe the functions of key organelles in both plant and animal cells Achievement Criteria: (how will I know the student has learnt the science I want them to learn?) By the end of the lesson, students can: 1. Identify that plant cells have a cell wall (for support/like a human skeleton) and chloroplasts (to produce food), animal cells have centrioles (to product spindle fibres) and sometimes some cilia/flagella. 2. Correctly answer questions about plant and animal cells. Assessment Methods (your data gathering methods): e.g. Appraising the way students complete the prescribed tasks; listening to their discussions and evaluating their discussion outcomes; listening to their verbal descriptions and their class/group participation and comparing this data with the achievement criteria Informally assessing homework completed by students Listening to class discussion/questions Quiz shows which students have a grasp on the content Lesson Number: 8 Lesson Topic: Cell organelles (3)
  • 2. LEARNING ACTIVITIES (in sequence) Time line Introduction Teacher moves Student moves Learning intentions on the board: Today we are going to: 1. Compare and contrast plant and animal cells 2. Review cell organelle definitions and functions  Do now task: wordfind – takes 5 mins (then can finish in their own time)  Hand out notes to students who weren’t here on Wednesday/Friday to get the notes on cells.  Then go around and check homework (write down names of students who haven’t done it that don’t have the book). Go over homework with the class, should take 10 mins. Students are given this after the second bell. Will start completing wordfind Students who don’t have notes on all the cell organelles will be given notes Students have homework out to show teacher Students go over homework together
  • 3. Time line Main activities Teacher moves Student moves Teacher numbers students off to form groups of 3-4, or they get into their own groups. In their groups, students are instructed to number themselves off as a, b, c, d as well as come up with a group name. Rules go up on the board Quiz activity: (refer to attached page for questions)  Give students 3-4 organelles, some info about them (more in depth than previously) and give them 4-5 minutes to read it and make notes etc. Teacher will either call out a letter or get the whole group to answer a question about a particular organelle they have just read about. Individuals earn points for their team.  After a few questions have been asked, students get new lot of information about different organelles. Again, they will have to read and process this information before being asked about it individually or as a group.  Team with the most points at the end earn the prize!! Bonus question at the end – teams have to write down an answer together about 1. What do plant cells have that animal cells don’t. 2. Why don’t animal cells have these? And give to me to read and see who wrote the best answer. Students get into their groups Students read information and *hopefully* process some/most of it through motivation to get team points
  • 4. Time line Closing activity Teacher moves Student moves To end, students have to fill out a ticket to leave, where they write any suggestions for me about the lessons so far & what they want to do more of/don’t want to do. Students fill out their tickets  BACKUP PLAN If lesson finished early: If lesson took too long: Do a Chinese whisper (have this prepared) for team points!! Cut out a few questions of the quiz and get the students to fill out the form early Materials/resources/equipment required: Whiteboard markers Powerpoint with quiz questions Quiz answers!!! Notes for students who have been away Treats for the winning teams Safety considerations: References: ESA study guide (Level 2 bio) Biozone ESA homework workbook
  • 5. REFLECTION: Evaluation of student learning: (how well the students met the AC with examples/data/evidence to support and justify your judgements) Students were engaged the entire lesson. Even going through the homework. This could be due to the fact that Kathy was assessing my teaching and they didn’t want to play up. In her notes Kathy did say that she liked my questioning technique as I went through the questions with the students, and through my depth of knowledge was able to explain answers to the students. The students learned what I wanted through a collaborative activity that was fun but educational at the same time. All up, they completed their word finds, got into groups, came up with names, read the notes quietly, worked together to generate answers, and left the class with a smile! That’s all I need. Strengths and weaknesses of lesson plan: (comment on aspects of the lesson plan such as the appropriateness of the level, usefulness of the AC, any modifications required, etc.) I felt the plan did not take into account the time it would really take to answer all the questions. This caused the end of my lesson to be rushed and I did not get through all the content I wanted. Next time, I would make less questions for each group and thus less reading material. Other than that I felt the lesson ran quite smoothly. I had planned the lesson well, which was noted by my observing lecturer as part of a strong trend when looking at my planning this far. Evaluation of your teaching: (comment on: your ability to scaffold student learning in terms of your science knowledge, the effectiveness of your various teaching skills and strategies (e.g. questioning, formative assessment etc.), your behaviour management skills; and areas you need to improve and how you will achieve this) The lesson ran quite smoothly, I knew what I was talking about and when some students answered a bit vaguely, I would probe their answers to get them thinking more about what and why things were the way they were (e.g. why more Golgi bodies are needed in secretory cells). Students who I thought would have to have some behaviour management strategies directed towards them, actually behaved surprisingly well which was great to see. I need to improve on being more firm with the students, and not getting too excited. As the teacher, I am the calm one and although the quiz activity was very exciting I have to remember for the future not to get overwhelmed as this excites the class as well. This was a comment given to me by my visiting lecturer and looking back now I see where she is coming from. I aim to get better at waiting for complete silence before talking (which is hard when I want to get going with the lesson!) and slow down my talking as well as lowering my pitch.
  • 6. Quiz Questions: Mitochondria: [a,b,c,d] Animal cells generally have more mitochondria in them compared to plant cells, because the energy demands of animals are higher than plants. What is an example of a cell that contains lots of mitochondria? [a,b,c,d] What is the function of mitochondria? [group] What is the difference between aerobic and anaerobic respiration? [a,b,c,d] First person to draw a mitochondria on the board gets a point. Go! Cilia/flagella: [group] Name one type of cell that has a flagella and explain why it needs one? [a,b,c,d] Cilia/flagella are found in all animal cells, true or false. Ribosomes: [a,b,c,d] How many subunits are ribosomes made up of? [a,b,c,d] Where are the two places ribosomes can be found in a cell? [group] What do we need proteins for? Golgi body: [a,b,c,d] Where are the two places that the transport vesicle takes the protein molecules? [group] Why are golgi bodies commonly found in cells that secrete lots of enzymes/proteins? Plasma membrane: [a,b,c,d] The plasma membrane is made up of glycerol-phosphate heads and fatty acid tails. These are hydrophobic and hydrophilic. What do these terms mean? [group] What’s the point of microvilli? [a,b,c,d] In what type cells are microvilli typically found? Endo ret: [a,b,c,d] is the difference between rough and smooth endoplasmic reticulum? [a,b,c,d] Ovary cells produce lots of hormones, what type of endo reticulum would they have lots of? [a,b,c,d] Besides making proteins and lipids, what else does the endo ret do? Vacuole [a,b,c,d] Name two things the vacuole stores. [group] Why do plant cells a large vacuole but animal cells don’t? (glucose storage / skeleton) Lysosome [a,b,c,d] What do lysosomes contain?
  • 7. [a,b,c,d] What do the enzymes from inside the lysosome break down? [a,b,c,d] Why would sperm contain lysosomes? Centriole Name this organelle (picture) [a,b,c,d] True or false: centrioles are found in both plant and animal cells – fix it? [a,b,c,d] What do the spindle fibres do during cell division? Chloroplasts [a,b,c,d] Why are the leaves of plants green but their stems not so green? [group] When photosynthesis occurs, what is the plant making? Cell wall [a,b,c,d] True or false: The cell wall is found only in animal cells. [group] What could happen to a plant cell if it didn’t have a cell wall? BONUS QUESTION 1. What do plant cells have that animal cells don’t. 2. Why don’t animal cells have these? Need a written answer
  • 8. Information given to students: Mitochondria: Mitochondria are organelles bounded by a double membrane. The inner- most membrane is made up of cristae (the folds) which increase the surface area for aerobic respiration to occur though. They are the cell’s energy transformers and convert glucose into carbon dioxide, water and ATP (adenosine triphosphate) – the ‘energy molecule’ Many cells have a single mitochondrion whereas others contains thousands. Mitochondria have their own DNA. Aerobic respiration can only occur in the presence of oxygen. Mitochondria are more common in animal than in plant cells, because the demands of animal cells are typically higher, and are especially common in cells with high energy demands (e.g. sperm, muscle, liver). The higher the energy demands of the cell, the greater the number of mitochondria. Cilia/flagella: Found in SOME animal cells but never in plant cells. On the outside of the cell, always. The cilia that line the cells of our respiratory tract beat upward, propelling a current of mucus that sweeps particles of dust, soot, pollen, and so on to the throat, from where they can be removed by swallowing. Sperm cells of mammals move by a single flagellum. Ribosomes: Ribosomes are the site of protein synthesis, where DNA is used to code for proteins. Ribosomes can be free in the cytoplasm or attach themselves to the endoplasmic reticulum (=rough er). Ribosomes are made of 2 subunits that come together to synthesise proteins. We need proteins in order to make all the reactions happen in our body, our muscles contract, food be digested, infections fought, genes turned on and off etc. First page
  • 9. Golgi body: Most animal cells only have one golgi body. It looks similar to the ER but consists of a stack of membrane sacs called cisternae (sister-nay). After being made, most molecules get transported by a TRANSPORT VESICLE to the cisternae. They fuse together and the molecule is modified by enzymes in the cicternae. The TRANSPORT VESICLE then takes the molecules to the cell membrane where it is released to the outside of the cell. Golgi bodies are common in secretory cells, such as gland cells that produce hormones, or pancreatic cells that produce enzymes. In such places, lots of protein molecules are made and therefore there are lots to modify, so golgi = in demand. Plasma membrane: Made of a phospholipid (fos-fo-lipid) bi-layer. This is made up of glycerol-phosphate ‘heads’ and fatty-acid ‘tails’. The heads are hydrophilic (water- loving) and the tails are hydrophobic (water- hating) Membranes are semi-permeable, meaning that they only allow certain substances into the cell. The membrane may be thrown up in many folds, known as microvilli, which greatly increase the surface area of the plasma membrane. Microvilli are found in cells that are very active in secretion (e.g. pancreatic cells) and absorption (e.g. small intestine). Endoplasmic reticulum: A network of membranes running through the cytoplasm, taking up most of its space. ER with ribosomes attached = rough ER. I is involved in protein production. Rough ER is therefore common in cells that make and secrete proteins (e.g. digestive cells that produce enzymes, white blood cells that produce antibodies). ER that does not have ribosomes = smooth ER. It is associated with the production of lipids, common in cells that produce hormones (e.g. oestrogen, progesterone, testosterone). Ovary cells have lots of smooth ER. Second pge
  • 10. Vacuole The vacuole stores organic compounds (sugars etc.), toxic wastes from metabolism, and water, as well as toxic substances (in plants) to deter herbivores. In plant cells, there is one large vacuole. It is like a fluid skeleton – water entering the cell by osmosis collects in the vacuole, which swells and exerts pressure outwards on the cell membrane and cell wall. This makes the cell rigid/turgid and acts as support to keep the plants with non-woody stems upright. It also stores glucose, the food that plants make as well as toxic substances that deter herbivores from eating the leaves. Animals have a much smaller vacuole compared to plants, as they don’t need a ‘fluid skeleton’, and although smaller, there are more vacuoles in an animal cell. Lysosome Lysosomes are vacuoles that contain enzymes and are formed from vesicles made by the golgi body. They are used to break down work-out organelles (e.g. mitochondria), the chemicals released are used to make new organelles or other needed products. They are also used in the breakdown of cells of tissues during metamorphosis in insects and amphibians (e.g. tails of tadpoles), as well as the membrane surrounding the ovum (egg) so sperm can fertilise it. Centriole Found only in animal cells Made of microtubules that form the spindle fibres needed for chromosomes to separate during mitosis and meiosis. Chloroplast Large organelles found in leaf cells and cells in the outer layers of green stems (cells exposed to light). They are the site of photosynthesis, where carbon dioxide and water are joined together to become glucose. Mitochondria use this to produce energy in the cells. Third page
  • 11. Nucleus: The nucleus is often called the control centre of the cell because it contains DNA, the genetic material that organises ALL cell processes. DNA is scattered throughout the nucleus as chromatin (looks like spaghetti), becoming chromosomes (chromatin condenses) just before the cell goes through mitosis or meiosis. Nucleolus: Found inside the nucleus, where it produces ribosomal RNA (rRNA). Cytoplasm: Holds the organelles Provides a medium for reactions in the cell to occur. It is where many of the chemical reactions of the cell occur. Cell wall: Found in plant cells only, to provide structure for the cell. It also limits the cell volume, so it doesn’t burst from having too much water in the cell etc. It is found outside the cell membrane. It is made of cellulose which is a type of sugar. Last page