SlideShare a Scribd company logo
1 of 16
Download to read offline
Preliminary	
  lessons	
  from	
  	
  
 the	
  oyster	
  “seed	
  crisis”	
  
What	
  can	
  the	
  rest	
  of	
  the	
  seafood	
  industry	
  learn	
  from	
  the	
  first	
  
producers	
  to	
  suffer	
  (and	
  partly	
  overcome)	
  severe	
  impacts	
  	
  
associated	
  with	
  “corrosive”	
  high-­‐CO2	
  seawater?	
  


                                                                                         Taylor	
  Shellfish	
  
                                                                                         hatchery	
  on	
  Dabob	
  
                                                                                         Bay,	
  Washington	
  




                                                                                           By	
  Brad	
  Warren	
  
Taylor	
  &	
  Whiskey	
  Creek	
  	
  
•  TAYLOR	
  SHELLFISH	
  FARMS:	
  Largest	
  U.S.	
  shellfish	
  
   grower.	
  	
  ~12,000	
  acres	
  under	
  culOvaOon	
  (owned	
  or	
  
   leased)	
  in	
  Washington,	
  Mexico,	
  BriOsh	
  Columbia,	
  a	
  
   pearl	
  farm	
  in	
  Fiji.	
  Two	
  company-­‐owned	
  hatcheries	
  
   (Hawaii,	
  Washington)	
  supply	
  its	
  own	
  farms.	
  

•  Whiskey	
  Creek	
  Shellfish	
  Hatchery:	
  largest	
  oyster	
  seed	
  
   supplier	
  on	
  West	
  Coast,	
  supplies	
  ~75%	
  of	
  farms.	
  

•  Together,	
  they	
  provide	
  lion’s	
  share	
  of	
  producOon	
  on	
  
   West	
  Coast.	
  
Oyster	
  seed	
  crisis	
  arrives	
  
                                Pacific	
  oyster	
  larvae	
  fail	
  

                                                  L:	
  Pacific	
  oyster	
  	
  
                                                  larvae	
  growing	
  
                                                  at	
  Taylor.	
  Billions	
  	
  
                                                  of	
  these	
  were	
  lost.	
  
                                                  R:	
  Larval	
  clams	
  	
  
                                                  dissolve	
  at	
  pH	
  
                                                  7.5	
  in	
  lab	
  (Green)	
  


	
  	
  	
  	
  	
  70-­‐80%	
  loss	
  of	
  producOon	
  in	
  2007-­‐2008	
  at	
  both	
  major	
  
                    hatcheries.	
  At	
  Whiskey	
  Creek,	
  oyster	
  larvae	
  dissolved,	
  
                    vanished	
  in	
  tanks.	
  Even	
  hard-­‐fouling	
  of	
  intake	
  pipes	
  ceased.	
  

	
  	
  	
  	
  Li]le	
  or	
  no	
  commercial-­‐scale	
  wild	
  “set”	
  of	
  oysters	
  in	
  Willapa	
  
                 Bay	
  since	
  2005.	
  

   	
  Industry	
  hunts	
  for	
  culprits:	
  	
  vibrio	
  tubiashi?	
  	
  
Paradigm	
  shiH	
  	
  Feely	
  et	
  al	
  2008	
  




 Researchers	
  at	
  Whiskey	
  Creek	
  (Barton,	
  others)	
  confirm	
  strong	
  link	
  to	
  larval	
  death.	
  
How	
  hatcheries	
  rebounded	
  (for	
  now)	
  
•  Whiskey	
  Creek	
  is	
  near	
  peak	
  producOon	
  levels	
  
   through	
  July	
  2010,	
  by	
  dodging	
  frequent	
  episodes	
  
   of	
  “bad	
  water,”	
  working	
  overOme	
  to	
  produce	
  in	
  
   “good	
  water”	
  periods.	
  

•  Taylor	
  also	
  going	
  strong	
  through	
  July	
  2010,	
  
   enjoying	
  “good	
  water”	
  from	
  shallow	
  intake	
  (30	
  
   d);	
  but	
  deep	
  intake	
  (100	
  d)	
  now	
  yields	
  high	
  CO2	
  
   levels	
  that	
  they	
  avoid.	
  

•  Two	
  criNcal	
  tools	
  enabled	
  this	
  rebound:	
  
1.	
  Monitoring	
  &	
  research	
  
        If	
  you	
  can	
  see	
  what’s	
  coming	
  at	
  you,	
  
                             you	
  can	
  dodge	
  




New	
  monitoring	
  systems,	
  OOS	
  buoys	
  permit	
  frequent	
  sampling	
  of	
  water	
  quality	
  
parameters	
  (e.g.	
  pCO2,	
  pH):	
  	
  Hatcheries	
  avoid	
  spawning	
  in	
  high-­‐CO2	
  water.	
  	
  
Bioassays,	
  calcificaOon	
  studies,	
  physiological	
  &	
  geneOc	
  analyses	
  underway	
  at	
  several	
  labs.	
  
1.	
  A	
  well-­‐defended	
  posiNon	
  

                                     Hatcheries	
  
                                     	
  	
  	
  	
  Control	
  of	
  most	
  
                                                      vulnerable	
  life-­‐
                                                      stage	
  enabled	
  
                                                      them	
  to	
  defend	
  
                                                      larvae	
  <	
  120	
  
                                                      microns.	
  
Industry’s	
  three-­‐Phase	
  response	
  
1)  Short	
  term:	
  monitoring	
  &	
  research	
  enable	
  
    producers	
  to	
  dodge	
  “bad	
  water.”	
  (operaOons	
  +	
  
    policy)	
  

2)  Medium	
  term:	
  culOvate	
  more	
  resilient	
  
    broodstock.	
  (operaOons	
  +	
  policy)	
  

3)	
  Long-­‐term:	
  promote	
  policies	
  to	
  reduce	
  
       emissions,	
  strengthen	
  research	
  &	
  monitoring	
  
       (policy)	
  
STEP	
  1	
  
Monitoring	
  in	
  order	
  to	
  avoid	
  exposure	
  to	
  “bad	
  
water.”	
  

Sensors:	
  pH,	
  T,	
  S,	
  depth,	
  turbidity	
  

      	
     	
  	
  
pCO2	
  readout	
  at	
  100	
  d:	
  ~1,000	
  ppm	
  

                                       Taylor’s	
  deepwater	
  intake:	
  	
  
                                       pH	
  here	
  measured	
  ~	
  7.5	
  




                                       At	
  Whiskey	
  Creek,	
  pCO2	
  	
  
                                       is	
  now	
  key	
  predictor	
  of	
  	
  
                                       larval	
  survival.	
  For	
  gigas	
  
                                       larvae	
  in	
  first	
  2	
  days,	
  	
  
                                       hatchery	
  owners	
  say	
  	
  
                                       200-­‐300	
  ppm	
  is	
  opOmal,	
  
                                       	
  with	
  low	
  end	
  best;	
  older	
  
                                       larvae	
  can	
  handle	
  up	
  to	
  	
  
                                       400	
  ppm.	
  	
  “Over	
  600	
  we	
  
                                       back	
  off.”	
  (Wiegardt,	
  pers.	
  	
  
                                       comm	
  with	
  BW	
  7.27.2010)	
  
pCO2	
  at	
  30	
  d:	
  332	
  ppm	
  
                                 Taylor’s	
  shallow	
  water	
  intake:	
  
                                 pH	
  here	
  measured	
  ~8.2	
  

                                 To	
  avoid	
  high	
  CO2	
  water,	
  	
  
                                 Taylor	
  mainly	
  now	
  relies	
  	
  
                                 on	
  shallow	
  intake	
  for	
  oysters.	
  	
  

                                 This	
  increases	
  exposure	
  to	
  
                                 algal	
  blooms,	
  etc,	
  which	
  were	
  	
  
                                 the	
  reason	
  they	
  developed	
  a	
  	
  
                                 deepwater	
  intake	
  at	
  100	
  d.	
  	
  

                                 Now	
  elevated	
  CO2	
  is	
  pushing	
  	
  
                                 Taylor	
  to	
  risk	
  that	
  exposure,	
  esp.	
  
                                 for	
  young	
  Pacific	
  oyster	
  (c.	
  Gigas)	
  
Managing	
  around	
  the	
  problem	
  
                                                                                	
  	
  SPAWN!	
  

• 	
  Put	
  small	
  larvae	
  into	
  tanks	
  filled	
  
	
  	
  in	
  the	
  aHernoon	
  or	
  overnight	
  
	
  	
  	
  	
  	
  	
  	
  -­‐	
  Works	
  if	
  the	
  sun	
  is	
  out	
  


• 	
  24	
  hour	
  noOce-­‐	
  Upwelling	
  takes	
  	
  
	
  	
  a	
  day	
  or	
  two	
  to	
  start	
  up,	
  so	
  when	
  	
  
	
  	
  winds	
  from	
  the	
  North,	
  fill	
  tanks	
  	
  
	
  	
  late	
  in	
  the	
  day	
  and	
  spawn	
  like	
  	
  
	
  	
  crazy	
  




                                                                                	
  DON’T	
  
Slide:	
  Alan	
  Barton	
                                                      SPAWN!	
  
Step	
  2:	
  breeding	
  for	
  resistance	
  
Broodstock	
  research	
  has	
  increased	
  oyster	
  yield	
  in	
  the	
  past	
  (see	
  graph):	
  Can	
  it	
  help	
  
now?	
  
                                                                                                    Molluscan	
  Broodstock	
  	
  
                                                                                                    Program	
  at	
  OSU	
  
                                                                                                    increased	
  oyster	
  yield	
  	
  
                                                                                                    (sum	
  of	
  survival	
  +	
  growth)	
  
                                                                                                    	
  by	
  41%	
  over	
  2	
  	
  
                                                                                                    generaOons.	
  

                                                                                                    Can	
  broodstock	
  work	
  boost	
  	
  
                                                                                                    resistance	
  to	
  high	
  CO2?	
  

                                                                                                    Preliminary	
  signs	
  of	
  
                                                                                                    promise:	
  a	
  few	
  families	
  
                                                                                                    show	
  be]er	
  resistance;	
  	
  
        OSU	
  MBP	
  	
  
                                                                                                    some	
  species	
  too	
  (Olympia).	
  

                                                                                                    Growth	
  rates,	
  yields,	
  quality?	
  
Step	
  3:	
  Policy	
  engagement	
  
•  Key	
  aims	
  :	
  	
  Support	
  research	
  &	
  monitoring,	
  
   protect	
  producOvity.	
  
•  Oyster	
  producers	
  talk	
  to	
  Congress	
  about	
  
   acidificaOon,	
  need	
  for	
  research;	
  some	
  support	
  
   prevenOve	
  emissions-­‐reducOon	
  policies.	
  
•  Sen.	
  Cantwell	
  secures	
  $500,000	
  for	
  hatchery	
  
   retrofits,	
  including	
  monitoring.	
  
•  HR	
  989:	
  Taylor	
  &	
  others	
  worked	
  it,	
  got	
  58%	
  yes	
  
   vote.	
  
•  OOS	
  systems	
  beginning	
  to	
  monitor	
  pCO2	
  etc,	
  
ImplicaOons	
  for	
  seafood	
  industry	
  
•  ProducNve	
  zones	
  are	
  most	
  vulnerable:	
  highly	
  enriched	
  	
  
	
  	
  	
  	
  	
  	
  seawater	
  	
  closer	
  “Opping	
  points.”	
  
•  First	
  blow	
  can	
  hit	
  hard:	
  70-­‐80%	
  loss	
  of	
  producOon	
  in	
  2007-­‐2008	
  
                     at	
  two	
  major	
  hatcheries	
  (supplying	
  lion’s	
  share	
  of	
  producOon).	
  
•  Technical	
  and	
  poliNcal	
  savvy	
  allowed	
  shellfish	
  industry	
  to	
  meet	
  
                     the	
  challenge:	
  Taylor,	
  Whiskey	
  Creek	
  found	
  ways	
  to	
  dodge	
  
                     impacts,	
  win	
  needed	
  scienOfic	
  &	
  poliOcal	
  support,	
  and	
  rebuild	
  
                     producOon	
  (for	
  now).	
  Other	
  growers,	
  reliant	
  on	
  Whiskey	
  Creek,	
  
                     pitched	
  in.	
  PoliOcians	
  too.	
  (3	
  Congressmen	
  a]ended	
  our	
  
                     workshop	
  in	
  March).	
  
•  Impacts	
  are	
  uneven:	
  Species,	
  families,	
  &	
  local	
  environmental	
  
                     condiOons	
  can	
  either	
  miOgate	
  or	
  aggravate	
  effects.	
  
•  Victory	
  probably	
  temporary:	
  ConOnued	
  rise	
  in	
  emissions	
  	
  
                     more	
  trouble	
  ahead:	
  more	
  severe	
  acidificaOon,	
  likely	
  wider	
  
                     impacts.	
  
Thanks.	
  
•  Benoit	
  Eudeline	
  &	
  Bill	
  Dewey	
  at	
  Taylor	
  
   Shellfish	
  Farms.	
  
•  Mark	
  Wiegardt,	
  Sue	
  Cudd,	
  Alan	
  Barton	
  at	
  
   Whiskey	
  Creek.	
  
•  Richard	
  Feely,	
  Vicky	
  Fabry,	
  Joanie	
  Kleypas,	
  
   Jeremy	
  Mathis,	
  Sco]	
  Doney,	
  Mark	
  Green,	
  Jeff	
  
   and	
  many	
  others.	
  
•  Bulli]	
  &	
  Oak	
  foundaOons,	
  Rockefeller	
  Brothers	
  
   Fund,	
  other	
  donors.	
  

More Related Content

Similar to Bill Dewey presentation on ocean acidification

So You Think You Are Alone Corals
So You Think You Are Alone   CoralsSo You Think You Are Alone   Corals
So You Think You Are Alone CoralsMark McGinley
 
Bc naturalist presentation 120929bk
Bc naturalist presentation 120929bkBc naturalist presentation 120929bk
Bc naturalist presentation 120929bkBKingzett
 
Metzger MS defense
Metzger MS defenseMetzger MS defense
Metzger MS defensedmetzger1
 
2009 Pacific Currents Summer
2009 Pacific Currents Summer2009 Pacific Currents Summer
2009 Pacific Currents Summeralexiholford
 
Coral Bleaching.pptx
Coral Bleaching.pptxCoral Bleaching.pptx
Coral Bleaching.pptxPrachi Khare
 
Esa09 Burks Post Version
Esa09 Burks Post VersionEsa09 Burks Post Version
Esa09 Burks Post Versionburksr
 
Ocean acidification
Ocean acidificationOcean acidification
Ocean acidificationArnab Ghosh
 
Elene Dorfmeier pcsga11
Elene Dorfmeier pcsga11 Elene Dorfmeier pcsga11
Elene Dorfmeier pcsga11 sr320
 
Marine Invasives of Kachemak Bay, Alaska
Marine Invasives of Kachemak Bay, AlaskaMarine Invasives of Kachemak Bay, Alaska
Marine Invasives of Kachemak Bay, AlaskaKBay Council
 
Genetic regulation on carbon sequestration by mollusks
Genetic regulation on carbon sequestration by mollusks Genetic regulation on carbon sequestration by mollusks
Genetic regulation on carbon sequestration by mollusks Shayantika Mazumdar
 
Climate change and toxic chemiclas
Climate change and toxic chemiclasClimate change and toxic chemiclas
Climate change and toxic chemiclasHoward Dryden
 
Great barrier reef presentation
Great barrier reef presentationGreat barrier reef presentation
Great barrier reef presentationAngel
 
Great barrier reef presentation
Great barrier reef presentationGreat barrier reef presentation
Great barrier reef presentationAngel
 

Similar to Bill Dewey presentation on ocean acidification (20)

So You Think You Are Alone Corals
So You Think You Are Alone   CoralsSo You Think You Are Alone   Corals
So You Think You Are Alone Corals
 
Bc naturalist presentation 120929bk
Bc naturalist presentation 120929bkBc naturalist presentation 120929bk
Bc naturalist presentation 120929bk
 
CORAL BLEACHING
CORAL BLEACHINGCORAL BLEACHING
CORAL BLEACHING
 
Metzger MS defense
Metzger MS defenseMetzger MS defense
Metzger MS defense
 
2009 Pacific Currents Summer
2009 Pacific Currents Summer2009 Pacific Currents Summer
2009 Pacific Currents Summer
 
Coral Bleaching.pptx
Coral Bleaching.pptxCoral Bleaching.pptx
Coral Bleaching.pptx
 
Esa09 Burks Post Version
Esa09 Burks Post VersionEsa09 Burks Post Version
Esa09 Burks Post Version
 
Ocean acidification
Ocean acidificationOcean acidification
Ocean acidification
 
Environmental News Tobago
Environmental News Tobago Environmental News Tobago
Environmental News Tobago
 
Upou 350 aquaculture and lipids
Upou 350 aquaculture and lipidsUpou 350 aquaculture and lipids
Upou 350 aquaculture and lipids
 
Great barrier reef
Great barrier reefGreat barrier reef
Great barrier reef
 
Elene Dorfmeier pcsga11
Elene Dorfmeier pcsga11 Elene Dorfmeier pcsga11
Elene Dorfmeier pcsga11
 
Peter Ridd
Peter RiddPeter Ridd
Peter Ridd
 
Marine Invasives of Kachemak Bay, Alaska
Marine Invasives of Kachemak Bay, AlaskaMarine Invasives of Kachemak Bay, Alaska
Marine Invasives of Kachemak Bay, Alaska
 
Genetic regulation on carbon sequestration by mollusks
Genetic regulation on carbon sequestration by mollusks Genetic regulation on carbon sequestration by mollusks
Genetic regulation on carbon sequestration by mollusks
 
Climate change and toxic chemiclas
Climate change and toxic chemiclasClimate change and toxic chemiclas
Climate change and toxic chemiclas
 
Speech
SpeechSpeech
Speech
 
Great barrier reef presentation
Great barrier reef presentationGreat barrier reef presentation
Great barrier reef presentation
 
Great barrier reef presentation
Great barrier reef presentationGreat barrier reef presentation
Great barrier reef presentation
 
Plankton
PlanktonPlankton
Plankton
 

More from Northwest Indian Fisheries Commission

Lindsey Hamilton, Exploring drivers of fecal coliform pollution trends in Sou...
Lindsey Hamilton, Exploring drivers of fecal coliform pollution trends in Sou...Lindsey Hamilton, Exploring drivers of fecal coliform pollution trends in Sou...
Lindsey Hamilton, Exploring drivers of fecal coliform pollution trends in Sou...Northwest Indian Fisheries Commission
 
Jen McIntyre, New science documenting toxic impacts on salmon and other aquat...
Jen McIntyre, New science documenting toxic impacts on salmon and other aquat...Jen McIntyre, New science documenting toxic impacts on salmon and other aquat...
Jen McIntyre, New science documenting toxic impacts on salmon and other aquat...Northwest Indian Fisheries Commission
 
Wendy Steffensen and Jeff Hansen, LOTT’s Reclaimed Water Study: What we have ...
Wendy Steffensen and Jeff Hansen, LOTT’s Reclaimed Water Study: What we have ...Wendy Steffensen and Jeff Hansen, LOTT’s Reclaimed Water Study: What we have ...
Wendy Steffensen and Jeff Hansen, LOTT’s Reclaimed Water Study: What we have ...Northwest Indian Fisheries Commission
 

More from Northwest Indian Fisheries Commission (16)

Tribal Natural Resources Management 2017
Tribal Natural Resources Management 2017Tribal Natural Resources Management 2017
Tribal Natural Resources Management 2017
 
Bob McKane, Nisqually Community Forest VELMA modeling
Bob McKane, Nisqually Community Forest VELMA modelingBob McKane, Nisqually Community Forest VELMA modeling
Bob McKane, Nisqually Community Forest VELMA modeling
 
Lindsey Hamilton, Exploring drivers of fecal coliform pollution trends in Sou...
Lindsey Hamilton, Exploring drivers of fecal coliform pollution trends in Sou...Lindsey Hamilton, Exploring drivers of fecal coliform pollution trends in Sou...
Lindsey Hamilton, Exploring drivers of fecal coliform pollution trends in Sou...
 
Jen McIntyre, New science documenting toxic impacts on salmon and other aquat...
Jen McIntyre, New science documenting toxic impacts on salmon and other aquat...Jen McIntyre, New science documenting toxic impacts on salmon and other aquat...
Jen McIntyre, New science documenting toxic impacts on salmon and other aquat...
 
Wendy Steffensen and Jeff Hansen, LOTT’s Reclaimed Water Study: What we have ...
Wendy Steffensen and Jeff Hansen, LOTT’s Reclaimed Water Study: What we have ...Wendy Steffensen and Jeff Hansen, LOTT’s Reclaimed Water Study: What we have ...
Wendy Steffensen and Jeff Hansen, LOTT’s Reclaimed Water Study: What we have ...
 
Phil Dionne, Beach spawning, forage fish monitoring
Phil Dionne, Beach spawning, forage fish monitoringPhil Dionne, Beach spawning, forage fish monitoring
Phil Dionne, Beach spawning, forage fish monitoring
 
Megan Moore, Steelhead smolt survival through Puget Sound
Megan Moore, Steelhead smolt survival through Puget SoundMegan Moore, Steelhead smolt survival through Puget Sound
Megan Moore, Steelhead smolt survival through Puget Sound
 
Bobbi Hudson, Modeling trophic interactions in South Sound
Bobbi Hudson, Modeling trophic interactions in South SoundBobbi Hudson, Modeling trophic interactions in South Sound
Bobbi Hudson, Modeling trophic interactions in South Sound
 
Jason Toft and Megan Dethier, Shoreline armoring data
Jason Toft and Megan Dethier, Shoreline armoring dataJason Toft and Megan Dethier, Shoreline armoring data
Jason Toft and Megan Dethier, Shoreline armoring data
 
Eric Christensen, Sea level rise, Budd Inlet
Eric Christensen, Sea level rise, Budd InletEric Christensen, Sea level rise, Budd Inlet
Eric Christensen, Sea level rise, Budd Inlet
 
Joe Kane, Nisqually Community Forest
Joe Kane, Nisqually Community ForestJoe Kane, Nisqually Community Forest
Joe Kane, Nisqually Community Forest
 
Northwest Indian Fisheries Commission Annual Report 2015
Northwest Indian Fisheries Commission Annual Report 2015Northwest Indian Fisheries Commission Annual Report 2015
Northwest Indian Fisheries Commission Annual Report 2015
 
Richard Feeley presentation on ocean acidification
Richard Feeley presentation on ocean acidificationRichard Feeley presentation on ocean acidification
Richard Feeley presentation on ocean acidification
 
Jan Newton presentation on ocean acidification
Jan Newton presentation on ocean acidificationJan Newton presentation on ocean acidification
Jan Newton presentation on ocean acidification
 
Nisqually Tribe presentation on watershed and salmon recovery
Nisqually Tribe presentation on watershed and salmon recoveryNisqually Tribe presentation on watershed and salmon recovery
Nisqually Tribe presentation on watershed and salmon recovery
 
Squaxin Island Tribe presentation to CCA Capitol City
Squaxin Island Tribe presentation to CCA Capitol CitySquaxin Island Tribe presentation to CCA Capitol City
Squaxin Island Tribe presentation to CCA Capitol City
 

Bill Dewey presentation on ocean acidification

  • 1. Preliminary  lessons  from     the  oyster  “seed  crisis”   What  can  the  rest  of  the  seafood  industry  learn  from  the  first   producers  to  suffer  (and  partly  overcome)  severe  impacts     associated  with  “corrosive”  high-­‐CO2  seawater?   Taylor  Shellfish   hatchery  on  Dabob   Bay,  Washington   By  Brad  Warren  
  • 2. Taylor  &  Whiskey  Creek     •  TAYLOR  SHELLFISH  FARMS:  Largest  U.S.  shellfish   grower.    ~12,000  acres  under  culOvaOon  (owned  or   leased)  in  Washington,  Mexico,  BriOsh  Columbia,  a   pearl  farm  in  Fiji.  Two  company-­‐owned  hatcheries   (Hawaii,  Washington)  supply  its  own  farms.   •  Whiskey  Creek  Shellfish  Hatchery:  largest  oyster  seed   supplier  on  West  Coast,  supplies  ~75%  of  farms.   •  Together,  they  provide  lion’s  share  of  producOon  on   West  Coast.  
  • 3. Oyster  seed  crisis  arrives   Pacific  oyster  larvae  fail   L:  Pacific  oyster     larvae  growing   at  Taylor.  Billions     of  these  were  lost.   R:  Larval  clams     dissolve  at  pH   7.5  in  lab  (Green)            70-­‐80%  loss  of  producOon  in  2007-­‐2008  at  both  major   hatcheries.  At  Whiskey  Creek,  oyster  larvae  dissolved,   vanished  in  tanks.  Even  hard-­‐fouling  of  intake  pipes  ceased.          Li]le  or  no  commercial-­‐scale  wild  “set”  of  oysters  in  Willapa   Bay  since  2005.    Industry  hunts  for  culprits:    vibrio  tubiashi?    
  • 4. Paradigm  shiH    Feely  et  al  2008   Researchers  at  Whiskey  Creek  (Barton,  others)  confirm  strong  link  to  larval  death.  
  • 5. How  hatcheries  rebounded  (for  now)   •  Whiskey  Creek  is  near  peak  producOon  levels   through  July  2010,  by  dodging  frequent  episodes   of  “bad  water,”  working  overOme  to  produce  in   “good  water”  periods.   •  Taylor  also  going  strong  through  July  2010,   enjoying  “good  water”  from  shallow  intake  (30   d);  but  deep  intake  (100  d)  now  yields  high  CO2   levels  that  they  avoid.   •  Two  criNcal  tools  enabled  this  rebound:  
  • 6. 1.  Monitoring  &  research   If  you  can  see  what’s  coming  at  you,   you  can  dodge   New  monitoring  systems,  OOS  buoys  permit  frequent  sampling  of  water  quality   parameters  (e.g.  pCO2,  pH):    Hatcheries  avoid  spawning  in  high-­‐CO2  water.     Bioassays,  calcificaOon  studies,  physiological  &  geneOc  analyses  underway  at  several  labs.  
  • 7. 1.  A  well-­‐defended  posiNon   Hatcheries          Control  of  most   vulnerable  life-­‐ stage  enabled   them  to  defend   larvae  <  120   microns.  
  • 8. Industry’s  three-­‐Phase  response   1)  Short  term:  monitoring  &  research  enable   producers  to  dodge  “bad  water.”  (operaOons  +   policy)   2)  Medium  term:  culOvate  more  resilient   broodstock.  (operaOons  +  policy)   3)  Long-­‐term:  promote  policies  to  reduce   emissions,  strengthen  research  &  monitoring   (policy)  
  • 9. STEP  1   Monitoring  in  order  to  avoid  exposure  to  “bad   water.”   Sensors:  pH,  T,  S,  depth,  turbidity        
  • 10. pCO2  readout  at  100  d:  ~1,000  ppm   Taylor’s  deepwater  intake:     pH  here  measured  ~  7.5   At  Whiskey  Creek,  pCO2     is  now  key  predictor  of     larval  survival.  For  gigas   larvae  in  first  2  days,     hatchery  owners  say     200-­‐300  ppm  is  opOmal,    with  low  end  best;  older   larvae  can  handle  up  to     400  ppm.    “Over  600  we   back  off.”  (Wiegardt,  pers.     comm  with  BW  7.27.2010)  
  • 11. pCO2  at  30  d:  332  ppm   Taylor’s  shallow  water  intake:   pH  here  measured  ~8.2   To  avoid  high  CO2  water,     Taylor  mainly  now  relies     on  shallow  intake  for  oysters.     This  increases  exposure  to   algal  blooms,  etc,  which  were     the  reason  they  developed  a     deepwater  intake  at  100  d.     Now  elevated  CO2  is  pushing     Taylor  to  risk  that  exposure,  esp.   for  young  Pacific  oyster  (c.  Gigas)  
  • 12. Managing  around  the  problem      SPAWN!   •   Put  small  larvae  into  tanks  filled      in  the  aHernoon  or  overnight                -­‐  Works  if  the  sun  is  out   •   24  hour  noOce-­‐  Upwelling  takes        a  day  or  two  to  start  up,  so  when        winds  from  the  North,  fill  tanks        late  in  the  day  and  spawn  like        crazy    DON’T   Slide:  Alan  Barton   SPAWN!  
  • 13. Step  2:  breeding  for  resistance   Broodstock  research  has  increased  oyster  yield  in  the  past  (see  graph):  Can  it  help   now?   Molluscan  Broodstock     Program  at  OSU   increased  oyster  yield     (sum  of  survival  +  growth)    by  41%  over  2     generaOons.   Can  broodstock  work  boost     resistance  to  high  CO2?   Preliminary  signs  of   promise:  a  few  families   show  be]er  resistance;     OSU  MBP     some  species  too  (Olympia).   Growth  rates,  yields,  quality?  
  • 14. Step  3:  Policy  engagement   •  Key  aims  :    Support  research  &  monitoring,   protect  producOvity.   •  Oyster  producers  talk  to  Congress  about   acidificaOon,  need  for  research;  some  support   prevenOve  emissions-­‐reducOon  policies.   •  Sen.  Cantwell  secures  $500,000  for  hatchery   retrofits,  including  monitoring.   •  HR  989:  Taylor  &  others  worked  it,  got  58%  yes   vote.   •  OOS  systems  beginning  to  monitor  pCO2  etc,  
  • 15. ImplicaOons  for  seafood  industry   •  ProducNve  zones  are  most  vulnerable:  highly  enriched                seawater    closer  “Opping  points.”   •  First  blow  can  hit  hard:  70-­‐80%  loss  of  producOon  in  2007-­‐2008   at  two  major  hatcheries  (supplying  lion’s  share  of  producOon).   •  Technical  and  poliNcal  savvy  allowed  shellfish  industry  to  meet   the  challenge:  Taylor,  Whiskey  Creek  found  ways  to  dodge   impacts,  win  needed  scienOfic  &  poliOcal  support,  and  rebuild   producOon  (for  now).  Other  growers,  reliant  on  Whiskey  Creek,   pitched  in.  PoliOcians  too.  (3  Congressmen  a]ended  our   workshop  in  March).   •  Impacts  are  uneven:  Species,  families,  &  local  environmental   condiOons  can  either  miOgate  or  aggravate  effects.   •  Victory  probably  temporary:  ConOnued  rise  in  emissions     more  trouble  ahead:  more  severe  acidificaOon,  likely  wider   impacts.  
  • 16. Thanks.   •  Benoit  Eudeline  &  Bill  Dewey  at  Taylor   Shellfish  Farms.   •  Mark  Wiegardt,  Sue  Cudd,  Alan  Barton  at   Whiskey  Creek.   •  Richard  Feely,  Vicky  Fabry,  Joanie  Kleypas,   Jeremy  Mathis,  Sco]  Doney,  Mark  Green,  Jeff   and  many  others.   •  Bulli]  &  Oak  foundaOons,  Rockefeller  Brothers   Fund,  other  donors.