René descartes

1.878 visualizações

Publicada em

0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
1.878
No SlideShare
0
A partir de incorporações
0
Número de incorporações
13
Ações
Compartilhamentos
0
Downloads
20
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

René descartes

  1. 1. René Descartes<br />
  2. 2. O Inventor<br /> René Descartes foi um filósofo, físico e matemático francês. Notabilizou-se sobre tudo por seu trabalho revolucionário na filosofia e na ciência, mas também obteve reconhecimento matemático por sugerir a fusão da álgebra com a geometria - fato que gerou a geometria analítica e o sistema de coordenadas que hoje leva o seu nome, ele foi uma das figuras-chave na Revolução Científica<br /> Matemáticos consideram Descartes muito importante pelo surgimento da geometria analítica. Até Descartes, a geometria e a álgebra apareciam como ramos completamente separados da Matemática. Descartes mostrou como traduzir problemas de geometria para a álgebra, abordando esses problemas através de um sistema de coordenadas.<br /> A teoria de Descartes forneceu a base para o Cálculo de Newton e Leibniz, e então, para muito da matemática moderna. Isso parece ainda mais incrível tendo em mente que esse trabalho foi intencionado apenas como um exemplo no seu livro Discurso Sobre o Método.<br />
  3. 3. O Invento<br /> A geometria analítica, também chamada geometria de coordenadas e que antigamente recebia o nome de geometria cartesiana, é o estudo da geometria através dos princípios da álgebra. Em geral, é usado o sistema de coordenadas cartesianas para manipular equações para planos, retas, curvas e círculos, geralmente em duas dimensões, mas por vezes também em três ou mais dimensões. Alguns pensam que a introdução da geometria analítica constituiu o início da matemática moderna. <br />
  4. 4. Repercussões<br />- Campo Matemático<br /> Seduzidos por essas novas teorias, os matemáticos dos séculos XVII e XVIII, corajosa e despreocupadamente se lançam a elaborar novas teorias analíticas. Mas nesse ímpeto, eles se deixaram levar mais pela intuição do que por uma atitude racional no desenvolvimento da ciência. Não tardaram as conseqüências de tais procedimentos, começando por aparecer contradições. Tais fatos levaram, no ocaso do século XVIII, a uma atitude crítica de revisão dos fatos fundamentais da matemática. Pode-se afirmar que tal revisão foi a "pedra angular" da matemática.<br />
  5. 5. Repercussões<br />- Campo Tecnológico<br /> O mundo moderno se encontra hoje inteiramente modificado pela ciência e pela tecnologia. As relações entre seres humanos e destes com seu meio ambiente foram profundamente transformadas pelo conhecimento e sua aplicação tecnológica. E, por trás deste conhecimento e em praticamente todos os setores, se encontra a matemática. O conhecimento matemático, mesmo em áreas desenvolvidas a princípio de forma totalmente acadêmica, termina por encontrar aplicação em setores diversos da tecnologia e outras áreas diversas. <br /> A Geometria Analítica é muito importante quando se trabalha com vetores. Os vetores por sua vez podem ser aplicados em programações de sistemas, nas indústrias em máquinas do tipo CNC, no setor aeronáutico, automobilístico e náutico. Também aplicada em sistemas de localização, problemas físicos e químicos.<br />

×