1
MODELAGEM MATEMÁTICA NA EDUCAÇÃO CIENTÍFICA
Ednilson Sergio Ramalho de Souza1
ednilson.souza@yahoo.com.br
RESUMO: A Mode...
2
ideia através de temas geradores. Em sua pedagogia de investigação temática
problematizadora, Freire parte de dimensões ...
3
Observa-se que, para este autor, a finalidade do processo de Modelagem consiste
em traduzir uma situação-problema em rep...
4
matemáticos. No ensino de Ciências, a Modelagem Matemática deve enfatizar a
aprendizagem de conteúdos científicos parale...
5
mas deve sempre sugerir temas ou propor que os discentes escolham seus próprios
temas a partir de seus anseios e ideais ...
6
É comum os grupos fazerem algum tipo de pesquisa antes de escolher o tema.
Esse momento é importante para ter conhecimen...
7
O som de uma bela música impressiona até os ouvidos menos sensíveis. O
problema ocorre quando esse som tem intensidade e...
8
A investigação da situação-problema envolve a busca de dados qualitativos e
quantitativos, dando ênfase à construção e/o...
9
Os relatórios de pesquisa são elaborados pelos grupos sob orientação docente e
devem conter os conteúdos conceituais, pr...
10
FORMULANDO UMA SITUAÇÃO-PROBLEMA
Para orientar a formulação de situações-problema, expliquei para as equipes por
meio d...
11
Apresentaram também uma tabela para a classificação de peso pelo IMC a qual
considera que a partir de 25 kg/m² já se po...
12
27 ANOS 1,60 54 KG 21,09 Peso Normal
27 ANOS 1,62 90 KG 34,29 Obesidade
38 ANOS 1,58 77 KG 30,84 Obesidade
39 ANOS 1,54...
13
Gráfico 2. Valores dos IMC’s dos homens.
O grupo interpretou que nas pessoas do sexo feminino predomina peso normal
(44...
14
Gráfico 3. Tipo de transporte dos entrevistados, Santarém-Pa, 2012 (Fonte: pesquisa de
campo,).
Interpretaram que na ca...
15
Com relação à prática de atividades físicas, o grupo construiu e interpretou os
gráficos a seguir:
Gráfico 4. Frequênci...
16
Gráfico 5. Frequência da prática de atividades físicas por sujeitos acima do peso, Santarém-
Pa, 2012 (Fonte: pesquisa ...
17
Gráfico 7. Quantidade de refeições diárias realizadas por indivíduos com peso normal,
Santarém-Pa, 2012 (Fonte: pesquis...
18
Gráfico 9. Quantidade de refeições diárias realizadas por indivíduos obesos, Santarém-Pa,
2012 (Fonte: pesquisa de camp...
19
FINALIZANDO COM ALGUMAS CONSIDERAÇÕES
Nosso objetivo foi apresentar a Modelagem Matemática como proposta
pedagógica par...
20
do professor é mais de auxiliar os grupos para que a dinâmica flua harmonicamente,
sem muitos obstáculos.
No Ensino Méd...
21
DANTE, L.R. Didática da Resolução de Problemas de Matemática. São Paulo:
Ática, 2003.
FREIRE, P. Pedagogia do oprimido....
Próximos SlideShares
Carregando em…5
×

Modelagem matemática na educação científica

237 visualizações

Publicada em

Discute-se sobre a modelagem matemática no campo da educação científica.

Publicada em: Educação
0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
237
No SlideShare
0
A partir de incorporações
0
Número de incorporações
4
Ações
Compartilhamentos
0
Downloads
0
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Modelagem matemática na educação científica

  1. 1. 1 MODELAGEM MATEMÁTICA NA EDUCAÇÃO CIENTÍFICA Ednilson Sergio Ramalho de Souza1 ednilson.souza@yahoo.com.br RESUMO: A Modelagem Matemática é uma estratégia educacional que vem ganhando cada vez mais espaço nas aulas de Matemática, contribuindo para compreensão, motivação, contextualização, interdisciplinaridade e facilitação de aprendizagem. Nosso objetivo é refletir sobre essa estratégia como proposta para as aulas de Ciências. Para isso, sugerimos seu desenvolvimento em quatro momentos gerais: Escolha de Tema, Formulação de Situação-Problema, Investigação e Avaliação. Acreditamos que esses momentos possam dar maior fundamento metodológico aos professores da Educação Básica que se interessarem pelo assunto. Em nossas pesquisas, temos detectado que a Modelagem quando aplicada com base nesses quatro momentos pedagógicos aproxima os conceitos científicos à realidade ao qual o estudante está inserido, fazendo com que os conceitos do livro didático ganhem significado real no dia-a-dia, favorecendo a formação de modelos mentais próximos aos modelos científicos. PALAVRAS-CHAVE: Modelagem Matemática. Alternativa Pedagógica. Educação Científica. INTRODUÇÃO Parece consenso entre os pesquisadores em Educação que o chamado método tradicional ou educação bancária (FREIRE, 2005) não corresponde mais aos anseios de uma sociedade em crescimento e globalizada como é o caso da sociedade brasileira. Para dar conta de uma nova perspectiva educacional pergunta-se: que proposta devemos usar em sala de aula como alternativa ao método tradicional? Dar uma resposta a essa pergunta exige experiências, reflexões e pesquisas. Paulo Freire deu uma 1 Docente do Programa de Educação, Instituto de Ciências da Educação, UFOPA. IV Seminário Regional de Política e Administração da Educação da Região Norte/IV Encontro Estadual de Política e Administração da Educação do Pará. Santarém-Pa, 26 a 28 set. 2012.
  2. 2. 2 ideia através de temas geradores. Em sua pedagogia de investigação temática problematizadora, Freire parte de dimensões significativas da realidade do indivíduo as quais devem ser percebidas pelos mesmos indivíduos como dimensões da totalidade (FREIRE, 2005, p. 112). Nosso objetivo é apresentar a Modelagem Matemática como possível alternativa ao método bancário, ainda muito usado nas aulas de Ciências; bem como mostrar aos professores como se pode efetivar na prática de sala de aula a pedagogia da Modelagem em 04 momentos gerais. Acreditamos que essa pesquisa justifica-se quando apresenta aos professores da Educação Básica, em especial aos que ensinam Ciências, uma proposta educacional que pode ser aplicada em qualquer contexto de ensino-aprendizagem. Além disso, o que pretendemos é sair do plano puramente teórico da Academia para o plano prático de sala de aula. Vamos começar entendendo o que é Modelagem Matemática, em seguida apresentarei quatro momentos gerais para desenvolver a dinâmica de Modelagem na Educação Científica e finalizaremos com o relato de um projeto desenvolvido por alunos de Pedagogia cujo tema foi Obesidade. ENTENDENDO O QUE É MODELAGEM MATEMÁTICA Nessa seção, apresentaremos algumas concepções ou formas de compreensão sobre Modelagem Matemática. É importante apresentá-las uma vez que “desenham” a Modelagem em suas diferentes maneiras de aplicação em sala de aula. Rodney Bassanezi (2004) compreende por Modelagem Matemática, “[...] um processo dinâmico utilizado para a obtenção e validação de modelos matemáticos. É uma forma de abstração e generalização com a finalidade de previsão de tendências. A modelagem consiste, essencialmente, na arte de transformar situações da realidade em problemas matemáticos cujas soluções devem ser interpretadas na linguagem usual” (p. 24).
  3. 3. 3 Observa-se que, para este autor, a finalidade do processo de Modelagem consiste em traduzir uma situação-problema em representações matemáticas que deverão ser confrontadas com a realidade. Essa é uma primeira compreensão de Modelagem enquanto construção e testagem de modelos matemáticos. Essa percepção perdurou nas primeiras aplicações da estratégia em sala de aula, uma vez que Rodney Bassanezi foi um dos precursores da Modelagem na educação brasileira (BIEMBENGUT, 2009, p. 08). Na mesma linha de Bassanezi, Biembengut e Hein (2003, p. 12) entendem Modelagem como uma arte que envolve a formulação e resolução de expressões que servirão não apenas para uma solução em particular, mas que sejam usadas para outras aplicações e teorias. No entanto, estes autores privilegiam o currículo da disciplina durante as tarefas de Modelagem. Outra concepção de Modelagem é devida a Dionísio Burak (1992). Para este autor, a Modelagem compreende um conjunto de procedimentos visando construir um paralelo para tentar explicar, por meio da Matemática, os fenômenos do dia-a-dia do homem, auxiliando-o a fazer predições e tomar decisões (p. 62). Este autor começa a pensar em privilegiar o processo de Modelagem em si, não importando se ocorreu ou não a construção de fato de um modelo matemático no final do mesmo. Pensamento semelhante ao de Burak (1992), Chaves e Espírito Santo (2008, p. 159), ao refletirem sobre as diversas possibilidades de uso e aplicação da Modelagem no ensino, entendem a mesma como um processo gerador de ambiente de ensino- aprendizagem no qual os conteúdos matemáticos podem ser vistos imbricados a outros conteúdos de outras áreas do conhecimento, tendo-se, dessa forma, uma visão holística do problema em investigação. Jonei Babosa (2001) a entende como “[...] um ambiente de aprendizagem no qual os alunos são convidados a indagar e/ou investigar, por meio da Matemática, situações com referência na realidade” (p. 46). Essa concepção volta-se para a importância social da Matemática no dia-a-dia. As concepções de Modelagem acima têm como atenção o ensino/aprendizagem de Matemática, enfocando, portanto, a movimentação e aprendizagem de conteúdos
  4. 4. 4 matemáticos. No ensino de Ciências, a Modelagem Matemática deve enfatizar a aprendizagem de conteúdos científicos paralelamente a movimentação de conceitos matemáticos. Isso implica que o modo de fazer Modelagem nas aulas de Ciências deve ter objetivo diferente da Modelagem nas aulas de Matemática. Em outras palavras, na Educação Científica por Modelagem, os conteúdos são estudados em paralelo à construção e interpretação crítica de modelos matemáticos. Assim, nas aulas de Ciências, concebemos a Modelagem Matemática como uma estratégia educacional que visa analisar situações-problema com enfoque na aprendizagem de conteúdos científicos paralelamente à construção e/ou interpretação crítica de modelos matemáticos. Essa concepção de Modelagem pode ser efetivada na prática de sala de aula em 04 momentos pedagógicos os quais apresentaremos a seguir. QUATRO MOMENTOS PEDAGÓGICOS Para dar maior subsídio aos professores de Ciências que desejarem utilizar a Modelagem Matemática em suas aulas, indicamos a seguir quatro momentos pedagógicos que podem ser utilizados em qualquer contexto educacional. O primeiro momento consiste na escolha de um tema. O segundo na formulação de uma situação- problema, o terceiro na investigação e o último na avaliação. Veremos a seguir cada um desses momentos tomando por fundamento algumas ideias da educação libertadora de Paulo Freire (2005). PRIMEIRO MOMENTO: ESCOLHA DE TEMA O primeiro momento da Modelagem Matemática na Educação Científica consiste na escolha de tema. É o tema que guia os conteúdos que serão estudados. Temos escolhido temas com base em três princípios: a) O interesse do educando; b) A relevância pedagógica e; c) O conteúdo programático da escola. O interesse do educando é o primeiro princípio que deve nortear a escolha de temas. O docente não deve jamais impor temas a serem investigados pelos estudantes,
  5. 5. 5 mas deve sempre sugerir temas ou propor que os discentes escolham seus próprios temas a partir de seus anseios e ideais de vida. Baseia-se a escolha de temas principalmente nas visões de mundo que os educandos possuem e que geram temas significativos para eles. A educação autêntica, repitamos, não se faz de A para B ou de A sobre B, mas de A com B, mediatizados pelo mundo. Mundo que impressiona e desafia a uns e a outros, originando visões ou pontos de vista sobre ele. Visões impregnadas de anseios, de dúvidas, de esperanças ou desesperanças que implicitam temas significativos, à base dos quais se constituirá o conteúdo programático da educação (FREIRE, 2005, p. 97). Apesar de a escolha de temas ficar, muitas vezes, a cargo dos grupos, ao orientá- los, o professor deve ter sempre em mente a importância pedagógica do mesmo, ou seja, se o tema escolhido vai ser bom para seus objetivos de ensino. Esse é o segundo princípio que julgamos pertinente na escolha de temas. Se a pedagogia da Modelagem for aplicada em uma aula de Física, por exemplo, temas relevantes seriam aqueles ligados ao ambiente, tecnologia, natureza, saúde, ciência; evitando-se, assim, o trabalho com temas pouco produtivos para a disciplina, favorecendo a convergência do conteúdo a ser estudado para o currículo da escola. O terceiro princípio norteador para escolha de temas é a grade curricular da instituição de ensino. Esses três princípios – interesse do educando, relevância pedagógica e o currículo da escola – são propostos por nós como forma de evitar bloqueios ao uso da Modelagem num contexto educacional onde ainda predomina o método bancário. O que se deve evitar é trabalhar com temas fora do contexto existencial do aprendiz. Se a escola está situada em uma região onde não se tem internet, por exemplo, não se pode falar em redes sociais para esse público! “Será a partir da situação presente, existencial, concreta, refletindo o conjunto de aspirações do povo, que poderemos organizar o conteúdo programático da educação ou da ação política” (FREIRE, 2005, p. 100).
  6. 6. 6 É comum os grupos fazerem algum tipo de pesquisa antes de escolher o tema. Esse momento é importante para ter conhecimento dos problemas que estão relacionados ao provável tema que será escolhido. Por outro lado, essa pesquisa inicial é necessária para dar mais subsídios à escolha do tema; bem como proporciona o primeiro contato com o campo conceitual do mesmo. SEGUNDO MOMENTO: FORMULAÇÃO DE SITUAÇÃO-PROBLEMA Com base nos temas discutidos pelos grupos, o professor orienta a formulação de situações-problema. Tal formulação envolve o contexto, o objetivo e a importância sociocultural do estudo. As situações-problema revelam-se excelentes formas de mobilizar conhecimentos, habilidades e atitudes indispensáveis para a formação do estudante, pois cria condição ideal para que todo o conhecimento adquirido seja colocado em prática, com atitude, iniciativa e proatividade. Segundo Dante (2003, p. 20): Situações-problema são problemas de aplicação que retratam situações reais do dia-a-dia e que exigem o uso da Matemática para serem resolvidos. Através de conceitos, técnicas e procedimentos matemáticos procura-se matematizar uma situação real, organizando os dados em tabelas, traçando gráficos, fazendo operações, etc. Em geral, são problemas que exigem pesquisa e levantamento de dados. Podem ser apresentados em forma de projetos a serem desenvolvidos usando conhecimentos e princípios de outras áreas que não a Matemática, desde que a resposta se relacione a algo que desperte interesse. Durante uma experiência de sala de aula, após algumas pesquisas, discussões e reflexões, um grupo decidiu pesquisar sobre o tema Poluição Sonora. A situação- problema formulada foi a seguinte:
  7. 7. 7 O som de uma bela música impressiona até os ouvidos menos sensíveis. O problema ocorre quando esse som tem intensidade exagerada, chegando a prejudicar o sistema auditivo. Nosso trabalho tem como finalidade verificar o problema ocasionado pela poluição sonora devido a equipamentos de som instalados nos carros que ficam tradicionalmente parados na orla de Santarém-Pa, durante o período noturno, no trecho localizado entre a igreja Matriz até o museu Municipal “João Fona”. Pretende-se com esse estudo gerir meios de garantir um ambiente saudável à população, bem como resguardar o patrimônio histórico e cultural da cidade (Estudantes de Pedagogia). Observa-se que a situação-problema está diretamente relacionada ao contexto vivencial dos estudantes, no caso, a orla da cidade de Santarém-Pa e que, para ser investigada, os estudantes deverão recorrer a diversas tarefas procedimentais e de pesquisas. Na situação-problema apresenta-se também o objetivo a ser alcançado. A apresentação do objetivo é importante para nortear as ações e tomadas de decisões dos sujeitos. Finaliza-se a descrição da situação-problema expondo a relevância sociocultural do estudo. Essa última parte é necessária para tornar possível a proposição de atitudes sobre o problema estudado. O que temos de fazer, na verdade, é propor ao provo, através de certas contradições básicas, sua situação existencial, cotreta, presente, como problema que, por sua vez, o desafia e, assim, lhe exige reposta, não só no nível intelectual, mas no nível da ação (FREIRE, 2005, p. 100). Normalmente, os grupos fazem pesquisas para formular a situação-problema. O professor deve incentivar esse tipo de atitude por parte das equipes, pois é durante essas pesquisas que se aprofundam conhecimentos sobre o tema em estudo. TERCEIRO MOMENTO: INVESTIGAÇÃO Somente após a formulação da situação-problema é que os estudantes podem tomar decisões no sentido de investigá-la. Esta investigação implica, necessariamente, uma metodologia que não pode contradizer a dialogicidade da educação libertadora. Daí que seja igualmente dialógica. Daí que, conscientizadora também, proporcione, ao mesmo tempo, a apreensão dos “temas geradores” e a tomada de consciência dos indivíduos em torno dos mesmos (FREIRE, 2005, p. 101).
  8. 8. 8 A investigação da situação-problema envolve a busca de dados qualitativos e quantitativos, dando ênfase à construção e/ou interpretação crítica de modelos matemáticos. É através da análise crítica de um gráfico, tabela ou equação que o estudante toma consciência de informações que o ajudarão a fundamentar tomadas de decisões visando resolver ou amenizar o problema investigado. Questionando o modelo matemático, o sujeito põe em movimentação as inter- relações entre as dimensões significativas do tema. São essas interações que fazem o sujeito perceber-se como parte e que faz parte de um todo. “Desta maneira, as dimensões significativas que, por sua vez, estão constituídas de partes em interação, ao serem analisadas devem ser percebidas pelos indivíduos como dimensões da totalidade” (FREIRE, 2005, p. 112). Alguns instrumentos de investigação são recorrentes no trabalho com Modelagem Matemática: pesquisa bibliográfica com leituras em fontes diversas, pesquisa de campo, aplicação de questionários, entrevistas, observação, experimentação, visitas a prefeituras, unidades de saúde, órgão públicos, escolas, entre outros. QUARTO MOMENTO: AVALIAÇÃO O último momento da pedagogia da Modelagem Matemática na Educação Científica ocorre após as investigações. O professor orienta a elaboração de relatórios, seminários e produção individual de texto. É nesse momento que o professor compara o ponto de partida dos estudantes com o ponto onde estão e verifica se houve transformação nos seus modos de fazer e pensar, o que sugere a formação de novos modelos mentais. Do ponto de vista do investigador importa, na análise que faz no processo da investigação, detectar o ponto de partida dos homens no seu modo de visualizar a objetividade, verificando se, durante o processo, se observou ou não alguma transformação no seu modo de perceber a realidade (FREIRE, 2005, p. 115).
  9. 9. 9 Os relatórios de pesquisa são elaborados pelos grupos sob orientação docente e devem conter os conteúdos conceituais, procedimentais e atitudinais estudados. Durante a construção dos relatórios, o professor orienta pesquisas, aprofunda conhecimentos, retira dúvidas, faz revisões, destaca pontos de interesse para a disciplina; os estudantes fazem novas pesquisas e novas reflexões. Os seminários de pesquisa servem para tornar socializadas as investigações dos grupos. Além disso, o professor pode avaliar o conhecimento declarativo dos estudantes, bem como suas estratégias de apresentação. Durante os seminários costumam ocorrer discussões muito produtivas para a aprendizagem crítica dos estudantes. A produção de texto individual é uma ferramenta muito valiosa para se avaliar a formação de novos modelos mentais e se estes modelos estão próximos aos modelos científicos, possibilitando que o docente possa atuar no sentido de reformular modelos mentais incoerentes. DESENVOLVENDO O TEMA OBESIDADE Nessa seção, apresentarei um projeto de Modelagem Matemática desenvolvido por um grupo de 05 componentes de uma turma de Pedagogia da Universidade Federal do Oeste do Pará a partir do tema Obesidade. ESCOLHENDO UM TEMA Informei para a classe que desenvolveríamos um projeto de Modelagem Matemática e que a dinâmica seria desenvolvida em 04 momentos. Comentei um pouco sobre cada momento e retirei algumas dúvidas. Após isso, solicitei que a classe formasse grupos de 3 a 5 componentes e convidei que cada grupo escolhesse um tema de seus interesses. Após algumas discussões e pesquisas os grupos já estavam todos com seus temas definidos. Relatarei o desenvolvimento do tema Obesidade.
  10. 10. 10 FORMULANDO UMA SITUAÇÃO-PROBLEMA Para orientar a formulação de situações-problema, expliquei para as equipes por meio de exemplos práticos o que seria uma situação-problema, realçando que a mesma deveria conter o contexto da pesquisa, um objetivo a ser alcançado e a importância sociocultural da mesma. A situação-problema elaborada pelo grupo Obesidade foi a seguinte: Figura 1. Situação-Problema elaborada pelo grupo. INVESTIGANDO DADOS QUALITATIVOS E QUANTITATIVOS O grupo pesquisou em livros, revistas e internet sobre obesidade e encontrou o modelo matemático para o cálculo o IMC (Índice de Massa Corporal):
  11. 11. 11 Apresentaram também uma tabela para a classificação de peso pelo IMC a qual considera que a partir de 25 kg/m² já se pode falar em excesso de peso. Tal tabela apresenta os graus de obesidade da seguinte forma: Tabela 1. Classificação de peso pelo IMC. Classificação IMC Abaixo do peso Abaixo de 18,5 Peso normal 18,5 – 24,9 Sobrepeso 25,0 – 29,9 Obesidade Grau I 30,0 – 34,9 Obesidade Grau II 35,0 – 39,9 Obesidade Grau III 40,0 e acima Fonte: Organização Mundial da Saúde - OMS Após lerem sobre o tema e retirar algumas dúvidas, o grupo partiu para a pesquisa de campo. Para isso, foram utilizados questionários sigilosos como um dos instrumentos de coleta de dados. Estes abordaram assuntos relacionados ao cotidiano de 20 pessoas adultas do bairro Jardim Santarém, no município de Santarém-Pa, seus hábitos alimentares, frequência e tipo de alimentação consumida e a frequência da prática de exercícios físicos. Também foram coletadas informações sobre a massa corporal e altura de cada indivíduo usando balança e fita métrica. Após a tabulação dos dados, o grupo detectou que a faixa etária dos atores participantes da amostra ficou entre 18 a 76 anos. Deste total, 16 eram do sexo feminino e 04 do sexo masculino. A massa corporal variou entre 49 Kg a 91 Kg, o IMC teve variação entre 20,83 e 34,37 conforme demonstram as tabelas a seguir: Tabela 2. Medidas antropométricas das mulheres entrevistadas, Santarém-Pa, 2012. Idade Altura Peso IMC Categoria 18 ANOS 1,56 55 KG 22,60 Peso Normal 18 ANOS 1,58 52 KG 20,83 Peso Normal 20 ANOS 1,63 91 KG 34,25 Obesidade 21 ANOS 1,57 71 KG 28,80 Sobrepeso 25 ANOS 1,55 60 KG 24,97 Peso Normal
  12. 12. 12 27 ANOS 1,60 54 KG 21,09 Peso Normal 27 ANOS 1,62 90 KG 34,29 Obesidade 38 ANOS 1,58 77 KG 30,84 Obesidade 39 ANOS 1,54 65 KG 27,40 Sobrepeso 42 ANOS 1,60 67 KG 26,17 Sobrepeso 43 ANOS 1,58 55 KG 22,03 Peso Normal 46 ANOS 1,62 69 KG 26,29 Sobrepeso 51 ANOS 1,60 88 KG 34,37 Obesidade 53 ANOS 1,62 62 KG 23,62 Peso Normal 65 ANOS 1,58 54 KG 21,63 Peso Normal 76 ANOS 1,49 68 KG 33,72 Obesidade Fonte: Pesquisa de campo. Tabela 3. Medidas antropométricas dos homens entrevistados, Santarém-Pa, 2012. Idade Altura Peso IMC Categoria 21 ANOS 1,62 49 KG 18,67 Peso normal 45 ANOS 1,60 64 KG 25,00 Sobrepeso 52 Anos 1,64 75 KG 27,88 Sobrepeso 56 ANOS 1,60 70 KG 27,34 Sobrepeso Fonte: Pesquisa de campo. Para uma melhor compreensão dos dados dos IMC’s foram construídos os gráficos que seguem: Gráfico 1. Valores dos IMC’s das mulheres.
  13. 13. 13 Gráfico 2. Valores dos IMC’s dos homens. O grupo interpretou que nas pessoas do sexo feminino predomina peso normal (44%), porém, é preocupante que 56% das mulheres entrevistadas está com o peso acima do normal, encontrando-se na categoria das pessoas com sobrepeso (25%) e com obesidade (31%). Com relação aos homens, observaram que a predominância da categoria sobrepeso (75%) é mais incidente e em contrapartida a categoria de peso normal é bem menor (25%) em comparação com as mulheres, o que comprova que a população masculina entrevistada está com a saúde mais comprometida por motivo de sobrepeso. Foi constatado também que, dos entrevistados, o índice de pessoas que se encontram abaixo do peso normal (IMC abaixo de 18,5) é de 0%, ou seja, nenhuma pessoa da amostra se encontra abaixo do peso normal. Os gráficos demonstram que a prevalência da obesidade é mais elevada em mulheres do que em homens. O grupo apresentou outro gráfico contendo dados quantitativos em relação ao tipo de transporte da amostra entrevistada. Peso normal (IMC de 18,5 a 24,9) 25% Sobrepeso (IMC de 25 a 29,9) 75% IMC dos homens
  14. 14. 14 Gráfico 3. Tipo de transporte dos entrevistados, Santarém-Pa, 2012 (Fonte: pesquisa de campo,). Interpretaram que na categoria de indivíduos com peso normal, a maioria dos entrevistados (71%), prefere utilizar veículos automotivos, como automóvel e motocicleta, evitando, assim, a prática de exercícios físicos, contribuindo para o aumento do sedentarismo, consequentemente para a obesidade futura. Por outro lado, apenas 29% dos entrevistados com peso normal deslocam-se caminhando ou pedalando, praticando, mesmo que involuntariamente, atividades físicas que contribuem para uma melhor qualidade de vida. O mesmo acontece quando se trata dos entrevistados que se encontram com sobrepeso, pois, a maioria, que é de 62%, também prefere o deslocamento através de veículos automotivos e somente 38% deslocam-se caminhando ou pedalando. Quando foram entrevistadas as pessoas consideradas obesas, comenta o grupo, o panorama foi diferente: 80% dos mesmos deslocam-se caminhando ou pedalando e somente 20%, utilizam veículos automotivos. No entanto, verificando mais minuciosamente esta categoria de obesos, a equipe descobriu que aí estão incluídas as pessoas com menor poder aquisitivo, as quais não tem a menor noção de alimentação saudável e nem condições de fazer o deslocamento por veículos automotivos, até porque, em geral o deslocamento que fazem é muito reduzido, pois evitam longas distâncias. individuos com peso normal individuos com sobrepeso individuos obesos 71% 62% 20% 29% 38% 80% Deslocamento diário Automóvel/motocicleta Bicicleta/ caminhando
  15. 15. 15 Com relação à prática de atividades físicas, o grupo construiu e interpretou os gráficos a seguir: Gráfico 4. Frequência da prática de atividades físicas por sujeitos com peso normal, Santarém- Pa, 2012 (Fonte: pesquisa de campo). 0 2 4 6 Não Pratica 1 Vez Por Semana 2 Vezes Por Semana 3 Vezes Por Semana 6 2 0 0 Quantidadedeindividuos Frequência da prática de atividade física Frequência da prática de atividade física por indivíduos com peso normal 0 2 4 6 Não Pratica 1 Vez Por Semana 2 Vezes Por Semana 3 Vezes Por Semana 5 0 0 2 QuantidadedeIndividuos Frequência da prática de atividade física Frequência da prática de atividade física por indivíduos acima do peso
  16. 16. 16 Gráfico 5. Frequência da prática de atividades físicas por sujeitos acima do peso, Santarém- Pa, 2012 (Fonte: pesquisa de campo). Gráfico 6. Frequência da prática de atividades físicas por sujeitos obesos, Santarém-Pa, 2012 (Fonte: pesquisa de campo). Comentaram que, das vinte pessoas, 13 não praticam ou quase nunca fazem exercícios físicos. Ou seja, 65% das pessoas é sedentária. O alto sedentarismo observado nos gráficos tem efeito direto sobre a prevalência de obesidade nas pessoas residentes do bairro Jardim Santarém. Para analisar o aspecto nutricional dos sujeitos, a equipe elaborou de forma crítica os gráficos que seguem. 0 0,5 1 1,5 2 Não Pratica 1 Vez Por Semana 2 Vezes Por Semana 3 Vezes Por Semana Quantidadedeindividuos Frequência da prática de atividade física Frequência da práticade atividade física por indivíduos obesos 0 0,5 1 1,5 2 Não Pratica 1 Vez Por Semana 2 Vezes Por Semana 3 Vezes Por Semana Quantidadedeindividuos Frequência da prática de atividade física Frequência da práticade atividade física por indivíduos obesos
  17. 17. 17 Gráfico 7. Quantidade de refeições diárias realizadas por indivíduos com peso normal, Santarém-Pa, 2012 (Fonte: pesquisa de campo). Gráfico 8. Quantidade de refeições diárias realizadas por indivíduos com sobrepeso, Santarém- Pa, 2012 (Fonte: pesquisa de campo). 0 2 4 3 4 5 6 7 OU MAIS 3 2 2 1 0 NºdeIndividuos Número de Refeições Diárias Quantidade de refeições diárias realizadas por individuos com peso ideal 0 2 4 3 4 5 6 7 ou mais 4 2 0 0 1 NúmerodeIndividuos Número de Refeições Diárias Número de refeições diárias realizadas por individuos com sobrepeso 0 2 4 3 4 5 6 7 ou mais 4 1 0 0 0 N-umerodeIndividuos Número de Refeições Diárias Número de refeições diárias realizadas por individuos obesos
  18. 18. 18 Gráfico 9. Quantidade de refeições diárias realizadas por indivíduos obesos, Santarém-Pa, 2012 (Fonte: pesquisa de campo). De acordo com os gráficos 7, 8 e 9 o grupo interpretou que é unanime a quantidade de três refeições diárias para os indivíduos com peso normal, acima do peso e obesos, o que revela a má administração da quantidade de refeições. Pois, comenta a equipe, é recomendada por nutricionistas a quantidade de seis (06) refeições diárias no mínimo, só que em quantidade de alimentos reduzida. AVALIANDO CONHECIMENTOS Considerando o desenvolvimento da pesquisa, o desempenho do grupo na execução das tarefas, os conhecimentos mobilizados e as dúvidas que foram sanadas no decorrer da elaboração do relatório, pudemos observar que a realização da dinâmica de Modelagem contribuiu para mudança de atitude dos hábitos alimentares dos componentes do grupo, como mostra o fragmento retirado de um texto produzido pela equipe, Através dessa pesquisa podemos de certa forma ajudar as pessoas que fazem parte dessa realidade de sobrepeso/obesidade. O trabalho em questão irá de alguma maneira contribuir para que possamos entender melhor a realidade desse problema, pois ele está presente em nosso cotidiano, em nossa cidade. Essa pesquisa é de suma importância, pois através dos dados apresentados pudemos traçar um panorama sobre o tema que está muito presente em nossa cidade e assim podemos chamar atenção para esse grave problema, propondo algumas soluções para a questão da obesidade na cidade de Santarém (Grupo Obesidade). O fragmento acima sugere que os estudantes formaram novos modelos mentais a partir do desenvolvimento da dinâmica de Modelagem, uma vez que, como eles mesmos comentam, a dinâmica possibilitou traçar um panorama e agir frente ao problema da obesidade no bairro Jardim Santarém.
  19. 19. 19 FINALIZANDO COM ALGUMAS CONSIDERAÇÕES Nosso objetivo foi apresentar a Modelagem Matemática como proposta pedagógica para Educação Científica. Partimos da concepção de que é possível aprender Ciências paralelamente à atividade de construção e/ou interpretação crítica de modelos matemáticos e indicamos 04 momentos pedagógicos para desenvolver a dinâmica de Modelagem Matemática:  Escolha de Tema.  Formulação de Situação-Problema.  Investigação.  Avaliação. Relatamos um projeto de Modelagem realizado em uma turma de Pedagogia, no entanto, o professor do Ensino Básico pode adaptá-lo para ser aplicado em uma turma do ensino fundamental ou médio. Observou-se que os estudantes de Pedagogia mobilizaram diversos conceitos matemáticos e científicos, possibilitando que fossem estudados de forma interdisciplinar diversos assuntos, tais como: construção de gráficos e tabelas, interpretação de gráficos e tabelas, números inteiros, números racionais na forma decimal e fracionária, regra de três simples, porcentagem, medidas e unidades, transformação de unidades de massa, conceito de peso, conceito de massa, diferença entre peso e massa, conceito e cálculo de IMC, utilização e leitura de balança e fita métrica, valorização de alimentação saudável, prática de esportes, entre outros. Em uma turma das séries iniciais, o professor pode escolher temas juntamente com as crianças, formular e apresentar situações-problema usando historinhas em quadrinhos, jogos ou outro recurso lúdico. Pode acompanhar os pequenos nas investigações de dados qualitativos e quantitativos sempre enfatizando a aprendizagem de conceitos científicos juntamente à construção e interpretação crítica de modelos matemáticos. Nas séries finais do Ensino Fundamental, os estudantes são mais autônomos e já podem escolher seus temas, formular situações-problema e fazer investigações. A tarefa
  20. 20. 20 do professor é mais de auxiliar os grupos para que a dinâmica flua harmonicamente, sem muitos obstáculos. No Ensino Médio ou Superior o professor tem a função de orientar a dinâmica. Os estudantes são plenamente capazes de executar todas as tarefas da dinâmica de Modelagem Matemática. REFERÊNCIAS BARBOSA, J. C. Modelagem matemática: concepções e experiências de futuros professores. 2001. 256f. Tese (Doutorado em Educação Matemática) – Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista, Rio Claro. BASSANEZI, R. C. Ensino-aprendizagem com modelagem matemática. 2ed. São Paulo: Contexto, 2004, 389p. BIEMBENGUT, M, S.; HEIN, N. Modelagem matemática no ensino. 3ed. São Paulo: Contexto, 2003, 127p. BIEMBENGUT, M. S. 30 anos de modelagem matemática na educação brasileira: Revista Alexandria, v. 2, n. 2, p. 7-32, 2009. BRASIL, Ministério da Educação. Diretrizes Curriculares Nacionais: Ensino Médio, 2006. (Disponível em http://portal.mec.gov.br, acesso em 8/4/12). BURAK, D. Modelagem Matemática: ações e interações no processo de ensino- aprendizagem. Tese de Doutorado em Educação-UNICAMP, São Paulo, 1992. CHAVES, M. I. A.; ESPÍRITO SANTO, A. O. Modelagem Matemática: uma concepção e várias possibilidades. Boletim de Educação Matemática. Rio Claro, ano 21, n. 30, Fev 2008. Disponível em <http://cecemca.rc.unesp.br/ojs/index.php/bolema/article/view/1781/1568>. Acesso em 8/4/12.
  21. 21. 21 DANTE, L.R. Didática da Resolução de Problemas de Matemática. São Paulo: Ática, 2003. FREIRE, P. Pedagogia do oprimido. Rio de janeiro: Paz e Terra, 2005.

×