SlideShare uma empresa Scribd logo
1 de 128
Baixar para ler offline
Solar Electricity

Arno Smets and Miro Zeman
Delft University of Technology




          Delft
          University of
                                 Picture Source: www.nasa.gov
          Technology

          Challenge the future
About myself
                    Arno Smets



   1974 born in Netherlands
   1992-1997 Physics at TU Eindhoven
   1998-2002 PhD TU Eindhoven
   2002-2004 Post-doctoral Reseacher Helianthos Project
   2005-2010 Researcher at AIST, Japan
   2010-now Assistant professor at TU Delft
                    Photovoltaic Materials and Devices
Photovoltaic Materials and Devices


     People
                               Scientific Staff




Secretary   4 Post docs                  4 Technicians                           Guests




             18 PhD students              ~30 MSc students (15 final MSc project, 15 traineeship)
Outline



 Introduction

 Photovoltaics

 PV Systems

 PV technology

 Summary




     Delft
     University of
                            Picture Source: www.nasa.gov
     Technology

     Challenge the future
1
INTRODUCTION
Humanity’s ten top problems
for next 50 years


1.    ENERGY
2.    WATER
3.    FOOD
4.    ENVIRONMENT
5.    POVERTY
6.    TERRORISM & WAR
7.    DISEASE
8.    EDUCATION
9.    DEMOCRACY
10.   POPULATION

           Source: Lecture Prof. R.E. Smalley (Rice University) at 27th Illinois Junior Science & Humanities Symposium, 2005
Humanity’s ten top problems
for next 50 years


1.    ENERGY
2.    WATER
3.    FOOD
4.    ENVIRONMENT
5.    POVERTY
6.    TERRORISM & WAR
7.    DISEASE
8.    EDUCATION
9.    DEMOCRACY
10.   POPULATION

           Source: Lecture Prof. R.E. Smalley (Rice University) at 27th Illinois Junior Science & Humanities Symposium, 2005
The Energy Problem Energy Shortage
    Growing world
      population
                                                                              Results in pressure
                                                                                 on economy:




                                Ann. averg. oil price (in 2008 USD)
                                                                      120

                                                                      100

                                                                       80

                                                                       60
Increasing living standard:                                            40

                                                                       20

                                                                        0

                                                                       1900   1920   1940   1960   1980   2000
                                                                                            Time
Energy consumption per capita
The Energy Problem             Climate change
            Jeopardizing our habitats:




          Somalia                        Russia




         Mexico             Pakistan
    “The weather makers”, Tim Flannery
Energy transition




           50 years is a characteristic time scale for change in energy mix
                                             Source: Lecture Prof. Moniz (MIT) at TUD 2010
Energy transition scenario

                            EJ/a

                            1400
geothermal
other renewables
solar thermal (heat only)
solar power                 1000
(photovoltaics (PV) &                                                        PV & CSP
solar thermal
generation (CSP)
wind energy
                             600
biomass (advanced)
biomass (traditional)
hydroelectricity
nuclear power
gas                          200
coal
oil
                              2000    2020                         2040                      2100
                                              year

                                     Source: German Advisory Council on Global Change, 2003, www.wbgu.de
Electricity



 About 100 years of practical use


 Symbol of modernity and progress


 Secondary form of energy


 2 billion people without electricity


                                         Source: Google Images
Electricity generation

                                   Gravitational
    Nuclear                                                                                Wind
                                        Hydro-tidal




                       Heat                                      Electric
                      engines                                   generators
   Thermal                          Mechanical                                          Electrical
                      η<60%                                       η=90%



          η=90%

                                Fuel
                                Cells
  Chemical
    Coal, oil, gas,
 biomass, hydrogen



                                           Source: L. Freris, D. Infield, Renewable Energy in Power Systems, Wiley 2008
Electricity generation

                                   Gravitational
    Nuclear                                                                                Wind
                                        Hydro-tidal




                       Heat                                      Electric
                      engines                                   generators
   Thermal                          Mechanical                                          Electrical
                      η<60%                                       η=90%

                                                                                                  Photovoltaics
          η=90%

                                Fuel                   Solar
                                Cells                 thermal
  Chemical
    Coal, oil, gas,
                                                                                           Solar
 biomass, hydrogen



                                           Source: L. Freris, D. Infield, Renewable Energy in Power Systems, Wiley 2008
Electricity generation 2007

                            ELECTRICITY
                            GENERATION
geothermal
other renewables                               conversion
                                hydro    19%
solar thermal (heat only)
                                                 losses
solar power
(photovoltaics (PV) &          nuclear   16%
solar thermal
generation (CSP)                                  2/3
wind energy                     gas      15%
biomass (advanced)                                           ELECTRICITY
biomass (traditional)                                       CONSUMPTION
hydroelectricity
                                coal     40%                   40%   residential
nuclear power                                      1/3
gas                                                            47%   industry
coal
                                 oil     10%                   13%   transmission
oil
                                                                     losses
Electricity generation 2007

                                                                                                   Electricity:
                               World                        Netherlands
                            20 202 TWh                       103 TWh                           20-25 kWh/d/p
                                                                  wind 3%
geothermal                                                      nuclear 4%
                              hydro 19%                         biomass 6%
other renewables
solar thermal (heat only)
                                                                                                Total Energy:
solar power                   nuclear 16%                                                        (gas,oil,etc.)
(photovoltaics (PV) &
solar thermal                    gas                                                             125 kWh/d/p
generation (CSP)                                                   gas 59%
wind energy                                                                       87%
biomass (advanced)
biomass (traditional)
                                             65%
hydroelectricity                 coal
nuclear power
gas                                                               coal 26%
coal        fossil                oil
                                                                    oil 2%
oil
                                                            25 Nuclear power plants
                                                                   (0.5 GW)

                                        Sorce: Eurostat 2009 edition , BP Statistical Review Full Report (http://www.bp.com/images)
Energy transition scenario
Electricity as energy carrier
Living on renewables?




                        David JC MacKay
                         “Sustainable Energy:
                         Without the hot air”
Living on renewables?

     Population density:




Netherlands:   16400000    41500   395   2530
Living on renewables?

     Population density:                     125 kWh/day/p

                                              Required
                                             energy per m2

                                              0.016 W/m2
                                              0.028 W/m2
                                              0.067 W/m2
                                              0.068 W/m2
                                               0.22 W/m2
                                               0.32 W/m2
                                               0.57 W/m2
                                               0.70 W/m2
                                                1.2 W/m2
                                                1.9 W/m2
Netherlands:   16400000    41500   395   2530 2.0 W/m2
Living on renewables?
                                             125 kWh/day/p   125kWh/day/p
     Population density:                                       Surface area
                                                             required with
                                              Required          15 W/m2
                                             energy per m2    technology

                                              0.016 W/m2       0.11 %
                                              0.028 W/m2       0.19 %
                                              0.067 W/m2       0.45 %
                                              0.068 W/m2       0.45 %
                                               0.22 W/m2        1.5 %
                                               0.32 W/m2        2.1 %
                                               0.57 W/m2        3.8 %
                                               0.70 W/m2        4.6 %
                                                1.2 W/m2        8.0 %
                                                1.9 W/m2         12.7 %
Netherlands:   16400000    41500   395   2530 2.0 W/m2           13.3 %
Living on renewables?
                                            125 kWh/day/p   125kWh/day/p
                                                              Surface area
                                                            required with
                                             Required          15 W/m2
                                            energy per m2    technology

                                             0.016 W/m2       0.11 %
                                             0.028 W/m2       0.19 %
                                             0.067 W/m2       0.45 %
                                             0.068 W/m2       0.45 %
                                              0.22 W/m2        1.5 %
                                              0.32 W/m2        2.1 %
                                              0.57 W/m2        3.8 %
                                              0.70 W/m2        4.6 %
                                               1.2 W/m2        8.0 %
                                               1.9 W/m2         12.7 %
Netherlands:   16400000   41500   395   2530 2.0 W/m2           13.3 %
Solar Resources
Global demand 2010:   16 TW   Solar cell with 10% efficiency:
Global demand 2050:   32 TW          1250 1250 km2
Solar energy:    120 000 TW




                                          http://visibleearth.nasa.gov
2
PHOTOVOLTAICS
Photovoltaics (PV)




                     Solar module

                                    Electricity

Sun      Solar
         radiation



                                       Source: A. Poruba
Solar cell



                    sunlight




       Solar cell
                           electricity
heat

                                                 Maximum electrical power out
                                   Efficiency=
                                                       Light power in
Photovoltaic industry
Scaling production volume

40000
                              Global solar cell production                        37185
 MW
               mono c-Si
30000          poly c-Si
                                                                        27381
               ribbon c-Si                                                      36%
               TF-Si Thin-
               CdTe film
20000          CIS solar
               rest cells

                                                                12464
                                                                   118%
10000
                                                         7910
                                                            56%
                                                  4279
                                    1815   2536      85%
                  750        1257             69%
        560 34%         68%     45%    40%
    0
        2002     2003        2004   2005   2006   2007   2008   2009    2010        2011
                                                                   Source: Photon International, March 2012
Photovoltaics

                   Historical development of cumulative PV power:

                       70        China
                                                                                                        70
                                 APEC
                       60                                                                               60
Cumulative Installed




                                                                                              29.6
 PV Capacity (GW)




                                 Rest of World
                                 North America
                       50        Japan                                                                  50




                                                                                      39.53
                                 European Union
                       40                                                                               40




                                                                              22.90
                       30                                                                               30

                       20                                               .66                             20        Nederland 2003:
                                                                  15
                                                                  9
                                                                 9.4
                                                            8




                                                                                                                      46 MW (1.6 %)
                                                           6.9
                                                     0




                       10                                                                               10
                                                    5.4
                                               6
                                          4
                                              3.9
                                  6
                                       2.8
                            9
                           6



                                2.2
                        1.7




                                                                                                                  Nederland 2010:
                        1.4




                       0                                                                                0
                       2000     2002      2004            2006         2008           2010                            97 MW (0.24 %)
                                                    Year
                                                                                                     EPIA 2009: Global Market Outlook For Photovoltaics Until 2013
Trend in installed power technologies




          The European Wind Energy Association: Wind in power: 2011 European Statistics, 2012
EU power capacity mix
 Summary


            in MW                                                       in MW




Total ~580 GW                                         Total ~896 GW

                    The European Wind Energy Association: Wind in power: 2011 European Statistics, 2012
Photovoltaics
2010 Installed Cumulative Installed Capacity Share
                         (MW, %)




   Nederland 2010 ~60 MW (0.15%)
PV module supply and demands
World wide supply - demand




                               Source: EPIA
PV module supply and demands
World wide supply - demand




                               Source: EPIA
PV module supply and demands
World wide supply - demand




                               Source: EPIA
PV module supply and demands
World wide supply - demand




                               Source: EPIA
PV module supply and demands
World wide supply - demand




                               Source: EPIA
PV module supply and demands
World wide supply - demand




                               Source: EPIA
PV module supply and demands
World wide supply - demand




                               Source: EPIA
PV module supply and demands
World wide supply - demand




                               Source: EPIA
PV module supply and demands
World wide supply - demand




                               Source: EPIA
PV module supply and demands
World wide supply - demand




                               Source: EPIA
PV module supply and demands
World wide supply - demand




                               Source: EPIA
PV module supply and demands
World wide supply - demand




                               Source: EPIA
PV module supply and demands
  World wide supply - demand




Moving from local markets to fast changing global markets

                                                            Source: EPIA
Photovoltaics industry
Market 2011




                    Power [GW]
PV power
Latest news


Wednesday, May 30, 2012
May 30 – Guardian:
Solar power generation world record set in Germany
German solar power plants produced a world record 22 gigawatts of
electricity – equal to 20 nuclear power stations at full capacity – through the
midday hours of Friday and Saturday, the head of a renewable energy think
tank has said.

This met nearly 50% of the nation’s midday electricity needs.

The record-breaking amount of solar power shows one of the world’s
leading industrial nations was able to meet a third of its electricity needs on
a work day, Friday, and nearly half on Saturday when factories and offices
were closed.

                                                                The Guardian: May 30, 2012
Electricity network of today

28 power stations in Netherlands
Future electricity network
3
PV SYSTEMS
PV system
Two main types:

Stand-alone system                          Grid-connected system

                                                                             Grid
                                                           dc/ac
             Charge             Storage                   invertor
            controller
                                                            =
                                                             ~

              DC          dc/ac      =                                AC
   PV        loads       invertor                PV                  loads
generator                             ~       generator



                                     AC
                                    loads
PV system
Power electronics

The highly varying environmental conditions and nonlinear
nature of the photovoltaic (PV) generator make the utilization of
PV energy a challenging task:

Power electronics converters:

Reliable operating interface between renewable energy
resources and the electrical power grid.
PV system

Markets/applications:

                           Rural stand-alone
                           and local grid
                           (10 Wp – 10 kWp)


        Grid-connected
   (building-)integrated
     (1 kWp – 1 MWp)



                                  Power plants
                                  (1 MWp - 1 GWp)


                                         Source: W Sinke, Solar Academy
PV systems
Terminology and definitions


Power (of cells, modules and systems) in Watt-peak (Wp)

                                 (Average) ac system efficiency
Performance ratio =
                                  (STC) dc module efficiency
Typically 0.75 – 0.85


Electricity yield in kWh/kWp (usually per year)
Typically 750 – 900 kWh/kWp for c-Si modules in NL

                          hours ac peak power per year
Capacity factor =
                                     hours per year
Typically 0.09 – 0.11 in NL/DE
Grid-connected PV system
     Overview biggest PV installations:

Power     Location             Description                        Commissioned          Picture




100 MWp   Ukraine,             Perovo I-V PV power plant          2011

          Perovo               Constructed by: Activ Solar




97 MWp    Canada,              Sarnia PV power plant              2009-2010

          Sarnia




84 MWp    Italy,               Montalto di Castro PV              2009-2010

          Montalto di Castro   power plant

                               Constructed by: SunPower, SunRay

                               Renewable




82 MWp    Germany,             Solarpark Senftenberg II,III       2011
                                                                         http://www.pvresources.com/PVPowerPlants/Top50.aspx

          Senftenberg          Constructed by: Saferay
DESERTEC project
                       Solar Thermal Power
                       plants
                       Photovoltaics

                       Wind

                       Hydro

                       Biomass

                       Geothermal




                   Source: DESERTEC foundation
Grid-connected PV system
Grid-connected home PV system:
Components: 3×150 Wp modules




  =
   ~              AC




                                 M. Zeman, Delft
Solar irradiation on Earth




The Netherlands:
2.7 sun hours/day/year




                                2    3     4     5     6



                         Solar irradiation: solar irradiance integrated over a period of time
Grid-connected PV system
    Grid-connected home PV system: 3×150 Wp modules

                         65
                              386.0 kWh                                Year 2010
                         60
                         55
Generated energy [kWh]




                         50
                         45
                         40
                         35
                         30
                         25
                         20
                         15
                         10
                          5
                          0
                              1   2   3   4   5   6   7   8   9   10     11   12
                                                  Month

                                                                                   M. Zeman, Delft
Costs grid-connected PV System
PV system is nowadays good investment!

Cost in 2012:




Costs €1030     Saves per year: €115     That’s €2875 in 25 years
                 (500 kWh*€0,23/kWh)   A payback period of 9 years!
                   EY=877 kWh/kWp

                                                       M. Workum, PVMD, TU Delft
Costs grid-connected PV System
        PV system is nowadays good investment!



                                              Above € 6000 inverters
                                              become relatively cheap

                                                                          Average Dutch family
                                                                          (3500 kWh @ €6800)

                       Cheapest system
                     (500 kWh @ €1030)




No installation or second inverter included. One year old data, prices are now even lower (see previous sheet)

                                                                                           M. Workum, PVMD, TU Delft
Learning curve:                                                          PV modules, systems



                             100
Average global sales price




                                         PV Module
                             10
       (USD/Wp)




                               1
                                         Source: Navigant Consulting
                                    -4          -3        -2        -1         0        1        2        3        4
                               10          10        10        10         10       10       10       10       10
                                            Cumulative Installations (GW)
Learning curve:                                                          PV modules, systems



                             100
Average global sales price



                                                               PV System

                                         PV Module
                             10
       (USD/Wp)




                               1
                                         Source: Navigant Consulting
                                    -4          -3        -2        -1         0        1        2        3        4
                               10          10        10        10         10       10       10       10       10
                                            Cumulative Installations (GW)
Learning curve:                                                          PV modules, systems



                             100
Average global sales price



                                                               PV System

                                         PV Module
                             10
       (USD/Wp)




                                          Non-modular costs

                               1
                                         Source: Navigant Consulting
                                    -4          -3        -2        -1         0        1        2        3        4
                               10          10        10        10         10       10       10       10       10
                                            Cumulative Installations (GW)
Learning curve:                                                          PV modules, systems



                             100
Average global sales price



                                                               PV System
                                                                                                                Non-Modular
                                         PV Module
                             10                                                                               29% Installation
       (USD/Wp)




                                                                                                              18% Inverter
                                                                                                              17% Maintenance
                                          Non-modular costs
                                                                                                              16% Racking
                               1                                                                              10% Wiring
                                                                                                              10% BOS, others
                                         Source: Navigant Consulting
                                    -4          -3        -2        -1         0        1        2        3         4
                               10          10        10        10         10       10       10       10        10
                                            Cumulative Installations (GW)
Learning curve:                                                          PV modules, systems



                               100
  Average global sales price



                                                                 PV System
                                                                                                                  Non-Modular
                                           PV Module
                               10                                                                               29% Installation
         (USD/Wp)




                                                                                                                18% Inverter
TF Silicon PV                                                                                                   17% Maintenance
                                            Non-modular costs
                                                                                                                16% Racking
                                 1                                                                              10% Wiring
                                                                                                                10% BOS, others
                                           Source: Navigant Consulting
                                      -4          -3        -2        -1         0        1        2        3         4
                                 10          10        10        10         10       10       10       10        10
                                              Cumulative Installations (GW)
4
PV Technologies
PV technology: 1st vs 2nd generation
         First Generation                    Second Generation (thin film)
          Melt processing                        Plasma processing




                       Sanyo, Silicon
                      Hetero-Junction cell                   NUON Helianthos
Pure material:
    high efficiencies                        Lower quality material:
Expensive processing:                           lower efficiencies
    cost-price energy higher                 Low costs processing:
                                                cost-price energy lower
Silicon: record lab efficiency 20-27%        Thin film: record lab efficiency 13-20%
PV technologies
                                     CIGS
c-Si wafer based




                                     CdTe




         III-V semiconductor based
                                     TF Si
PV technologies

                                                                          1. Wafer based Si




                                                                           2. Thin films




                                                                           3. Cheap + efficient
                 MC manufacturing costs
                 SP average selling price
         SIII installed cost for a utility scale system
         SI installed cost for a residential system




                                                   Hillhouse and Beard, Curr. Opin. Colloid. In. 14, 245 (2009).
Thin-film silicon solar cells
Si-based solar cells


  Al                   Al

 SiO2                       n+


                   electron

       hole



          p-type
 p++       c-Si       p++
              Al
  c-Si (180-250 μm)
Solar cell
                      Incident light




      Metal front
      electrode


                                                          Si atom
                                                          electron

                        hole                           covalent bond

                                       Semiconductor

      Metal back electrode
Solar cell
                      Incident light




      Metal front
      electrode


                                                          Si atom
                                                          electron

                        hole                           covalent bond

                                       Semiconductor

      Metal back electrode
Solar cell



      Metal front
      electrode


                                                  Si atom
                                                  electron

                        hole                   covalent bond

                               Semiconductor

      Metal back electrode
Solar cell



      Metal front
      electrode


                                                  Si atom
                                                  electron

                        hole                   covalent bond

                               Semiconductor

      Metal back electrode
Solar cell



      Metal front
      electrode


                                                  Si atom
                                                  electron

                        hole                   covalent bond
                                                  hole
                               Semiconductor

      Metal back electrode
Solar cell



      Metal front
      electrode


                                                  Si atom
                                                  electron

                        hole                   covalent bond
                                                  hole
                               Semiconductor

      Metal back electrode
Solar cell



      Metal front
      electrode


                                                  Si atom
                                                  electron

                        hole                   covalent bond
                                                  P atom
                               Semiconductor

      Metal back electrode
Solar cell



      Metal front
      electrode


                                                  Si atom
                                                  electron

                        hole                   covalent bond
                                                  P atom
                               Semiconductor
                                                  B atom
      Metal back electrode
Solar cell



      Metal front
      electrode


                                                  Si atom
                                                  electron

                        hole                   covalent bond
                                                  P atom
                               Semiconductor
                                                  B atom
      Metal back electrode
                                                  hole
Solar cell



      Metal front
      electrode


                                                  Si atom
                                                  electron

                        hole                   covalent bond
                                                  P atom
                               Semiconductor
                                                  B atom
      Metal back electrode
                                                  hole
Solar cell



      Metal front
      electrode


                                                Si atom
                                                electron

                                             covalent bond
                                                P atom
                             Semiconductor
                                                B atom
      Metal back electrode
                                                hole
Solar cell
                      Incident light




      Metal front
      electrode


                                                          Si atom
                                                          electron

                                                       covalent bond
                                                          P atom
                                       Semiconductor
                                                          B atom
      Metal back electrode
                                                          hole
Solar cell



      Metal front
      electrode


                                                Si atom
                                                electron

                                             covalent bond
                                                P atom
                             Semiconductor
                                                B atom
      Metal back electrode
                                                hole
Solar cell



      Metal front
      electrode


                                                Si atom
                                                electron

                                             covalent bond
                                                P atom
                             Semiconductor
                                                B atom
      Metal back electrode
                                                hole
Solar cell



      Metal front
      electrode


                                                Si atom
                                                electron

                                             covalent bond
                                                P atom
                             Semiconductor
                                                B atom
      Metal back electrode
                                                hole
Solar cell



      Metal front
      electrode


                                                Si atom
                                                electron

                                             covalent bond
                                                P atom
                             Semiconductor
                                                B atom
      Metal back electrode
                                                hole
Solar cell



      Metal front
      electrode


                                                Si atom
                                                electron

                                             covalent bond
                                                P atom
                             Semiconductor
                                                B atom
      Metal back electrode
                                                hole
Solar cell



      Metal front
      electrode




                             Semiconductor

      Metal back electrode
Solar cell
                      Incident light




      Metal front
      electrode
                                             ARC




                                 electron

                     hole

                                            Semiconductor

      Metal back electrode
Solar cell
Main losses


          recombination
                            X
        gap
     energy                       light
     1.1 eV
                      X
                            X
                          generation
Solar cell
  Additional losses
                                  Incident light

                                                                 Reflection
                                                                 n1 ≠ n2
                    Metal front
                    electrode
                                                                              ARC


                                                   electron

                                    hole
                                                              Semiconductor
                    Metal back electrode
c-Si solar cell structure
                                                   Transmission (finite α)
Design principle of solar cells

                    Defect Engineering
                            Bulk defects
                         Interface defects
                        Meta-stable defects




Spectral Matching                              Light Trapping
                                                Texture interfaces
   Choice of Material
                                                   Reflectors
    Multi-junctions
                                              Plasmonic Approaches
Thin-film silicon solar cells
Si-based solar cells


  Al             Al

 SiO2                  n+   Thin-film Si (0.2 - 5 μm)




        p-type
 p++     c-Si    p++
         Al
  c-Si (180-250 μm)
Thin-film silicon solar cells
Si-based solar cells


  Al             Al
                            Glass plate
 SiO2                  n+   Thin-film Si (0.2 - 5 μm)
                            TCO
                            p-type




                            Intrinsic
                            a-Si:H
        p-type
 p++     c-Si    p++        n-type

         Al                 Metal electrode

  c-Si (180-250 μm)             a-Si (0.2-0.3 μm)
The a-Si:H p-i-n junction
Problem 2: mismatch single junction with solar spectrum
The a-Si:H p-i-n junction
Problem 2: mismatch single junction with solar spectrum




Absorption
  a-Si:H   Does not cover entire spectrum!
The a-Si:H/μc-Si:H tandem
 Problem 2: mismatch with solar spectrum




Absorption Absorption
  a-Si:H    c-Si:H
Multi-junction approach




Record ηst (confirmed)   Micromorph (double)           Triple-junction
10.1% (a-Si) Oerlikon    12.5% (a-Si/μc-Si) Oerlikon   13.0% (Si/SiGe/SiGe) USSC*
10.1% (μc-Si) Kaneka     12.4% (a-Si/a-SiGe) USSC*     13.4% (a-Si/nc-Si/nc-Si) USSC
                                                       13.4% (a-Si/a-Ge/nc-Si) USSC
Thin-film silicon solar cells
Si-based solar cells


  Al             Al
                            Glass plate
 SiO2                  n+
                            TCO
                            p-type
                            Intrinsic
                            a-Si:H
                            n-type
                            p-type

                            Intrinsic
        p-type              uc-Si:H
 p++     c-Si    p++        n-type
         Al                 Metal electrode

  c-Si (180-250 μm)         a-Si/uc-Si (2.0-4.0 μm)
Learning curve:                                                          PV modules, systems



                             100
Average global sales price




                                         PV Module
                             10
       (USD/Wp)




                               1
                                         Source: Navigant Consulting
                                    -4          -3        -2        -1         0        1        2        3        4
                               10          10        10        10         10       10       10       10       10
                                            Cumulative Installations (GW)
Learning curve:                                                          PV modules, systems



                             100
Average global sales price




                                         PV Module
                             10
       (USD/Wp)




                                                                                                                         Thin Film PV:

                               1                                                                                       CdTe (First Solar)
                                         Source: Navigant Consulting
                                    -4          -3        -2        -1         0        1        2        3        4
                               10          10        10        10         10       10       10       10       10
                                            Cumulative Installations (GW)
Learning curve:                                                          PV modules, systems


                             100
Average global sales price




                                         PV Module
                             10
       (USD/Wp)




                                                                                                                         Thin Film PV:

                               1                                                                                       CdTe (First Solar)
                                         Source: Navigant Consulting                                                     Micromorph
                                    -4          -3        -2        -1         0        1        2        3        4     (Oerlikon)
                               10          10        10        10         10       10       10       10       10
                                            Cumulative Installations (GW)
PV technologies
Wafer based crystalline silicon




   ½ century of manufacturing history, ~90% of 2007 market
   progressing by innovation and volume
   reduction of manufacturing costs is major challenge
   module efficiencies:
       - 12 ~ 20% (now)
       - 18 ~ >22% (longer term)
                                                Source: W Sinke
PV technologies
Thin-film silicon




   low-cost potential and new application possibilities
   positive impact of micro- and nanocrystalline silicon
   efficiency enhancement is major challenge
   stable module efficiencies:
      – 6 ~ 11% (now)
      – 11 ~ 16% (longer term)

                                                   Source: W Sinke
PV technologies
Cadmium Telluride




 low-cost potential (partly already demonstrated)
 positive impact of development of take-back and recycling
  systems
 efficiency enhancement is major challenge
 module efficiencies:
    – 7 ~ 11% (now)
    – 10 ~ 15% (longer term)
                                               Source: W Sinke
PV technologies
Copper-indium/gallium-selenide/sulphide (CIGS)




 high performance & possibilities for multi-junction devices
 reduction of manufacturing costs is major challenge; work on
  low-cost varieties
 module efficiencies:
    – 9 ~ 12% (now)
    –15 ~ 18% (longer term)

                                                Source: W Sinke
Efficiency development
Cost price elements vs abundancy
Averaged cost-price elements versus abundance in ore (2004-2009)




                                                        a-Si:H thin film
                                                          technology




        M. Green, Progress in PV: Res. Appl. 17, 347 (2009)
Composition of the Earth’s crust
Composition of the Earth’s crust
      1st generation c-Si:   Si,O,Al,N,B,P
Composition of the Earth’s crust
    2nd generation CdTe:   Cd,Te,S,Al,Zn,O


                       Ratio Te/Si: 10-9
                       1 m2 cell 2μm CdTe (50% =Te)
                       1 m2 hole having depth of
                       (110-6/ 110-9 )~ 103 m = 1 km
Composition of the Earth’s crust
         III-V:   Ga,As,Al,In,P,Ge,
Composition of the Earth’s crust
  2nd generation CIGS:   Cu,In,Se,Ga,Al,Zn,O,Cd,S
Composition of the Earth’s crust
2nd generation Dye-sensitized: Ti,O,Sn,Pt,C,O,H,N,S,Ru,I
                                      (and many more)
Composition of the Earth’s crust
  2nd generation a-Si:H:   H,Si,O,Zn,Al,B,P
TF turn-key companies
 Module efficiency: 10.8% guaranteed   Record cell: 12.5 %




                                                    Micromorph
0.35 €/Wp                                           technology




                     Yield > 97%
                     Output: 120 MWp
Thin-film Si PV technology
Glass plates:

Application




Industry hall, Thurnau, Germany
Helianthos project
Flexible substrate:

 Dutch route: Temporary superstrate solar cell concept
 Development of unique low-cost roll-to-roll technology for
  fabrication of thin-film Si solar modules (started in 1996)
Thin-film Si PV technology
Flexible substrate:




Flexible, lightweight, monolithically series connected a-Si modules
Thin-film Si PV technology
Thin-film Si PV technology
Presented by E. Hamers at the European PV solar energy conference Hamburg 6 sept. 2011.
7
SUMMARY
PV technology
Summary

 Direct conversion of light to electricity
  (PV) is an elegant process suitable for
  versatile, robust, low-cost technology; the
  global potential is practically unlimited

 A wide range of technology options is
  commercially available, emerging or found in
  the lab

 The first major economic milestone on the road
  to very large-scale use has been reached: grid
  parity with retail electricity prices
PV status in 2012
Summary

 Production:
  - dominant c-Si PV technology, 90% market
  - large production capacity in China
  - difficult time for thin-film PV technologies (TF Si, CIGS, CdTe)
 Installation:
  - highest contribution to newly installed power capacity in EU
 Price:
  - <1 €/Wp; c-Si modules: 0.8-0.9 €/Wp expectation 0.5 €/Wp in 2015
  - grid parity reached in Germany and Netherlands
 Research trends
  - increasing module efficiency (c-Si modules >20%)
PV technology
Challenges for TW scale implementation

 turn-key system price < 1 €/Wp (generation costs < 3-10 c€/kWh)
   - low-cost modules at very high efficiency (> 30%)
        - add efficiency boosters (spectrum shapers), full spectrum utilization (advanced concepts)
   - or: very low-cost modules (<< 0.5 €/Wp) at moderate efficiency (>10%)
        - polymer solar cells, nanostructured (quantum dot) hybrid materials
   - Low BOS costs

 use of non-toxic, abundantly available materials
  (preferably use Si, C, Al, O, N, …)
   - indium replacement
   - non-metallic conductors (Ag  C?)
   - all-silicon thin-film tandems


 stability (20 to 40 years) and realibility
   - intrinsic & extrinsic degradation of organics-based solar cells
Thank you for your attention!




Delft
University of
                                            Picture Source: www.nasa.gov
Technology

Challenge the future
Thin-film Si PV technology
Present status:

+ Promising low-cost solar cell technology

+ Industrial production experience
  (Flat panel display industry)

- Relatively low stabilized efficiencies (η ≈ 6-7%)

+ Double-junction micromorph solar cell (η>10%)
    ideal combination of materials (a-Si:H/μc-Si:H) for
     converting AM1.5 solar spectrum

+ 2008 production of modules 400 MW
       production capacity ~ 1000 MW


                                                           Google images
Thin-film Si PV technology


Current developments:

 increase in TF Si module production

 complete production lines available


Future developments:
                                                           Oerlikon

 short term: optimize micromorph tandem cell

 long term: optimize triple cell, breakthrough
  concepts for high efficiency (η>20%)
                                                  Applied Materials

Mais conteúdo relacionado

Mais procurados

Solar PV and Battery Storage Systems
Solar PV and Battery Storage SystemsSolar PV and Battery Storage Systems
Solar PV and Battery Storage SystemsRavinder Soin
 
SOLAR ENERGY - The Future Requirement
SOLAR ENERGY - The Future Requirement SOLAR ENERGY - The Future Requirement
SOLAR ENERGY - The Future Requirement Arjun Martin
 
SOLAR POWER generation using solar PV and Concentrated solar power technology
SOLAR POWER generation using solar PV and Concentrated solar power technologySOLAR POWER generation using solar PV and Concentrated solar power technology
SOLAR POWER generation using solar PV and Concentrated solar power technologyPraveen Kumar
 
SOLAR IRRADIATION MEASUREMENT
SOLAR IRRADIATION MEASUREMENTSOLAR IRRADIATION MEASUREMENT
SOLAR IRRADIATION MEASUREMENTNAWAZ WANGDE
 
HYdrogen Fuel Cell Vehicle
HYdrogen Fuel Cell VehicleHYdrogen Fuel Cell Vehicle
HYdrogen Fuel Cell VehicleShubham Dubey
 
proton exchange membrane fuel cell
proton exchange membrane fuel cellproton exchange membrane fuel cell
proton exchange membrane fuel cellSubir paul
 
SOLAR ENERGY AND BIO GAS (CFST)
SOLAR ENERGY AND BIO GAS (CFST)SOLAR ENERGY AND BIO GAS (CFST)
SOLAR ENERGY AND BIO GAS (CFST)md anzar
 
Hydrogen storage
Hydrogen storage Hydrogen storage
Hydrogen storage ajay singh
 
Know about solar thermal energy
Know about solar thermal energyKnow about solar thermal energy
Know about solar thermal energyRachel Pinhard
 
Solar Energy Engineering
Solar Energy EngineeringSolar Energy Engineering
Solar Energy EngineeringNaveed Rehman
 
Solar Thermal Energy
Solar Thermal Energy Solar Thermal Energy
Solar Thermal Energy Raktim Saikia
 
an analysis of wind energy potential using weibull distribution
an analysis of wind energy potential using weibull distributionan analysis of wind energy potential using weibull distribution
an analysis of wind energy potential using weibull distributionWorking as a Lecturer
 

Mais procurados (20)

Solar PV and Battery Storage Systems
Solar PV and Battery Storage SystemsSolar PV and Battery Storage Systems
Solar PV and Battery Storage Systems
 
SOLAR ENERGY - The Future Requirement
SOLAR ENERGY - The Future Requirement SOLAR ENERGY - The Future Requirement
SOLAR ENERGY - The Future Requirement
 
solar energy
solar energysolar energy
solar energy
 
SOLAR POWER generation using solar PV and Concentrated solar power technology
SOLAR POWER generation using solar PV and Concentrated solar power technologySOLAR POWER generation using solar PV and Concentrated solar power technology
SOLAR POWER generation using solar PV and Concentrated solar power technology
 
SOLAR IRRADIATION MEASUREMENT
SOLAR IRRADIATION MEASUREMENTSOLAR IRRADIATION MEASUREMENT
SOLAR IRRADIATION MEASUREMENT
 
HYdrogen Fuel Cell Vehicle
HYdrogen Fuel Cell VehicleHYdrogen Fuel Cell Vehicle
HYdrogen Fuel Cell Vehicle
 
proton exchange membrane fuel cell
proton exchange membrane fuel cellproton exchange membrane fuel cell
proton exchange membrane fuel cell
 
Fuel cell presentation
Fuel cell presentationFuel cell presentation
Fuel cell presentation
 
SOLAR ENERGY AND BIO GAS (CFST)
SOLAR ENERGY AND BIO GAS (CFST)SOLAR ENERGY AND BIO GAS (CFST)
SOLAR ENERGY AND BIO GAS (CFST)
 
Hydrogen storage
Hydrogen storage Hydrogen storage
Hydrogen storage
 
Energy storage ppt
Energy storage pptEnergy storage ppt
Energy storage ppt
 
Know about solar thermal energy
Know about solar thermal energyKnow about solar thermal energy
Know about solar thermal energy
 
Solar Energy Engineering
Solar Energy EngineeringSolar Energy Engineering
Solar Energy Engineering
 
Renewable energy and storage
Renewable energy and storageRenewable energy and storage
Renewable energy and storage
 
Concentrator Solar Power Plants
Concentrator Solar Power PlantsConcentrator Solar Power Plants
Concentrator Solar Power Plants
 
Solar Thermal Energy
Solar Thermal Energy Solar Thermal Energy
Solar Thermal Energy
 
an analysis of wind energy potential using weibull distribution
an analysis of wind energy potential using weibull distributionan analysis of wind energy potential using weibull distribution
an analysis of wind energy potential using weibull distribution
 
Need of renewable energy
Need of renewable energyNeed of renewable energy
Need of renewable energy
 
A review on water electrolysis
A review on water electrolysisA review on water electrolysis
A review on water electrolysis
 
Hydrogen energy
Hydrogen energyHydrogen energy
Hydrogen energy
 

Semelhante a Arno smets tu delft presentation arnhem

Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...
Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...
Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...ICLEI Local Governments for Sustainability
 
Introduccion sistemas fotovoltaicos 2
Introduccion sistemas fotovoltaicos 2Introduccion sistemas fotovoltaicos 2
Introduccion sistemas fotovoltaicos 2FranciscoOcanto3
 
Solar Energy - Beyond the Hype
Solar Energy - Beyond the HypeSolar Energy - Beyond the Hype
Solar Energy - Beyond the Hypekamatlab
 
Solar technologies- Introduction and Basics
Solar technologies- Introduction and BasicsSolar technologies- Introduction and Basics
Solar technologies- Introduction and BasicsSumiit Mathur
 
UNC Sustainability Symposium: Michael Mehling 2082013
UNC Sustainability Symposium: Michael Mehling 2082013UNC Sustainability Symposium: Michael Mehling 2082013
UNC Sustainability Symposium: Michael Mehling 2082013UNCEurope
 
Alternative energy at squ
Alternative energy at squAlternative energy at squ
Alternative energy at squabdmlik6
 
IEEE Presentation on Shale Resources and Environmental Cost of Energy
IEEE Presentation on Shale Resources and Environmental Cost of EnergyIEEE Presentation on Shale Resources and Environmental Cost of Energy
IEEE Presentation on Shale Resources and Environmental Cost of EnergyDan Arthur
 
Controversial Issues (backup)
Controversial Issues (backup)Controversial Issues (backup)
Controversial Issues (backup)Joe Malt
 
Trabajo tecnologia terminado
Trabajo tecnologia terminadoTrabajo tecnologia terminado
Trabajo tecnologia terminadoJaviCardoso1997
 
Alternative energy
Alternative energyAlternative energy
Alternative energyOng Han
 

Semelhante a Arno smets tu delft presentation arnhem (20)

Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...
Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...
Urban Self Sufficiency with sustainable energy and clean mobility (ICLEI Worl...
 
Introduccion sistemas fotovoltaicos 2
Introduccion sistemas fotovoltaicos 2Introduccion sistemas fotovoltaicos 2
Introduccion sistemas fotovoltaicos 2
 
PDC+++ Module 4 Class 6 Renewables
PDC+++ Module 4 Class 6 RenewablesPDC+++ Module 4 Class 6 Renewables
PDC+++ Module 4 Class 6 Renewables
 
Solar Energy - Beyond the Hype
Solar Energy - Beyond the HypeSolar Energy - Beyond the Hype
Solar Energy - Beyond the Hype
 
Renewable resources
Renewable resources Renewable resources
Renewable resources
 
Energy Harvesting Presentation Rjc Tyk 2
Energy Harvesting Presentation  Rjc Tyk 2Energy Harvesting Presentation  Rjc Tyk 2
Energy Harvesting Presentation Rjc Tyk 2
 
Solar technologies- Introduction and Basics
Solar technologies- Introduction and BasicsSolar technologies- Introduction and Basics
Solar technologies- Introduction and Basics
 
Renewable energy source
Renewable energy sourceRenewable energy source
Renewable energy source
 
UNC Sustainability Symposium: Michael Mehling 2082013
UNC Sustainability Symposium: Michael Mehling 2082013UNC Sustainability Symposium: Michael Mehling 2082013
UNC Sustainability Symposium: Michael Mehling 2082013
 
Power To The People#1
Power To The People#1Power To The People#1
Power To The People#1
 
Energy UAB_master
Energy UAB_masterEnergy UAB_master
Energy UAB_master
 
Alternative energy at squ
Alternative energy at squAlternative energy at squ
Alternative energy at squ
 
High Voltage
High VoltageHigh Voltage
High Voltage
 
IEEE Presentation on Shale Resources and Environmental Cost of Energy
IEEE Presentation on Shale Resources and Environmental Cost of EnergyIEEE Presentation on Shale Resources and Environmental Cost of Energy
IEEE Presentation on Shale Resources and Environmental Cost of Energy
 
Energy-water nexus and sustainability
Energy-water nexus and sustainabilityEnergy-water nexus and sustainability
Energy-water nexus and sustainability
 
Renewable energy and resources
Renewable energy and resourcesRenewable energy and resources
Renewable energy and resources
 
Controversial Issues (backup)
Controversial Issues (backup)Controversial Issues (backup)
Controversial Issues (backup)
 
Chapter 2
Chapter 2Chapter 2
Chapter 2
 
Trabajo tecnologia terminado
Trabajo tecnologia terminadoTrabajo tecnologia terminado
Trabajo tecnologia terminado
 
Alternative energy
Alternative energyAlternative energy
Alternative energy
 

Mais de Dutch Power

Dutch Power - 26 maart 2024 - Henk Kras - Circular Plastics
Dutch Power - 26 maart 2024 - Henk Kras - Circular PlasticsDutch Power - 26 maart 2024 - Henk Kras - Circular Plastics
Dutch Power - 26 maart 2024 - Henk Kras - Circular PlasticsDutch Power
 
Dutch Power - 26 maart 2024 - Diederik Peereboom - T&D Europe
Dutch Power - 26 maart 2024 - Diederik Peereboom - T&D EuropeDutch Power - 26 maart 2024 - Diederik Peereboom - T&D Europe
Dutch Power - 26 maart 2024 - Diederik Peereboom - T&D EuropeDutch Power
 
Dutch Power - 26 maart 2024 - Pim Loef & Paolo Perani
Dutch Power - 26 maart 2024 - Pim Loef & Paolo PeraniDutch Power - 26 maart 2024 - Pim Loef & Paolo Perani
Dutch Power - 26 maart 2024 - Pim Loef & Paolo PeraniDutch Power
 
Dutch Power - 26 maart 2024 - Hans Nooter - Groene netten
Dutch Power - 26 maart 2024 - Hans Nooter - Groene nettenDutch Power - 26 maart 2024 - Hans Nooter - Groene netten
Dutch Power - 26 maart 2024 - Hans Nooter - Groene nettenDutch Power
 
Dutch Power - 26 maart 2024 - Mark Tesselaar - PwC
Dutch Power - 26 maart 2024 - Mark Tesselaar - PwCDutch Power - 26 maart 2024 - Mark Tesselaar - PwC
Dutch Power - 26 maart 2024 - Mark Tesselaar - PwCDutch Power
 
Dutch Power Event 1. Ruut Schalij - eRiskgroep
Dutch Power Event 1. Ruut Schalij - eRiskgroepDutch Power Event 1. Ruut Schalij - eRiskgroep
Dutch Power Event 1. Ruut Schalij - eRiskgroepDutch Power
 
Dutch Power Event 2. Joost Greunsven - TenneT
Dutch Power Event 2. Joost Greunsven - TenneTDutch Power Event 2. Joost Greunsven - TenneT
Dutch Power Event 2. Joost Greunsven - TenneTDutch Power
 
Dutch Power Event 3. Marieke van Gemert - NRG
Dutch Power Event 3. Marieke van Gemert - NRGDutch Power Event 3. Marieke van Gemert - NRG
Dutch Power Event 3. Marieke van Gemert - NRGDutch Power
 
Dutch Power Event 4. Rick Bulk - ANVS.pdf
Dutch Power Event 4. Rick Bulk - ANVS.pdfDutch Power Event 4. Rick Bulk - ANVS.pdf
Dutch Power Event 4. Rick Bulk - ANVS.pdfDutch Power
 
Dutch Power Event 5. Dirk Rabelink - ULC energy.pdf
Dutch Power Event 5. Dirk Rabelink - ULC energy.pdfDutch Power Event 5. Dirk Rabelink - ULC energy.pdf
Dutch Power Event 5. Dirk Rabelink - ULC energy.pdfDutch Power
 
Dutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMR
Dutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMRDutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMR
Dutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMRDutch Power
 
Dutch Power Event 7. Titus Tielens - Thorizon.pdf
Dutch Power Event 7. Titus Tielens - Thorizon.pdfDutch Power Event 7. Titus Tielens - Thorizon.pdf
Dutch Power Event 7. Titus Tielens - Thorizon.pdfDutch Power
 
Presentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFER
Presentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFERPresentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFER
Presentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFERDutch Power
 
1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseur
1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseur1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseur
1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseurDutch Power
 
2. Soe van Dijk - Topsector Energie
2. Soe van Dijk - Topsector Energie2. Soe van Dijk - Topsector Energie
2. Soe van Dijk - Topsector EnergieDutch Power
 
3. Philip Westbroek & Vincent van Esbroek - Enexis
3. Philip Westbroek & Vincent van Esbroek - Enexis3. Philip Westbroek & Vincent van Esbroek - Enexis
3. Philip Westbroek & Vincent van Esbroek - EnexisDutch Power
 
4. Tom Wolters - Chapter8
4. Tom Wolters - Chapter84. Tom Wolters - Chapter8
4. Tom Wolters - Chapter8Dutch Power
 
5. Ingmar van der Steen - Info Support
5. Ingmar van der Steen - Info Support5. Ingmar van der Steen - Info Support
5. Ingmar van der Steen - Info SupportDutch Power
 
6. Sander Speek - Scalys
6. Sander Speek - Scalys6. Sander Speek - Scalys
6. Sander Speek - ScalysDutch Power
 
7. Olaf Peters - Technolution
7. Olaf Peters - Technolution7. Olaf Peters - Technolution
7. Olaf Peters - TechnolutionDutch Power
 

Mais de Dutch Power (20)

Dutch Power - 26 maart 2024 - Henk Kras - Circular Plastics
Dutch Power - 26 maart 2024 - Henk Kras - Circular PlasticsDutch Power - 26 maart 2024 - Henk Kras - Circular Plastics
Dutch Power - 26 maart 2024 - Henk Kras - Circular Plastics
 
Dutch Power - 26 maart 2024 - Diederik Peereboom - T&D Europe
Dutch Power - 26 maart 2024 - Diederik Peereboom - T&D EuropeDutch Power - 26 maart 2024 - Diederik Peereboom - T&D Europe
Dutch Power - 26 maart 2024 - Diederik Peereboom - T&D Europe
 
Dutch Power - 26 maart 2024 - Pim Loef & Paolo Perani
Dutch Power - 26 maart 2024 - Pim Loef & Paolo PeraniDutch Power - 26 maart 2024 - Pim Loef & Paolo Perani
Dutch Power - 26 maart 2024 - Pim Loef & Paolo Perani
 
Dutch Power - 26 maart 2024 - Hans Nooter - Groene netten
Dutch Power - 26 maart 2024 - Hans Nooter - Groene nettenDutch Power - 26 maart 2024 - Hans Nooter - Groene netten
Dutch Power - 26 maart 2024 - Hans Nooter - Groene netten
 
Dutch Power - 26 maart 2024 - Mark Tesselaar - PwC
Dutch Power - 26 maart 2024 - Mark Tesselaar - PwCDutch Power - 26 maart 2024 - Mark Tesselaar - PwC
Dutch Power - 26 maart 2024 - Mark Tesselaar - PwC
 
Dutch Power Event 1. Ruut Schalij - eRiskgroep
Dutch Power Event 1. Ruut Schalij - eRiskgroepDutch Power Event 1. Ruut Schalij - eRiskgroep
Dutch Power Event 1. Ruut Schalij - eRiskgroep
 
Dutch Power Event 2. Joost Greunsven - TenneT
Dutch Power Event 2. Joost Greunsven - TenneTDutch Power Event 2. Joost Greunsven - TenneT
Dutch Power Event 2. Joost Greunsven - TenneT
 
Dutch Power Event 3. Marieke van Gemert - NRG
Dutch Power Event 3. Marieke van Gemert - NRGDutch Power Event 3. Marieke van Gemert - NRG
Dutch Power Event 3. Marieke van Gemert - NRG
 
Dutch Power Event 4. Rick Bulk - ANVS.pdf
Dutch Power Event 4. Rick Bulk - ANVS.pdfDutch Power Event 4. Rick Bulk - ANVS.pdf
Dutch Power Event 4. Rick Bulk - ANVS.pdf
 
Dutch Power Event 5. Dirk Rabelink - ULC energy.pdf
Dutch Power Event 5. Dirk Rabelink - ULC energy.pdfDutch Power Event 5. Dirk Rabelink - ULC energy.pdf
Dutch Power Event 5. Dirk Rabelink - ULC energy.pdf
 
Dutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMR
Dutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMRDutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMR
Dutch Power Event 6. Sophie Macfarlane-Smith - Rolls Royce SMR
 
Dutch Power Event 7. Titus Tielens - Thorizon.pdf
Dutch Power Event 7. Titus Tielens - Thorizon.pdfDutch Power Event 7. Titus Tielens - Thorizon.pdf
Dutch Power Event 7. Titus Tielens - Thorizon.pdf
 
Presentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFER
Presentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFERPresentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFER
Presentatie Dutch Power 8. Beata Tyburska-Pueschel - DIFFER
 
1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseur
1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseur1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseur
1. Pieter Cobelens Generaal-majoor b.d. strategisch adviseur
 
2. Soe van Dijk - Topsector Energie
2. Soe van Dijk - Topsector Energie2. Soe van Dijk - Topsector Energie
2. Soe van Dijk - Topsector Energie
 
3. Philip Westbroek & Vincent van Esbroek - Enexis
3. Philip Westbroek & Vincent van Esbroek - Enexis3. Philip Westbroek & Vincent van Esbroek - Enexis
3. Philip Westbroek & Vincent van Esbroek - Enexis
 
4. Tom Wolters - Chapter8
4. Tom Wolters - Chapter84. Tom Wolters - Chapter8
4. Tom Wolters - Chapter8
 
5. Ingmar van der Steen - Info Support
5. Ingmar van der Steen - Info Support5. Ingmar van der Steen - Info Support
5. Ingmar van der Steen - Info Support
 
6. Sander Speek - Scalys
6. Sander Speek - Scalys6. Sander Speek - Scalys
6. Sander Speek - Scalys
 
7. Olaf Peters - Technolution
7. Olaf Peters - Technolution7. Olaf Peters - Technolution
7. Olaf Peters - Technolution
 

Arno smets tu delft presentation arnhem

  • 1. Solar Electricity Arno Smets and Miro Zeman Delft University of Technology Delft University of Picture Source: www.nasa.gov Technology Challenge the future
  • 2. About myself Arno Smets  1974 born in Netherlands  1992-1997 Physics at TU Eindhoven  1998-2002 PhD TU Eindhoven  2002-2004 Post-doctoral Reseacher Helianthos Project  2005-2010 Researcher at AIST, Japan  2010-now Assistant professor at TU Delft Photovoltaic Materials and Devices
  • 3. Photovoltaic Materials and Devices People Scientific Staff Secretary 4 Post docs 4 Technicians Guests 18 PhD students ~30 MSc students (15 final MSc project, 15 traineeship)
  • 4. Outline  Introduction  Photovoltaics  PV Systems  PV technology  Summary Delft University of Picture Source: www.nasa.gov Technology Challenge the future
  • 6. Humanity’s ten top problems for next 50 years 1. ENERGY 2. WATER 3. FOOD 4. ENVIRONMENT 5. POVERTY 6. TERRORISM & WAR 7. DISEASE 8. EDUCATION 9. DEMOCRACY 10. POPULATION Source: Lecture Prof. R.E. Smalley (Rice University) at 27th Illinois Junior Science & Humanities Symposium, 2005
  • 7. Humanity’s ten top problems for next 50 years 1. ENERGY 2. WATER 3. FOOD 4. ENVIRONMENT 5. POVERTY 6. TERRORISM & WAR 7. DISEASE 8. EDUCATION 9. DEMOCRACY 10. POPULATION Source: Lecture Prof. R.E. Smalley (Rice University) at 27th Illinois Junior Science & Humanities Symposium, 2005
  • 8. The Energy Problem Energy Shortage Growing world population Results in pressure on economy: Ann. averg. oil price (in 2008 USD) 120 100 80 60 Increasing living standard: 40 20 0 1900 1920 1940 1960 1980 2000 Time Energy consumption per capita
  • 9. The Energy Problem Climate change Jeopardizing our habitats: Somalia Russia Mexico Pakistan “The weather makers”, Tim Flannery
  • 10. Energy transition 50 years is a characteristic time scale for change in energy mix Source: Lecture Prof. Moniz (MIT) at TUD 2010
  • 11. Energy transition scenario EJ/a 1400 geothermal other renewables solar thermal (heat only) solar power 1000 (photovoltaics (PV) & PV & CSP solar thermal generation (CSP) wind energy 600 biomass (advanced) biomass (traditional) hydroelectricity nuclear power gas 200 coal oil 2000 2020 2040 2100 year Source: German Advisory Council on Global Change, 2003, www.wbgu.de
  • 12. Electricity  About 100 years of practical use  Symbol of modernity and progress  Secondary form of energy  2 billion people without electricity Source: Google Images
  • 13. Electricity generation Gravitational Nuclear Wind Hydro-tidal Heat Electric engines generators Thermal Mechanical Electrical η<60% η=90% η=90% Fuel Cells Chemical Coal, oil, gas, biomass, hydrogen Source: L. Freris, D. Infield, Renewable Energy in Power Systems, Wiley 2008
  • 14. Electricity generation Gravitational Nuclear Wind Hydro-tidal Heat Electric engines generators Thermal Mechanical Electrical η<60% η=90% Photovoltaics η=90% Fuel Solar Cells thermal Chemical Coal, oil, gas, Solar biomass, hydrogen Source: L. Freris, D. Infield, Renewable Energy in Power Systems, Wiley 2008
  • 15. Electricity generation 2007 ELECTRICITY GENERATION geothermal other renewables conversion hydro 19% solar thermal (heat only) losses solar power (photovoltaics (PV) & nuclear 16% solar thermal generation (CSP) 2/3 wind energy gas 15% biomass (advanced) ELECTRICITY biomass (traditional) CONSUMPTION hydroelectricity coal 40% 40% residential nuclear power 1/3 gas 47% industry coal oil 10% 13% transmission oil losses
  • 16. Electricity generation 2007 Electricity: World Netherlands 20 202 TWh 103 TWh 20-25 kWh/d/p wind 3% geothermal nuclear 4% hydro 19% biomass 6% other renewables solar thermal (heat only) Total Energy: solar power nuclear 16% (gas,oil,etc.) (photovoltaics (PV) & solar thermal gas 125 kWh/d/p generation (CSP) gas 59% wind energy 87% biomass (advanced) biomass (traditional) 65% hydroelectricity coal nuclear power gas coal 26% coal fossil oil oil 2% oil 25 Nuclear power plants (0.5 GW) Sorce: Eurostat 2009 edition , BP Statistical Review Full Report (http://www.bp.com/images)
  • 18. Living on renewables? David JC MacKay “Sustainable Energy: Without the hot air”
  • 19. Living on renewables? Population density: Netherlands: 16400000 41500 395 2530
  • 20. Living on renewables? Population density: 125 kWh/day/p Required energy per m2 0.016 W/m2 0.028 W/m2 0.067 W/m2 0.068 W/m2 0.22 W/m2 0.32 W/m2 0.57 W/m2 0.70 W/m2 1.2 W/m2 1.9 W/m2 Netherlands: 16400000 41500 395 2530 2.0 W/m2
  • 21. Living on renewables? 125 kWh/day/p 125kWh/day/p Population density: Surface area required with Required 15 W/m2 energy per m2 technology 0.016 W/m2 0.11 % 0.028 W/m2 0.19 % 0.067 W/m2 0.45 % 0.068 W/m2 0.45 % 0.22 W/m2 1.5 % 0.32 W/m2 2.1 % 0.57 W/m2 3.8 % 0.70 W/m2 4.6 % 1.2 W/m2 8.0 % 1.9 W/m2 12.7 % Netherlands: 16400000 41500 395 2530 2.0 W/m2 13.3 %
  • 22. Living on renewables? 125 kWh/day/p 125kWh/day/p Surface area required with Required 15 W/m2 energy per m2 technology 0.016 W/m2 0.11 % 0.028 W/m2 0.19 % 0.067 W/m2 0.45 % 0.068 W/m2 0.45 % 0.22 W/m2 1.5 % 0.32 W/m2 2.1 % 0.57 W/m2 3.8 % 0.70 W/m2 4.6 % 1.2 W/m2 8.0 % 1.9 W/m2 12.7 % Netherlands: 16400000 41500 395 2530 2.0 W/m2 13.3 %
  • 23. Solar Resources Global demand 2010: 16 TW Solar cell with 10% efficiency: Global demand 2050: 32 TW 1250 1250 km2 Solar energy: 120 000 TW http://visibleearth.nasa.gov
  • 25. Photovoltaics (PV) Solar module Electricity Sun Solar radiation Source: A. Poruba
  • 26. Solar cell sunlight Solar cell electricity heat Maximum electrical power out Efficiency= Light power in
  • 27. Photovoltaic industry Scaling production volume 40000 Global solar cell production 37185 MW mono c-Si 30000 poly c-Si 27381 ribbon c-Si 36% TF-Si Thin- CdTe film 20000 CIS solar rest cells 12464 118% 10000 7910 56% 4279 1815 2536 85% 750 1257 69% 560 34% 68% 45% 40% 0 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 Source: Photon International, March 2012
  • 28. Photovoltaics Historical development of cumulative PV power: 70 China 70 APEC 60 60 Cumulative Installed 29.6 PV Capacity (GW) Rest of World North America 50 Japan 50 39.53 European Union 40 40 22.90 30 30 20 .66 20 Nederland 2003: 15 9 9.4 8 46 MW (1.6 %) 6.9 0 10 10 5.4 6 4 3.9 6 2.8 9 6 2.2 1.7 Nederland 2010: 1.4 0 0 2000 2002 2004 2006 2008 2010 97 MW (0.24 %) Year EPIA 2009: Global Market Outlook For Photovoltaics Until 2013
  • 29. Trend in installed power technologies The European Wind Energy Association: Wind in power: 2011 European Statistics, 2012
  • 30. EU power capacity mix Summary in MW in MW Total ~580 GW Total ~896 GW The European Wind Energy Association: Wind in power: 2011 European Statistics, 2012
  • 31. Photovoltaics 2010 Installed Cumulative Installed Capacity Share (MW, %) Nederland 2010 ~60 MW (0.15%)
  • 32. PV module supply and demands World wide supply - demand Source: EPIA
  • 33. PV module supply and demands World wide supply - demand Source: EPIA
  • 34. PV module supply and demands World wide supply - demand Source: EPIA
  • 35. PV module supply and demands World wide supply - demand Source: EPIA
  • 36. PV module supply and demands World wide supply - demand Source: EPIA
  • 37. PV module supply and demands World wide supply - demand Source: EPIA
  • 38. PV module supply and demands World wide supply - demand Source: EPIA
  • 39. PV module supply and demands World wide supply - demand Source: EPIA
  • 40. PV module supply and demands World wide supply - demand Source: EPIA
  • 41. PV module supply and demands World wide supply - demand Source: EPIA
  • 42. PV module supply and demands World wide supply - demand Source: EPIA
  • 43. PV module supply and demands World wide supply - demand Source: EPIA
  • 44. PV module supply and demands World wide supply - demand Moving from local markets to fast changing global markets Source: EPIA
  • 46. PV power Latest news Wednesday, May 30, 2012 May 30 – Guardian: Solar power generation world record set in Germany German solar power plants produced a world record 22 gigawatts of electricity – equal to 20 nuclear power stations at full capacity – through the midday hours of Friday and Saturday, the head of a renewable energy think tank has said. This met nearly 50% of the nation’s midday electricity needs. The record-breaking amount of solar power shows one of the world’s leading industrial nations was able to meet a third of its electricity needs on a work day, Friday, and nearly half on Saturday when factories and offices were closed. The Guardian: May 30, 2012
  • 47. Electricity network of today 28 power stations in Netherlands
  • 50. PV system Two main types: Stand-alone system Grid-connected system Grid dc/ac Charge Storage invertor controller = ~ DC dc/ac = AC PV loads invertor PV loads generator ~ generator AC loads
  • 51. PV system Power electronics The highly varying environmental conditions and nonlinear nature of the photovoltaic (PV) generator make the utilization of PV energy a challenging task: Power electronics converters: Reliable operating interface between renewable energy resources and the electrical power grid.
  • 52. PV system Markets/applications: Rural stand-alone and local grid (10 Wp – 10 kWp) Grid-connected (building-)integrated (1 kWp – 1 MWp) Power plants (1 MWp - 1 GWp) Source: W Sinke, Solar Academy
  • 53. PV systems Terminology and definitions Power (of cells, modules and systems) in Watt-peak (Wp) (Average) ac system efficiency Performance ratio = (STC) dc module efficiency Typically 0.75 – 0.85 Electricity yield in kWh/kWp (usually per year) Typically 750 – 900 kWh/kWp for c-Si modules in NL  hours ac peak power per year Capacity factor =  hours per year Typically 0.09 – 0.11 in NL/DE
  • 54. Grid-connected PV system Overview biggest PV installations: Power Location Description Commissioned Picture 100 MWp Ukraine, Perovo I-V PV power plant 2011 Perovo Constructed by: Activ Solar 97 MWp Canada, Sarnia PV power plant 2009-2010 Sarnia 84 MWp Italy, Montalto di Castro PV 2009-2010 Montalto di Castro power plant Constructed by: SunPower, SunRay Renewable 82 MWp Germany, Solarpark Senftenberg II,III 2011 http://www.pvresources.com/PVPowerPlants/Top50.aspx Senftenberg Constructed by: Saferay
  • 55. DESERTEC project Solar Thermal Power plants Photovoltaics Wind Hydro Biomass Geothermal Source: DESERTEC foundation
  • 56. Grid-connected PV system Grid-connected home PV system: Components: 3×150 Wp modules = ~ AC M. Zeman, Delft
  • 57. Solar irradiation on Earth The Netherlands: 2.7 sun hours/day/year 2 3 4 5 6 Solar irradiation: solar irradiance integrated over a period of time
  • 58. Grid-connected PV system Grid-connected home PV system: 3×150 Wp modules 65 386.0 kWh Year 2010 60 55 Generated energy [kWh] 50 45 40 35 30 25 20 15 10 5 0 1 2 3 4 5 6 7 8 9 10 11 12 Month M. Zeman, Delft
  • 59. Costs grid-connected PV System PV system is nowadays good investment! Cost in 2012: Costs €1030 Saves per year: €115 That’s €2875 in 25 years (500 kWh*€0,23/kWh) A payback period of 9 years! EY=877 kWh/kWp M. Workum, PVMD, TU Delft
  • 60. Costs grid-connected PV System PV system is nowadays good investment! Above € 6000 inverters become relatively cheap Average Dutch family (3500 kWh @ €6800) Cheapest system (500 kWh @ €1030) No installation or second inverter included. One year old data, prices are now even lower (see previous sheet) M. Workum, PVMD, TU Delft
  • 61. Learning curve: PV modules, systems 100 Average global sales price PV Module 10 (USD/Wp) 1 Source: Navigant Consulting -4 -3 -2 -1 0 1 2 3 4 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
  • 62. Learning curve: PV modules, systems 100 Average global sales price PV System PV Module 10 (USD/Wp) 1 Source: Navigant Consulting -4 -3 -2 -1 0 1 2 3 4 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
  • 63. Learning curve: PV modules, systems 100 Average global sales price PV System PV Module 10 (USD/Wp) Non-modular costs 1 Source: Navigant Consulting -4 -3 -2 -1 0 1 2 3 4 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
  • 64. Learning curve: PV modules, systems 100 Average global sales price PV System Non-Modular PV Module 10 29% Installation (USD/Wp) 18% Inverter 17% Maintenance Non-modular costs 16% Racking 1 10% Wiring 10% BOS, others Source: Navigant Consulting -4 -3 -2 -1 0 1 2 3 4 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
  • 65. Learning curve: PV modules, systems 100 Average global sales price PV System Non-Modular PV Module 10 29% Installation (USD/Wp) 18% Inverter TF Silicon PV 17% Maintenance Non-modular costs 16% Racking 1 10% Wiring 10% BOS, others Source: Navigant Consulting -4 -3 -2 -1 0 1 2 3 4 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
  • 67. PV technology: 1st vs 2nd generation First Generation Second Generation (thin film) Melt processing Plasma processing Sanyo, Silicon Hetero-Junction cell NUON Helianthos Pure material: high efficiencies Lower quality material: Expensive processing: lower efficiencies cost-price energy higher Low costs processing: cost-price energy lower Silicon: record lab efficiency 20-27% Thin film: record lab efficiency 13-20%
  • 68. PV technologies CIGS c-Si wafer based CdTe III-V semiconductor based TF Si
  • 69. PV technologies 1. Wafer based Si 2. Thin films 3. Cheap + efficient MC manufacturing costs SP average selling price SIII installed cost for a utility scale system SI installed cost for a residential system Hillhouse and Beard, Curr. Opin. Colloid. In. 14, 245 (2009).
  • 70. Thin-film silicon solar cells Si-based solar cells Al Al SiO2 n+ electron hole p-type p++ c-Si p++ Al c-Si (180-250 μm)
  • 71. Solar cell Incident light Metal front electrode Si atom electron hole covalent bond Semiconductor Metal back electrode
  • 72. Solar cell Incident light Metal front electrode Si atom electron hole covalent bond Semiconductor Metal back electrode
  • 73. Solar cell Metal front electrode Si atom electron hole covalent bond Semiconductor Metal back electrode
  • 74. Solar cell Metal front electrode Si atom electron hole covalent bond Semiconductor Metal back electrode
  • 75. Solar cell Metal front electrode Si atom electron hole covalent bond hole Semiconductor Metal back electrode
  • 76. Solar cell Metal front electrode Si atom electron hole covalent bond hole Semiconductor Metal back electrode
  • 77. Solar cell Metal front electrode Si atom electron hole covalent bond P atom Semiconductor Metal back electrode
  • 78. Solar cell Metal front electrode Si atom electron hole covalent bond P atom Semiconductor B atom Metal back electrode
  • 79. Solar cell Metal front electrode Si atom electron hole covalent bond P atom Semiconductor B atom Metal back electrode hole
  • 80. Solar cell Metal front electrode Si atom electron hole covalent bond P atom Semiconductor B atom Metal back electrode hole
  • 81. Solar cell Metal front electrode Si atom electron covalent bond P atom Semiconductor B atom Metal back electrode hole
  • 82. Solar cell Incident light Metal front electrode Si atom electron covalent bond P atom Semiconductor B atom Metal back electrode hole
  • 83. Solar cell Metal front electrode Si atom electron covalent bond P atom Semiconductor B atom Metal back electrode hole
  • 84. Solar cell Metal front electrode Si atom electron covalent bond P atom Semiconductor B atom Metal back electrode hole
  • 85. Solar cell Metal front electrode Si atom electron covalent bond P atom Semiconductor B atom Metal back electrode hole
  • 86. Solar cell Metal front electrode Si atom electron covalent bond P atom Semiconductor B atom Metal back electrode hole
  • 87. Solar cell Metal front electrode Si atom electron covalent bond P atom Semiconductor B atom Metal back electrode hole
  • 88. Solar cell Metal front electrode Semiconductor Metal back electrode
  • 89. Solar cell Incident light Metal front electrode ARC electron hole Semiconductor Metal back electrode
  • 90. Solar cell Main losses recombination X gap energy light 1.1 eV X X generation
  • 91. Solar cell Additional losses Incident light Reflection n1 ≠ n2 Metal front electrode ARC electron hole Semiconductor Metal back electrode c-Si solar cell structure Transmission (finite α)
  • 92. Design principle of solar cells Defect Engineering Bulk defects Interface defects Meta-stable defects Spectral Matching Light Trapping Texture interfaces Choice of Material Reflectors Multi-junctions Plasmonic Approaches
  • 93. Thin-film silicon solar cells Si-based solar cells Al Al SiO2 n+ Thin-film Si (0.2 - 5 μm) p-type p++ c-Si p++ Al c-Si (180-250 μm)
  • 94. Thin-film silicon solar cells Si-based solar cells Al Al Glass plate SiO2 n+ Thin-film Si (0.2 - 5 μm) TCO p-type Intrinsic a-Si:H p-type p++ c-Si p++ n-type Al Metal electrode c-Si (180-250 μm) a-Si (0.2-0.3 μm)
  • 95. The a-Si:H p-i-n junction Problem 2: mismatch single junction with solar spectrum
  • 96. The a-Si:H p-i-n junction Problem 2: mismatch single junction with solar spectrum Absorption a-Si:H Does not cover entire spectrum!
  • 97. The a-Si:H/μc-Si:H tandem Problem 2: mismatch with solar spectrum Absorption Absorption a-Si:H c-Si:H
  • 98. Multi-junction approach Record ηst (confirmed) Micromorph (double) Triple-junction 10.1% (a-Si) Oerlikon 12.5% (a-Si/μc-Si) Oerlikon 13.0% (Si/SiGe/SiGe) USSC* 10.1% (μc-Si) Kaneka 12.4% (a-Si/a-SiGe) USSC* 13.4% (a-Si/nc-Si/nc-Si) USSC 13.4% (a-Si/a-Ge/nc-Si) USSC
  • 99. Thin-film silicon solar cells Si-based solar cells Al Al Glass plate SiO2 n+ TCO p-type Intrinsic a-Si:H n-type p-type Intrinsic p-type uc-Si:H p++ c-Si p++ n-type Al Metal electrode c-Si (180-250 μm) a-Si/uc-Si (2.0-4.0 μm)
  • 100. Learning curve: PV modules, systems 100 Average global sales price PV Module 10 (USD/Wp) 1 Source: Navigant Consulting -4 -3 -2 -1 0 1 2 3 4 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
  • 101. Learning curve: PV modules, systems 100 Average global sales price PV Module 10 (USD/Wp) Thin Film PV: 1 CdTe (First Solar) Source: Navigant Consulting -4 -3 -2 -1 0 1 2 3 4 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
  • 102. Learning curve: PV modules, systems 100 Average global sales price PV Module 10 (USD/Wp) Thin Film PV: 1 CdTe (First Solar) Source: Navigant Consulting Micromorph -4 -3 -2 -1 0 1 2 3 4 (Oerlikon) 10 10 10 10 10 10 10 10 10 Cumulative Installations (GW)
  • 103. PV technologies Wafer based crystalline silicon  ½ century of manufacturing history, ~90% of 2007 market  progressing by innovation and volume  reduction of manufacturing costs is major challenge  module efficiencies: - 12 ~ 20% (now) - 18 ~ >22% (longer term) Source: W Sinke
  • 104. PV technologies Thin-film silicon  low-cost potential and new application possibilities  positive impact of micro- and nanocrystalline silicon  efficiency enhancement is major challenge  stable module efficiencies: – 6 ~ 11% (now) – 11 ~ 16% (longer term) Source: W Sinke
  • 105. PV technologies Cadmium Telluride  low-cost potential (partly already demonstrated)  positive impact of development of take-back and recycling systems  efficiency enhancement is major challenge  module efficiencies: – 7 ~ 11% (now) – 10 ~ 15% (longer term) Source: W Sinke
  • 106. PV technologies Copper-indium/gallium-selenide/sulphide (CIGS)  high performance & possibilities for multi-junction devices  reduction of manufacturing costs is major challenge; work on low-cost varieties  module efficiencies: – 9 ~ 12% (now) –15 ~ 18% (longer term) Source: W Sinke
  • 108. Cost price elements vs abundancy Averaged cost-price elements versus abundance in ore (2004-2009) a-Si:H thin film technology M. Green, Progress in PV: Res. Appl. 17, 347 (2009)
  • 109. Composition of the Earth’s crust
  • 110. Composition of the Earth’s crust 1st generation c-Si: Si,O,Al,N,B,P
  • 111. Composition of the Earth’s crust 2nd generation CdTe: Cd,Te,S,Al,Zn,O Ratio Te/Si: 10-9 1 m2 cell 2μm CdTe (50% =Te) 1 m2 hole having depth of (110-6/ 110-9 )~ 103 m = 1 km
  • 112. Composition of the Earth’s crust III-V: Ga,As,Al,In,P,Ge,
  • 113. Composition of the Earth’s crust 2nd generation CIGS: Cu,In,Se,Ga,Al,Zn,O,Cd,S
  • 114. Composition of the Earth’s crust 2nd generation Dye-sensitized: Ti,O,Sn,Pt,C,O,H,N,S,Ru,I (and many more)
  • 115. Composition of the Earth’s crust 2nd generation a-Si:H: H,Si,O,Zn,Al,B,P
  • 116. TF turn-key companies Module efficiency: 10.8% guaranteed Record cell: 12.5 % Micromorph 0.35 €/Wp technology Yield > 97% Output: 120 MWp
  • 117. Thin-film Si PV technology Glass plates: Application Industry hall, Thurnau, Germany
  • 118. Helianthos project Flexible substrate:  Dutch route: Temporary superstrate solar cell concept  Development of unique low-cost roll-to-roll technology for fabrication of thin-film Si solar modules (started in 1996)
  • 119. Thin-film Si PV technology Flexible substrate: Flexible, lightweight, monolithically series connected a-Si modules
  • 120. Thin-film Si PV technology
  • 121. Thin-film Si PV technology Presented by E. Hamers at the European PV solar energy conference Hamburg 6 sept. 2011.
  • 123. PV technology Summary  Direct conversion of light to electricity (PV) is an elegant process suitable for versatile, robust, low-cost technology; the global potential is practically unlimited  A wide range of technology options is commercially available, emerging or found in the lab  The first major economic milestone on the road to very large-scale use has been reached: grid parity with retail electricity prices
  • 124. PV status in 2012 Summary  Production: - dominant c-Si PV technology, 90% market - large production capacity in China - difficult time for thin-film PV technologies (TF Si, CIGS, CdTe)  Installation: - highest contribution to newly installed power capacity in EU  Price: - <1 €/Wp; c-Si modules: 0.8-0.9 €/Wp expectation 0.5 €/Wp in 2015 - grid parity reached in Germany and Netherlands  Research trends - increasing module efficiency (c-Si modules >20%)
  • 125. PV technology Challenges for TW scale implementation  turn-key system price < 1 €/Wp (generation costs < 3-10 c€/kWh) - low-cost modules at very high efficiency (> 30%) - add efficiency boosters (spectrum shapers), full spectrum utilization (advanced concepts) - or: very low-cost modules (<< 0.5 €/Wp) at moderate efficiency (>10%) - polymer solar cells, nanostructured (quantum dot) hybrid materials - Low BOS costs  use of non-toxic, abundantly available materials (preferably use Si, C, Al, O, N, …) - indium replacement - non-metallic conductors (Ag  C?) - all-silicon thin-film tandems  stability (20 to 40 years) and realibility - intrinsic & extrinsic degradation of organics-based solar cells
  • 126. Thank you for your attention! Delft University of Picture Source: www.nasa.gov Technology Challenge the future
  • 127. Thin-film Si PV technology Present status: + Promising low-cost solar cell technology + Industrial production experience (Flat panel display industry) - Relatively low stabilized efficiencies (η ≈ 6-7%) + Double-junction micromorph solar cell (η>10%)  ideal combination of materials (a-Si:H/μc-Si:H) for converting AM1.5 solar spectrum + 2008 production of modules 400 MW production capacity ~ 1000 MW Google images
  • 128. Thin-film Si PV technology Current developments:  increase in TF Si module production  complete production lines available Future developments: Oerlikon  short term: optimize micromorph tandem cell  long term: optimize triple cell, breakthrough concepts for high efficiency (η>20%) Applied Materials