SlideShare uma empresa Scribd logo
1 de 193
Renal phys iology
Dr R ma n M med A
 . a da oha      hmed.

                  Esl m.a
                    a nes@yahoo.com
C hief Func tions of Renal S ys tem
• Regulation of water & electrolyte balance
• Regulation of ac id & bas e balance
• E xc retion of was te products of protein metabolis m, e.g.,
 Urea from protein breakdown
 Uric ac id from nucleic acid breakdown
 C reatinine from mus cle creatine breakdown
 E nd produc ts of hemoglobin breakdown
• E xc retion of foreign chemic als , e.g., drugs , food additives ,
  pes tic ides , …etc .
• E ndocrine func tion: erythropoietin, renin, 1,25-dihydoxy-
  vitamin D.

                                  2
FUNC TIONA L A NA TOMY OF KIDNE YS &
          URINA RY TRA C T
 • The kidneys lie high on the pos terior abdominal wall below
   the diaphragm & on either s ide of the vertebral column.
 • In adults eac h kidney is the s ize of a clenched fis t &
   weighs ~ 150 g.
 • Urine produced by the kidneys is delivered to the urinary
   bladder by 2 ureters .

 • The bladder continuous ly
   acc umulates urine and periodically
   empties its c ontents via urethra
   under the control of an external
   urethral s phincter – a proces s
   known as micturition.          3
FUNC TIONA L A NA TOMY: kid
• E ac h kidney is formed of 2
  dis tinct parts :
A n outer cortex
A n inner medulla.
• The medulla c ontains 5-10 renal
  pyramids . Their tips projec t into
  the renal pelv is & the dilated
  upper part of the ureter.
• The nephron is the func tional unit
  of the kidney. E ac h kidney
  contains ~ 1 million nephrons .
• The nephron is c ompos ed of 2
  main components :
  A . The renal corpus cle        4
  B . The renal tubule
The Nephron




5
THE NE PHRON
A . Renal C orpus cle:      (S ite of filtration of blood)
1. The G lomerulus :
- It is pres ent in the cortex.
 - E ac h glomerulus is formed of a tuft of capillaries that are
      invaginated into the B owman’s caps ule.
 - B lood enters the capillaries through the afferent arteriole
      and leaves
  through the s lightly narrower efferent arteriole.
    - G lomerular capillaries are unique in that they are
      interpos ed between 2 arterioles . This arrangement
      s erves to maintain a high hydros tatic pres s ure in the
      c apillaries , whic h is nec es s ary for filtration.
 - The capillaries in the glomerulus have large pores c alled
                                     6
      fenes trae,
THE NE PHRON
A . Renal C orpus cle:
 2. The B owman’s C aps ule:
It is the proximal expanded portion of the renal tubule
   forming a
 double-walled c up:
a. The inner layer (vis ceral layer) is formed of s pec ialized
   epithelium
    made up of podocytes :
     Thes e cells have an oc topus -like s tructure.
     They have foot proces s es that interdigitate and
       s urround the glomerular capillaries .
     The foot proces s es do not form a continuous layer, but
       leave gaps that provide filtration s lits .
b. The outer layer (parietal layer) is c ontinuous with the
                                 7
   epithelium of
The Renal
C orpus cle




              8
THE GLOME RULA R ME MB RA NE
 •   It s eparates the plas ma in glomerular capillaries from the
     fluid in B owman’s c aps ule. It is formed of 3 layers :
       1. E ndothelium of c apillary with large fenes trae.
       2. B as ement membrane: It contains large s paces , allowing
          the filtration of large amounts of water & s mall s olutes .
          Yet, the bas ement membrane is formed of negatively
          charged glyc oproteins &, thus , oppos es the filtration of
          the negatively charged plas ma proteins .
       3. Foot proc es s es of podocytes with large filtration s lits .
 •   Due to its s pecial s tructure, the glomerular membrane
     filters s everal hundred times as much water & s olutes as a
     us ual c apillary membrane.
 •   The filtrate is called an ultrafiltrate as it is formed of plas ma
     minus plas ma proteins .        9
Glomerular Membrane
Thus , the filtrability of s olutes is
   determined by:
1. The s ize of molecules : The
   filtrability is invers ely related
   to the molec ular s ize of
   s olute.
   ⇒ E lec trolytes (as Na+) &
   s mall organic s olutes (as
   glucos e) pas s freely, while
   large molecules (as proteins )
   do not pas s through the
   membrane pores .
2. C harges of molec ules :
   Negatively c harged large
                                         10
   molecules are les s filterable
   than pos itively charged
THE NE PHRON
B . Renal Tubule:
        1. Proximal convoluted tubule (PC T)
        2. Loop of Henle: It is further s ubdivided into:
           ► Thin des c ending limb
           ► Thin as cending limb
           ► Thic k as cending limb
        3. Dis tal c onvoluted tubule (DC T)
- Many DC Ts open into a collecting duc t (C D). C Ds pas s from
    the
  c ortex (c ortic al C D) to the medulla (medullary C D) and finally
    drain
  urine into the renal pelvis .
- PC T & DC T are pres ent in the c ortex, while the des cending
                                    11
    limb of
THE NE PHRON

J uxtaglomerular A pparatus :
 E ach DC T pas s es between the afferent & efferent arterioles
  of its own nephron. A t this point there is a patch of c ells
  with crowded nuc lei in the wall of the DC T c alled the
  macula dens a. They s ens e the conc entration of NaC l in
  this portion of the tubule.
 The wall of the afferent arteriole oppos ite the macula
  dens a contains s pecialized cells known as the
  juxtag lomerular cells (J G cells ). They s ec rete renin.

Together, the mac ula dens a & J G cells are called the
  juxtag lomerular             12

apparatus (J GA).
Juxtaglomerular apparatus
* It is a structure formed when the distal convoluted
tubule bends around to contact the afferent arteriole
at the place where it enters the glomerulus.

* It is composed of specialized tubular epithelial cells
of distal convoluted tubule and the granular cells of
the adjacent of the afferent arteriolar wall.
* The granular cells secrete an enzyme called renin.
This enzyme is responsible for the production of
angiotensins,     of    which      angiotensin      II.
Angiotensin II stimulates the secretion of aldosterone
hormone.
The J uxta-
glomerular
A pparatus




              15
THE NE PHRON (cont.)
 N.B .
- There are 2 types of nephrons in the kidney:
   1. C ortical Nephrons : (80% of nephrons )
     Their glomeruli lie in the outer layers of the cortex.
     Their tubular s ys tem is relatively s hort.
     Their loops of Henle penetrate only for a s hort dis tanc e
       into the outer portion of renal medulla.

   2. J uxtamedullary Nephrons : (20% of nephrons )
     Their glomeruli lie at the boundary between cortex &
       medulla.
     They have long loops of Henle, whic h dip deeply down
       into the medulla toward the tips of the pyramids .
                                16
     They play a major role in the proc es s of urine
       conc entration.
Types of nephrons
     I tem s            Cor ti ca l n eph r on s        J u x ta m ed u l l a r y n eph r on s

    % Of total                    85 %                                  15%
    Glomeruli              Out part of cortex                 Inner part of cortex .
  Loop of Hnle       Short i.e. dips to the junction     Long i.e. dips deeply into the
                         between inner and outer            medullary pyramids to the
                                   medulla.                        inner medulla
  Blood supply           Peritubular capillaries           Vasa recta and peritubular
                             No Vasa Recta                           capillaries
 Special function           Na reabsorption            Urine concentration
Afferent arteriole        Thick muscular wall                 Thin muscular wall
                        Very sensitive to symp              Less sensitive to symp
                                Stimulation.                        Stimulation.
                           Have JG apparatus                Have no JG apparatus
                        Exhibit autoregulation              Do not exhibit autoreg
                     Low resistance to blood flow at    High resistance to blood flow at
                                    rest                                rest
Efferent arteriole        Thin muscular wall                 Thick muscular wall
                        Less sensitive to symp              Very sensitive to symp
                      Stimulation & vasopressin.          Stimulation & vasopressin.
                                                              Tone decreased by
                                                             Prostaglandins (PGs).
  JG apparatus                  Present                               Absent
 Autoregulation                 Present                               Absent
Renal corpuscle
                                                           Renal corpuscle
                    Proximal
Nephrons        convoluted tubule
                    Afferent
                   arteriole
                   Efferent
                   arteriole
They are the
structural &                             Distal convoluted
                                               tubule
                 Peritubular
 functional      capillaries


 units of the                            Renal arteriole


   kidney




                                    There are 2 structural classes of nephrons
                                    which are:
                                    1- Cortical nephrons: representing 85% of
                                    nephrons where almost all the length of which
                                    lies within the renal cortex.
                                    2- Juxtamedullary nephrons: representing
                                    15% where their loops of Henle dip deeply
                                    into the renal medulla.
Juxtamedullary Nephron    Cortical Nephron




The efferent vessels of juxtamedullary glomeruli form long looped vessels,
called vasa recta which is important for urine concentration.
S o,why is the loop of Henle
us eful?
• T l
   he ongert l t mor concent aed
           he oop, he e     rt
  t filr t a t medulayIFbecome
  he t ae nd he      lr

• Impora t colect t e r
       t nce: he l ing ubul uns
  t ough t hyper ic medula
   hr he         osmot     l
  mor a it t r bsor H2O
     e bil y o ea b



                                   Desert animals have long nephron
                                   Loop  More H2O is reabsorbed
B LOOD VE S S E LS in the NE PHRONS
•   E ach kidney receives its blood s upply from a renal artery,
    which aris es directly from the abdominal aorta.
•   In the kidney, the renal artery progres s ively s ubdivides into
    s maller branc hes until they form afferent arterioles , whic h
    break up into a tuft of capillaries , the g lomerulus . Then the
    c apillaries form the efferent arteriole.
•   The efferent arteriole again s ubdivides to form peritubular
    capillaries , whic h s urround the various s egments of the
    renal tubules .
    N.B . There are 2 s ets of c apillaries & 2 s ets of arterioles !!

•   The efferent arterioles of juxtamedullary nephrons form a
    s pecial type of peritubular capillaries c alled v as a recta.
      They are s traight & long c apillaries that form hairpin
        loops along s ide the loops of Henle.
                                  22
      They play an important role in the proces s of urine
        c onc entration.
B lood s upply of the kidney
B LOOD S UPPLY
•   Renal artery fr a t ; ent s hil div
                       om ora er um; ides
•   Interlobar arteries – r lcol div
                               ena umn; ide
•   A rcuate arteries – a boundayofcorex &medula div
                             t       r     t       l ; ide
•   Interlobular arteries – int corex; div int sev a
                                    o t       ide o er l
•   A fferent arterioles : suppl one nephr end in cl erofca l r –
                                    y        on;      ust  pilaies
    G LOME RULUS (ca l r filr t
                            pilay taion)–
•   Dr ined by
      a
•   E fferent arterioles – w for pl – PE RITUB ULA R
                                hich m exus
    C A PILLA RIE S - suround r lt e
                            r      ena ubul
•   Fom ca l r bl fl s
     r pilaies ood ow
•   Interlobular veins
•   A rcuate veins
•   Interlobar veins
•   Renal vein
•   Infer v ca a
         ior ena v
•   Nephr w h t deep in medula– E entat iol giv r t VA S A RE C TA
           ons it ubes         l ffer rer es e ise o
    (ca l r
       pilaies).
Portal system (capillary beds in series), paralleling the nephron
Renal ==> afferent ==> glomerular ==> efferent ==> peritubular
arteries ==> arterioles ==> capillaries ==> arterioles ==> capillaries.
Major renal capillaries
Glomerular capillary            Peritubular capillary
         bed                              bed

1. Receives bl from afferent  Receives bl from efferent
              art.                        art.
   2. High presure bed 55    Low pressure bed 13 mmHg
            mmHg
3.Represents arterial end of    Represents venous end of
              cap.                          cap.
  4. allows fluid filtration.   Allows fluid reabsorption.
B lood S upply
of C ortical &
J uxtamedullar
y Nephrons




                 27
RENAL BLOOD FLOW (RBF)
Renal blood flow is about 20% of the cardiac output
This is a very large flow relative to the weight of the kidneys
(≈350 g)
RBF determines GFR
RBF also modifies solute and water reabsorption and delivers
nutrients to nephron cells.
Renal blood flow is autoregulated between 70 and 170 mm
Hg by varying renal vascular resistance (RVR).

i.e. the resistances of the interlobular artery, afferent arteriole
and efferent arteriole
Factors affecting RB F
1) Autoreg ulation:
     – RBF is kept relatively cons tant between A B P;
            70-170 mmHg, It is pres ent in denervated,
      is olated kidney, this proving that this property
                                  is intrins ic property.

2) S ympathetic s timulation:
  – VC of afferent arteriole of cortical nephrons →
    dec reas ed cortical blood flow.
  – Les s effect on juxtamedullary nephrons →
    remains well perfus ed.
  – VC of vas a recta → decreas e medullary blood
    flow → more urine concentration.
A utoregulation of RB F & GFR
• Note:
  A utoregulation is
  important to
  prevent large
  changes in G FR
  that would greatly
  affect urinary
  output.
A utoregulation (Myogenic
mechanis m)
• Response t cha in pr e w hin t nephr v scul r
            o nges essur it he        on’s a a
  component
• At iol conta inher l in r
   rer es r ct enty esponse t t stet
                                 o he r ch
  accompa ↑ pr e. V a omaical const ict w
          nying   essur essel ut t ly r s, hich
  hel l bl fl int gl ul despit incr sed syst
     ps imit ood ow o omer us     e ea         emic
  pr e
    essur
• Opposit r ct occur w smoot muscl sense adr in
         e ea ion    s hen    h   es        op
  pr e
    essur
AUTOREGULATION




                               AUTOREGULATORY
              1.5                  RANGE
RBF (L/min)




              1.0


              0.5



                    40    80    120    160 200   240
                                  BP (mmHg)
EFFECT OF ARTERIAL PRESSURE CHANGES
                                 ON GFR, RBF AND URINE OUTPUT
RBF or GRF (% of normal)



                           150
                                                   RBF

                           100               GFR


                                                      Urine Output
                           50



                                    50        100       150   200
                                         Arterial Pressure (mmHg)
Tubuloglomerular feedback
• J a omer a a r t
  uxt gl ul r ppaaus
   – t combinaion oft a a v scul rcels w e t t e pa t ough
      he       t    ubul r nd a a l her he ubul sses hr
     t a e for byt a enta effer at iol a t j t
      he ngl med he ffer nd ent rer es s hey oin he
     gl ul
       omer us
• Smoot muscl cels w hin t a entat iol for gr nul rcels
       h      e l it he ffer rer e m a a l
• Speciaized t a cels in t r know a ma adensa sense
        l ubul r l his egion n s cul              -
  cha in satl eloft a fl
     nges l ev ubul r uid
• M cul Densa
      a a
   ↓ Arterial pressure                   ↑ Arterial pressure

                ↑ Fluid reabsorption            ↑ GFR
↓ GFR             in proximal tubule
                                          ↑ Tubular flow rate
   ↓ Tubular flow rate                 ↑ Na+ and Cl- delivery
   ↓ Na+ and Cl- delivery                 to Macula Densa
      to Macula Densa
                                       ↑ Na+ and Cl- reabsortion
   ↓ Na+ and Cl- reabsorption             in Macula Densa
      in Macula Densa

        ↑ Renin release                     ↓ Renin release
A utoregulation of High Filtration
Pres s ure
Importance of Autoreg ulation
• T myogenic a t ogl ul rfeedba mecha w k
   he          nd ubul omer a     ck      nisms or
  in t ndem t a or ae G Rw hin aM Pr nge of8 - 0
      a     o ut egul t F it     A a         018
  mmHg
• A or aion gr tybl s t dir effectt tcha in
    ut egul t eal unt he ect          ha nges
  at ia pr e mightot w ha e on G Ra pr v
   rer l essur         her ise v  F nd eser es
  w t a sol e homeost sis a al s w st excr ion t
    aer nd ut          a nd low a e et o
  car on a usua
     ry s l
Impact of autoregulation
• A utoregulation:
   – G FR=180L/day and tubular
     reabs orption=178.5L/day
   – Res ults in 1.5L/day in urine

• Without autoregulation:
  – S mall ↑ in BP 100 to 125mm Hg, ↑   GFR by 25%
    (180 to 225L/day)
  – If tubular reabs orption cons tant, urine flow of
    46.5 L/day
• What would happen to plas ma volume?
ME A S URE ME NT OF RE NA L B LOOD FLOW
 •   Renal blood flow (RB F) is determined by meas uring firs t
     the renal plas ma flow (RPF) and then c alculating the RB F.

 •    We meas ure RPF us ing paraaminohippuric ac id (PA H) .
 •    PA H is a s ubs tanc e that is :
      freely filtered by the glomeruli,
     s ecreted in the tubules ,
     but not reabs orbed.
     If PA H is given by intravenous (IV) infus ion s o that its
      conc entration is kept low in plas ma (e.g., 2 mg%), it is
      almos t c ompletely removed with a s ingle c irculation of
      plas ma in the kidneys .

     10% of PA H remain in blood, bec aus e 10% of the blood that
       goes to
                                 40
     the kidneys does not reach the nephrons , but s upplies other
       renal
ME A S URE ME NT OF RE NA L B LOOD FLOW
•     If we apply Fic k’s principle, we can c alculate RPF:
               Amount of PAH                       Amount of PAH
                                 =
         filtered & secreted/min                  excreted in urine/min

•     A mount of PA H filtered & s ec reted   = P x E RPF
•     A mount of PA H exc reted in urine/min. = U x V

    w e, P = conc. ofPA in pl sma
     her                  H a
        E RPF = effect e R (90 ofpl smaonl i.e., t king int a
                         iv PF % a       y, a             o ccount   t t10
                                                                     ha %
      bypa t nephr
          sses he     ons).
                U = conc. ofPA in ur
                              H ine
                V = v ume ofur min.
                     ol       ine/

                            P x E RPF = U x V
                                           UxV
                                  E RPF 41
                                         =
                                             P
ME A S URE ME NT OF RE NA L BLOOD
FLOW
E xample: In a patient, if PA H is infus ed s o that its conc . in
   plas ma (P) is
2 mg% (= 0.02 mg/ml) and the urine vol. (V) is 1.3 ml/min. &
   PA H
c onc . in urine (U) is l0 mg/ml, then
                  E RPF = 10 mg/ml x 1.3 ml/min. / 0.02 mg/ml
                          = 650 ml/min.

S ince E PRF is 90% of actual RPF,
                RPF = 650 x 100 / 90 = 720 ml/min.

If the hematocrit value is 45%, then plas ma cons titutes 55%
               RB F = 720 x 100 / 55 = 1300 ml/min.

S ince c ardiac output is 5 L/min, RB F (1300 / 5000 x100) is
Urine formation
Ur F maion
  ine or t
• Glomerular Filtration
    • substances move from blood to glomerular capsule

• Tubular Reabsorption
    • substances move from renal tubules into blood of
    peritubular capillaries
    • glucose, water, urea, proteins, creatine
    • amino, lactic, citric, and uric acids
    • phosphate, sulfate, calcium, potassium, and sodium ions


• Tubular Secretion
    • substances move from blood of peritubular capillaries into renal
    tubules
    • drugs and ions
Overall fluid mov ement in the kidneys
Glomerular filtration.
It takes place between glomerular capillaries endothelium
(characterized by the presence of numerous small pores (fenestrations)
and Bowman’s capsule (characterized by the presence of podocytes).
Podocytes are modified squamous epithelial cells with numerous
elongated branches called foot processes which are separated by narrow
gaps called filtration slits (slit pores).

Fluid and small solutes dissolved in the plasma such as glucose, amino
acids, Na, K, Cl, HCO3- , other salts, and urea pass through the
membrane and become part of the filtrate.
The glomerular membrane hold back blood cells, platelets and most
plasma proteins.
The filtrate is about 10% of the plasma.
The volume of fluid filtered per unite time is called the glomerular
filtration rate (GFR). The GFR is about 180 L/day (=125 ml/min.).
C OMPOS ITION OF GFR
a- Contents: -w t    aer
-ions: Na , K+ , Cl
         +        -
-fr yfiler subst nces e.g. gl
   eel t ed a                 ucose, a a
                                      mino cids.
-0 3 abumin (mol a w 690 ).
   .0 % l           ecul r eight 0
b - O sm olality: 3 0mosmolL isot (sa osmol l ya pl sma
                       0        /, onic me          ait s a ).
C- Sp ecific gravity: 10      10
D - p H : dr t 6in ur due t a
             ops o      ine o cidificaion byt kidney.
                                         t       he
GFR
–In an av erag e man: 125 ml/minute. In
women  10% les s .
           :
–High r lbl fl (2025% ofcadia out )needed forhigh G R
       ena ood ow -       r c put                  F.
–GF R equals about 180 L/day so pl smav ume (3 )
                                       a ol          L
filer a 60t da y, M e t n 99% ofG Ris nor ly
  t ed bout imes il or ha          F      mal
r bsor
 ea bed.
–Nor lvolume of urine is a 1.5 litre/day.
    ma                      bout
Filtration fraction

It is the fraction of the renal plasma flow
(RPF) that becomes glomerular filtrate. the
average filtration fraction about 16-20%.
It is calculated as (GFR/RPF X100).
Glomerular membrane
                     Capillary endothelium;
 It has small holes (70-90 nm). It does not act as a barrier
                 against plasma protein filtration.
                   Basement membrane; (BM)
 filamentous layer attached to glomerular endothelium &
     podocytes, carry strong-ve charges which prevent the
    filtration of plasma proteins, but filters large amount of
                         H2O and solutes.
                            Podocytes;
Epithelial cells that line the outer surface of the glomeruli.
They have numerous foot processes that attach to the BM,
               forming filtration slits (25 nm wide).
Layers of Glomerular Membrane
Permeability of the glomerular
membrane
S ize of the molecules
• S ubs tanc es having diameters les s than 4
   millmicrons (molecular weight 5500) are freely
   filtered while thos e having diameters more than
   8 millimicrons (molecular weight more than
   7000) are not filtered.

C harges of the molecules
• -ve charged molecules are filtered Les s eas ily
   than neutral molecules of equal s ize. (pos s ibly
   due to neg ative charg es in the bas ement
   membrane).
Filterability of the Membrane
• Filterability is a term us ed to des cribe
  membrane s electivity bas ed on the molecular
  s ize and charge

• Pore s ize would favor plas ma protein (albumin)
  pas s age, but negative charge on protein is
  repelled by the (-) charged bas ement membrane
  (proteoglyc an filaments & podocytes )

• Los s of this (-) charge caus es proteinuria
  condition called minimal chang e nephropathy
What Drives Filtration?
Howdoes fl mov fr t pl smaa oss t gl ul r
          uid e om he a cr he omer a
   membr ne int Bow n’s ca e?
         a o ma psul
• No a iv ta tmecha
       ct e r nspor     nisms
• No l lener expendit e
      oca gy           ur
Simpl pa e physica for a
     e ssiv         l ces ccompl filr t
                                ish taion
-F taion occur t oughoutt l h oft ca l r
  ilr t       s hr       he engt he pilaies
F orces involved in F iltration
• Gomer a ca l r bl pr e (fa or filr t
   l ul r pilay ood essur v s t aion)
• Pl smacoloid osmot pr e (opposes filr t
    a - l          ic essur          t aion)
• Bow n’s ca e hydr aic pr e (opposes filr t
      ma psul        ost t essur           taion)
Forces affecting the GFR:
A) Forces helping filtration:
1- Hydrostatic pressure of the blood inside glomerular capillaries (HPG) (= 50 mmHg)
due to:
i- The afferent arteriole is 3 times wider than the efferent arteriole
ii- The diameter of the renal artery is large in relation to the relelatively small size of
the kidney.
iii- The renal artery comes directly from the aorta.
2- Colloidal osmotic pressure of the fluid inside the Bowman’s capsule (COPBC).
Where the filtrate is free of proteins, so this force normally equals to zero mmHg.

B) Forces opposing filtration:
1- Colloidal osmotic pressure of the glomerular capillary blood (COPG).
This pressure is due to plasma proteins and equals 30 mmHg.
2- 1- Hydrostatic pressure of the fluid inside the Bowman’s capsule (HPBC) (= 10
mmHg).
 Accordingly,
 The net filtering force= The forces helping filtration - The forces opposing filtration
                        =        (HPG + COPBC) -        (COPG + HPBC)
                        =             (50 + 0) -       (30 + 10) = 10 mmHg.
Forces affec ting filtration
Favoring Filtration         Opposing Filtration
 Glomerular hydrostatic    Glomerular capillary colloid osmotic
       pressure                         pressure
      60 mm Hg                         32 mm Hg

Bowman’s capsule colloid       Bowman’s capsule hydrostatic
   osmotic pressure                     pressure
      0 mm Hg                         18 mm Hg



                 Net = +10 mm Hg
Determinants of GFR
      GFR=Kf x Net filtration pressure
     Kf = Capillary filtration coeficient
F iltration coefficient (Kf)
• It is the GFR / mmHg of net filtration
  pres s ure, it is normally
  12.5ml/min/mmHg. It is cons tant
  (normally).
• Glomerular filtration rate = Net filtration
  pres s ure X Filtration coefficient
• GFR = NFP (l0) X Kf (12.5) = 125ml/min.
-Kf is determined by 2 factors :
1-T per bil yoft ca l r bed.
   he mea it he pilay
2-T sur ce aeaoft ca l r bed.
   he fa r      he pilay
Glomerular Filtration Rate
• Depends on
   – T netfilr t pr e
      he    t aion essur
   – Howmuch gl ul rsur ce aeais a a a e forpenet aion
               omer a fa r        v il bl       rt
   – Howper bl t gl ul rmembr ne is
           mea e he omer a       a


     GFR = K f x net filtration pres s ure

   W e (Kf)= filr t coefficient(apr oft a e t o
    her        t aion              oduct he bov w
     gl ul rpr t
      omer a operies)
        -Roug hly 125 ml/min in males
Regulation of Filtration
(1) Chang es in g lomerular hydros tatic pres s ure.
   (1) Diameter of the afferent arterioles .
      –    VD of afferent arterioles → ++ Hydros tatic pr. in glomerular
                                capillary → ++ GFR.
          – VC of afferent arterioles e.g ++ s ympathetic activity → --
            Hydros tatic pr. in glomerular capillary (HPGC ) → -- GFR.
    (2) Diameter of the efferent arterioles .
           – Moderate VC → ++ HPG C → s light ++ of G FR.
                  – S evere VC → -- RB F → -- G FR.
    (3) ABP;
      B etween 70 & 170 mmHg: GFR and RB F are kept relatively
            cons tant by autoreg ulatory mechanis ms .
    (4) Renal blood flow: direct relation
    (5) S ympathetic s timulation: VC of aff. A rteriole.
C hanges in GFR by cons triction or dilation of
afferent (A A ) or efferent (E A ) arterioles




                      65
Regulation of Filtration
(2) Chang es in Bowman’s Caps ule hydros tatic pres s ure
                    + + Hydr aicprin Bow n’s ca e e.g. st in
                            ost t            ma psul       one
                                     ur er→ - G R.
                                       et      -F
(4) Chang e in g lomerular colloidal os motic pres s ure
                 Incr sed Coloida osmot pr e in gl ul rca l r
                     ea      l l         ic essur omer a pilay
                       •      e.g in dehydr t → decr sed G R
                                            aion     ea F .
                 Decr sed Coloida osmot pr e in gl ul rca l r
                     ea      l l         ic essur omer a pilay
                     •      e.g in hypopr einemia→ incr sed G R
                                          ot           ea F .
•     F unctioning kidney mas s
•     Glomerular s urface area
a ding t t st t ofmesa lcels.
 ccor o he ae          ngia l
Contracted: A &a II.
                 DH ng
Relaxed: A  NP.
Lis t fiv e conditions in which g lomerular
filtration rate (GF R) decreas es .

1- g lomerular hydros tatic pres s ure is reduced (i.e.
    hypotens ive s hock)
2-Bowman's s pace hydros tatic pres s ure are
    increas e ureteric obs truction.
3- plas ma oncotic pres s ure ris es to unus ually hig h
    lev els in dehydration.
4- decreas ed rates of renal blood and plas ma flow
    (e.g . heart failure).
5- Reduced permeability and / or total filtering
    s urface area.
review autoregulation
Meas urement of GFR:
(1) Inulin c learance; Inulin has the following
   characteris tics :
• F eel filer i.e. pl smaconc.= filr t concent aion.
    r y t ed        a             tae        rt
             –   notr bsor orsecr ed byr lt es i.e. a
                     ea bed         et   ena ubul       mountfiler permin.= a
                                                               t ed          mountexcr ed in ur min.
                                                                                      et       ine/
             –   Notmet bol
                        a ized.
             –   Notst ed in t kidney.
                      or      he
             –   Does nota filr t r t &it conc. is ea ymea ed.
                          ffect taion ae s           sil sur

(2) C reatinine clearance
• F eel filer
    r y t ed
• Notr bsor
       ea bed
• pat lysecr ed byr lt es.
     rial et           ena ubul
• E ndogenous so used ea ybutina ae.
                        sil     ccur t
Renal C learance
Definition: Volume of the plas ma cleared
 from the s ubs tance per minute.
                         R = UVP
                          C    /

                     R = r lcl r nce r t
                      C ena eaa ae
          U = concentaion (mg/ )oft subst nce in ur
                     rt       ml he a              ine
              V= fl r t ofur for t (mlmin)
                    ow ae ine maion /
          P= concentaion oft sa subst nce in pl sma
                     rt      he me a            a
Inulin clearance
Free Water C learance (C H20)
Qua ifies r aiv l orga ofw t in t ur
   nt el t e oss in aer he ine

• Cl r nce ofosmol (Cosm)is t v ume ofw t necessayt secr e t osmot
   eaa           es         he ol      aer       r o et he       ic
  l d in aur isot w h pl sma
  oa        ine onic it a
   – Differ bet een ur fl a t cl r nce ofosmol (Cosm)
           ence w ine ow nd he eaa                  es
• CH20 = Ṽ – UosmṼ
                  Posm
    – Negaiv w ur concentaed (hyperonic)
           t e hen ine     rt       t
    – Posit e w ur dil e (hypot
           iv hen ine ut      onic)
TUB ULA R FUNC TION
• T glomerular filtrate
   he
  is for a ar t of125 ml/
        med t ae
  min. or 180 L/day. It
  pa t t r lt es.
     sses o he ena ubul
• In t t es, t tubular
     he ubul he
  fluid is subj ed t t 2 ma
              ect o he in
  t a funct
   ubul r ions,
  reabs orption &
  s ecretion.
• Itis final excr ed a urine a a
           ly et s            t
  r t ofa 1-2 ml/min. or
   ae bout
  c a. 1.5 L/day.

                                   78
TUB ULA R RE A B S ORPTION
•   R lt es ta tsubst nces a oss t membr nes t int st ia fl a t t ough t
     ena ubul r nspor     a cr heir     a o er it l uid nd hen hr he
    per ubul rca l r membr ne ba t bl
       it a pilay         a ck o ood.

• Subst nces ca be ta t by:
          a       n r nspored
1. Trans cellular Route:
     -Subst nces pa t ough t cel membr nes:
           a       ss hr he l         a
–crossing t l lmembr ne &t t ba aer lmembr ne.
          he umina       a     hen he sol t a    a
     -T ta tbyt r e ma be ac tive bymea ofapr ein
       he r nspor his out y                   ns   ot
      car orpas s ive bydiffusion.
        rier

2. Parac ellular Route:
    -Subst nces pa a oss t j ions bet een t a cels.
          a       ss cr ight unct   w ubul r l
    -Ta tbyt r e occur pas s ively bydiffusion.
      r nspor his out       s
                                       79
Tubular Reabs orption is a Function of the
  E pithelial C ells Making up the Tubule

Lumen

         Cells


                         Plasma
Tubular Reabs orption
A) Active transport; against electrochemical gradient.
                         (1) Primary active transport
                     Requires energy directly from ATP.
                    ►Example; Na+ reabsorption in PCT
                        (2) Secondary active transport
                -It does not require energy direct from ATP.
                                  a) Co-transport
 two substances bind to a specific carrier are cotransported in one direction.
                             b) Counter-transport
                two substances bind to a specific carrier are
                        transported in two directions.
B) Passive reabsorption;
                            (1) Simple diffusion
              Passive reabsorption of chloride & Osmosis of water
                           (2) Facilitated diffusion
                                 Need carrier.
C) Pinocytosis
     It is an active transport mechanism for reabsorption of proteins and
                   peptides in the proximal convoluted tubules.
Primary ac tive trans port of s odium
 through the tubular epithelial c ell




                    82
Proximal C onvoluted Tubule

• 65% of t nephr funct occur in
          he       on     ion   s
  PCT .
• T PCT ha a singl l yer of cuboida
   he       s        ea            l
  cels w h milions ofmicr ili.
    l it l               ov l
– Incr sed sur ce aeaforr bsor ion.
      ea      fa r       ea pt
• PCT ma funct is r bsor ion.
      's in ion ea pt
• T PCTis ful ofmit
   he       l      ochondria
Reabs orption in Proximal Tubule

•   10 % Gucose, pr ein a A A
      0 l          ot nd mino cids
•   60 Sodium, Cl a H2O.
      %           , nd
•   8 % PH, HCO3 K.
     0           ,
•   60 Ca
      % .
•   50 ofF t ed Ur .
      % iler ea
Nar bsor ion
                                 ea pt
 A ba aer lside oft t a epit ia cel t e is a ext e Na - + APa syst (=
   t sol t a          he ubul r hel l l her n ensiv + K T se em
  Na - + pump).
    +
      K
    Itpumps 3Na a iv youtoft cel int t int st ium, a a t sa t car 2 K+
                   +
                     ct el        he l o he er it nd t he me ime ries
      int t cel.
         o he l
    ButK+ w ldiffuse immediael ba int t int st ium due t
               il              t y ck o he er it        o:
      (1)high concentaion gr dient&
                     rt a
      (2)high per bil yofepit ia cels t K+ .
                  mea it       hel l l o
    A ar toft t e is:
        s esul his her
      -↓ inta l a Na concentaion
            r celul r +         rt
      -↑ inta l a negaiv y(- mV
            r celul r t it 70 )

 A l lmembr ne t e w lt efor be pa e diffusion ofNa int t cel aongbot
   t umina      a her il her e       ssiv           +
                                                       o he l l        h
  concentaion a el r gr dient cr t byt Na - + APa pump. T diffusion is
         r t nd ectic a s eaed he + K T se                his
  fa it t byapr ein car .
    cil aed     ot rier
Nar bsor ion
   ea pt
Water Reabsorption
G lucose reab sorp tion
• The trans porter for glucos e on the bas olateral
  membrane has a limited capacity to carry glucos e
  bac k into the blood. If blood glucos e ris es above
  180 mg/dl, s ome of the glucos e fails to be
  reabs orbed and remains in the urine  glucos uria.
Glucos e reabs orption
Tubular maximum for glucos e (TmG):

• The maximum amount of glucos e (in mg ) that
  can be reabs orbed per min.
• It equals the s um of TmG of all nephrons .
• TmG not the s ame in all nephrons
• It is an indication of the reabs orptive capacity of
  the kidney.
• It is determined by the number of glucos e
  carriers in PC T.
• The maximum reabs orption rate is reached when
  all the carriers are fully s aturated s o they can
  not handle any additional amounts at that time.
• Value; 300 mg/min in ♀ , 375 mg/ min in ♂.
Renal Thres hold for Glucos e

• Is a oximael 18 mg/
      ppr t y 0 dl
• Ifpl smagl
      a    ucose is gr t t n 18 mg/ :
                      eaer ha 0 dl
   – T oft a cels is exceeded
      m    ubul r l
   – gl a r in ur
       ucose ppeas ine
GLUC OS E RE A B S ORPTION HA S A
TUB ULA R MA XIMUM


Glucose                       Filtered   Excreted
Reabsorbed
mg/min

                          Reabsorbed




 Plasma Concentration of Glucose
Glucos uria
          pres ence of glucos e in urine
 1. Diabetes mellitus
 –blood gluc os e level > renal thres hold.
 2. Renal g lucos uria
 –It is c aus ed by the defect in the glucos e trans port
mec hanis m.
 3. Phlorhizin
 –A plant gluc os ide whic h c ompetes with gluc os e for the
c arrier and res ults in gluc os uria (phloridzin diabetes ).
 4 Preg nancy
  .
 –due to altered gluc os e handling in dis tal nephrons .


                                                                17-59
B icarbonate reabs orption
S ecretion in Proximal Tubule
•   Hydr secr ion fora ba r aion.
        ogen et         cid/ se egul t
•   Ammoniasecr ion fora ba r aion.
               et       cid/ se egul t
•   PA H.
•   Cr t
      eainine.
•   Ur a
      ic cid.
•   Penicilin.
          l
Reabs orption: Loop of Henle
S PE C IFIC FUNC TIONS OF DIFFE RE NT
TUB ULA R S E GME NTS (cont.)

II. Loop of Henle:
•    T l ofHenl w h it 3segment (t tdifferstuct al &funct ly)contibut t cr t agr dual incr sing
      he oop        e it s            s ha       r ur ly     ional       r es o eaing a ly ea
     hyper ait (3 0→120 mosmolL)in t r lmedulayint st ium.
          osmol l y 0          0        / he ena        l r er it
A . Thin des cending limb:
     - highly permeable to w t . 20% ofH2Ois r bsor her
                                        aer               ea bed e.
     -onl moder t yper bl t sol es.
         y      ael mea e o ut
⇒ Osmol l yoft a fl ↑ gr dual a l dips deep int t medulaypyr mid (r ches 120 mosmol
         ait ubul r uid a ly s oop                     o he    l r a ea             0  ).
B. Thin as cending limb:
     -impermeable to w t         aer
     -l a pt e pow forsol es.
       ow bsor iv er           ut
C . Thick as cending limb:
     -impermeable to w t         aer
     -high r bsor iv pow forsol es: Ita iv yr bsor 25% offiler
            ea pt e er             ut     ct el ea bs           t ed
         + +      -       +      -    +
      Na , K , &Cl (by1 Na , 2 Cl, 1 K cota t t medulayint st ium.
                                         r nspor) o    l r er it
⇒ Osmol l yoft a fl ↓ gr dual a itr ches DCT(becomes hypoosmot Itis cal t diluting s egment.
         ait ubul r uid a ly s ea                                   ic).     led he




                                                                                             97
SPE F IONSOFDIF . T A SE M NT
   C. UNCT     F UBUL R G E S
III. Dis tal C onvoluted Tubule (DC T) & C ollecting Duct (C D):
A . E arly DC T:
 T patoft r lt es is in effecta ext
      his r he ena ubul               n ension oft t a
                                                 he hick scending l ofl ofHenl
                                                                  imb oop    e:
     - Itis impermeable to w t .  aer
     -T e is cont r a ofNa , K+ , Cl &ot ions w houtH2O.
        her     inued emov l +         -
                                         her      it
⇒ T e is furherdil ion oft a fl a it osmol l y↓ ev mor (10 mosmol
    her       t    ut    ubul r uid nd s    ait      en e 0           ).
⇒ T patis cal t cortical diluting s egment.
    his r led he
B. Late DC T & C ortical C D:
 T ae impermeable to ur .
   hey r                          ea
 T ha e 2 cel t
   hey v       l ypes:
    (1) Principal C ells :
    a. T a iv yr bsor Na in excha forK+ secr ion. T a ion is incr sed byaldos terone.
        hey ct el ea b +             nge    et his ct            ea
    b. A ntidiuretic hormone (A DH) ca t inserion ofH2Ocha s (aquaporins ) in l l
                                            uses he t               nnel              umina
    membr ne oft cels → al s r bs. ofH2O.
          a hese l           low ea
    In t a
       he bsence ofA t pr lcels ae imper bl t H2O.
                     DH, he incipa l r    mea e o



                                                                                              99
DC T and C D
SPE ICF IONSOFDIF E E T A SE M NT (cont
       CIF UNCT      F R NT UBUL R G E S .)

B . Late DC T & C ortical C D: (cont.)
       (2) α-Intercalated C ells :
       -T cels secr e H+ byH+ - T se independentofNa
         hese l et               APa                +

     r bsor ion. T a ion is incr sed byaldos terone.
      ea pt his ct              ea
C . Medullary C D:
•   In t l stporion oft nephr t e is final adjus tment of volume & concentration of
       his a t          he     on her
    urine.
       T per bil y oft segmentt w t , sa a t toft l t DCT&corica CD, is v r bl &depends on t l el
            he mea it his               o aer me s ha he ae          t l        aia e          he ev
           ofcir aingA (= facultative water reabs orption).
                cul t DH
       W h high bl l el ofA t e is ↑ r bsor ion ofH2O byosmosis, a t a fl in CD is subj ed t
             it       ood ev s DH, her          ea pt                s ubul r uid       ect o
           gr dual incr sing hyper ait oft medulayint st ium.
             a ly ea              osmol l y he     l r er it
       T patis aso permeable t ur , t tdiffuses int t int st ium w it concentaion in t a fl ↑ due
            his r l                       o ea ha         o he er it hen s        rt   ubul r uid
           t H2Or bsor ion.
            o ea pt
           T ur contibut t t hyper ait ofmedulayint st ium.
            hus, ea r es o he            osmol l y     l r er it
⇒ In t pr
      he esence ofA ur excr ed is concentaed &smalin v ume.
                     DH: ine et               rt      l ol
⇒ In t a
     he bsence ofA ur excr ed is dil e ur &l r in v ume.
                    DH: ine et          ut ine age ol




                                                                                              101
Medullary C ollecting Duct

• r bsor < 10 offiler Na a w t
   ea bs         % t ed + nd aer
• fina sit forpr
      l e       ocessingofurine
functional characteris tics :
5. per bil yt w t is contoled byA l el
      mea it o aer      rl       DH ev
   -↑A  DH ↑ w t r bsor ion
               aer ea pt
2. per bl t ur
      mea e o ea
-ur is r bsor int t medulay
    ea ea bed o he           lr
 int st ium w e ithel incr se t
    er it her       p ea he
  osmol l yoft int st ium a t efor hel t concentae ur
       ait he er it nd her e p o               r t ine.
S ummary For Tubular Functions
S ummary of c hanges in os molality of tubular fluid
in various parts of the nephron
RE GULA TION OF TUB ULA R
     RE A B S ORPTION
1. Glomerulotubular B alance
• intinsic a it oft t es t incr se t r bsor ion r t in
     r      bil y he ubul o ea heir ea pt ae
  response t a incr se in gl ul rfilr t
            o n ea         omer a taion
• cha in G Rinduces apr t lcha in t a r bsor ion
      nges F               oporiona nge ubul r ea pt
• t a r t ofr bsor ion incr ses a filer l d incr ses butt
   ot l ae ea pt            ea s t ed oa ea             he
  per a ofG Rr bsor r ins r aiv yconst nt
     cent ge F ea bed ema el t el              a
• second l ofdefense forpr ent cha in r l hemodyna
          ine              ev ing nges ena              mics
  fr ca l r cha in sodium orfl excr ion
    om using age nges                 uid et
• bl s sodium excr ion r
    unt           et esponse t cha in G Rinduced bycha in
                                o nges F                  nges
  at ia pr e
   rer l essur
2. Peritubular C apillary and
Renal
  Inters titial Fluid S tarling’s
Forces
A . Peritubular C apillary Hydros tatic
   Pres s ure:
         ↑ PPC    ↓ r bsor ion
                     ea pt
Syst at ia pr e (PA):
    emic rer l essur
         ↑ PA ↑ PPC ↓ r bsor ion
                             ea pt
B. PTC Os motic Pres s ure (Π PC ):
         ↑ ΠPC     ↑ r bsor ion
                      ea pt
C . Renal inters itial fluid hydros tatic
   pres s ure:
-Decr sed r bsor ion in t per ubul rca l r w lr tin:
     ea ea pt             he it a pilaies il esul
 1. ↑ PIF due t a
               o ccumul t offl in t int st ia compat
                      aion uid he er it l          rment
 2. ↓ ΠIF due t dil ion ofint st ia fl pr eins
                o ut        er it l uid ot
3. A rterial Pres s ure
• smalincr ses in at ia pr e oft ca maked incr ses
      l ea         rer l essur en use r        ea
  in ur r excr ion ofw t a sodium (pr e diur a
       inay et        aer nd         essur esis nd
  pr e nar esis)
    essur tiur

mec hanis m:
1. sl incr se in G R
     ight ea        F.
2. incr sed PPC ↓ r bsor ion fr int st ia spa
       ea            ea pt om er it l ce        ↑ PIF   ↓
    r bsor ion ofw t a
     ea pt         aer nd
     sodium fr t a l
              om ubul r umen
3 decr sed A ensin II
 . ea ngiot                  ↓ Na r bs
                                 +
                                   ea
4. Hormonal C ontrol
Hormone              Site of Action               Effects
Aldosterone          Collecting tubule and duct   ↑ NaCl, H2O
                                                  reabsorption, ↑K+
                                                  secretion
Angiotensin II       Proximal tubule, thick       ↑ NaCl, H2O
                     ascending loop of            reabsorption, ↑H+
                     Henle/distal tubule,         secretion
                     collecting tubule

Antidiuretic         Distal tubule/ collecting    ↑ H2O reabsorption
hormone              tubule and duct

Atrial natriuretic   Distal tubule/ collecting    ↓ NaCl reabsorption
peptide              tubule and duct

Parathyroid          Proximal tubule, thick       ↓ PO4--- reabsorption, ↑
hormone              ascending loop of            Ca- reabsorption
                     Hental/distal tubule
5. S ympathetic S timulation
• w ldecr se sodium a w t excr ion (incr se sodium a w t
    il ea            nd aer et          ea          nd aer
  r bsor ion)bythe following mechanis ms :
   ea pt

1. v soconstict ofbot a enta effer
    a       r ion     h ffer nd ent
   at iol t ebydecr singG R
    rer e her         ea F .
2. incr se sodium r bsor ion in t pr l
       ea          ea pt        he oxima
   t ea t a
    ubul nd hick scendingl imb.
3 incr se r r ea
 . ea enin el se incr sed A IIea ng           incr sed sodium
                                                  ea
    r bsor ion.
     ea pt
Hormones ac ting on the kidney
1. A ldos terone:
•  S timulus for its s ecretion:
   ↓ Bl v ume (v r a ent syst
       ood ol   ia enin- ngiot in em).
• A ctions & their s ite:
   Itst aes Na r bsor ion in DC T & cortical C D t ough:
      imul t + ea pt                                  hr
  1) In principal cells : ↑ Na r bsor ion in excha w h K+ .
                                 +
                                   ea pt          nge it
  2) In α -intercalated cells : ↑ Na r bsor ion in excha w h H+ .
                                       +
                                         ea pt           nge it
2. A ngiotens in II: Itis t mostpow fulNa r a hor
                          he       er + et ining mone.
•     S timulus for its s ecretion:
      ↓ at ia bl pr e &bl v ume, e.g., hemorha (v r
          rer l . essur ood ol                 r ge ia enin).
• A ctions & their s ite:
 1. It↑ Na r bsor ion bysev a mecha
           +
             ea pt           er l    nisms:
     a Byst aing adost one secr ion.
      . imul t l er               et
     b. In PC T: -Bydir l st aing Na - + APa a ba aer lbor .
                        ecty imul t     +
                                           K T se t sol t a der
                   -Bydir l st aing Na - + count ta a l lbor .
                         ecty imul t     +
                                           H    err nsp. t umina der
 2. Itconstict effer at iol
           r s ent rer es.
                                              112
Hormones acting on the kidney
3. A trial Natriuretic Peptide (A NP): Itfa it t Na &H2Oexcr ion.
                                           cil aes Cl       et
• S timulus for its s ec retion:
    ↑ Ar lpr e (r ea fr specific ar lfiber w bl v ume is ↑)
       tia essur el sed om        tia s hen ood ol
•   A c tions & their s ite:
1. It↑ G byV ofa ent&V ofeffer at iol
        FR D ffer        C     ent rer e.
2. It↓ Na r bsor ion from DC T & cortical C D .
         +
           ea pt
4. A DH:
•   S timulus for its s ecretion:
    ↑ Pl smaosmol r y&↓ bl v ume.
        a       ait      ood ol
•   A ctions & their s ite:
    ↑ w t r bsor ion in late DC T, cortical & medullary C D: byinseringa por w t
        aer ea pt                                                        t qua in aer
    cha s int t l lmembr nes.
       nnel o heir umina     a
5. Parathormone (PTH):
• S timulus for its s ecretion:
    ↓ Pl smaCa concentaion.
        a      2+
                      rt
• A ctions & their s ite:                  114
    1. ↑ Ca r bsor ion from DC T.
           2+
              ea pt                  2. ↓ Phosphae r bsor ion from PC T.
                                                 t ea pt
H A N D L IN G O F
    C E R T A IN
 IM P O R T A N T
   S O L U TE S
   B Y RENAL
   TU B U L E S
        116
I. GLUC OS E :
A nor lbl gl l el (~10 mg%), gl is fr yfiler a ar t of125 mg/ (= pl smaconc. XG R
 t ma ood ucose ev s         0      ucose eel t ed t ae            min.     a       F
= 10 mg% x 125 mlmin.).
     0           /
                                                        +
T a
 he mountfiler is compl el r bsor fr t upperhafofPCTbyNa - ucose cota t(mecha see
           t ed        et y ea bed om he      l           gl        r nspor   nism:
before).

                               +
T e is, how er al ed numberofNa - ucose car s:
 her       ev , imit             gl       rier
a- A t a blood glucos e level of les s than 180 mg%, alt filer gl
                                                      l he t ed ucose ca be
                                                                        n
r bsor beca pl yofcar s ae a a a e.
 ea bed use ent         rier r v il bl

b- A t a blood glucos e level of 180 mg%, gl st rs t a rin ur
                                           ucose at o ppea ine.
 T l elofbl gl is cal t renal thres hold forgl
  his ev   ood ucose led he                   ucose. It coresponds t arenal
                                                           r       o
tubular load of 220 mg/min.

c- A t a renal tubular load of glucos e of 320 mg/min, alt car s ae saur t
                                                        l he rier r t aed,
i.e., t trans port maximum forgl
      he                       ucose, T G, is r ched.
                                       m       ea
A furher↑ in filer gl
 ny t          t ed ucose is notr bsor &is117et in ur
                                 ea bed excr ed ine.
Glucos e reabs orption
G luc os e Titration C urves




              119
I. GLUC OS E : (cont.)


I. G LUC OS E : (cont.)
S play:
-Itis t r ofgl cur es bet een r lt eshol &T G.
      he egion ucose v w ena hr d m
-Itoccur bet een r lt a gl l ds of220 - 320 mg/min..
        s w ena ubul r ucose oa
-Itr esent t excr ion ofgl in ur befor ful saur t of
    epr s he et          ucose ine    e l t aion
 t gl car s forr bsor ion (T G)is a ed.
  he ucose rier ea pt m chiev
-Itis expl ined byt het ogeneit ofnephr
         a        he er       y        ons:
 Notalnephr ha e exa l t sa T G. Some nephr
       l      ons v cty he me m             ons
 r ch saur t a l erpl smaconcentaions t n ot s, a
  ea t aion t ow a              r t ha her nd
 gl w lbe excr ed in ur befor t a er ge T G is r ched.
   ucose il    et      ine    e he v a m ea

                                        120
GLUC OS URIA :
• Definition:
  Itis t pr
        he esence ofgl in ur Itis usual a
                      ucose ine.         ly ccompa bypol iadue t osmot diur
                                                  nied   yur     o    ic esis.
• C aus es :
1. Diabetes Mellitus :
 -T bl gl l elis high, exceeding t nor lr lgl
   he ood ucose ev                    he ma ena ucose t eshol of18 mg%.
                                                        hr d       0
 -In t condit t pl smacl r nce ofgl is a e zer &t mor a a t condit of
      his     ion, he a eaa           ucose bov o, he e dv nced he          ion
  dia es, t highert gl cl r nce.
      bet he         he ucose eaa
2. Renal G lucos uria:
 -In t condit t bl gl l elis nor l
      his     ion he ood ucose ev       ma.
 -T defectl in t r lt es t
   he       ies he ena ubul hemsel es. T e is adecr sed r lgl t eshol bel it
                                    v her            ea ena ucose hr d ow s
  nor lv l due t acongenit ldefectin t gl ta tmecha so t tt e is l ofgl
      ma aue o              a        he ucose r nspor     nism, ha her oss ucose
  in ur a nor lbl gl l el
       ine t ma ood ucose ev s.



                                       121
S odium Handling
- + is fr y filer a oss gl ul rca l r T it concentaion in gl ul rfilr t equas t tin
 Na eel t ed cr omer a pilaies. hus, s           rt        omer a tae l ha
pl sma
  a .
          +
- ofNa ae r bsor aong alsegment oft r lt e, exceptt t descending l oft l
 99%        r ea bed l l           s he ena ubul        he hin         imb he oop
ofHenle.

Na+ reabs orption along the nephron:
1. Proximal c onvoluted tubule:
   ea bs 3           t ed +
  R bsor 2/ (67%)offiler Na &H2O. T pr is isoosmot
                                   his ocess     ic.
a. E arly PC T:
      +
   -Na is r bsor bycota tw h gl
           ea bed        r nspor it ucose, a a phosphae &l ct t
                                            mino cids,      t a ae.
   -Na is aso r bsor bycount ta tv Na - + excha
      +
           l ea bed            err nspor ia + H        nge.
b. Late PC T:
    Na is r bsor (1 ry a iv ta t w h Cl (pa e diffusion).
      +
           ea bed       ct e r nspor) it - ssiv


                                        122
S odium Handling
2. Thic k as cending limb of loop of Henle:
  R bsor 25% offiler Na byt Na - + - - cota t in t l l
   ea bs             t ed + he + K 2Cl r nsporer he umina
   membr ne.
         a
3. Dis tal convoluted tubule & collecting duct:
   oget hey ea b % he t ed +
  T hert r bsor 8 oft filer Na .
    a. E arly DC T:
     Cont ins aNa - + - - cot a t in l lmembr ne simil rt
         a       +
                   K 2Cl r nsporer umina       a     ao
     t tin t a
      ha hick scending l ofl ofHenl
                           imb oop     e.
    b. Late DC T & C D: (T effectis incr sed byaldos terone).
                                 his      ea
     i. Principal cells : r bsor Na in excha forK+ .
                               ea b +        nge
    ii. α -Intercalated cells : r bsor Na in excha forH+ .
                                     ea b +         nge
                              123
Na+ handling along the nephron




              124
Factors affecting Na+
reabs orption:
1. Rate of tubular flow:
     Sl r t offl ↑ r bsor ion ofNa in l ofHenl e.g., in ↓ G R
       ow ae ow ea pt                +
                                        oop       e,             F.
2.   Glomerulotubular balanc e in PC T:
 -   Itr esent t a it oft PCTt r bsor aconst ntfr ct (2/ or67%)oft filer
        epr s he bil y he          o ea b        a a ion 3                he t ed
               +
     l d ofNa &w t .
      oa             aer
-    IfG R↑ fora r son, t filer l d ofNa aso ↑. T w ll d t a incr se in t
         F          ny ea he t ed oa        +
                                              l      his il ea o n ea he
                  +                                  +
     amountofNa r bsor in PCT so t tt a
                     ea bed       , ha he mountofNa excr ed incr ses onl sl l
                                                           et       ea    y ighty.
-    Imporat nce:
     Itis a intinsic mecha t tca be seen in dener aed kidneys. Ithel pr entov l ding
           n r            nism ha n              vt                 ps ev eroa
     ofdist lt a segment w G R↑.
           a ubul r         s hen F



                                        125
Factors affecting Na+
reabs orption
2. G lomerulotubular balanc e in PC T:
 - M nism:
    echa
   Gomer ot a baa is ba on
    l ul ubul r l nce sed
   St ring for in per ubul rca l r
    al        ces    it a pilaies,
    hich ler +
   w at Na &H2Or bsor ion:
                       ea pt
   ↑ in G Rr t in ↑ in pr ein conc. &
          F esuls        ot
   oncot pr e (πC), a w la a↓ hydr
        ic essur     s el s           o-
   st t pr e (PC)ofper ubul rca l r
    aic essur         it a pilaies.
   T in t n, ca a ↑ in w t r bsor ion fr PCT
    his, ur uses n           aer ea pt om .
                                       +
   Since w t r bsor ion is a
          aer ea pt         ccompa byNa r bsor ion, t e is maching filr t &r bsor ion,
                                  nied   ea pt her           t       taion ea pt
   orgl ul ubul rbaa
        omer ot a l nce.

3. Hormones : (s ee before)
                                 126
   1. A ldos terone, 2. A ngiotens in II, 3. A NP
Potas s ium Handling
1. G lomerular c apillaries :
   F t aion ofK+ occur fr ya oss t gl ul rca l r
    ilr t             s eel cr he omer a pilaies.
2. PC T:
   Itr bsor 67% oft filer K+ aong w h Na &w t .
      ea bs           he t ed l it + aer
3. Thick as c ending limb of loop of Henle & early DC T:
   Itr bsor 20 oft filer K+ byt Na - + - - cota t in t l lmembr ne.
      ea bs % he t ed         he + K 2Cl r nsporer he umina    a
4. Late DC T & c ollec ting duc t:
   T eit r bsor orsecr e K+ .
    hey her ea b      et
   a. Reabs orption of K +:
      - It occur onl in K+ depl ion (= l K+ diet Under t condit K+ excr ion ca be a l a 1% of
                s y           et       ow      ).       hese   ions    et     n s ow s
                                                  +
   filer l d beca t kidney conser es a much K a possibl
      t ed oa       use he              v s         s       e.
     -Itinv v aK+ - + excha a l lmembr ne ofα- er l t cels.
            ol es H          nge t umina      a       int caaed l
   b. S ec retion of K +:
    -Itoccur in pr lcels byNa - + excha
             s incipa l           +
                                    K       nge.
  -Itis v r bl Itdepends on diet r K+ , adost one &a ba st t
         aia e.                ay l er              cid- se aus.


                                               127
K + handling along the nephron




               128
Mechanis m of dis tal K + s ecretion in principal
                     cells
- A t bas olateral membrane: K+ is a iv yta t int t cel byt Na -
                                    ct el r nspored o he l he +
   K+ APa → T mecha ma a ahigh I.C. K+ conc.
       T se    his  nism int ins
 - A t luminal membrane: K+ is pa el secr ed int t l t ough K+
                                 ssiv y et o he umen hr
   cha s.
      nnel

 he mount of t pa e secr ion is det mined by t concentaion gr dient a ing on K+
T a           his ssiv et           er       he      rt      a       ct
   a oss t l lmembr ne:
    cr he umina       a
In condit t t↑ I.C. K+ conc. or↓ t l lK+ conc.
          ions ha                  he umina
         → ↑ t dr ingfor forsecr ion.
                he iv    ce       et
In condit t t↓ I.C. K+ conc. or↑ t l lK+ conc.
          ions ha                  he umina
         → ↓ t dr ingfor forsecr ion.
                he iv    ce       et

                                     129
Mechanis m of K + s ecretion in the principal
             cell of the DC T




    2




                     1
                                       3



                     130
HA NDLING OF C E RTA IN IMPORTA NT
        S OLUTE S B Y RE NA L TUB ULE S
Fac tors affecting dis tal K + s ec retion:
1. Dietary K +:
  High K+ diet→ ↑ I.C. K+ → ↑ dr ing for → ↑ K+ secr ion.
                                 iv      ce          et
  LowK+ diet → ↓ I.C. K+ → ↓ dr ing for → ↓ K+ secr ion.
                                 iv      ce          et
2. A ldos terone:
 -A t ba aer lmembr ne: Itst aes Na - + APa → ↑ K+
   t he sol t a        a    imul t + K T se
     upt ke bypr lcels → ↑ I.C. K+ concentaion → ↑ dr ing for for
        a       incipa l                 rt          iv      ce
     K+ secr ion.
            et
 -A t l lmembr ne: It↑ t numberofK+ cha s.
   t he umina        a    he               nnel
3. A c id-bas e s tatus :
A Na ions ae r bsor in excha fort secr ion ofK+ orH+ ions, t e is compet ion forNa ions in t
 s +        r ea bed            nge he et                     her       it        +
                                                                                           he
    t a fl
     ubul r uid:
  In a cidosis: M e H+ t n K+ ent s t a epit ia cel a oss t ba aer lmembr ne → ↓ I.C. K+ → ↓
                  or ha          er ubul r hel l l cr he sol t a           a
  dr ingfor forK+ secr ion.
    iv      ce          et
  In akaosis: L H+ t n K+ ent s t a epit ia cel a oss t ba aer lmembr ne → ↑ I.C. K+ → ↑
        l l ess ha               er ubul r hel l l cr he sol t a           a
  dr ingfor forK+ secr ion.
    iv      ce          et                      131
HA NDLING OF C E RTA IN IMPORTA NT
       S OLUTE S B Y RE NA L TUB ULE S

V. Phos phate:
    5% t ed         t ea bed              r nspor it + nd he est
 - 8 offiler phosphae is r bsor in PCTbycota tw h Na a t r is excr ed in
                                                                  et
   urine.

- Paahyr hor (PT inhibit phosphae r bsor ion in PCT&ca phos phaturia.
    r t oid mone H)    s        t ea pt               uses

- Phosphae is aur r bufferforH+ .
         t       inay




                                    132
HA NDLING OF C E RTA IN IMPORTA NT
      S OLUTE S B Y RE NA L TUB ULE S


VI. C alc ium:
- Nor ly, 99% offiler cacium ae r bsor byr lt es.
       mal         t ed l      r ea bed ena ubul
- Itshoul be not how er t tonl 50 ofpl smacacium, w is ionized cacium, is filer a oss
        d      ed, ev , ha y % a             l     hich          l           t ed cr
    t gl ul rca l r w e t ot 50 ofpl smacacium ae bound t pl smapr eins a
     he omer a pilaies, hil he her % a           l      r       o a         ot nd
    ca be filer
      nnot t ed.
      67% ae r bsor in PCT
               r ea bed      .
      25- 0 ae r bsor in t l ofHenl
            3 %% r ea bed he oop          e.
      5- % ae r bsor in DCT&CD. PT st aes Ca r bsor t fr DCT
           10 r ea bed                H imul t 2+ ea p-ion om .
Urea Handling
(1) PC T
                 A bout 50% of the filtered urea is pas s ively reabs orbed
 The wall of PC T is partially permeable to urea but highly permeable to water s o water
      reabs orption from PC T → increas es urea concentration in tubular lumen. This
                    creates concentration gradient → Urea reabs orption.
(2) Thick as cending limb of loop of Henle, DC T and cortical
    collecting tubules
                          A ll are relatively impermeable to urea.
           H2O reabs orbed in DC T and cortical collecting tubule (in pres ence
                of A DH) → increas ed urea concentration in tubular fluid.
(3) Inner medullary portion of the collecting duct
        Urea diffus es into the medullary inters titium to increas e its os molality.
                         Diffus ion of urea is facilitated by A DH.
                40 - 60% of the tubular load of urea is exc reted in urine.
► Urea cycle
 •   Urea moves from the medullary inters titium into the thin loop of
      • the Henle and back down into the medullary collecting
            • duct and again to medullary inters titium
             • s everal times before urea is excreted.
Urea recycling
Handling of Hydrog en
                             1. PC T 85%
              2. Thic k as cending loop of Henle 10%
                 3. DC T and collec ting tubule 5%.
Mechanis m of H+ s ecretion
A) In PCT, LH and initial part of DCT:
           M ofH+ is secr ed bys econdary active trans port.
            ost          et
                          Itis Na dependent.
                   A ipor car a l lbor bind Naa H.
                    nt t rier t umina der      nd

B) In late part of DCT and CD:
  Hydr is secr ed byprimary activ e trans port ByInterc alated cells ,
      ogen    et
                hydr secr ion is st aed byadost one a bot
                    ogen et       imul t   l er nd h
                     hydr a pot ssium compet forsecr ion.
                         ogen nd a         e        et
B icarbonate Handling
 Plas ma HCO3 plays an important
     role in the reg ulation of pH of
                 plas ma.
Mos t of the filtered bicarbonate (99
       % or more) is reabs orbed.
    1) A bout 80 to 90 % of the
        bicarbonate reabs orption
           occurs in the PC T.
 2) In the thick as cending loop of
       Henle, 10 % of the filtered
       bicarbonate is reabs orbed,
      3) the remainder of the
       reabs orption takes place in
Bicarbonate Handling
A mino acid handling



• S econdary
  active
  trans port
  coupled with
  s odium
Subs               Description                 Proximal tubule        Loop of Henle        Distal tubule    Collecting duct

           If glucose is not reabsorbed by     reabsorption (almost
              the kidney, it appears in the         100%) via
glucose    urine, in a condition known as     sodium-glucose transport proteins-                   -                 -
            glucosuria. This is associated           (apical)
                with diabetes mellitus..      and GLUT(basolateral
                                                        ).
amino acids Almost completely conserved.      Reabsorption (active)             -                  -                 -

  urea     Regulation of osmolality. Varies   reabsorption (50%) via        secretion              -         reabsorption in
                      with ADH                  passive transport                                            medullary ducts
                                                                          reabsorption       reabsorption reabsorption (5%,
           Uses Na-H antiport, Na-glucose      reabsorption (65%,          (25%, thick           (5%,        principal cells),
sodium     symport, sodium ion channels            isosmotic)              ascending,        sodium-chloride symporter by
                                                                                                              stimulated
                                                                       Na-K-2Cl symporter          )           aldosterone
                                                                                )
            Usually follows sodium. Active                                reabsorption       reabsorption
chloride     (transcellular) and passive (        reabsorption          (thin ascending,       (sodium-              -
                     paracellular)                                     thick ascending,      chlorid symp
                                                                            Na-K-2Cl
                                                                                                               reabsorption
 water             Uses aquaporin.                      -                reabsorption              -          (with ADH, via
                                                                         (descending)                        vasopressin recepto
                                                                                                                      )
              Helps maintain acid-base        reabsorption (80-90%)       reabsorption                         reabsorption
 HCO3                balance. [8]                       [9]            (thick ascending)           -           (intercalated
                                                                               [10]
                                                                                                                   cells,
                                                                                                                 secretion
   H         Uses [[vacuolar H+ATPase]]                 -                       -                  -           (intercalated
                                                                                                                   cells)
                                                                         reabsorption
                                                                          (20%, thick             secretion increased by
   K          Varies upon dietary needs.       reabsorption (80%)         ascending,                   aldosterone)
                                                                       Na-K-2Cl symporter
                                                                               )
                                                                       reabsorption (thick   reabsorption
calcium                                            reabsorption          ascending) via       stimulated             -
                                                                        passive transport       by PTH
                                                reabsorption (80%)
 phosp        Excreted as titratable acid.         Inhibited by                 -                  -                 -
                                               parathyroid hormone.
Table 41-3 NaCl transport along the nephron
     Segment          Percentage filtered   Mechanism of Na+         Major regulatory
                         reabsorbed          entry across the          hormones
                                            apical membrane
Proximal tubule       67%                   Na+-H+exchange,         Angiotensin II
                                            Na+-cotransport with
                                            amino acids and         Norepinephrine
                                            organic solutes, Na+/
                                            H+-Cl-/anion            Epinephrine
                                            exchange
                                                                    Dopamine
                                    Paracellular
Loop of Henle         25%                   1 Na+-1K+-2Cl-          Aldosterone
                                            symport
Distal tubule         ~4%                   NaCl symport            Aldosterone

Late distal tubule    ~3%                   Na+ channels            Aldosterone
and collecting duct
                                                                    Atrial natriuretic
                                                                    peptide
                                                                    Urodilatin
Table 41-4 Water transport along the nephron


   Segment      Percentage of Mechanism of       Hormones
                 filtered load    water         that regulate
                 reabsorbed    reabsorption         water
                                                permeability
Proximal tubule 67%           Passive          None


Loop of Henle   15%           DTL only;        None
                              passive

Distal tubule   0%            No water         None
                              reabsorption

Late distal     ~8%-17%       Passive          ADH, ANP
tubule and
URINE
C ONC E NTRA TION
Mechanis ms to C oncentrate
Urine
                                creation of
• Countercurrent Multiplication--
  osmot gr dient
      ic a
   – L ofHenl
      oop    e
   – G aes aur t tis concentaed a high a 60 mosm/
      ener t   ine ha      rt s         s 0     L
• Urea recycling
   – M l r Colect Duct
       edulay l ing
   – Needed t incr se t osmol rgr dientfr 60 t 120 mosm/
             o ea he          a a        om 0 o 0      L
   – Kidneys use ur t do osmot w k w in st t ofa idiur
                   ea o      ic or hen ae nt esis
• Countercurrent exchang e-- asarectam aintains the
                           v
  medulayinst st ia osmot gr dientsetup byt count curentmulipl
      l r er it l       ic a              he    er r      t ier
PRODUC TION OF C ONC E NTRA TE D URINE
• Concentaed ur is aso cal hyperos motic urine (ur osmol r y> bl osmol r y).
          r t ine l led                                         ine ait ood ait
• T kidneyexcr es excess sol es, butdoes notexcr e excess a s ofw t .
    he          et           ut                 et         mount aer
• The bas ic requirements for forming a c onc entrated urine
   are:
1. a high level of A DH, e.g., in w t depr aion orhemorha
                                        aer iv t               r ge
   → ↑ per bil yofl t DCT&CDs t w t , al ing t segment
            mea it ae               o aer low hese               s
      t r bsor al r a
       o ea b age mountofw t .   aer
2. a high os molarity of the renal medullary inters titial fluid
   → pr ides t osmot gr dientnecessayforw t r bsor ion t
         ov he        ic a            r      aer ea pt o
      occurin t pr
              he esence ofhigh l el ofA
                                ev s DH.
• A erpa t t int st ium, w t is car byt v sar aba int t bl
    ft ssing o he er it          aer ried he a ect ck o he ood.



                                      146
PRODUC TION OF C ONC E NTRA TE D URINE
Reabs orption of Water in Pres ence of ADH:
In PC T, loop of Henle & early DC T:
 -Sa a in for t ofdil e ur (see befor
    me s maion ut ine                e).
  -T t a fl r ching t l t DCTis hyposmot (10 mOsm/).
    he ubul r uid ea   he ae              ic 0      L
Late DC T:
  -A ↑ t w t per bil yoft pr lcels oft l t DCT
    DH he aer mea it he incipa l he ae .
   ⇒ Wt is r bsor unt t osmol r yoft DCTequas t tofsurounding int st ia fl in r l
         aer ea bed il he         ait he        l ha        r         er it l uid ena
   corex (3 0mOsm/).
      t 0           L
C Ds :
 -A ↑ t w t per bil yofpr lcels ofCDs.
   DH he aer mea it          incipa l
 -A t t a fl fl s t ough t CDs, itpa t ough r
   s he ubul r uid ow hr he           sses hr  egions ofincr sing hyper ait t ad
                                                            ea         osmol r y ow r
   t innermedula
    he           l.
 -Wt is r bsor fr t CDs unt t osmol r yoft t a fl equas t toft surounding
    aer ea bed om he          il he     ait he ubul r uid l ha he r
   int st ia fl
      er it l uid.
   ⇒ T osmol r yoft fina ur r ches 120 mOsm/.
        he      ait he l ine ea          0
                                         147  L
II. PRODUC TION OF C ONC E NTRA TE D URINE (cont.)




                          148
II. PRODUC TION OF C ONC E NTRA TE D URINE (cont.)




                          149
The C ounterc urrent S ys tem
• T count curentsyst is r
   he       er r      em esponsibl fort cr t &ma ena ofagr dual incr sing
                                    e he eaion         int nce       a ly ea
  hyper ait in t r lmedulayint st ium, w is essent lforena ing t kidneyt
        osmol r y he ena        l r er it      hich        ia       bl he       o
  concentae ur in t pr
          r t ine he esence ofenough cir aing A
                                          cul t DH.
• T osmot gr dientis due t a
   his       ic a          o ccumul t ofsol es (pr r yNa &ur )in gr texcess ofw t in
                                    aion ut imail Cl ea ea                        aer
  t medulayint st ium.
   he       l r er it
• Once t high sol e concentaion in medulaha been a ed, itis ma a byabaa out owof
         he       ut      rt            l s       chiev        int ined   l nced fl
  sol es &w t in t medula
     ut       aer he      l.
• T osmot gr dientis
   his       ic a
   1. est bl byt l ofHenl w a s a ac ounterc urrent multiplier.
         a ished he oop        e, hich ct s
   2. pot iaed byt colect duct w al s urea recycling t occur
         ent t      he l ing , hich low                             o   .
   3 ma a byt v sar a w a a counterc urrent exchangers .
    . int ined he a ect , hich ct s



                                        150
THE C OUNTE RC URRE NT S YS TE M
Loop of Henle A cting as C ounter C urrent Multiplier
             How does the renal medulla become
                       hyperos motic?
1. Befor t osmot gr dientoft medulais est bl
        e he   ic a        he     l     a ished, t osmol r yis t sa t oughoutt
                                                 he    ait he me hr          he
    nephr (3 0mOsm/).
         on 0       L
2. T a iv pumping ofNa outoft thick as c ending limb occur w houtconcomit nt
    he ct e             Cl     he                               s it       a
     movementofw t → ↓ in osmol r yoft a fl inside a
                 aer             ait ubul r uid     scending l (20 mOsm/)&↑ in
                                                             imb 0     L
     osmol r yofmedulayint st ia fl (4 0mOsm/).
         ait         l r er it l uid 0      L

3 A fl pa dow t des c ending limb, itr ches osmot equil ium w h medulay
 . s uid sses n he                                  ea         ic ibr it             lr
   int st ium due t osmosis ofw t outofdescending l [Int st ia osmol r yis ma a a 4 0
      er it       o            aer                imb. er it l        ait    int ined t 0
   mOsm/ due t cont ta tofions outoft a
          L o inued r nspor                                imb.] T t e is agr dua ↑ in
                                             hick scending l      hus, her     a l
   t a fl osmol r ya itfl s t ads t ha pin bend.
    ubul r uid      ait s ow ow r he ir
4 A mor fl ent s descending l fr PCT hyper ic fl pr iousl pr in descending
 . s e uid er                  imb om ,         osmot uid ev y esent
   l nowfl s int t a
    imb      ow o hick scending l  imb.


                                          151
THE C OUNTE RC URRE NT S YS TE M
     Loop of Henle A cting as C ounter C urrent
                    Multiplier
5. M e Na is pumped fr t a
       or Cl              om hick scending l int int st ium, but w t r ins in t e. T
                                            imb o er it             aer ema       ubul his
   cont unt a20 mOsm/ osmot gr dientis est bl
        inues il 0         L     ic a           a ished. Nowosmol r yin medulayint st ium ha
                                                                 ait         l r er it      s
   r furhert 50 mOsm/.
    isen t o 0            L
6. Once a in t fl in descending l equil aes w h hyper ic medulay int st ia fl now
           ga he uid               imb     ibr t it        osmot       l r er it l uid,
   r ching 50 mOsm/ a t t
    ea         0     L t he ip.
7. T st ae r t ov & ov , a
    hese eps r epeaed er er dding mor & mor sol e t t medulain excess ofw t . T
                                              e      e ut o he         l            aer his
   pr ocess gr dual ta sol es in t medula ev ual r ising t int st ia osmol r y t 120
              a ly r ps ut         he      l , ent ly a        he er it l        ait o 0
   mOsm/.  L
• Ov al t pr essiv ta t of Na fr t t a fl int t int st ium r t in t
      er l, he ogr e r nspor           Cl om he ubul r uid o he er it esuls he
   est bl
       a ishmentofal udina osmot gr dientin t medula
                    ongit l       ic a         he      l.
⇒      Thus , the countercurrent arrangement of the loop of Henle
    multiplies a relatively s mall trans epithelial os motic gradient into a
    large longitudinal gradient.



                                            152
C OUNTE RC URRE NT MULTIPLIE R S YS TE M IN
             LOOP OF HE NLE




                    153
Role of DC T & C Ds in Urine C oncentration
• T a fl fl ing fr l ofHenl int DCTis dil e.
   ubul r uid ow om oop            e o          ut
• T eal DCTfurherdil es t fl beca t segment l t a
   he ry         t     ut he uid, use his           , ike he scending l ofl ofHenl
                                                                       imb oop      e,
  a iv yta t Na outoft e, butis imper bl t w t .
   ct el r nspors Cl         ubul            mea e o aer
• W h high A concentaions, l t DCT&corica CD become highl per bl t w t → large
    it       DH       r t ae              t l              y mea e o aer
  amounts of water are reabs orbed from the tubule into the
  c ortical inters titium, w e itis sw a a byt per ubul rca l r
                                  her       ept w y he it a pilaies.
• W h high A l el t e is furherw t r bsor ion fr medulayCDs t int st ium. How er t
    it       DH ev s, her     t aer ea pt om                lr       o er it      ev , he
  amountofw t is r aiv ysmalcompaed w h t ta t t corica int st ium. R bsor w t
             aer el t el l            r it ha dded o he t l er it            ea bed aer
  is quickl car a a byv sar aint v
           y ried w y a ect o enous bl        ood.
N.B . T fa t tl r a s ofw t ae r bsor int t corex, r t t n int t medula hel
         he ct ha age mount aer r ea bed o he t aher ha o he                       l , ps
  t pr v t high medulayint st ia fl osmol r y.
   o eser e he           l r er it l uid       ait
• T in t pr
   hus, he esence ofA t fl a t end ofCDs ha t sa osmol r ya t medulay
                        DH, he uid t he            s he me        ait s he     lr
  int st ium (120 mOsm/).
     er it       0      L
⇒ Byr bsor a much w t a possibl t kidneys for ahighl concentaed ur w e a
        ea bing s        aer s        e, he        m       y        r t ine hil dding
  w t ba t E &compensaing fordeficitofbodyw t .
    aer ck o CF             t                    aer



                                          154
Urea Rec ycling
•      he esence ofA urea c ontibutes 40% t t medulayint st ia osmol r y(=
    In t pr         DH,                       o he    l r er it l        ait
    50 mOsm/)bypa e ur r bsor ion fr t innermedulayCDs int t int st ium.
       0     L     ssiv ea ea pt om he           lr      o he er it
Mec hanis m:
 -Ascending l ofl ofHenl DCT corica CDs &out medulayCDs ae imper bl t ur .
             imb oop        e, , t l            er        lr       r     mea e o ea
 -A w t is r bsor fr l t DCT corica &out medulayCDs, ur concent aion ↑ r pidl
   s aer ea bed om ae , t l er                       lr         ea      rt      a y.
 -In innermedulayCDs, furherw t r bsor ion t kes pl ce, so t tur concentaion r ev mor
                lr       t aer ea pt a a                   ha ea         r t ises en e.
    T ur diffuses outoft t e int r lint st ium beca t segmentis highl per bl t
     hus, ea              he ubul o ena er it            use his             y mea e o
    ur , a A incr ses t per bil yev mor
      ea nd DH ea his mea it en e.
 -Amoder t shae oft ur t tmov int medulayint st ium diffuses int t descending l of
          ae r he ea ha es o                l r er it                o hin        imb
    l ofHenl so t titpa a in in t a fl Itr cul t sev a t befor itis excr ed.
     oop       e, ha sses ga ubul r uid. ecir aes er l imes e                      et
    E ch t aound itcontibut t ahigherconcentaion ofur in int st ium.
     a ime r            r es o              rt         ea er it
⇒ Ur r cul t pr ides a a iona mecha forfor ahyper icmedula
      ea ecir aion ov n ddit l           nism       ming         osmot      l.




                                          155
URE A RE C YC LING




         156
THE C OUNTE RC URRE NT S YS TE M
Vas a Recta as C ountercurrent E xchanger
• Bl mustbe pr ided t r lmedulat suppl it met bol needs, butw houtaspecia bl fl syst
    ood            ov o ena             l o      y s a ic              it        l ood ow em,
  sol es pumped int t medulabycount curentmulipl w d r pidl getl .
     ut             o he       l          er r       t ier oul a y ost
• T e ae 2 specia feaur in medulay bl fl t t contibut t t pr v t of t high sol e
   her r             l t es              l r ood ow ha r e o he eser aion he                  ut
  concentaions:
          rt
1. The medullary blood flow is low (onl 1- of t a R → sufficient for met bol
                                                           y 2% ot l BF)                   a ic
  needs oftissues, butminimizes sol e l
                                   ut oss.
2. The vas a rec ta s erve as countercurrent exchangers .
C ountercurrent E xchange Mechanis m:
• A bl des c ends into medulla, itbecomes mor &mor concentaed, byga sat&l
    s ood                                                    e      e     rt      ining l osing
  w t . A t t ofv sar abl ha aconcentaion of1200 mOs m/L.
    aer t he ips a ect ood s                      rt
• A bl a
    s ood scends ba t ad corex, t r er sequence occur a bl l v v sar ais onl sl l
                      ck ow r t he ev se                      s, nd ood ea ing a ect     y ighty
  hyperos motic to normal plas ma.
⇒ Dur it pa ge t ough medula bl ha r ed t excess sat& w t t tha e been a by t
       ing s ssa hr                  l , ood s emov he             l aer ha v          dded he
  ta tpr
   r nspor ocesses occuring in t deeperr
                          r       he        egions oft medula
                                                     he     l.
⇒ T t U- pe ofv sar amaintains the concentration of s olutes est bl
     hus, he sha        a ect                                                             a ished
  bycount curentsyst
          er r         em.

                                              157
Vas a Rec ta as C ounterc urrent E xc hanger




                       158
Diures is and diuretics
            Diures is is an increas e in the rate of urine output.
(A ) H2O diures is
Increas e H2O intake → decreas e Os motic. Pr → decreas e A DH →
      decreas e facultative H2O reabs orption i.e. Urine large volume and
      hypotonic.

(B ) Os motic diures is
Unreabs orbable s olute in PC T→ decreas e obligatory H2O
     reabs orption → decreas e Na+ concentration in tubular fluid →
     decreas e os molarity of medullary inters titium → decreas e
     facultative H2O reabs orption.
-Urine: large volume and is otonic or hypertonic.

(C ) Pres s ure diures is
Increas e in arterial blood pres s ure leads to:
•      ↑G FR.
•      Inhibition of rennin angiotens in s ys tem → ↓ renin and
       angiotens in II production.
(4) Diuretic drugs
 (A)Thiazides :          inhibitNar bsor ion in DCT
                                   ea pt           .

 (B) Aldos terone inhibitors : (Potas s ium-s paring
     diuretics ) e.g. alldactone:
           inhibitNaKexcha in DCTa colect t es → decr se ser
                    -     nge      nd l ing ubul     ea um
                              Naa incr se ser K+ .
                                 nd ea um

 (C) Carbonic anhydras e inhibitors e.g. acetazolamide
     (Diamox).
         Itinhibit cabonic a a enzyme → decr se Hsecr ion → decr se Na
                 s r        nhydr se          ea         et        ea
                 a HCO3-r bsor ion in PCTa incr se Ksecr ion in DCT
                  nd       ea pt           nd ea           et
                        → incr se Na HCO3 &Kexcr ion in ur
                               ea ,             et        ine.
                                M yl d t acidos is .
                                  a ea o

 (D) Loop diuretics e.g. frus emide (las ix):
                 inhibitNaK- cota t s in t t a
                          - 2Cl r nsporer he hick scending l
                                                           imb
                                 ofl ofHenl
                                    oop   e.
The act of
Micturition
Micturition Reflex
• A s bladder fills s ens ory s tretch receptors
  s end s ignals via pelvic nerves to s acral
  s egments of s pinal c ord.

• Paras ympathetic s timulation of the bladder
  s mooth mus cle via the s ame pelvic nerves
  occurs .

• It is “ s elf-regenerative” , s ubs ides , then re-
  generates again until the external
  s phincter is relaxed and urination can
Innervation
Parasympathetic
  Pre-glanglionic  S2, S3, S4 unite to form Pelvic nerves
  Post-ganglionic  onto detrusor muscle & internal sphincter




 Sympathetic
   Pre-ganglionic  L1, L2, L3
   Post-ganglionic  onto trigone, neck, & internal sphincter
   Little to do with bladder contraction
    o--------- o------------------------------------------
              Ach                                          NE
Innervation con’t…
Afferents (sensory nerves)
     Pelvic nerve: impulses due to bladder fullness; micturition reflex;
     pain impulses
     Hypogastric nerve: pain impulses
     Pudendal nerve: sensory impulses from urethra

Somatic Efferent (Pudendal nerve)
        Impulses originate in S1 and S2; innervate external sphincter
        Mediate voluntary control of micturition
Anatomy of Micturition
• Internal s phincter
-det usormuscl in t bl dderneck w t nor lykeeps t
    r         e he a              hose one mal  he
   bl dderneck a post ior
    a           nd er
ur hr empt ofur a t efor pr ent
  et a y ine nd her e ev s
empt oft bl dderunt t pr e in t ma patoft
    ying he a           il he essur he in r he
   bl dderexceeds acr ica l el
    a                it l ev

• E xternal s phincter
-l yerofv unt r skel a muscl w surounds t ur hr a it
  a       ol ay et l       e hich r       he et a s
   pa t ough t ur a dia a
     sses hr he ogenit l phr gm
-underv unt r cont ola ca conciousl pr entur t ev w
        ol ay r nd n              y ev inaion en hen
   inv unt r cont ol ae at ing t empt t bl dder
      ol ay r s r tempt o y he a
Bladder Filling and Micturition
Bladder Filling:
1. Empty bladder: 0 pressure
2. 30 - 50 mls of urine  5 - 10 cm H2O
3. 50 - 300 ml little pressure change
4. With filling, increased
   activity of external sphincter
   (maintains continence, or control of
      excretory functions)
5. > 300 - 400 ml  discomfort;
   leads to urgency


                                          Start of Micturition:
                                          1. As bladder fills, micturition (bladder)
                                               contractions begin to appear
                                               a. Last from a few seconds to more
                                               than a minute
                                               b.    Pressure peaks (micturition
                                               waves) may rise a few cm H2O to
                                               more than 100 cm H2O
                                               c. Caused by micturition reflex
Micturition Con’t…
2. Micturition reflex (does not need the
     brain)
     a. Filling stimulates sensory stretch
     receptors
     b. Afferent impulses in Pelvic nerve
     c. Signal reflexively sent back to
     bladder via efferent parasympathetic
     fibers in the Pelvic nerve
     d. Detrusor muscle contracts, then
     relaxes
                                             2. Micturition reflex - continued
                                                   e. As bladder fills, micturition reflex occurs
                                                         more frequently, with greater
                                                         contraction of bladder wall (positive
                                                         feedback loop)
                                                   •     Micturition powerful enough then
                                                         another signal is sent through Pudendal
                                                         nerve to inhibit external sphincter
                                                         (internal relaxes passively when
                                                         pressure is 20 - 40 cm H2O)
                                                   •     Voluntary relaxation of external
                                                         sphincter allows for urination
                                                   •     Flow thru urethra stimulates
                                                         parasympathic system, sustaining
                                                         bladder contraction
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology
Renal physiology

Mais conteúdo relacionado

Mais procurados

Renal Physiology
Renal PhysiologyRenal Physiology
Renal Physiology
Kern Rocke
 
Gfr(glomerulur) filtration rate and its regulation
Gfr(glomerulur) filtration rate and its regulationGfr(glomerulur) filtration rate and its regulation
Gfr(glomerulur) filtration rate and its regulation
saif khan
 
URINE FORMATION
URINE FORMATION URINE FORMATION
URINE FORMATION
sakshi nayak
 

Mais procurados (20)

Renal tubule transport mechanisms
Renal tubule transport mechanismsRenal tubule transport mechanisms
Renal tubule transport mechanisms
 
Renal system physiology
Renal system physiologyRenal system physiology
Renal system physiology
 
Renal physiology 2 dr osama elshahat
Renal physiology  2 dr osama elshahatRenal physiology  2 dr osama elshahat
Renal physiology 2 dr osama elshahat
 
Urinary system
Urinary systemUrinary system
Urinary system
 
JUXTA GLOMERULAR apparatus
JUXTA GLOMERULAR apparatus JUXTA GLOMERULAR apparatus
JUXTA GLOMERULAR apparatus
 
Glomerular filtration
Glomerular filtrationGlomerular filtration
Glomerular filtration
 
Renal Physiology
Renal PhysiologyRenal Physiology
Renal Physiology
 
Gfr(glomerulur) filtration rate and its regulation
Gfr(glomerulur) filtration rate and its regulationGfr(glomerulur) filtration rate and its regulation
Gfr(glomerulur) filtration rate and its regulation
 
Renal physiology bpums
Renal physiology bpumsRenal physiology bpums
Renal physiology bpums
 
Kidney as an endocrine gland and its non excretory fuctions
Kidney as an endocrine gland and its non excretory fuctionsKidney as an endocrine gland and its non excretory fuctions
Kidney as an endocrine gland and its non excretory fuctions
 
URINE FORMATION
URINE FORMATIONURINE FORMATION
URINE FORMATION
 
Urine concentration
Urine concentrationUrine concentration
Urine concentration
 
Urinary system
Urinary systemUrinary system
Urinary system
 
Renal anatomy
Renal anatomyRenal anatomy
Renal anatomy
 
Structure and function of kidney & Renal Circulation (2).pptx
Structure and function of kidney & Renal Circulation (2).pptxStructure and function of kidney & Renal Circulation (2).pptx
Structure and function of kidney & Renal Circulation (2).pptx
 
Anatomy and Physiology of Urinary System
Anatomy and Physiology of Urinary SystemAnatomy and Physiology of Urinary System
Anatomy and Physiology of Urinary System
 
URINE FORMATION
URINE FORMATION URINE FORMATION
URINE FORMATION
 
Urinary system
Urinary systemUrinary system
Urinary system
 
Nephron
NephronNephron
Nephron
 
Autoregulation of glomerular filtration rate and renal blood
Autoregulation of glomerular filtration rate and renal bloodAutoregulation of glomerular filtration rate and renal blood
Autoregulation of glomerular filtration rate and renal blood
 

Destaque

Kidney anatomy, physiology and disorders
Kidney anatomy, physiology and disordersKidney anatomy, physiology and disorders
Kidney anatomy, physiology and disorders
University of Mauritius
 
Kidney physiology
Kidney physiologyKidney physiology
Kidney physiology
stewart_j
 
Biomechanics powerpoint 2010
Biomechanics powerpoint 2010Biomechanics powerpoint 2010
Biomechanics powerpoint 2010
mrsdavison
 
Urinary+system+anatomy+and+physiology
Urinary+system+anatomy+and+physiologyUrinary+system+anatomy+and+physiology
Urinary+system+anatomy+and+physiology
Kapil Dhital
 

Destaque (19)

Kidney anatomy, physiology and disorders
Kidney anatomy, physiology and disordersKidney anatomy, physiology and disorders
Kidney anatomy, physiology and disorders
 
Renal physiology
Renal physiologyRenal physiology
Renal physiology
 
Kidney physiology
Kidney physiologyKidney physiology
Kidney physiology
 
Renal physiology introduction.
Renal physiology introduction.Renal physiology introduction.
Renal physiology introduction.
 
Renal Physiology (II) - Glomerular Structure & Filtration - Dr. Gawad
Renal Physiology (II) - Glomerular Structure & Filtration - Dr. GawadRenal Physiology (II) - Glomerular Structure & Filtration - Dr. Gawad
Renal Physiology (II) - Glomerular Structure & Filtration - Dr. Gawad
 
Kidney function
Kidney functionKidney function
Kidney function
 
Renal Lectures
Renal LecturesRenal Lectures
Renal Lectures
 
Urinary system
Urinary systemUrinary system
Urinary system
 
‫Physiology of the kidney proff ahmed donia ‫‬
‫Physiology of the kidney proff ahmed donia ‫‬‫Physiology of the kidney proff ahmed donia ‫‬
‫Physiology of the kidney proff ahmed donia ‫‬
 
Shoulder anatomy and biomechanics
Shoulder anatomy and biomechanicsShoulder anatomy and biomechanics
Shoulder anatomy and biomechanics
 
biomechanics of shoulder
biomechanics of shoulderbiomechanics of shoulder
biomechanics of shoulder
 
Renal Physiology (III) - Renal Tubular Processing - Dr. Gawad
Renal Physiology (III) - Renal Tubular Processing - Dr. GawadRenal Physiology (III) - Renal Tubular Processing - Dr. Gawad
Renal Physiology (III) - Renal Tubular Processing - Dr. Gawad
 
Renal Physiology (VI) - IV fluids (Applied physiology) - Dr. Gawad
Renal Physiology (VI) - IV fluids (Applied physiology) - Dr. GawadRenal Physiology (VI) - IV fluids (Applied physiology) - Dr. Gawad
Renal Physiology (VI) - IV fluids (Applied physiology) - Dr. Gawad
 
Obstructive uropathy
Obstructive uropathyObstructive uropathy
Obstructive uropathy
 
Biomechanics powerpoint 2010
Biomechanics powerpoint 2010Biomechanics powerpoint 2010
Biomechanics powerpoint 2010
 
Urinary+system+anatomy+and+physiology
Urinary+system+anatomy+and+physiologyUrinary+system+anatomy+and+physiology
Urinary+system+anatomy+and+physiology
 
Renal Failure
Renal FailureRenal Failure
Renal Failure
 
brain computer-interfaces PPT
 brain computer-interfaces PPT brain computer-interfaces PPT
brain computer-interfaces PPT
 
Biomechanics of shoulder complex
Biomechanics of shoulder complexBiomechanics of shoulder complex
Biomechanics of shoulder complex
 

Semelhante a Renal physiology

2012 4-16 renal physiology
2012 4-16 renal physiology2012 4-16 renal physiology
2012 4-16 renal physiology
Hannusiya
 
35. kidney 1-07-08
35. kidney 1-07-0835. kidney 1-07-08
35. kidney 1-07-08
Nasir Koko
 

Semelhante a Renal physiology (20)

Urinary system
Urinary systemUrinary system
Urinary system
 
Ali Abbas (model lesson.ppt).pdf
Ali Abbas (model lesson.ppt).pdfAli Abbas (model lesson.ppt).pdf
Ali Abbas (model lesson.ppt).pdf
 
2012 4-16 renal physiology
2012 4-16 renal physiology2012 4-16 renal physiology
2012 4-16 renal physiology
 
Renal system
Renal systemRenal system
Renal system
 
Nephron (The Guyton and Hall physiology)
Nephron (The Guyton and Hall physiology)Nephron (The Guyton and Hall physiology)
Nephron (The Guyton and Hall physiology)
 
Urinary System Part II
Urinary System Part IIUrinary System Part II
Urinary System Part II
 
Human kidney,structure and functions of kidney
Human kidney,structure and functions of kidneyHuman kidney,structure and functions of kidney
Human kidney,structure and functions of kidney
 
Physiology
PhysiologyPhysiology
Physiology
 
Physiology
PhysiologyPhysiology
Physiology
 
Chapter 26
Chapter 26Chapter 26
Chapter 26
 
renal.pptx
renal.pptxrenal.pptx
renal.pptx
 
35. kidney 1-07-08
35. kidney 1-07-0835. kidney 1-07-08
35. kidney 1-07-08
 
Histology of the Kidney part 1
Histology of the Kidney part 1Histology of the Kidney part 1
Histology of the Kidney part 1
 
Urinary Syst 15.10.23.pdf
Urinary Syst 15.10.23.pdfUrinary Syst 15.10.23.pdf
Urinary Syst 15.10.23.pdf
 
General anatomy of urinary system ppt
General anatomy of urinary system pptGeneral anatomy of urinary system ppt
General anatomy of urinary system ppt
 
Urinary System
Urinary SystemUrinary System
Urinary System
 
PHS 352 lecture 1.pptx
PHS 352 lecture 1.pptxPHS 352 lecture 1.pptx
PHS 352 lecture 1.pptx
 
structure and function of kidney.pptx
structure and function of kidney.pptxstructure and function of kidney.pptx
structure and function of kidney.pptx
 
Histology of whole urinary tract
Histology of whole  urinary tractHistology of whole  urinary tract
Histology of whole urinary tract
 
Urinary system
Urinary systemUrinary system
Urinary system
 

Mais de Ramadan physiology (8)

physiology of puberty.pptx
physiology of puberty.pptxphysiology of puberty.pptx
physiology of puberty.pptx
 
physiology of lymphatic and immune system.ppt
physiology of lymphatic and immune system.pptphysiology of lymphatic and immune system.ppt
physiology of lymphatic and immune system.ppt
 
7. pancr secr.ppt
7. pancr secr.ppt7. pancr secr.ppt
7. pancr secr.ppt
 
6. renal plasma clearance.ppt
6. renal plasma clearance.ppt6. renal plasma clearance.ppt
6. renal plasma clearance.ppt
 
mental health and cardiovascular diseases (1).pptx
mental health and cardiovascular diseases (1).pptxmental health and cardiovascular diseases (1).pptx
mental health and cardiovascular diseases (1).pptx
 
3. physiology of renal tubules(1).ppt
3. physiology of renal tubules(1).ppt3. physiology of renal tubules(1).ppt
3. physiology of renal tubules(1).ppt
 
Ramadan- GIT physiology.pdf
Ramadan- GIT physiology.pdfRamadan- GIT physiology.pdf
Ramadan- GIT physiology.pdf
 
Higher brain functions., (physiology)
Higher brain functions., (physiology)Higher brain functions., (physiology)
Higher brain functions., (physiology)
 

Último

College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
perfect solution
 

Último (20)

Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...Top Rated Bangalore Call Girls Richmond Circle ⟟  9332606886 ⟟ Call Me For Ge...
Top Rated Bangalore Call Girls Richmond Circle ⟟ 9332606886 ⟟ Call Me For Ge...
 
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
College Call Girls in Haridwar 9667172968 Short 4000 Night 10000 Best call gi...
 
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
♛VVIP Hyderabad Call Girls Chintalkunta🖕7001035870🖕Riya Kappor Top Call Girl ...
 
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...Russian Call Girls Service  Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
Russian Call Girls Service Jaipur {8445551418} ❤️PALLAVI VIP Jaipur Call Gir...
 
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
Best Rate (Patna ) Call Girls Patna ⟟ 8617370543 ⟟ High Class Call Girl In 5 ...
 
Call Girls Ooty Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Ooty Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Ooty Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Ooty Just Call 8250077686 Top Class Call Girl Service Available
 
Top Rated Bangalore Call Girls Mg Road ⟟ 9332606886 ⟟ Call Me For Genuine S...
Top Rated Bangalore Call Girls Mg Road ⟟   9332606886 ⟟ Call Me For Genuine S...Top Rated Bangalore Call Girls Mg Road ⟟   9332606886 ⟟ Call Me For Genuine S...
Top Rated Bangalore Call Girls Mg Road ⟟ 9332606886 ⟟ Call Me For Genuine S...
 
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
Best Rate (Guwahati ) Call Girls Guwahati ⟟ 8617370543 ⟟ High Class Call Girl...
 
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Nagpur Just Call 9907093804 Top Class Call Girl Service Available
 
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service AvailableCall Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
Call Girls Cuttack Just Call 9907093804 Top Class Call Girl Service Available
 
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
Best Rate (Hyderabad) Call Girls Jahanuma ⟟ 8250192130 ⟟ High Class Call Girl...
 
O898O367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
O898O367676 Call Girls In Ahmedabad Escort Service Available 24×7 In AhmedabadO898O367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
O898O367676 Call Girls In Ahmedabad Escort Service Available 24×7 In Ahmedabad
 
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Varanasi Just Call 8250077686 Top Class Call Girl Service Available
 
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Bangalore Just Call 8250077686 Top Class Call Girl Service Available
 
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
Pondicherry Call Girls Book Now 9630942363 Top Class Pondicherry Escort Servi...
 
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
Mumbai ] (Call Girls) in Mumbai 10k @ I'm VIP Independent Escorts Girls 98333...
 
Call Girls Kochi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Kochi Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Kochi Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Kochi Just Call 8250077686 Top Class Call Girl Service Available
 
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any TimeTop Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
Top Quality Call Girl Service Kalyanpur 6378878445 Available Call Girls Any Time
 
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
Night 7k to 12k Chennai City Center Call Girls 👉👉 7427069034⭐⭐ 100% Genuine E...
 
Call Girls Tirupati Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 8250077686 Top Class Call Girl Service AvailableCall Girls Tirupati Just Call 8250077686 Top Class Call Girl Service Available
Call Girls Tirupati Just Call 8250077686 Top Class Call Girl Service Available
 

Renal physiology

  • 1. Renal phys iology Dr R ma n M med A . a da oha hmed. Esl m.a a nes@yahoo.com
  • 2. C hief Func tions of Renal S ys tem • Regulation of water & electrolyte balance • Regulation of ac id & bas e balance • E xc retion of was te products of protein metabolis m, e.g.,  Urea from protein breakdown  Uric ac id from nucleic acid breakdown  C reatinine from mus cle creatine breakdown  E nd produc ts of hemoglobin breakdown • E xc retion of foreign chemic als , e.g., drugs , food additives , pes tic ides , …etc . • E ndocrine func tion: erythropoietin, renin, 1,25-dihydoxy- vitamin D. 2
  • 3. FUNC TIONA L A NA TOMY OF KIDNE YS & URINA RY TRA C T • The kidneys lie high on the pos terior abdominal wall below the diaphragm & on either s ide of the vertebral column. • In adults eac h kidney is the s ize of a clenched fis t & weighs ~ 150 g. • Urine produced by the kidneys is delivered to the urinary bladder by 2 ureters . • The bladder continuous ly acc umulates urine and periodically empties its c ontents via urethra under the control of an external urethral s phincter – a proces s known as micturition. 3
  • 4. FUNC TIONA L A NA TOMY: kid • E ac h kidney is formed of 2 dis tinct parts : A n outer cortex A n inner medulla. • The medulla c ontains 5-10 renal pyramids . Their tips projec t into the renal pelv is & the dilated upper part of the ureter. • The nephron is the func tional unit of the kidney. E ac h kidney contains ~ 1 million nephrons . • The nephron is c ompos ed of 2 main components : A . The renal corpus cle 4 B . The renal tubule
  • 6. THE NE PHRON A . Renal C orpus cle: (S ite of filtration of blood) 1. The G lomerulus : - It is pres ent in the cortex. - E ac h glomerulus is formed of a tuft of capillaries that are invaginated into the B owman’s caps ule. - B lood enters the capillaries through the afferent arteriole and leaves through the s lightly narrower efferent arteriole. - G lomerular capillaries are unique in that they are interpos ed between 2 arterioles . This arrangement s erves to maintain a high hydros tatic pres s ure in the c apillaries , whic h is nec es s ary for filtration. - The capillaries in the glomerulus have large pores c alled 6 fenes trae,
  • 7. THE NE PHRON A . Renal C orpus cle: 2. The B owman’s C aps ule: It is the proximal expanded portion of the renal tubule forming a double-walled c up: a. The inner layer (vis ceral layer) is formed of s pec ialized epithelium made up of podocytes :  Thes e cells have an oc topus -like s tructure.  They have foot proces s es that interdigitate and s urround the glomerular capillaries .  The foot proces s es do not form a continuous layer, but leave gaps that provide filtration s lits . b. The outer layer (parietal layer) is c ontinuous with the 7 epithelium of
  • 9. THE GLOME RULA R ME MB RA NE • It s eparates the plas ma in glomerular capillaries from the fluid in B owman’s c aps ule. It is formed of 3 layers : 1. E ndothelium of c apillary with large fenes trae. 2. B as ement membrane: It contains large s paces , allowing the filtration of large amounts of water & s mall s olutes . Yet, the bas ement membrane is formed of negatively charged glyc oproteins &, thus , oppos es the filtration of the negatively charged plas ma proteins . 3. Foot proc es s es of podocytes with large filtration s lits . • Due to its s pecial s tructure, the glomerular membrane filters s everal hundred times as much water & s olutes as a us ual c apillary membrane. • The filtrate is called an ultrafiltrate as it is formed of plas ma minus plas ma proteins . 9
  • 10. Glomerular Membrane Thus , the filtrability of s olutes is determined by: 1. The s ize of molecules : The filtrability is invers ely related to the molec ular s ize of s olute. ⇒ E lec trolytes (as Na+) & s mall organic s olutes (as glucos e) pas s freely, while large molecules (as proteins ) do not pas s through the membrane pores . 2. C harges of molec ules : Negatively c harged large 10 molecules are les s filterable than pos itively charged
  • 11. THE NE PHRON B . Renal Tubule: 1. Proximal convoluted tubule (PC T) 2. Loop of Henle: It is further s ubdivided into: ► Thin des c ending limb ► Thin as cending limb ► Thic k as cending limb 3. Dis tal c onvoluted tubule (DC T) - Many DC Ts open into a collecting duc t (C D). C Ds pas s from the c ortex (c ortic al C D) to the medulla (medullary C D) and finally drain urine into the renal pelvis . - PC T & DC T are pres ent in the c ortex, while the des cending 11 limb of
  • 12. THE NE PHRON J uxtaglomerular A pparatus :  E ach DC T pas s es between the afferent & efferent arterioles of its own nephron. A t this point there is a patch of c ells with crowded nuc lei in the wall of the DC T c alled the macula dens a. They s ens e the conc entration of NaC l in this portion of the tubule.  The wall of the afferent arteriole oppos ite the macula dens a contains s pecialized cells known as the juxtag lomerular cells (J G cells ). They s ec rete renin. Together, the mac ula dens a & J G cells are called the juxtag lomerular 12 apparatus (J GA).
  • 13.
  • 14. Juxtaglomerular apparatus * It is a structure formed when the distal convoluted tubule bends around to contact the afferent arteriole at the place where it enters the glomerulus. * It is composed of specialized tubular epithelial cells of distal convoluted tubule and the granular cells of the adjacent of the afferent arteriolar wall. * The granular cells secrete an enzyme called renin. This enzyme is responsible for the production of angiotensins, of which angiotensin II. Angiotensin II stimulates the secretion of aldosterone hormone.
  • 16. THE NE PHRON (cont.) N.B . - There are 2 types of nephrons in the kidney: 1. C ortical Nephrons : (80% of nephrons )  Their glomeruli lie in the outer layers of the cortex.  Their tubular s ys tem is relatively s hort.  Their loops of Henle penetrate only for a s hort dis tanc e into the outer portion of renal medulla. 2. J uxtamedullary Nephrons : (20% of nephrons )  Their glomeruli lie at the boundary between cortex & medulla.  They have long loops of Henle, whic h dip deeply down into the medulla toward the tips of the pyramids . 16  They play a major role in the proc es s of urine conc entration.
  • 17. Types of nephrons I tem s Cor ti ca l n eph r on s J u x ta m ed u l l a r y n eph r on s % Of total 85 % 15% Glomeruli Out part of cortex Inner part of cortex . Loop of Hnle Short i.e. dips to the junction Long i.e. dips deeply into the between inner and outer medullary pyramids to the medulla. inner medulla Blood supply Peritubular capillaries Vasa recta and peritubular No Vasa Recta capillaries Special function Na reabsorption Urine concentration Afferent arteriole Thick muscular wall Thin muscular wall Very sensitive to symp Less sensitive to symp Stimulation. Stimulation. Have JG apparatus Have no JG apparatus Exhibit autoregulation Do not exhibit autoreg Low resistance to blood flow at High resistance to blood flow at rest rest Efferent arteriole Thin muscular wall Thick muscular wall Less sensitive to symp Very sensitive to symp Stimulation & vasopressin. Stimulation & vasopressin. Tone decreased by Prostaglandins (PGs). JG apparatus Present Absent Autoregulation Present Absent
  • 18. Renal corpuscle Renal corpuscle Proximal Nephrons convoluted tubule Afferent arteriole Efferent arteriole They are the structural & Distal convoluted tubule Peritubular functional capillaries units of the Renal arteriole kidney There are 2 structural classes of nephrons which are: 1- Cortical nephrons: representing 85% of nephrons where almost all the length of which lies within the renal cortex. 2- Juxtamedullary nephrons: representing 15% where their loops of Henle dip deeply into the renal medulla.
  • 19. Juxtamedullary Nephron Cortical Nephron The efferent vessels of juxtamedullary glomeruli form long looped vessels, called vasa recta which is important for urine concentration.
  • 20.
  • 21. S o,why is the loop of Henle us eful? • T l he ongert l t mor concent aed he oop, he e rt t filr t a t medulayIFbecome he t ae nd he lr • Impora t colect t e r t nce: he l ing ubul uns t ough t hyper ic medula hr he osmot l mor a it t r bsor H2O e bil y o ea b Desert animals have long nephron Loop  More H2O is reabsorbed
  • 22. B LOOD VE S S E LS in the NE PHRONS • E ach kidney receives its blood s upply from a renal artery, which aris es directly from the abdominal aorta. • In the kidney, the renal artery progres s ively s ubdivides into s maller branc hes until they form afferent arterioles , whic h break up into a tuft of capillaries , the g lomerulus . Then the c apillaries form the efferent arteriole. • The efferent arteriole again s ubdivides to form peritubular capillaries , whic h s urround the various s egments of the renal tubules . N.B . There are 2 s ets of c apillaries & 2 s ets of arterioles !! • The efferent arterioles of juxtamedullary nephrons form a s pecial type of peritubular capillaries c alled v as a recta.  They are s traight & long c apillaries that form hairpin loops along s ide the loops of Henle. 22  They play an important role in the proces s of urine c onc entration.
  • 23. B lood s upply of the kidney
  • 24. B LOOD S UPPLY • Renal artery fr a t ; ent s hil div om ora er um; ides • Interlobar arteries – r lcol div ena umn; ide • A rcuate arteries – a boundayofcorex &medula div t r t l ; ide • Interlobular arteries – int corex; div int sev a o t ide o er l • A fferent arterioles : suppl one nephr end in cl erofca l r – y on; ust pilaies G LOME RULUS (ca l r filr t pilay taion)– • Dr ined by a • E fferent arterioles – w for pl – PE RITUB ULA R hich m exus C A PILLA RIE S - suround r lt e r ena ubul • Fom ca l r bl fl s r pilaies ood ow • Interlobular veins • A rcuate veins • Interlobar veins • Renal vein • Infer v ca a ior ena v • Nephr w h t deep in medula– E entat iol giv r t VA S A RE C TA ons it ubes l ffer rer es e ise o (ca l r pilaies).
  • 25. Portal system (capillary beds in series), paralleling the nephron Renal ==> afferent ==> glomerular ==> efferent ==> peritubular arteries ==> arterioles ==> capillaries ==> arterioles ==> capillaries.
  • 26. Major renal capillaries Glomerular capillary Peritubular capillary bed bed 1. Receives bl from afferent Receives bl from efferent art. art. 2. High presure bed 55 Low pressure bed 13 mmHg mmHg 3.Represents arterial end of Represents venous end of cap. cap. 4. allows fluid filtration. Allows fluid reabsorption.
  • 27. B lood S upply of C ortical & J uxtamedullar y Nephrons 27
  • 28. RENAL BLOOD FLOW (RBF) Renal blood flow is about 20% of the cardiac output This is a very large flow relative to the weight of the kidneys (≈350 g) RBF determines GFR RBF also modifies solute and water reabsorption and delivers nutrients to nephron cells. Renal blood flow is autoregulated between 70 and 170 mm Hg by varying renal vascular resistance (RVR). i.e. the resistances of the interlobular artery, afferent arteriole and efferent arteriole
  • 29. Factors affecting RB F 1) Autoreg ulation: – RBF is kept relatively cons tant between A B P; 70-170 mmHg, It is pres ent in denervated, is olated kidney, this proving that this property is intrins ic property. 2) S ympathetic s timulation: – VC of afferent arteriole of cortical nephrons → dec reas ed cortical blood flow. – Les s effect on juxtamedullary nephrons → remains well perfus ed. – VC of vas a recta → decreas e medullary blood flow → more urine concentration.
  • 30. A utoregulation of RB F & GFR • Note: A utoregulation is important to prevent large changes in G FR that would greatly affect urinary output.
  • 31. A utoregulation (Myogenic mechanis m) • Response t cha in pr e w hin t nephr v scul r o nges essur it he on’s a a component • At iol conta inher l in r rer es r ct enty esponse t t stet o he r ch accompa ↑ pr e. V a omaical const ict w nying essur essel ut t ly r s, hich hel l bl fl int gl ul despit incr sed syst ps imit ood ow o omer us e ea emic pr e essur • Opposit r ct occur w smoot muscl sense adr in e ea ion s hen h es op pr e essur
  • 32. AUTOREGULATION AUTOREGULATORY 1.5 RANGE RBF (L/min) 1.0 0.5 40 80 120 160 200 240 BP (mmHg)
  • 33. EFFECT OF ARTERIAL PRESSURE CHANGES ON GFR, RBF AND URINE OUTPUT RBF or GRF (% of normal) 150 RBF 100 GFR Urine Output 50 50 100 150 200 Arterial Pressure (mmHg)
  • 34. Tubuloglomerular feedback • J a omer a a r t uxt gl ul r ppaaus – t combinaion oft a a v scul rcels w e t t e pa t ough he t ubul r nd a a l her he ubul sses hr t a e for byt a enta effer at iol a t j t he ngl med he ffer nd ent rer es s hey oin he gl ul omer us • Smoot muscl cels w hin t a entat iol for gr nul rcels h e l it he ffer rer e m a a l • Speciaized t a cels in t r know a ma adensa sense l ubul r l his egion n s cul - cha in satl eloft a fl nges l ev ubul r uid
  • 35.
  • 36. • M cul Densa a a ↓ Arterial pressure ↑ Arterial pressure ↑ Fluid reabsorption ↑ GFR ↓ GFR in proximal tubule ↑ Tubular flow rate ↓ Tubular flow rate ↑ Na+ and Cl- delivery ↓ Na+ and Cl- delivery to Macula Densa to Macula Densa ↑ Na+ and Cl- reabsortion ↓ Na+ and Cl- reabsorption in Macula Densa in Macula Densa ↑ Renin release ↓ Renin release
  • 37. A utoregulation of High Filtration Pres s ure
  • 38. Importance of Autoreg ulation • T myogenic a t ogl ul rfeedba mecha w k he nd ubul omer a ck nisms or in t ndem t a or ae G Rw hin aM Pr nge of8 - 0 a o ut egul t F it A a 018 mmHg • A or aion gr tybl s t dir effectt tcha in ut egul t eal unt he ect ha nges at ia pr e mightot w ha e on G Ra pr v rer l essur her ise v F nd eser es w t a sol e homeost sis a al s w st excr ion t aer nd ut a nd low a e et o car on a usua ry s l
  • 39. Impact of autoregulation • A utoregulation: – G FR=180L/day and tubular reabs orption=178.5L/day – Res ults in 1.5L/day in urine • Without autoregulation: – S mall ↑ in BP 100 to 125mm Hg, ↑ GFR by 25% (180 to 225L/day) – If tubular reabs orption cons tant, urine flow of 46.5 L/day • What would happen to plas ma volume?
  • 40. ME A S URE ME NT OF RE NA L B LOOD FLOW • Renal blood flow (RB F) is determined by meas uring firs t the renal plas ma flow (RPF) and then c alculating the RB F. • We meas ure RPF us ing paraaminohippuric ac id (PA H) . • PA H is a s ubs tanc e that is :  freely filtered by the glomeruli, s ecreted in the tubules , but not reabs orbed. If PA H is given by intravenous (IV) infus ion s o that its conc entration is kept low in plas ma (e.g., 2 mg%), it is almos t c ompletely removed with a s ingle c irculation of plas ma in the kidneys . 10% of PA H remain in blood, bec aus e 10% of the blood that goes to 40 the kidneys does not reach the nephrons , but s upplies other renal
  • 41. ME A S URE ME NT OF RE NA L B LOOD FLOW • If we apply Fic k’s principle, we can c alculate RPF: Amount of PAH Amount of PAH = filtered & secreted/min excreted in urine/min • A mount of PA H filtered & s ec reted = P x E RPF • A mount of PA H exc reted in urine/min. = U x V w e, P = conc. ofPA in pl sma her H a E RPF = effect e R (90 ofpl smaonl i.e., t king int a iv PF % a y, a o ccount t t10 ha % bypa t nephr sses he ons). U = conc. ofPA in ur H ine V = v ume ofur min. ol ine/ P x E RPF = U x V UxV E RPF 41 = P
  • 42. ME A S URE ME NT OF RE NA L BLOOD FLOW E xample: In a patient, if PA H is infus ed s o that its conc . in plas ma (P) is 2 mg% (= 0.02 mg/ml) and the urine vol. (V) is 1.3 ml/min. & PA H c onc . in urine (U) is l0 mg/ml, then E RPF = 10 mg/ml x 1.3 ml/min. / 0.02 mg/ml = 650 ml/min. S ince E PRF is 90% of actual RPF, RPF = 650 x 100 / 90 = 720 ml/min. If the hematocrit value is 45%, then plas ma cons titutes 55% RB F = 720 x 100 / 55 = 1300 ml/min. S ince c ardiac output is 5 L/min, RB F (1300 / 5000 x100) is
  • 44.
  • 45.
  • 46. Ur F maion ine or t • Glomerular Filtration • substances move from blood to glomerular capsule • Tubular Reabsorption • substances move from renal tubules into blood of peritubular capillaries • glucose, water, urea, proteins, creatine • amino, lactic, citric, and uric acids • phosphate, sulfate, calcium, potassium, and sodium ions • Tubular Secretion • substances move from blood of peritubular capillaries into renal tubules • drugs and ions
  • 47. Overall fluid mov ement in the kidneys
  • 48. Glomerular filtration. It takes place between glomerular capillaries endothelium (characterized by the presence of numerous small pores (fenestrations) and Bowman’s capsule (characterized by the presence of podocytes). Podocytes are modified squamous epithelial cells with numerous elongated branches called foot processes which are separated by narrow gaps called filtration slits (slit pores). Fluid and small solutes dissolved in the plasma such as glucose, amino acids, Na, K, Cl, HCO3- , other salts, and urea pass through the membrane and become part of the filtrate. The glomerular membrane hold back blood cells, platelets and most plasma proteins. The filtrate is about 10% of the plasma. The volume of fluid filtered per unite time is called the glomerular filtration rate (GFR). The GFR is about 180 L/day (=125 ml/min.).
  • 49. C OMPOS ITION OF GFR a- Contents: -w t aer -ions: Na , K+ , Cl + - -fr yfiler subst nces e.g. gl eel t ed a ucose, a a mino cids. -0 3 abumin (mol a w 690 ). .0 % l ecul r eight 0 b - O sm olality: 3 0mosmolL isot (sa osmol l ya pl sma 0 /, onic me ait s a ). C- Sp ecific gravity: 10 10 D - p H : dr t 6in ur due t a ops o ine o cidificaion byt kidney. t he
  • 50. GFR –In an av erag e man: 125 ml/minute. In women  10% les s . : –High r lbl fl (2025% ofcadia out )needed forhigh G R ena ood ow - r c put F. –GF R equals about 180 L/day so pl smav ume (3 ) a ol L filer a 60t da y, M e t n 99% ofG Ris nor ly t ed bout imes il or ha F mal r bsor ea bed. –Nor lvolume of urine is a 1.5 litre/day. ma bout
  • 51. Filtration fraction It is the fraction of the renal plasma flow (RPF) that becomes glomerular filtrate. the average filtration fraction about 16-20%. It is calculated as (GFR/RPF X100).
  • 52. Glomerular membrane Capillary endothelium; It has small holes (70-90 nm). It does not act as a barrier against plasma protein filtration. Basement membrane; (BM) filamentous layer attached to glomerular endothelium & podocytes, carry strong-ve charges which prevent the filtration of plasma proteins, but filters large amount of H2O and solutes. Podocytes; Epithelial cells that line the outer surface of the glomeruli. They have numerous foot processes that attach to the BM, forming filtration slits (25 nm wide).
  • 54. Permeability of the glomerular membrane S ize of the molecules • S ubs tanc es having diameters les s than 4 millmicrons (molecular weight 5500) are freely filtered while thos e having diameters more than 8 millimicrons (molecular weight more than 7000) are not filtered. C harges of the molecules • -ve charged molecules are filtered Les s eas ily than neutral molecules of equal s ize. (pos s ibly due to neg ative charg es in the bas ement membrane).
  • 55. Filterability of the Membrane • Filterability is a term us ed to des cribe membrane s electivity bas ed on the molecular s ize and charge • Pore s ize would favor plas ma protein (albumin) pas s age, but negative charge on protein is repelled by the (-) charged bas ement membrane (proteoglyc an filaments & podocytes ) • Los s of this (-) charge caus es proteinuria condition called minimal chang e nephropathy
  • 56. What Drives Filtration? Howdoes fl mov fr t pl smaa oss t gl ul r uid e om he a cr he omer a membr ne int Bow n’s ca e? a o ma psul • No a iv ta tmecha ct e r nspor nisms • No l lener expendit e oca gy ur Simpl pa e physica for a e ssiv l ces ccompl filr t ish taion -F taion occur t oughoutt l h oft ca l r ilr t s hr he engt he pilaies
  • 57. F orces involved in F iltration • Gomer a ca l r bl pr e (fa or filr t l ul r pilay ood essur v s t aion) • Pl smacoloid osmot pr e (opposes filr t a - l ic essur t aion) • Bow n’s ca e hydr aic pr e (opposes filr t ma psul ost t essur taion)
  • 58. Forces affecting the GFR: A) Forces helping filtration: 1- Hydrostatic pressure of the blood inside glomerular capillaries (HPG) (= 50 mmHg) due to: i- The afferent arteriole is 3 times wider than the efferent arteriole ii- The diameter of the renal artery is large in relation to the relelatively small size of the kidney. iii- The renal artery comes directly from the aorta. 2- Colloidal osmotic pressure of the fluid inside the Bowman’s capsule (COPBC). Where the filtrate is free of proteins, so this force normally equals to zero mmHg. B) Forces opposing filtration: 1- Colloidal osmotic pressure of the glomerular capillary blood (COPG). This pressure is due to plasma proteins and equals 30 mmHg. 2- 1- Hydrostatic pressure of the fluid inside the Bowman’s capsule (HPBC) (= 10 mmHg). Accordingly, The net filtering force= The forces helping filtration - The forces opposing filtration = (HPG + COPBC) - (COPG + HPBC) = (50 + 0) - (30 + 10) = 10 mmHg.
  • 59. Forces affec ting filtration Favoring Filtration Opposing Filtration Glomerular hydrostatic Glomerular capillary colloid osmotic pressure pressure 60 mm Hg 32 mm Hg Bowman’s capsule colloid Bowman’s capsule hydrostatic osmotic pressure pressure 0 mm Hg 18 mm Hg Net = +10 mm Hg
  • 60. Determinants of GFR GFR=Kf x Net filtration pressure Kf = Capillary filtration coeficient
  • 61. F iltration coefficient (Kf) • It is the GFR / mmHg of net filtration pres s ure, it is normally 12.5ml/min/mmHg. It is cons tant (normally). • Glomerular filtration rate = Net filtration pres s ure X Filtration coefficient • GFR = NFP (l0) X Kf (12.5) = 125ml/min. -Kf is determined by 2 factors : 1-T per bil yoft ca l r bed. he mea it he pilay 2-T sur ce aeaoft ca l r bed. he fa r he pilay
  • 62. Glomerular Filtration Rate • Depends on – T netfilr t pr e he t aion essur – Howmuch gl ul rsur ce aeais a a a e forpenet aion omer a fa r v il bl rt – Howper bl t gl ul rmembr ne is mea e he omer a a GFR = K f x net filtration pres s ure W e (Kf)= filr t coefficient(apr oft a e t o her t aion oduct he bov w gl ul rpr t omer a operies) -Roug hly 125 ml/min in males
  • 63. Regulation of Filtration (1) Chang es in g lomerular hydros tatic pres s ure. (1) Diameter of the afferent arterioles . – VD of afferent arterioles → ++ Hydros tatic pr. in glomerular capillary → ++ GFR. – VC of afferent arterioles e.g ++ s ympathetic activity → -- Hydros tatic pr. in glomerular capillary (HPGC ) → -- GFR. (2) Diameter of the efferent arterioles . – Moderate VC → ++ HPG C → s light ++ of G FR. – S evere VC → -- RB F → -- G FR. (3) ABP; B etween 70 & 170 mmHg: GFR and RB F are kept relatively cons tant by autoreg ulatory mechanis ms . (4) Renal blood flow: direct relation (5) S ympathetic s timulation: VC of aff. A rteriole.
  • 64.
  • 65. C hanges in GFR by cons triction or dilation of afferent (A A ) or efferent (E A ) arterioles 65
  • 66. Regulation of Filtration (2) Chang es in Bowman’s Caps ule hydros tatic pres s ure + + Hydr aicprin Bow n’s ca e e.g. st in ost t ma psul one ur er→ - G R. et -F (4) Chang e in g lomerular colloidal os motic pres s ure Incr sed Coloida osmot pr e in gl ul rca l r ea l l ic essur omer a pilay • e.g in dehydr t → decr sed G R aion ea F . Decr sed Coloida osmot pr e in gl ul rca l r ea l l ic essur omer a pilay • e.g in hypopr einemia→ incr sed G R ot ea F . • F unctioning kidney mas s • Glomerular s urface area a ding t t st t ofmesa lcels. ccor o he ae ngia l Contracted: A &a II. DH ng Relaxed: A NP.
  • 67. Lis t fiv e conditions in which g lomerular filtration rate (GF R) decreas es . 1- g lomerular hydros tatic pres s ure is reduced (i.e. hypotens ive s hock) 2-Bowman's s pace hydros tatic pres s ure are increas e ureteric obs truction. 3- plas ma oncotic pres s ure ris es to unus ually hig h lev els in dehydration. 4- decreas ed rates of renal blood and plas ma flow (e.g . heart failure). 5- Reduced permeability and / or total filtering s urface area.
  • 69. Meas urement of GFR: (1) Inulin c learance; Inulin has the following characteris tics : • F eel filer i.e. pl smaconc.= filr t concent aion. r y t ed a tae rt – notr bsor orsecr ed byr lt es i.e. a ea bed et ena ubul mountfiler permin.= a t ed mountexcr ed in ur min. et ine/ – Notmet bol a ized. – Notst ed in t kidney. or he – Does nota filr t r t &it conc. is ea ymea ed. ffect taion ae s sil sur (2) C reatinine clearance • F eel filer r y t ed • Notr bsor ea bed • pat lysecr ed byr lt es. rial et ena ubul • E ndogenous so used ea ybutina ae. sil ccur t
  • 70. Renal C learance Definition: Volume of the plas ma cleared from the s ubs tance per minute. R = UVP C / R = r lcl r nce r t C ena eaa ae U = concentaion (mg/ )oft subst nce in ur rt ml he a ine V= fl r t ofur for t (mlmin) ow ae ine maion / P= concentaion oft sa subst nce in pl sma rt he me a a
  • 72.
  • 73.
  • 74.
  • 75.
  • 76.
  • 77. Free Water C learance (C H20) Qua ifies r aiv l orga ofw t in t ur nt el t e oss in aer he ine • Cl r nce ofosmol (Cosm)is t v ume ofw t necessayt secr e t osmot eaa es he ol aer r o et he ic l d in aur isot w h pl sma oa ine onic it a – Differ bet een ur fl a t cl r nce ofosmol (Cosm) ence w ine ow nd he eaa es • CH20 = Ṽ – UosmṼ Posm – Negaiv w ur concentaed (hyperonic) t e hen ine rt t – Posit e w ur dil e (hypot iv hen ine ut onic)
  • 78. TUB ULA R FUNC TION • T glomerular filtrate he is for a ar t of125 ml/ med t ae min. or 180 L/day. It pa t t r lt es. sses o he ena ubul • In t t es, t tubular he ubul he fluid is subj ed t t 2 ma ect o he in t a funct ubul r ions, reabs orption & s ecretion. • Itis final excr ed a urine a a ly et s t r t ofa 1-2 ml/min. or ae bout c a. 1.5 L/day. 78
  • 79. TUB ULA R RE A B S ORPTION • R lt es ta tsubst nces a oss t membr nes t int st ia fl a t t ough t ena ubul r nspor a cr heir a o er it l uid nd hen hr he per ubul rca l r membr ne ba t bl it a pilay a ck o ood. • Subst nces ca be ta t by: a n r nspored 1. Trans cellular Route: -Subst nces pa t ough t cel membr nes: a ss hr he l a –crossing t l lmembr ne &t t ba aer lmembr ne. he umina a hen he sol t a a -T ta tbyt r e ma be ac tive bymea ofapr ein he r nspor his out y ns ot car orpas s ive bydiffusion. rier 2. Parac ellular Route: -Subst nces pa a oss t j ions bet een t a cels. a ss cr ight unct w ubul r l -Ta tbyt r e occur pas s ively bydiffusion. r nspor his out s 79
  • 80. Tubular Reabs orption is a Function of the E pithelial C ells Making up the Tubule Lumen Cells Plasma
  • 81. Tubular Reabs orption A) Active transport; against electrochemical gradient. (1) Primary active transport Requires energy directly from ATP. ►Example; Na+ reabsorption in PCT (2) Secondary active transport -It does not require energy direct from ATP. a) Co-transport two substances bind to a specific carrier are cotransported in one direction. b) Counter-transport two substances bind to a specific carrier are transported in two directions. B) Passive reabsorption; (1) Simple diffusion Passive reabsorption of chloride & Osmosis of water (2) Facilitated diffusion Need carrier. C) Pinocytosis It is an active transport mechanism for reabsorption of proteins and peptides in the proximal convoluted tubules.
  • 82. Primary ac tive trans port of s odium through the tubular epithelial c ell 82
  • 83. Proximal C onvoluted Tubule • 65% of t nephr funct occur in he on ion s PCT . • T PCT ha a singl l yer of cuboida he s ea l cels w h milions ofmicr ili. l it l ov l – Incr sed sur ce aeaforr bsor ion. ea fa r ea pt • PCT ma funct is r bsor ion. 's in ion ea pt • T PCTis ful ofmit he l ochondria
  • 84. Reabs orption in Proximal Tubule • 10 % Gucose, pr ein a A A 0 l ot nd mino cids • 60 Sodium, Cl a H2O. % , nd • 8 % PH, HCO3 K. 0 , • 60 Ca % . • 50 ofF t ed Ur . % iler ea
  • 85. Nar bsor ion ea pt  A ba aer lside oft t a epit ia cel t e is a ext e Na - + APa syst (= t sol t a he ubul r hel l l her n ensiv + K T se em Na - + pump). + K  Itpumps 3Na a iv youtoft cel int t int st ium, a a t sa t car 2 K+ + ct el he l o he er it nd t he me ime ries int t cel. o he l  ButK+ w ldiffuse immediael ba int t int st ium due t il t y ck o he er it o: (1)high concentaion gr dient& rt a (2)high per bil yofepit ia cels t K+ . mea it hel l l o  A ar toft t e is: s esul his her -↓ inta l a Na concentaion r celul r + rt -↑ inta l a negaiv y(- mV r celul r t it 70 )  A l lmembr ne t e w lt efor be pa e diffusion ofNa int t cel aongbot t umina a her il her e ssiv + o he l l h concentaion a el r gr dient cr t byt Na - + APa pump. T diffusion is r t nd ectic a s eaed he + K T se his fa it t byapr ein car . cil aed ot rier
  • 86. Nar bsor ion ea pt
  • 88. G lucose reab sorp tion • The trans porter for glucos e on the bas olateral membrane has a limited capacity to carry glucos e bac k into the blood. If blood glucos e ris es above 180 mg/dl, s ome of the glucos e fails to be reabs orbed and remains in the urine  glucos uria.
  • 89. Glucos e reabs orption
  • 90. Tubular maximum for glucos e (TmG): • The maximum amount of glucos e (in mg ) that can be reabs orbed per min. • It equals the s um of TmG of all nephrons . • TmG not the s ame in all nephrons • It is an indication of the reabs orptive capacity of the kidney. • It is determined by the number of glucos e carriers in PC T. • The maximum reabs orption rate is reached when all the carriers are fully s aturated s o they can not handle any additional amounts at that time. • Value; 300 mg/min in ♀ , 375 mg/ min in ♂.
  • 91. Renal Thres hold for Glucos e • Is a oximael 18 mg/ ppr t y 0 dl • Ifpl smagl a ucose is gr t t n 18 mg/ : eaer ha 0 dl – T oft a cels is exceeded m ubul r l – gl a r in ur ucose ppeas ine
  • 92. GLUC OS E RE A B S ORPTION HA S A TUB ULA R MA XIMUM Glucose Filtered Excreted Reabsorbed mg/min Reabsorbed Plasma Concentration of Glucose
  • 93. Glucos uria pres ence of glucos e in urine 1. Diabetes mellitus –blood gluc os e level > renal thres hold. 2. Renal g lucos uria –It is c aus ed by the defect in the glucos e trans port mec hanis m. 3. Phlorhizin –A plant gluc os ide whic h c ompetes with gluc os e for the c arrier and res ults in gluc os uria (phloridzin diabetes ). 4 Preg nancy . –due to altered gluc os e handling in dis tal nephrons . 17-59
  • 95. S ecretion in Proximal Tubule • Hydr secr ion fora ba r aion. ogen et cid/ se egul t • Ammoniasecr ion fora ba r aion. et cid/ se egul t • PA H. • Cr t eainine. • Ur a ic cid. • Penicilin. l
  • 97. S PE C IFIC FUNC TIONS OF DIFFE RE NT TUB ULA R S E GME NTS (cont.) II. Loop of Henle: • T l ofHenl w h it 3segment (t tdifferstuct al &funct ly)contibut t cr t agr dual incr sing he oop e it s s ha r ur ly ional r es o eaing a ly ea hyper ait (3 0→120 mosmolL)in t r lmedulayint st ium. osmol l y 0 0 / he ena l r er it A . Thin des cending limb: - highly permeable to w t . 20% ofH2Ois r bsor her aer ea bed e. -onl moder t yper bl t sol es. y ael mea e o ut ⇒ Osmol l yoft a fl ↑ gr dual a l dips deep int t medulaypyr mid (r ches 120 mosmol ait ubul r uid a ly s oop o he l r a ea 0 ). B. Thin as cending limb: -impermeable to w t aer -l a pt e pow forsol es. ow bsor iv er ut C . Thick as cending limb: -impermeable to w t aer -high r bsor iv pow forsol es: Ita iv yr bsor 25% offiler ea pt e er ut ct el ea bs t ed + + - + - + Na , K , &Cl (by1 Na , 2 Cl, 1 K cota t t medulayint st ium. r nspor) o l r er it ⇒ Osmol l yoft a fl ↓ gr dual a itr ches DCT(becomes hypoosmot Itis cal t diluting s egment. ait ubul r uid a ly s ea ic). led he 97
  • 98.
  • 99. SPE F IONSOFDIF . T A SE M NT C. UNCT F UBUL R G E S III. Dis tal C onvoluted Tubule (DC T) & C ollecting Duct (C D): A . E arly DC T:  T patoft r lt es is in effecta ext his r he ena ubul n ension oft t a he hick scending l ofl ofHenl imb oop e: - Itis impermeable to w t . aer -T e is cont r a ofNa , K+ , Cl &ot ions w houtH2O. her inued emov l + - her it ⇒ T e is furherdil ion oft a fl a it osmol l y↓ ev mor (10 mosmol her t ut ubul r uid nd s ait en e 0 ). ⇒ T patis cal t cortical diluting s egment. his r led he B. Late DC T & C ortical C D:  T ae impermeable to ur . hey r ea  T ha e 2 cel t hey v l ypes: (1) Principal C ells : a. T a iv yr bsor Na in excha forK+ secr ion. T a ion is incr sed byaldos terone. hey ct el ea b + nge et his ct ea b. A ntidiuretic hormone (A DH) ca t inserion ofH2Ocha s (aquaporins ) in l l uses he t nnel umina membr ne oft cels → al s r bs. ofH2O. a hese l low ea In t a he bsence ofA t pr lcels ae imper bl t H2O. DH, he incipa l r mea e o 99
  • 100. DC T and C D
  • 101. SPE ICF IONSOFDIF E E T A SE M NT (cont CIF UNCT F R NT UBUL R G E S .) B . Late DC T & C ortical C D: (cont.) (2) α-Intercalated C ells : -T cels secr e H+ byH+ - T se independentofNa hese l et APa + r bsor ion. T a ion is incr sed byaldos terone. ea pt his ct ea C . Medullary C D: • In t l stporion oft nephr t e is final adjus tment of volume & concentration of his a t he on her urine.  T per bil y oft segmentt w t , sa a t toft l t DCT&corica CD, is v r bl &depends on t l el he mea it his o aer me s ha he ae t l aia e he ev ofcir aingA (= facultative water reabs orption). cul t DH  W h high bl l el ofA t e is ↑ r bsor ion ofH2O byosmosis, a t a fl in CD is subj ed t it ood ev s DH, her ea pt s ubul r uid ect o gr dual incr sing hyper ait oft medulayint st ium. a ly ea osmol l y he l r er it  T patis aso permeable t ur , t tdiffuses int t int st ium w it concentaion in t a fl ↑ due his r l o ea ha o he er it hen s rt ubul r uid t H2Or bsor ion. o ea pt T ur contibut t t hyper ait ofmedulayint st ium. hus, ea r es o he osmol l y l r er it ⇒ In t pr he esence ofA ur excr ed is concentaed &smalin v ume. DH: ine et rt l ol ⇒ In t a he bsence ofA ur excr ed is dil e ur &l r in v ume. DH: ine et ut ine age ol 101
  • 102. Medullary C ollecting Duct • r bsor < 10 offiler Na a w t ea bs % t ed + nd aer • fina sit forpr l e ocessingofurine functional characteris tics : 5. per bil yt w t is contoled byA l el mea it o aer rl DH ev -↑A DH ↑ w t r bsor ion aer ea pt 2. per bl t ur mea e o ea -ur is r bsor int t medulay ea ea bed o he lr int st ium w e ithel incr se t er it her p ea he osmol l yoft int st ium a t efor hel t concentae ur ait he er it nd her e p o r t ine.
  • 103. S ummary For Tubular Functions
  • 104. S ummary of c hanges in os molality of tubular fluid in various parts of the nephron
  • 105. RE GULA TION OF TUB ULA R RE A B S ORPTION
  • 106. 1. Glomerulotubular B alance • intinsic a it oft t es t incr se t r bsor ion r t in r bil y he ubul o ea heir ea pt ae response t a incr se in gl ul rfilr t o n ea omer a taion • cha in G Rinduces apr t lcha in t a r bsor ion nges F oporiona nge ubul r ea pt • t a r t ofr bsor ion incr ses a filer l d incr ses butt ot l ae ea pt ea s t ed oa ea he per a ofG Rr bsor r ins r aiv yconst nt cent ge F ea bed ema el t el a • second l ofdefense forpr ent cha in r l hemodyna ine ev ing nges ena mics fr ca l r cha in sodium orfl excr ion om using age nges uid et • bl s sodium excr ion r unt et esponse t cha in G Rinduced bycha in o nges F nges at ia pr e rer l essur
  • 107. 2. Peritubular C apillary and Renal Inters titial Fluid S tarling’s Forces A . Peritubular C apillary Hydros tatic Pres s ure: ↑ PPC ↓ r bsor ion ea pt Syst at ia pr e (PA): emic rer l essur ↑ PA ↑ PPC ↓ r bsor ion ea pt B. PTC Os motic Pres s ure (Π PC ): ↑ ΠPC ↑ r bsor ion ea pt C . Renal inters itial fluid hydros tatic pres s ure: -Decr sed r bsor ion in t per ubul rca l r w lr tin: ea ea pt he it a pilaies il esul 1. ↑ PIF due t a o ccumul t offl in t int st ia compat aion uid he er it l rment 2. ↓ ΠIF due t dil ion ofint st ia fl pr eins o ut er it l uid ot
  • 108. 3. A rterial Pres s ure • smalincr ses in at ia pr e oft ca maked incr ses l ea rer l essur en use r ea in ur r excr ion ofw t a sodium (pr e diur a inay et aer nd essur esis nd pr e nar esis) essur tiur mec hanis m: 1. sl incr se in G R ight ea F. 2. incr sed PPC ↓ r bsor ion fr int st ia spa ea ea pt om er it l ce ↑ PIF ↓ r bsor ion ofw t a ea pt aer nd sodium fr t a l om ubul r umen 3 decr sed A ensin II . ea ngiot ↓ Na r bs + ea
  • 109. 4. Hormonal C ontrol Hormone Site of Action Effects Aldosterone Collecting tubule and duct ↑ NaCl, H2O reabsorption, ↑K+ secretion Angiotensin II Proximal tubule, thick ↑ NaCl, H2O ascending loop of reabsorption, ↑H+ Henle/distal tubule, secretion collecting tubule Antidiuretic Distal tubule/ collecting ↑ H2O reabsorption hormone tubule and duct Atrial natriuretic Distal tubule/ collecting ↓ NaCl reabsorption peptide tubule and duct Parathyroid Proximal tubule, thick ↓ PO4--- reabsorption, ↑ hormone ascending loop of Ca- reabsorption Hental/distal tubule
  • 110.
  • 111. 5. S ympathetic S timulation • w ldecr se sodium a w t excr ion (incr se sodium a w t il ea nd aer et ea nd aer r bsor ion)bythe following mechanis ms : ea pt 1. v soconstict ofbot a enta effer a r ion h ffer nd ent at iol t ebydecr singG R rer e her ea F . 2. incr se sodium r bsor ion in t pr l ea ea pt he oxima t ea t a ubul nd hick scendingl imb. 3 incr se r r ea . ea enin el se incr sed A IIea ng incr sed sodium ea r bsor ion. ea pt
  • 112. Hormones ac ting on the kidney 1. A ldos terone: • S timulus for its s ecretion: ↓ Bl v ume (v r a ent syst ood ol ia enin- ngiot in em). • A ctions & their s ite: Itst aes Na r bsor ion in DC T & cortical C D t ough: imul t + ea pt hr 1) In principal cells : ↑ Na r bsor ion in excha w h K+ . + ea pt nge it 2) In α -intercalated cells : ↑ Na r bsor ion in excha w h H+ . + ea pt nge it 2. A ngiotens in II: Itis t mostpow fulNa r a hor he er + et ining mone. • S timulus for its s ecretion: ↓ at ia bl pr e &bl v ume, e.g., hemorha (v r rer l . essur ood ol r ge ia enin). • A ctions & their s ite: 1. It↑ Na r bsor ion bysev a mecha + ea pt er l nisms: a Byst aing adost one secr ion. . imul t l er et b. In PC T: -Bydir l st aing Na - + APa a ba aer lbor . ecty imul t + K T se t sol t a der -Bydir l st aing Na - + count ta a l lbor . ecty imul t + H err nsp. t umina der 2. Itconstict effer at iol r s ent rer es. 112
  • 113.
  • 114. Hormones acting on the kidney 3. A trial Natriuretic Peptide (A NP): Itfa it t Na &H2Oexcr ion. cil aes Cl et • S timulus for its s ec retion: ↑ Ar lpr e (r ea fr specific ar lfiber w bl v ume is ↑) tia essur el sed om tia s hen ood ol • A c tions & their s ite: 1. It↑ G byV ofa ent&V ofeffer at iol FR D ffer C ent rer e. 2. It↓ Na r bsor ion from DC T & cortical C D . + ea pt 4. A DH: • S timulus for its s ecretion: ↑ Pl smaosmol r y&↓ bl v ume. a ait ood ol • A ctions & their s ite: ↑ w t r bsor ion in late DC T, cortical & medullary C D: byinseringa por w t aer ea pt t qua in aer cha s int t l lmembr nes. nnel o heir umina a 5. Parathormone (PTH): • S timulus for its s ecretion: ↓ Pl smaCa concentaion. a 2+ rt • A ctions & their s ite: 114 1. ↑ Ca r bsor ion from DC T. 2+ ea pt 2. ↓ Phosphae r bsor ion from PC T. t ea pt
  • 115.
  • 116. H A N D L IN G O F C E R T A IN IM P O R T A N T S O L U TE S B Y RENAL TU B U L E S 116
  • 117. I. GLUC OS E : A nor lbl gl l el (~10 mg%), gl is fr yfiler a ar t of125 mg/ (= pl smaconc. XG R t ma ood ucose ev s 0 ucose eel t ed t ae min. a F = 10 mg% x 125 mlmin.). 0 / + T a he mountfiler is compl el r bsor fr t upperhafofPCTbyNa - ucose cota t(mecha see t ed et y ea bed om he l gl r nspor nism: before). + T e is, how er al ed numberofNa - ucose car s: her ev , imit gl rier a- A t a blood glucos e level of les s than 180 mg%, alt filer gl l he t ed ucose ca be n r bsor beca pl yofcar s ae a a a e. ea bed use ent rier r v il bl b- A t a blood glucos e level of 180 mg%, gl st rs t a rin ur ucose at o ppea ine. T l elofbl gl is cal t renal thres hold forgl his ev ood ucose led he ucose. It coresponds t arenal r o tubular load of 220 mg/min. c- A t a renal tubular load of glucos e of 320 mg/min, alt car s ae saur t l he rier r t aed, i.e., t trans port maximum forgl he ucose, T G, is r ched. m ea A furher↑ in filer gl ny t t ed ucose is notr bsor &is117et in ur ea bed excr ed ine.
  • 118. Glucos e reabs orption
  • 119. G luc os e Titration C urves 119
  • 120. I. GLUC OS E : (cont.) I. G LUC OS E : (cont.) S play: -Itis t r ofgl cur es bet een r lt eshol &T G. he egion ucose v w ena hr d m -Itoccur bet een r lt a gl l ds of220 - 320 mg/min.. s w ena ubul r ucose oa -Itr esent t excr ion ofgl in ur befor ful saur t of epr s he et ucose ine e l t aion t gl car s forr bsor ion (T G)is a ed. he ucose rier ea pt m chiev -Itis expl ined byt het ogeneit ofnephr a he er y ons: Notalnephr ha e exa l t sa T G. Some nephr l ons v cty he me m ons r ch saur t a l erpl smaconcentaions t n ot s, a ea t aion t ow a r t ha her nd gl w lbe excr ed in ur befor t a er ge T G is r ched. ucose il et ine e he v a m ea 120
  • 121. GLUC OS URIA : • Definition: Itis t pr he esence ofgl in ur Itis usual a ucose ine. ly ccompa bypol iadue t osmot diur nied yur o ic esis. • C aus es : 1. Diabetes Mellitus : -T bl gl l elis high, exceeding t nor lr lgl he ood ucose ev he ma ena ucose t eshol of18 mg%. hr d 0 -In t condit t pl smacl r nce ofgl is a e zer &t mor a a t condit of his ion, he a eaa ucose bov o, he e dv nced he ion dia es, t highert gl cl r nce. bet he he ucose eaa 2. Renal G lucos uria: -In t condit t bl gl l elis nor l his ion he ood ucose ev ma. -T defectl in t r lt es t he ies he ena ubul hemsel es. T e is adecr sed r lgl t eshol bel it v her ea ena ucose hr d ow s nor lv l due t acongenit ldefectin t gl ta tmecha so t tt e is l ofgl ma aue o a he ucose r nspor nism, ha her oss ucose in ur a nor lbl gl l el ine t ma ood ucose ev s. 121
  • 122. S odium Handling - + is fr y filer a oss gl ul rca l r T it concentaion in gl ul rfilr t equas t tin Na eel t ed cr omer a pilaies. hus, s rt omer a tae l ha pl sma a . + - ofNa ae r bsor aong alsegment oft r lt e, exceptt t descending l oft l 99% r ea bed l l s he ena ubul he hin imb he oop ofHenle. Na+ reabs orption along the nephron: 1. Proximal c onvoluted tubule: ea bs 3 t ed + R bsor 2/ (67%)offiler Na &H2O. T pr is isoosmot his ocess ic. a. E arly PC T: + -Na is r bsor bycota tw h gl ea bed r nspor it ucose, a a phosphae &l ct t mino cids, t a ae. -Na is aso r bsor bycount ta tv Na - + excha + l ea bed err nspor ia + H nge. b. Late PC T: Na is r bsor (1 ry a iv ta t w h Cl (pa e diffusion). + ea bed ct e r nspor) it - ssiv 122
  • 123. S odium Handling 2. Thic k as cending limb of loop of Henle: R bsor 25% offiler Na byt Na - + - - cota t in t l l ea bs t ed + he + K 2Cl r nsporer he umina membr ne. a 3. Dis tal convoluted tubule & collecting duct: oget hey ea b % he t ed + T hert r bsor 8 oft filer Na . a. E arly DC T: Cont ins aNa - + - - cot a t in l lmembr ne simil rt a + K 2Cl r nsporer umina a ao t tin t a ha hick scending l ofl ofHenl imb oop e. b. Late DC T & C D: (T effectis incr sed byaldos terone). his ea i. Principal cells : r bsor Na in excha forK+ . ea b + nge ii. α -Intercalated cells : r bsor Na in excha forH+ . ea b + nge 123
  • 124. Na+ handling along the nephron 124
  • 125. Factors affecting Na+ reabs orption: 1. Rate of tubular flow: Sl r t offl ↑ r bsor ion ofNa in l ofHenl e.g., in ↓ G R ow ae ow ea pt + oop e, F. 2. Glomerulotubular balanc e in PC T: - Itr esent t a it oft PCTt r bsor aconst ntfr ct (2/ or67%)oft filer epr s he bil y he o ea b a a ion 3 he t ed + l d ofNa &w t . oa aer - IfG R↑ fora r son, t filer l d ofNa aso ↑. T w ll d t a incr se in t F ny ea he t ed oa + l his il ea o n ea he + + amountofNa r bsor in PCT so t tt a ea bed , ha he mountofNa excr ed incr ses onl sl l et ea y ighty. - Imporat nce: Itis a intinsic mecha t tca be seen in dener aed kidneys. Ithel pr entov l ding n r nism ha n vt ps ev eroa ofdist lt a segment w G R↑. a ubul r s hen F 125
  • 126. Factors affecting Na+ reabs orption 2. G lomerulotubular balanc e in PC T: - M nism: echa Gomer ot a baa is ba on l ul ubul r l nce sed St ring for in per ubul rca l r al ces it a pilaies, hich ler + w at Na &H2Or bsor ion: ea pt ↑ in G Rr t in ↑ in pr ein conc. & F esuls ot oncot pr e (πC), a w la a↓ hydr ic essur s el s o- st t pr e (PC)ofper ubul rca l r aic essur it a pilaies. T in t n, ca a ↑ in w t r bsor ion fr PCT his, ur uses n aer ea pt om . + Since w t r bsor ion is a aer ea pt ccompa byNa r bsor ion, t e is maching filr t &r bsor ion, nied ea pt her t taion ea pt orgl ul ubul rbaa omer ot a l nce. 3. Hormones : (s ee before) 126 1. A ldos terone, 2. A ngiotens in II, 3. A NP
  • 127. Potas s ium Handling 1. G lomerular c apillaries : F t aion ofK+ occur fr ya oss t gl ul rca l r ilr t s eel cr he omer a pilaies. 2. PC T: Itr bsor 67% oft filer K+ aong w h Na &w t . ea bs he t ed l it + aer 3. Thick as c ending limb of loop of Henle & early DC T: Itr bsor 20 oft filer K+ byt Na - + - - cota t in t l lmembr ne. ea bs % he t ed he + K 2Cl r nsporer he umina a 4. Late DC T & c ollec ting duc t: T eit r bsor orsecr e K+ . hey her ea b et a. Reabs orption of K +: - It occur onl in K+ depl ion (= l K+ diet Under t condit K+ excr ion ca be a l a 1% of s y et ow ). hese ions et n s ow s + filer l d beca t kidney conser es a much K a possibl t ed oa use he v s s e. -Itinv v aK+ - + excha a l lmembr ne ofα- er l t cels. ol es H nge t umina a int caaed l b. S ec retion of K +: -Itoccur in pr lcels byNa - + excha s incipa l + K nge. -Itis v r bl Itdepends on diet r K+ , adost one &a ba st t aia e. ay l er cid- se aus. 127
  • 128. K + handling along the nephron 128
  • 129. Mechanis m of dis tal K + s ecretion in principal cells - A t bas olateral membrane: K+ is a iv yta t int t cel byt Na - ct el r nspored o he l he + K+ APa → T mecha ma a ahigh I.C. K+ conc. T se his nism int ins - A t luminal membrane: K+ is pa el secr ed int t l t ough K+ ssiv y et o he umen hr cha s. nnel he mount of t pa e secr ion is det mined by t concentaion gr dient a ing on K+ T a his ssiv et er he rt a ct a oss t l lmembr ne: cr he umina a In condit t t↑ I.C. K+ conc. or↓ t l lK+ conc. ions ha he umina → ↑ t dr ingfor forsecr ion. he iv ce et In condit t t↓ I.C. K+ conc. or↑ t l lK+ conc. ions ha he umina → ↓ t dr ingfor forsecr ion. he iv ce et 129
  • 130. Mechanis m of K + s ecretion in the principal cell of the DC T 2 1 3 130
  • 131. HA NDLING OF C E RTA IN IMPORTA NT S OLUTE S B Y RE NA L TUB ULE S Fac tors affecting dis tal K + s ec retion: 1. Dietary K +: High K+ diet→ ↑ I.C. K+ → ↑ dr ing for → ↑ K+ secr ion. iv ce et LowK+ diet → ↓ I.C. K+ → ↓ dr ing for → ↓ K+ secr ion. iv ce et 2. A ldos terone: -A t ba aer lmembr ne: Itst aes Na - + APa → ↑ K+ t he sol t a a imul t + K T se upt ke bypr lcels → ↑ I.C. K+ concentaion → ↑ dr ing for for a incipa l rt iv ce K+ secr ion. et -A t l lmembr ne: It↑ t numberofK+ cha s. t he umina a he nnel 3. A c id-bas e s tatus : A Na ions ae r bsor in excha fort secr ion ofK+ orH+ ions, t e is compet ion forNa ions in t s + r ea bed nge he et her it + he t a fl ubul r uid: In a cidosis: M e H+ t n K+ ent s t a epit ia cel a oss t ba aer lmembr ne → ↓ I.C. K+ → ↓ or ha er ubul r hel l l cr he sol t a a dr ingfor forK+ secr ion. iv ce et In akaosis: L H+ t n K+ ent s t a epit ia cel a oss t ba aer lmembr ne → ↑ I.C. K+ → ↑ l l ess ha er ubul r hel l l cr he sol t a a dr ingfor forK+ secr ion. iv ce et 131
  • 132. HA NDLING OF C E RTA IN IMPORTA NT S OLUTE S B Y RE NA L TUB ULE S V. Phos phate: 5% t ed t ea bed r nspor it + nd he est - 8 offiler phosphae is r bsor in PCTbycota tw h Na a t r is excr ed in et urine. - Paahyr hor (PT inhibit phosphae r bsor ion in PCT&ca phos phaturia. r t oid mone H) s t ea pt uses - Phosphae is aur r bufferforH+ . t inay 132
  • 133. HA NDLING OF C E RTA IN IMPORTA NT S OLUTE S B Y RE NA L TUB ULE S VI. C alc ium: - Nor ly, 99% offiler cacium ae r bsor byr lt es. mal t ed l r ea bed ena ubul - Itshoul be not how er t tonl 50 ofpl smacacium, w is ionized cacium, is filer a oss d ed, ev , ha y % a l hich l t ed cr t gl ul rca l r w e t ot 50 ofpl smacacium ae bound t pl smapr eins a he omer a pilaies, hil he her % a l r o a ot nd ca be filer nnot t ed.  67% ae r bsor in PCT r ea bed .  25- 0 ae r bsor in t l ofHenl 3 %% r ea bed he oop e.  5- % ae r bsor in DCT&CD. PT st aes Ca r bsor t fr DCT 10 r ea bed H imul t 2+ ea p-ion om .
  • 134. Urea Handling (1) PC T A bout 50% of the filtered urea is pas s ively reabs orbed The wall of PC T is partially permeable to urea but highly permeable to water s o water reabs orption from PC T → increas es urea concentration in tubular lumen. This creates concentration gradient → Urea reabs orption. (2) Thick as cending limb of loop of Henle, DC T and cortical collecting tubules A ll are relatively impermeable to urea. H2O reabs orbed in DC T and cortical collecting tubule (in pres ence of A DH) → increas ed urea concentration in tubular fluid. (3) Inner medullary portion of the collecting duct Urea diffus es into the medullary inters titium to increas e its os molality. Diffus ion of urea is facilitated by A DH. 40 - 60% of the tubular load of urea is exc reted in urine. ► Urea cycle • Urea moves from the medullary inters titium into the thin loop of • the Henle and back down into the medullary collecting • duct and again to medullary inters titium • s everal times before urea is excreted.
  • 136. Handling of Hydrog en 1. PC T 85% 2. Thic k as cending loop of Henle 10% 3. DC T and collec ting tubule 5%. Mechanis m of H+ s ecretion A) In PCT, LH and initial part of DCT: M ofH+ is secr ed bys econdary active trans port. ost et Itis Na dependent. A ipor car a l lbor bind Naa H. nt t rier t umina der nd B) In late part of DCT and CD: Hydr is secr ed byprimary activ e trans port ByInterc alated cells , ogen et hydr secr ion is st aed byadost one a bot ogen et imul t l er nd h hydr a pot ssium compet forsecr ion. ogen nd a e et
  • 137. B icarbonate Handling Plas ma HCO3 plays an important role in the reg ulation of pH of plas ma. Mos t of the filtered bicarbonate (99 % or more) is reabs orbed. 1) A bout 80 to 90 % of the bicarbonate reabs orption occurs in the PC T. 2) In the thick as cending loop of Henle, 10 % of the filtered bicarbonate is reabs orbed, 3) the remainder of the reabs orption takes place in
  • 139. A mino acid handling • S econdary active trans port coupled with s odium
  • 140. Subs Description Proximal tubule Loop of Henle Distal tubule Collecting duct If glucose is not reabsorbed by reabsorption (almost the kidney, it appears in the 100%) via glucose urine, in a condition known as sodium-glucose transport proteins- - - glucosuria. This is associated (apical) with diabetes mellitus.. and GLUT(basolateral ). amino acids Almost completely conserved. Reabsorption (active) - - - urea Regulation of osmolality. Varies reabsorption (50%) via secretion - reabsorption in with ADH passive transport medullary ducts reabsorption reabsorption reabsorption (5%, Uses Na-H antiport, Na-glucose reabsorption (65%, (25%, thick (5%, principal cells), sodium symport, sodium ion channels isosmotic) ascending, sodium-chloride symporter by stimulated Na-K-2Cl symporter ) aldosterone ) Usually follows sodium. Active reabsorption reabsorption chloride (transcellular) and passive ( reabsorption (thin ascending, (sodium- - paracellular) thick ascending, chlorid symp Na-K-2Cl reabsorption water Uses aquaporin. - reabsorption - (with ADH, via (descending) vasopressin recepto ) Helps maintain acid-base reabsorption (80-90%) reabsorption reabsorption HCO3 balance. [8] [9] (thick ascending) - (intercalated [10] cells, secretion H Uses [[vacuolar H+ATPase]] - - - (intercalated cells) reabsorption (20%, thick secretion increased by K Varies upon dietary needs. reabsorption (80%) ascending, aldosterone) Na-K-2Cl symporter ) reabsorption (thick reabsorption calcium reabsorption ascending) via stimulated - passive transport by PTH reabsorption (80%) phosp Excreted as titratable acid. Inhibited by - - - parathyroid hormone.
  • 141. Table 41-3 NaCl transport along the nephron Segment Percentage filtered Mechanism of Na+ Major regulatory reabsorbed entry across the hormones apical membrane Proximal tubule 67% Na+-H+exchange, Angiotensin II Na+-cotransport with amino acids and Norepinephrine organic solutes, Na+/ H+-Cl-/anion Epinephrine exchange Dopamine Paracellular Loop of Henle 25% 1 Na+-1K+-2Cl- Aldosterone symport Distal tubule ~4% NaCl symport Aldosterone Late distal tubule ~3% Na+ channels Aldosterone and collecting duct Atrial natriuretic peptide Urodilatin
  • 142. Table 41-4 Water transport along the nephron Segment Percentage of Mechanism of Hormones filtered load water that regulate reabsorbed reabsorption water permeability Proximal tubule 67% Passive None Loop of Henle 15% DTL only; None passive Distal tubule 0% No water None reabsorption Late distal ~8%-17% Passive ADH, ANP tubule and
  • 143.
  • 144. URINE C ONC E NTRA TION
  • 145. Mechanis ms to C oncentrate Urine creation of • Countercurrent Multiplication-- osmot gr dient ic a – L ofHenl oop e – G aes aur t tis concentaed a high a 60 mosm/ ener t ine ha rt s s 0 L • Urea recycling – M l r Colect Duct edulay l ing – Needed t incr se t osmol rgr dientfr 60 t 120 mosm/ o ea he a a om 0 o 0 L – Kidneys use ur t do osmot w k w in st t ofa idiur ea o ic or hen ae nt esis • Countercurrent exchang e-- asarectam aintains the v medulayinst st ia osmot gr dientsetup byt count curentmulipl l r er it l ic a he er r t ier
  • 146. PRODUC TION OF C ONC E NTRA TE D URINE • Concentaed ur is aso cal hyperos motic urine (ur osmol r y> bl osmol r y). r t ine l led ine ait ood ait • T kidneyexcr es excess sol es, butdoes notexcr e excess a s ofw t . he et ut et mount aer • The bas ic requirements for forming a c onc entrated urine are: 1. a high level of A DH, e.g., in w t depr aion orhemorha aer iv t r ge → ↑ per bil yofl t DCT&CDs t w t , al ing t segment mea it ae o aer low hese s t r bsor al r a o ea b age mountofw t . aer 2. a high os molarity of the renal medullary inters titial fluid → pr ides t osmot gr dientnecessayforw t r bsor ion t ov he ic a r aer ea pt o occurin t pr he esence ofhigh l el ofA ev s DH. • A erpa t t int st ium, w t is car byt v sar aba int t bl ft ssing o he er it aer ried he a ect ck o he ood. 146
  • 147. PRODUC TION OF C ONC E NTRA TE D URINE Reabs orption of Water in Pres ence of ADH: In PC T, loop of Henle & early DC T: -Sa a in for t ofdil e ur (see befor me s maion ut ine e). -T t a fl r ching t l t DCTis hyposmot (10 mOsm/). he ubul r uid ea he ae ic 0 L Late DC T: -A ↑ t w t per bil yoft pr lcels oft l t DCT DH he aer mea it he incipa l he ae . ⇒ Wt is r bsor unt t osmol r yoft DCTequas t tofsurounding int st ia fl in r l aer ea bed il he ait he l ha r er it l uid ena corex (3 0mOsm/). t 0 L C Ds : -A ↑ t w t per bil yofpr lcels ofCDs. DH he aer mea it incipa l -A t t a fl fl s t ough t CDs, itpa t ough r s he ubul r uid ow hr he sses hr egions ofincr sing hyper ait t ad ea osmol r y ow r t innermedula he l. -Wt is r bsor fr t CDs unt t osmol r yoft t a fl equas t toft surounding aer ea bed om he il he ait he ubul r uid l ha he r int st ia fl er it l uid. ⇒ T osmol r yoft fina ur r ches 120 mOsm/. he ait he l ine ea 0 147 L
  • 148. II. PRODUC TION OF C ONC E NTRA TE D URINE (cont.) 148
  • 149. II. PRODUC TION OF C ONC E NTRA TE D URINE (cont.) 149
  • 150. The C ounterc urrent S ys tem • T count curentsyst is r he er r em esponsibl fort cr t &ma ena ofagr dual incr sing e he eaion int nce a ly ea hyper ait in t r lmedulayint st ium, w is essent lforena ing t kidneyt osmol r y he ena l r er it hich ia bl he o concentae ur in t pr r t ine he esence ofenough cir aing A cul t DH. • T osmot gr dientis due t a his ic a o ccumul t ofsol es (pr r yNa &ur )in gr texcess ofw t in aion ut imail Cl ea ea aer t medulayint st ium. he l r er it • Once t high sol e concentaion in medulaha been a ed, itis ma a byabaa out owof he ut rt l s chiev int ined l nced fl sol es &w t in t medula ut aer he l. • T osmot gr dientis his ic a 1. est bl byt l ofHenl w a s a ac ounterc urrent multiplier. a ished he oop e, hich ct s 2. pot iaed byt colect duct w al s urea recycling t occur ent t he l ing , hich low o . 3 ma a byt v sar a w a a counterc urrent exchangers . . int ined he a ect , hich ct s 150
  • 151. THE C OUNTE RC URRE NT S YS TE M Loop of Henle A cting as C ounter C urrent Multiplier How does the renal medulla become hyperos motic? 1. Befor t osmot gr dientoft medulais est bl e he ic a he l a ished, t osmol r yis t sa t oughoutt he ait he me hr he nephr (3 0mOsm/). on 0 L 2. T a iv pumping ofNa outoft thick as c ending limb occur w houtconcomit nt he ct e Cl he s it a movementofw t → ↓ in osmol r yoft a fl inside a aer ait ubul r uid scending l (20 mOsm/)&↑ in imb 0 L osmol r yofmedulayint st ia fl (4 0mOsm/). ait l r er it l uid 0 L 3 A fl pa dow t des c ending limb, itr ches osmot equil ium w h medulay . s uid sses n he ea ic ibr it lr int st ium due t osmosis ofw t outofdescending l [Int st ia osmol r yis ma a a 4 0 er it o aer imb. er it l ait int ined t 0 mOsm/ due t cont ta tofions outoft a L o inued r nspor imb.] T t e is agr dua ↑ in hick scending l hus, her a l t a fl osmol r ya itfl s t ads t ha pin bend. ubul r uid ait s ow ow r he ir 4 A mor fl ent s descending l fr PCT hyper ic fl pr iousl pr in descending . s e uid er imb om , osmot uid ev y esent l nowfl s int t a imb ow o hick scending l imb. 151
  • 152. THE C OUNTE RC URRE NT S YS TE M Loop of Henle A cting as C ounter C urrent Multiplier 5. M e Na is pumped fr t a or Cl om hick scending l int int st ium, but w t r ins in t e. T imb o er it aer ema ubul his cont unt a20 mOsm/ osmot gr dientis est bl inues il 0 L ic a a ished. Nowosmol r yin medulayint st ium ha ait l r er it s r furhert 50 mOsm/. isen t o 0 L 6. Once a in t fl in descending l equil aes w h hyper ic medulay int st ia fl now ga he uid imb ibr t it osmot l r er it l uid, r ching 50 mOsm/ a t t ea 0 L t he ip. 7. T st ae r t ov & ov , a hese eps r epeaed er er dding mor & mor sol e t t medulain excess ofw t . T e e ut o he l aer his pr ocess gr dual ta sol es in t medula ev ual r ising t int st ia osmol r y t 120 a ly r ps ut he l , ent ly a he er it l ait o 0 mOsm/. L • Ov al t pr essiv ta t of Na fr t t a fl int t int st ium r t in t er l, he ogr e r nspor Cl om he ubul r uid o he er it esuls he est bl a ishmentofal udina osmot gr dientin t medula ongit l ic a he l. ⇒ Thus , the countercurrent arrangement of the loop of Henle multiplies a relatively s mall trans epithelial os motic gradient into a large longitudinal gradient. 152
  • 153. C OUNTE RC URRE NT MULTIPLIE R S YS TE M IN LOOP OF HE NLE 153
  • 154. Role of DC T & C Ds in Urine C oncentration • T a fl fl ing fr l ofHenl int DCTis dil e. ubul r uid ow om oop e o ut • T eal DCTfurherdil es t fl beca t segment l t a he ry t ut he uid, use his , ike he scending l ofl ofHenl imb oop e, a iv yta t Na outoft e, butis imper bl t w t . ct el r nspors Cl ubul mea e o aer • W h high A concentaions, l t DCT&corica CD become highl per bl t w t → large it DH r t ae t l y mea e o aer amounts of water are reabs orbed from the tubule into the c ortical inters titium, w e itis sw a a byt per ubul rca l r her ept w y he it a pilaies. • W h high A l el t e is furherw t r bsor ion fr medulayCDs t int st ium. How er t it DH ev s, her t aer ea pt om lr o er it ev , he amountofw t is r aiv ysmalcompaed w h t ta t t corica int st ium. R bsor w t aer el t el l r it ha dded o he t l er it ea bed aer is quickl car a a byv sar aint v y ried w y a ect o enous bl ood. N.B . T fa t tl r a s ofw t ae r bsor int t corex, r t t n int t medula hel he ct ha age mount aer r ea bed o he t aher ha o he l , ps t pr v t high medulayint st ia fl osmol r y. o eser e he l r er it l uid ait • T in t pr hus, he esence ofA t fl a t end ofCDs ha t sa osmol r ya t medulay DH, he uid t he s he me ait s he lr int st ium (120 mOsm/). er it 0 L ⇒ Byr bsor a much w t a possibl t kidneys for ahighl concentaed ur w e a ea bing s aer s e, he m y r t ine hil dding w t ba t E &compensaing fordeficitofbodyw t . aer ck o CF t aer 154
  • 155. Urea Rec ycling • he esence ofA urea c ontibutes 40% t t medulayint st ia osmol r y(= In t pr DH, o he l r er it l ait 50 mOsm/)bypa e ur r bsor ion fr t innermedulayCDs int t int st ium. 0 L ssiv ea ea pt om he lr o he er it Mec hanis m: -Ascending l ofl ofHenl DCT corica CDs &out medulayCDs ae imper bl t ur . imb oop e, , t l er lr r mea e o ea -A w t is r bsor fr l t DCT corica &out medulayCDs, ur concent aion ↑ r pidl s aer ea bed om ae , t l er lr ea rt a y. -In innermedulayCDs, furherw t r bsor ion t kes pl ce, so t tur concentaion r ev mor lr t aer ea pt a a ha ea r t ises en e. T ur diffuses outoft t e int r lint st ium beca t segmentis highl per bl t hus, ea he ubul o ena er it use his y mea e o ur , a A incr ses t per bil yev mor ea nd DH ea his mea it en e. -Amoder t shae oft ur t tmov int medulayint st ium diffuses int t descending l of ae r he ea ha es o l r er it o hin imb l ofHenl so t titpa a in in t a fl Itr cul t sev a t befor itis excr ed. oop e, ha sses ga ubul r uid. ecir aes er l imes e et E ch t aound itcontibut t ahigherconcentaion ofur in int st ium. a ime r r es o rt ea er it ⇒ Ur r cul t pr ides a a iona mecha forfor ahyper icmedula ea ecir aion ov n ddit l nism ming osmot l. 155
  • 156. URE A RE C YC LING 156
  • 157. THE C OUNTE RC URRE NT S YS TE M Vas a Recta as C ountercurrent E xchanger • Bl mustbe pr ided t r lmedulat suppl it met bol needs, butw houtaspecia bl fl syst ood ov o ena l o y s a ic it l ood ow em, sol es pumped int t medulabycount curentmulipl w d r pidl getl . ut o he l er r t ier oul a y ost • T e ae 2 specia feaur in medulay bl fl t t contibut t t pr v t of t high sol e her r l t es l r ood ow ha r e o he eser aion he ut concentaions: rt 1. The medullary blood flow is low (onl 1- of t a R → sufficient for met bol y 2% ot l BF) a ic needs oftissues, butminimizes sol e l ut oss. 2. The vas a rec ta s erve as countercurrent exchangers . C ountercurrent E xchange Mechanis m: • A bl des c ends into medulla, itbecomes mor &mor concentaed, byga sat&l s ood e e rt ining l osing w t . A t t ofv sar abl ha aconcentaion of1200 mOs m/L. aer t he ips a ect ood s rt • A bl a s ood scends ba t ad corex, t r er sequence occur a bl l v v sar ais onl sl l ck ow r t he ev se s, nd ood ea ing a ect y ighty hyperos motic to normal plas ma. ⇒ Dur it pa ge t ough medula bl ha r ed t excess sat& w t t tha e been a by t ing s ssa hr l , ood s emov he l aer ha v dded he ta tpr r nspor ocesses occuring in t deeperr r he egions oft medula he l. ⇒ T t U- pe ofv sar amaintains the concentration of s olutes est bl hus, he sha a ect a ished bycount curentsyst er r em. 157
  • 158. Vas a Rec ta as C ounterc urrent E xc hanger 158
  • 159. Diures is and diuretics Diures is is an increas e in the rate of urine output. (A ) H2O diures is Increas e H2O intake → decreas e Os motic. Pr → decreas e A DH → decreas e facultative H2O reabs orption i.e. Urine large volume and hypotonic. (B ) Os motic diures is Unreabs orbable s olute in PC T→ decreas e obligatory H2O reabs orption → decreas e Na+ concentration in tubular fluid → decreas e os molarity of medullary inters titium → decreas e facultative H2O reabs orption. -Urine: large volume and is otonic or hypertonic. (C ) Pres s ure diures is Increas e in arterial blood pres s ure leads to: • ↑G FR. • Inhibition of rennin angiotens in s ys tem → ↓ renin and angiotens in II production.
  • 160. (4) Diuretic drugs (A)Thiazides : inhibitNar bsor ion in DCT ea pt . (B) Aldos terone inhibitors : (Potas s ium-s paring diuretics ) e.g. alldactone: inhibitNaKexcha in DCTa colect t es → decr se ser - nge nd l ing ubul ea um Naa incr se ser K+ . nd ea um (C) Carbonic anhydras e inhibitors e.g. acetazolamide (Diamox). Itinhibit cabonic a a enzyme → decr se Hsecr ion → decr se Na s r nhydr se ea et ea a HCO3-r bsor ion in PCTa incr se Ksecr ion in DCT nd ea pt nd ea et → incr se Na HCO3 &Kexcr ion in ur ea , et ine. M yl d t acidos is . a ea o (D) Loop diuretics e.g. frus emide (las ix): inhibitNaK- cota t s in t t a - 2Cl r nsporer he hick scending l imb ofl ofHenl oop e.
  • 161.
  • 163. Micturition Reflex • A s bladder fills s ens ory s tretch receptors s end s ignals via pelvic nerves to s acral s egments of s pinal c ord. • Paras ympathetic s timulation of the bladder s mooth mus cle via the s ame pelvic nerves occurs . • It is “ s elf-regenerative” , s ubs ides , then re- generates again until the external s phincter is relaxed and urination can
  • 164. Innervation Parasympathetic Pre-glanglionic  S2, S3, S4 unite to form Pelvic nerves Post-ganglionic  onto detrusor muscle & internal sphincter Sympathetic Pre-ganglionic  L1, L2, L3 Post-ganglionic  onto trigone, neck, & internal sphincter Little to do with bladder contraction o--------- o------------------------------------------ Ach NE
  • 165. Innervation con’t… Afferents (sensory nerves) Pelvic nerve: impulses due to bladder fullness; micturition reflex; pain impulses Hypogastric nerve: pain impulses Pudendal nerve: sensory impulses from urethra Somatic Efferent (Pudendal nerve) Impulses originate in S1 and S2; innervate external sphincter Mediate voluntary control of micturition
  • 167. • Internal s phincter -det usormuscl in t bl dderneck w t nor lykeeps t r e he a hose one mal he bl dderneck a post ior a nd er ur hr empt ofur a t efor pr ent et a y ine nd her e ev s empt oft bl dderunt t pr e in t ma patoft ying he a il he essur he in r he bl dderexceeds acr ica l el a it l ev • E xternal s phincter -l yerofv unt r skel a muscl w surounds t ur hr a it a ol ay et l e hich r he et a s pa t ough t ur a dia a sses hr he ogenit l phr gm -underv unt r cont ola ca conciousl pr entur t ev w ol ay r nd n y ev inaion en hen inv unt r cont ol ae at ing t empt t bl dder ol ay r s r tempt o y he a
  • 168. Bladder Filling and Micturition Bladder Filling: 1. Empty bladder: 0 pressure 2. 30 - 50 mls of urine  5 - 10 cm H2O 3. 50 - 300 ml little pressure change 4. With filling, increased activity of external sphincter (maintains continence, or control of excretory functions) 5. > 300 - 400 ml  discomfort; leads to urgency Start of Micturition: 1. As bladder fills, micturition (bladder) contractions begin to appear a. Last from a few seconds to more than a minute b. Pressure peaks (micturition waves) may rise a few cm H2O to more than 100 cm H2O c. Caused by micturition reflex
  • 169. Micturition Con’t… 2. Micturition reflex (does not need the brain) a. Filling stimulates sensory stretch receptors b. Afferent impulses in Pelvic nerve c. Signal reflexively sent back to bladder via efferent parasympathetic fibers in the Pelvic nerve d. Detrusor muscle contracts, then relaxes 2. Micturition reflex - continued e. As bladder fills, micturition reflex occurs more frequently, with greater contraction of bladder wall (positive feedback loop) • Micturition powerful enough then another signal is sent through Pudendal nerve to inhibit external sphincter (internal relaxes passively when pressure is 20 - 40 cm H2O) • Voluntary relaxation of external sphincter allows for urination • Flow thru urethra stimulates parasympathic system, sustaining bladder contraction

Notas do Editor

  1. d