SlideShare a Scribd company logo
1 of 31
THE HILSCH VORTEX TUBE
      EXPERIMENT

       Diego Paranhos
        Ashley Penna
         Nipun Bisht

     CHE 332 – Summer 2008
Objectives
 History and Background
 Theory and Equations
 Equipment and Procedure
 Data and Results
 Significance
What is it?
Construction
Fluid Flow within Vortex Tube
Cross Sectional of Vortex Tube
History
   Discovered by Frenchman, Georges J. Ranque

   Turned over to German physicist, Rudolf Hilsch

   Hilsch made improvements on the design, but
    found that it was no more efficient than
    conventional methods of refrigeration in
    achieving fairly low temperatures

   Became known as the Hilsch Vortex Tube
Material Balance
Theoretical Equations
   Enthalpy
       ΔH = mhCp(Th-Tref) + mcCp(Tc-Tref)
   Entropy
     ΔSoverall = mhΔSh + mcΔSc
     ΔS = Cp*ln(T/Tref) – R*ln(P/Pref)

   Cooling Capacity
       CC = |mcCp(Tc-Tin)|
Equipment
   House Air                  5 Thermocouples
   Pressure control               Digital Readout – ºC
    valve                      Flow control valve
   2 pressure indicators      Electronic flow meter
       In psig                    % SLM
   U-tube manometer               Model: FMA-78P2
       In mmHg                Rotameter
   Hilsch Vortex Tube             SCFM
Laboratory Station
Flow Schematic
Procedure (Part 1)
 Pressure control valve set to 30 psig
 Hot air stream valve fully open
 Record:
     Inlet and hot air flow from meter
     Cold air flow from rotameter
     All temperatures from digital recorder
     Inlet and hot air pressure from pressure
      indicator
     Cold air pressure from U-tube manometer
   Use hot air flow to obtain 4 more desired
    flow rates
       Holding pressure constant, use the hot air
        flow control valve to change the flow rate, in
        turn, changing the split ratio
   Record previous data at all 5 flow rates
Data (Part 1 @ P = 30 psig)
        Input Stream                  Hot Stream                  Cold Stream
Pressure (psig)         22    Pressure (psig)       4     Pressure (mm Hg)        3.3
Flow rate (%)          34.1   Flow rate (%)        38.3   Flow rate (SCFM)         1
Temperature (°C)       22.3   Temperature (°C)      45    Temperature (°C)      -16.4
Pressure (psig)         22    Pressure (psig)       5     Pressure (psig)         4.7
Flow rate (%)          33.8   Flow rate (%)        28.6   Flow rate (SCFM)        1.2
Temperature (°C)       22.4   Temperature (°C)     51.1   Temperature (°C)      -15.9
Pressure (psig)         22    Pressure (psig)       5     Pressure (mm Hg)       6.35
Flow rate (%)          33.5   Flow rate (%)        19.2   Flow rate (SCFM)        1.4
Temperature (°C)       22.4   Temperature (°C)     59.3   Temperature (°C)      -13.5
Pressure (psig)         22    Pressure (psig)       6     Pressure (mm Hg)        8.5
Flow rate (%)          33.1   Flow rate (%)        9.6    Flow rate (SCFM)        1.6
Temperature (°C)       22.3   Temperature (°C)      71    Temperature (°C)      -10.3
Pressure (psig)         22    Pressure (psig)       7     Pressure (mm Hg)       10.4
Flow rate (%)          32.7   Flow rate (%)        0.4    Flow rate (SCFM)        1.7
Temperature (°C)       22.2   Temperature (°C)     79.8   Temperature (°C)       -5.8
   Use hot air flow to obtain 4 more desired
    flow rates
       Holding pressure constant, use the hot air
        flow control valve to change the flow rate, in
        turn, changing the split ratio
 Record previous data at all 5 flow rates
 Repeat procedure at Pin = 40 and 50
  psig
Data (Part 1 @ P = 40 psig)
        Input Stream                  Hot Stream                   Cold Stream
Pressure (psig)         30    Pressure (psig)        6     Pressure (mm Hg)       5.2
Flow rate (%)          44.2   Flow rate (%)         53.3   Flow rate (SCFM)       1.25
Temperature (°C)       24.2   Temperature (°C)      49.8   Temperature (°C)      -21.9
Pressure (psig)         30    Pressure (psig)        7     Pressure (mm Hg)        8
Flow rate (%)           43    Flow rate (%)         39.6   Flow rate (SCFM)       1.6
Temperature (°C)       22.5   Temperature (°C)      60.8   Temperature (°C)      -21.2
Pressure (psig)         30    Pressure (psig)        8     Pressure (mm Hg)       10.8
Flow rate (%)          42.2   Flow rate (%)         26.7   Flow rate (SCFM)       1.9
Temperature (°C)       22.5   Temperature (°C)      71.8   Temperature (°C)      -18.7
Pressure (psig)        30.3   Pressure (psig)        9     Pressure (mm Hg)       14.9
Flow rate (%)           42    Flow rate (%)         13.3   Flow rate (SCFM)       2.2
Temperature (°C)       22.4   Temperature (°C)      86.1   Temperature (°C)      -13.7
Pressure (psig)         31    Pressure (psig)        10    Pressure (mm Hg)          18.1
Flow rate (%)          41.7   Flow rate (%)         0.5    Flow rate (SCFM)           2.4
Temperature (°C)        23    Temperature (°C)     103.6   Temperature (°C)          -6.2
Data (Part 1 @ P = 50 psig)
        Input Stream                  Hot Stream                   Cold Stream
Pressure (psig)        37.5   Pressure (psig)       7.5    Pressure (mm Hg)       7.6
Flow rate (%)          52.5   Flow rate (%)         64.2   Flow rate (SCFM)       1.5
Temperature (°C)       22.2   Temperature (°C)      52.3   Temperature (°C)      -27.2
Pressure (psig)         38    Pressure (psig)        9     Pressure (mm Hg)       12.2
Flow rate (%)           52    Flow rate (%)          49    Flow rate (SCFM)         2
Temperature (°C)       21.3   Temperature (°C)      68.4   Temperature (°C)      -24.9
Pressure (psig)         38    Pressure (psig)        11    Pressure (mm Hg)       16.8
Flow rate (%)          51.2   Flow rate (%)         31.4   Flow rate (SCFM)       2.25
Temperature (°C)       20.8   Temperature (°C)      84.5   Temperature (°C)      -22.5
Pressure (psig)        38.5   Pressure (psig)        12    Pressure (mm Hg)       21.6
Flow rate (%)          50.5   Flow rate (%)         15.7   Flow rate (SCFM)       2.75
Temperature (°C)       20.7   Temperature (°C)     103.5   Temperature (°C)      -15.9
Pressure (psig)        38.8   Pressure (psig)        13    Pressure (mm Hg)       26.6
Flow rate (%)           50    Flow rate (%)         0.7    Flow rate (SCFM)         3
Temperature (°C)       20.8   Temperature (°C)     121.8   Temperature (°C)      -10.6
Procedure (Part 2)
   Set hot air flow control valve to desired
    position
       Recommended 50-50 split ratio
 Adjust pressure control valve to ~50psig
 Record data
 Repeat for Pin = 45, 40, 35, 30, 25, and
  20 psig
Data (Part 2)

Fin           Pin         Tin          Fh           Ph           Th          Fc        Pc            Tc
SLM           psig        ºC           SLM          psig         ºC          SCFM      psig          ºC
      105.6          49         19.8           52            9        66.6         2          12.3          -26
        98           45         19.9         45.2            8        62.6       1.8          10.2        -25.7
       86.2          40         19.9           40          6.9        60.3       1.6           8.3        -23.1
       76.4          35         19.7           33            6        55.8       1.4           6.7        -21.3
       66.6          30         19.8         27.7            5        53.6       1.2           5.3        -19.2
       58.4          25         19.7           21            3        47.2      1.05           4.6        -13.9
        48           20         19.8         14.8            1        44.6      0.85           2.9        -11.8
Outlet Temperature Difference
        vs. Split Ratio
Temperature Difference vs.
    Supply Pressure
Cooling Capacity vs.
     Split Ratio
Cooling Capacity vs.
 Supply Pressure
Enthalpy vs. Split Ratio
Entropy vs. Split Ratio
Conclusions
   1st Law of Thermodynamics

   2nd Law of Thermodynamics

   Temperature Difference vs. Split Ratio and
    Supply Pressure

   Cooling Capacity
References

   http://www.visi.com/~darus/hilsch/

   http://www.airtxinternational.com/how_vortex_tubes_work.php

   http://alexandria.tue.nl/extra2/200513271.pdf

   http://www.exair.com/en-US/Primary%20Navigation/Products/Vortex%20T
Questions?
Thank you

More Related Content

What's hot

Linear heat conduction
Linear heat conductionLinear heat conduction
Linear heat conductionAree Salah
 
Impact Of Jet | Jameel Academy
Impact Of Jet | Jameel AcademyImpact Of Jet | Jameel Academy
Impact Of Jet | Jameel AcademyJameel Academy
 
CH7 PC and SR.pptx
CH7 PC and SR.pptxCH7 PC and SR.pptx
CH7 PC and SR.pptxDawit Girma
 
Experiment10
Experiment10Experiment10
Experiment10john
 
Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.shivam gautam
 
W4_Lecture_Transient heat conduction.ppt
W4_Lecture_Transient heat conduction.pptW4_Lecture_Transient heat conduction.ppt
W4_Lecture_Transient heat conduction.pptMike275736
 
Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)sarkawtn
 
15679104 basic-civil-and-mechanical-engineering-unit-v
15679104 basic-civil-and-mechanical-engineering-unit-v15679104 basic-civil-and-mechanical-engineering-unit-v
15679104 basic-civil-and-mechanical-engineering-unit-vMahendiran Subramaniyan
 
Heat Exchangers
Heat ExchangersHeat Exchangers
Heat Exchangersmohkab1
 
Unit 5 Fluid Mechanics
Unit 5 Fluid MechanicsUnit 5 Fluid Mechanics
Unit 5 Fluid MechanicsMalaysia
 
HEAT TRANSFER ENHANCEMENT TECHNIQE
HEAT TRANSFER ENHANCEMENT TECHNIQE HEAT TRANSFER ENHANCEMENT TECHNIQE
HEAT TRANSFER ENHANCEMENT TECHNIQE pat2606
 
Radial heat conduction
Radial heat conductionRadial heat conduction
Radial heat conductionAree Salah
 
Ch 6a 2nd law
Ch 6a  2nd lawCh 6a  2nd law
Ch 6a 2nd lawabfisho
 
presentation on heat exchanger
presentation on  heat exchangerpresentation on  heat exchanger
presentation on heat exchangerAyush Upadhyay
 

What's hot (20)

Steam Basics
Steam BasicsSteam Basics
Steam Basics
 
Ideal reheat rankine cycle
Ideal reheat rankine cycleIdeal reheat rankine cycle
Ideal reheat rankine cycle
 
Linear heat conduction
Linear heat conductionLinear heat conduction
Linear heat conduction
 
Impact Of Jet | Jameel Academy
Impact Of Jet | Jameel AcademyImpact Of Jet | Jameel Academy
Impact Of Jet | Jameel Academy
 
Plate Type Heat Exchanger Design
Plate Type Heat Exchanger DesignPlate Type Heat Exchanger Design
Plate Type Heat Exchanger Design
 
CH7 PC and SR.pptx
CH7 PC and SR.pptxCH7 PC and SR.pptx
CH7 PC and SR.pptx
 
Experiment10
Experiment10Experiment10
Experiment10
 
Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.Fluid Mech. Presentation 2nd year B.Tech.
Fluid Mech. Presentation 2nd year B.Tech.
 
W4_Lecture_Transient heat conduction.ppt
W4_Lecture_Transient heat conduction.pptW4_Lecture_Transient heat conduction.ppt
W4_Lecture_Transient heat conduction.ppt
 
Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)Linear heat conduction(Brass 25)
Linear heat conduction(Brass 25)
 
Heat Convection by Latif M. Jiji - solutions
Heat Convection by Latif M. Jiji - solutionsHeat Convection by Latif M. Jiji - solutions
Heat Convection by Latif M. Jiji - solutions
 
Heat conduction equation
Heat conduction equationHeat conduction equation
Heat conduction equation
 
15679104 basic-civil-and-mechanical-engineering-unit-v
15679104 basic-civil-and-mechanical-engineering-unit-v15679104 basic-civil-and-mechanical-engineering-unit-v
15679104 basic-civil-and-mechanical-engineering-unit-v
 
Heat Exchangers
Heat ExchangersHeat Exchangers
Heat Exchangers
 
Unit 5 Fluid Mechanics
Unit 5 Fluid MechanicsUnit 5 Fluid Mechanics
Unit 5 Fluid Mechanics
 
HEAT TRANSFER ENHANCEMENT TECHNIQE
HEAT TRANSFER ENHANCEMENT TECHNIQE HEAT TRANSFER ENHANCEMENT TECHNIQE
HEAT TRANSFER ENHANCEMENT TECHNIQE
 
Radial heat conduction
Radial heat conductionRadial heat conduction
Radial heat conduction
 
Ch.13
Ch.13Ch.13
Ch.13
 
Ch 6a 2nd law
Ch 6a  2nd lawCh 6a  2nd law
Ch 6a 2nd law
 
presentation on heat exchanger
presentation on  heat exchangerpresentation on  heat exchanger
presentation on heat exchanger
 

Viewers also liked

Viewers also liked (9)

Vortex tube
Vortex tubeVortex tube
Vortex tube
 
NexFlow Vortex tube
NexFlow Vortex tubeNexFlow Vortex tube
NexFlow Vortex tube
 
vertex tube and fabrication
vertex tube and fabricationvertex tube and fabrication
vertex tube and fabrication
 
Vortex flow tube
Vortex flow tubeVortex flow tube
Vortex flow tube
 
main
mainmain
main
 
Vortex Tube
Vortex TubeVortex Tube
Vortex Tube
 
vortex tube
vortex tubevortex tube
vortex tube
 
Vortex tube _steam_jet_refrigeration
Vortex tube _steam_jet_refrigerationVortex tube _steam_jet_refrigeration
Vortex tube _steam_jet_refrigeration
 
Fabrication of Ranque Hilsch Vortex Tube
Fabrication of Ranque Hilsch Vortex TubeFabrication of Ranque Hilsch Vortex Tube
Fabrication of Ranque Hilsch Vortex Tube
 

Similar to Hilsch Vortex Tube Laboratory Experiment

IRES_ Final_Presenation
IRES_ Final_PresenationIRES_ Final_Presenation
IRES_ Final_PresenationHolden Ranz
 
Presentation - Ali Farhan
Presentation - Ali FarhanPresentation - Ali Farhan
Presentation - Ali FarhanAli Farhan
 
L-Phenylacetylcarbinol presentation
L-Phenylacetylcarbinol presentationL-Phenylacetylcarbinol presentation
L-Phenylacetylcarbinol presentationBernard Chung
 
L pac presentation
L pac presentationL pac presentation
L pac presentationSonia Patel
 
Normal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen PlantsNormal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen PlantsGerard B. Hawkins
 
Hydrogen Plant - Normal Operations
Hydrogen Plant - Normal OperationsHydrogen Plant - Normal Operations
Hydrogen Plant - Normal OperationsGerard B. Hawkins
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentationDahiru Lawal
 
Modelling of a cooling tower in EES
Modelling of a cooling tower in EESModelling of a cooling tower in EES
Modelling of a cooling tower in EESShiyas Basheer
 
160427 Searles SMI Lyo USA Effect of Chamber P and RH on Sec Dry Rate+PC1 int...
160427 Searles SMI Lyo USA Effect of Chamber P and RH on Sec Dry Rate+PC1 int...160427 Searles SMI Lyo USA Effect of Chamber P and RH on Sec Dry Rate+PC1 int...
160427 Searles SMI Lyo USA Effect of Chamber P and RH on Sec Dry Rate+PC1 int...Jim Searles
 
Supercritical Thermal Power plant
Supercritical Thermal Power plantSupercritical Thermal Power plant
Supercritical Thermal Power plantOjes Sai Pogiri
 
Waterfall Turbine Development Primer - Updated
Waterfall Turbine Development Primer - UpdatedWaterfall Turbine Development Primer - Updated
Waterfall Turbine Development Primer - UpdatedJason Rota
 
Desirable as run information system for energy efficiency of utility clas...
Desirable as run information system  for energy efficiency  of  utility  clas...Desirable as run information system  for energy efficiency  of  utility  clas...
Desirable as run information system for energy efficiency of utility clas...D.Pawan Kumar
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
5. feedback control[1]
5. feedback control[1]5. feedback control[1]
5. feedback control[1]magy31
 
Power plant performance_efficiency
Power plant performance_efficiencyPower plant performance_efficiency
Power plant performance_efficiencyKeyur Patel
 
TPFLEX-EN.pdf
TPFLEX-EN.pdfTPFLEX-EN.pdf
TPFLEX-EN.pdfDuy Pham
 
Transcritical Cycle.pptx
Transcritical Cycle.pptxTranscritical Cycle.pptx
Transcritical Cycle.pptxRavindra Kolhe
 

Similar to Hilsch Vortex Tube Laboratory Experiment (20)

IRES_ Final_Presenation
IRES_ Final_PresenationIRES_ Final_Presenation
IRES_ Final_Presenation
 
Presentation - Ali Farhan
Presentation - Ali FarhanPresentation - Ali Farhan
Presentation - Ali Farhan
 
L-Phenylacetylcarbinol presentation
L-Phenylacetylcarbinol presentationL-Phenylacetylcarbinol presentation
L-Phenylacetylcarbinol presentation
 
Presentation PX
Presentation PXPresentation PX
Presentation PX
 
L pac presentation
L pac presentationL pac presentation
L pac presentation
 
Normal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen PlantsNormal Operation of Steam Reformers on Hydrogen Plants
Normal Operation of Steam Reformers on Hydrogen Plants
 
Hydrogen Plant - Normal Operations
Hydrogen Plant - Normal OperationsHydrogen Plant - Normal Operations
Hydrogen Plant - Normal Operations
 
Thesis presentation
Thesis presentationThesis presentation
Thesis presentation
 
Modelling of a cooling tower in EES
Modelling of a cooling tower in EESModelling of a cooling tower in EES
Modelling of a cooling tower in EES
 
160427 Searles SMI Lyo USA Effect of Chamber P and RH on Sec Dry Rate+PC1 int...
160427 Searles SMI Lyo USA Effect of Chamber P and RH on Sec Dry Rate+PC1 int...160427 Searles SMI Lyo USA Effect of Chamber P and RH on Sec Dry Rate+PC1 int...
160427 Searles SMI Lyo USA Effect of Chamber P and RH on Sec Dry Rate+PC1 int...
 
Supercritical Thermal Power plant
Supercritical Thermal Power plantSupercritical Thermal Power plant
Supercritical Thermal Power plant
 
Waterfall Turbine Development Primer - Updated
Waterfall Turbine Development Primer - UpdatedWaterfall Turbine Development Primer - Updated
Waterfall Turbine Development Primer - Updated
 
Desirable as run information system for energy efficiency of utility clas...
Desirable as run information system  for energy efficiency  of  utility  clas...Desirable as run information system  for energy efficiency  of  utility  clas...
Desirable as run information system for energy efficiency of utility clas...
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
mel725-37.ppt
mel725-37.pptmel725-37.ppt
mel725-37.ppt
 
SYNGAS Process Integration
SYNGAS Process IntegrationSYNGAS Process Integration
SYNGAS Process Integration
 
5. feedback control[1]
5. feedback control[1]5. feedback control[1]
5. feedback control[1]
 
Power plant performance_efficiency
Power plant performance_efficiencyPower plant performance_efficiency
Power plant performance_efficiency
 
TPFLEX-EN.pdf
TPFLEX-EN.pdfTPFLEX-EN.pdf
TPFLEX-EN.pdf
 
Transcritical Cycle.pptx
Transcritical Cycle.pptxTranscritical Cycle.pptx
Transcritical Cycle.pptx
 

Hilsch Vortex Tube Laboratory Experiment

  • 1. THE HILSCH VORTEX TUBE EXPERIMENT Diego Paranhos Ashley Penna Nipun Bisht CHE 332 – Summer 2008
  • 2. Objectives  History and Background  Theory and Equations  Equipment and Procedure  Data and Results  Significance
  • 5. Fluid Flow within Vortex Tube
  • 6. Cross Sectional of Vortex Tube
  • 7. History  Discovered by Frenchman, Georges J. Ranque  Turned over to German physicist, Rudolf Hilsch  Hilsch made improvements on the design, but found that it was no more efficient than conventional methods of refrigeration in achieving fairly low temperatures  Became known as the Hilsch Vortex Tube
  • 8.
  • 10. Theoretical Equations  Enthalpy  ΔH = mhCp(Th-Tref) + mcCp(Tc-Tref)  Entropy  ΔSoverall = mhΔSh + mcΔSc  ΔS = Cp*ln(T/Tref) – R*ln(P/Pref)  Cooling Capacity  CC = |mcCp(Tc-Tin)|
  • 11. Equipment  House Air  5 Thermocouples  Pressure control  Digital Readout – ºC valve  Flow control valve  2 pressure indicators  Electronic flow meter  In psig  % SLM  U-tube manometer  Model: FMA-78P2  In mmHg  Rotameter  Hilsch Vortex Tube  SCFM
  • 14. Procedure (Part 1)  Pressure control valve set to 30 psig  Hot air stream valve fully open  Record:  Inlet and hot air flow from meter  Cold air flow from rotameter  All temperatures from digital recorder  Inlet and hot air pressure from pressure indicator  Cold air pressure from U-tube manometer
  • 15. Use hot air flow to obtain 4 more desired flow rates  Holding pressure constant, use the hot air flow control valve to change the flow rate, in turn, changing the split ratio  Record previous data at all 5 flow rates
  • 16. Data (Part 1 @ P = 30 psig) Input Stream Hot Stream Cold Stream Pressure (psig) 22 Pressure (psig) 4 Pressure (mm Hg) 3.3 Flow rate (%) 34.1 Flow rate (%) 38.3 Flow rate (SCFM) 1 Temperature (°C) 22.3 Temperature (°C) 45 Temperature (°C) -16.4 Pressure (psig) 22 Pressure (psig) 5 Pressure (psig) 4.7 Flow rate (%) 33.8 Flow rate (%) 28.6 Flow rate (SCFM) 1.2 Temperature (°C) 22.4 Temperature (°C) 51.1 Temperature (°C) -15.9 Pressure (psig) 22 Pressure (psig) 5 Pressure (mm Hg) 6.35 Flow rate (%) 33.5 Flow rate (%) 19.2 Flow rate (SCFM) 1.4 Temperature (°C) 22.4 Temperature (°C) 59.3 Temperature (°C) -13.5 Pressure (psig) 22 Pressure (psig) 6 Pressure (mm Hg) 8.5 Flow rate (%) 33.1 Flow rate (%) 9.6 Flow rate (SCFM) 1.6 Temperature (°C) 22.3 Temperature (°C) 71 Temperature (°C) -10.3 Pressure (psig) 22 Pressure (psig) 7 Pressure (mm Hg) 10.4 Flow rate (%) 32.7 Flow rate (%) 0.4 Flow rate (SCFM) 1.7 Temperature (°C) 22.2 Temperature (°C) 79.8 Temperature (°C) -5.8
  • 17. Use hot air flow to obtain 4 more desired flow rates  Holding pressure constant, use the hot air flow control valve to change the flow rate, in turn, changing the split ratio  Record previous data at all 5 flow rates  Repeat procedure at Pin = 40 and 50 psig
  • 18. Data (Part 1 @ P = 40 psig) Input Stream Hot Stream Cold Stream Pressure (psig) 30 Pressure (psig) 6 Pressure (mm Hg) 5.2 Flow rate (%) 44.2 Flow rate (%) 53.3 Flow rate (SCFM) 1.25 Temperature (°C) 24.2 Temperature (°C) 49.8 Temperature (°C) -21.9 Pressure (psig) 30 Pressure (psig) 7 Pressure (mm Hg) 8 Flow rate (%) 43 Flow rate (%) 39.6 Flow rate (SCFM) 1.6 Temperature (°C) 22.5 Temperature (°C) 60.8 Temperature (°C) -21.2 Pressure (psig) 30 Pressure (psig) 8 Pressure (mm Hg) 10.8 Flow rate (%) 42.2 Flow rate (%) 26.7 Flow rate (SCFM) 1.9 Temperature (°C) 22.5 Temperature (°C) 71.8 Temperature (°C) -18.7 Pressure (psig) 30.3 Pressure (psig) 9 Pressure (mm Hg) 14.9 Flow rate (%) 42 Flow rate (%) 13.3 Flow rate (SCFM) 2.2 Temperature (°C) 22.4 Temperature (°C) 86.1 Temperature (°C) -13.7 Pressure (psig) 31 Pressure (psig) 10 Pressure (mm Hg) 18.1 Flow rate (%) 41.7 Flow rate (%) 0.5 Flow rate (SCFM) 2.4 Temperature (°C) 23 Temperature (°C) 103.6 Temperature (°C) -6.2
  • 19. Data (Part 1 @ P = 50 psig) Input Stream Hot Stream Cold Stream Pressure (psig) 37.5 Pressure (psig) 7.5 Pressure (mm Hg) 7.6 Flow rate (%) 52.5 Flow rate (%) 64.2 Flow rate (SCFM) 1.5 Temperature (°C) 22.2 Temperature (°C) 52.3 Temperature (°C) -27.2 Pressure (psig) 38 Pressure (psig) 9 Pressure (mm Hg) 12.2 Flow rate (%) 52 Flow rate (%) 49 Flow rate (SCFM) 2 Temperature (°C) 21.3 Temperature (°C) 68.4 Temperature (°C) -24.9 Pressure (psig) 38 Pressure (psig) 11 Pressure (mm Hg) 16.8 Flow rate (%) 51.2 Flow rate (%) 31.4 Flow rate (SCFM) 2.25 Temperature (°C) 20.8 Temperature (°C) 84.5 Temperature (°C) -22.5 Pressure (psig) 38.5 Pressure (psig) 12 Pressure (mm Hg) 21.6 Flow rate (%) 50.5 Flow rate (%) 15.7 Flow rate (SCFM) 2.75 Temperature (°C) 20.7 Temperature (°C) 103.5 Temperature (°C) -15.9 Pressure (psig) 38.8 Pressure (psig) 13 Pressure (mm Hg) 26.6 Flow rate (%) 50 Flow rate (%) 0.7 Flow rate (SCFM) 3 Temperature (°C) 20.8 Temperature (°C) 121.8 Temperature (°C) -10.6
  • 20. Procedure (Part 2)  Set hot air flow control valve to desired position  Recommended 50-50 split ratio  Adjust pressure control valve to ~50psig  Record data  Repeat for Pin = 45, 40, 35, 30, 25, and 20 psig
  • 21. Data (Part 2) Fin Pin Tin Fh Ph Th Fc Pc Tc SLM psig ºC SLM psig ºC SCFM psig ºC 105.6 49 19.8 52 9 66.6 2 12.3 -26 98 45 19.9 45.2 8 62.6 1.8 10.2 -25.7 86.2 40 19.9 40 6.9 60.3 1.6 8.3 -23.1 76.4 35 19.7 33 6 55.8 1.4 6.7 -21.3 66.6 30 19.8 27.7 5 53.6 1.2 5.3 -19.2 58.4 25 19.7 21 3 47.2 1.05 4.6 -13.9 48 20 19.8 14.8 1 44.6 0.85 2.9 -11.8
  • 22. Outlet Temperature Difference vs. Split Ratio
  • 23. Temperature Difference vs. Supply Pressure
  • 24. Cooling Capacity vs. Split Ratio
  • 25. Cooling Capacity vs. Supply Pressure
  • 28. Conclusions  1st Law of Thermodynamics  2nd Law of Thermodynamics  Temperature Difference vs. Split Ratio and Supply Pressure  Cooling Capacity
  • 29. References  http://www.visi.com/~darus/hilsch/  http://www.airtxinternational.com/how_vortex_tubes_work.php  http://alexandria.tue.nl/extra2/200513271.pdf  http://www.exair.com/en-US/Primary%20Navigation/Products/Vortex%20T