SlideShare uma empresa Scribd logo
1 de 31
Baixar para ler offline
ESAYT
CONSTRUCCION IV

ALEXANDRA CALZADO
RODRIGUEZ




[EL VIDRIO AISLANTE Y SU
APLICACIÓN EN
ARQUITECTURA]
“El cerramiento continuo de vidrio (…) su comportamiento energético era ciertamente negativo, por lo
que la experimentación – ligada estrechamente a la investigación en torno a la oficina y el rascacielos-
debió cruzarse con varias formas de abordar el espacio interior en sus aspectos ambientales.”
ÁBALOS Y HERREROS: Técnica y Arquitectura en la ciudad contemporánea,
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA




INDICE

1. INTRODUCCION.

1.1. HISTORIA.

1.2. EL VIDRIO EN LA ARQUITECTURA MODERNA.

1.2.1. LE CORBUSIER Y EL ESTADO DEL ARTE DE LA ARQUITECTURA
VIDRIADA EN 1935.

1.2.2. DEL CERRAMIENTO VIDRIADO AL MURO CORTINA (1959-1969).

2. PROPIEDADES DEL VIDRIO USADO EN ARQUITECTURA.

3. VIDRIO COMPUESTO                    CON        CAPAS        CON     MODULOS
FOTOVOLTAICOS.

4. VIDRIO AISLANTE.

4.1. RELLENOS EN LA CAMARA INTERMEDIA.

4.2. RELLENOS CON PROPIEDADES PARA LA PROTECCION SOLAR.

4.3. MARCAS COMERCIALES.

5. CONCLUSION.

6. BIBLIOGRAFIA.




ALEXANDRA CALZADO RODRIGUEZ                                               Página 2
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



1. INTRODUCCION.



Gracias a los numerosos avances conseguidos en la tecnología del vidrio, el material
del que ahora disponemos es capaz de aunar ventajas arquitectónicas, económicas y
ecológicas. El proceso de desarrollo de este material, iniciado con la crisis del
petróleo, pretendía buscar nuevos caminos que posibilitaran una arquitectura de cristal
de bajo consumo energético.

En construcción, el vidrio puede aplicarse de muy diversas maneras. Dentro de las
hojas planas, el vidrio float (o vidrio plano común), cuyo tamaño estándar varía entre
unos 2,3 y 6 metros y su espesor entre 2 y 19 mm, es el empleado con mayor
frecuencia. Las laminas de espesores mayores o menores se obtienen por
estiramiento.



1.1. HISTORIA.
El hombre ha utilizado el vidrio desde la más remota prehistoria. Los primeros
utensilios que conocemos de la edad de piedra son piedras de sílex, cuarzo y
obsidiana que son en realidad vidrios naturales.

No tiene nada de particular si consideramos que el silicio, principal componente del
vidrio, es el mineral más abundante en la naturaleza. Nada menos que el 25% de la
corteza terrestre es oxido de silicio (sílice).

No parece posible situar en el tiempo el inicio de la industria del vidrio. Se ha llegado a
conjeturar      que       el      hombre         pudo        descubrir        el      vidrio
accidentalmente al hacer fuego sobre las arenas de las playas o de las orillas de algún
río, pero no parece probable que una hoguera alcanzase las suficientes calorías para
producir ese efecto.

Más probable parece la idea de que la industria cerámica, investigando revestimientos
vítreos, llegase a desarrollar la industria del vidrio.

En todo caso la primera industria del vidrio que tenemos noticia se sitúa en Egipto
hace 3.500 años. Se fabricaban pequeñas piezas de adorno personal que alcanzaban
valores similares a las piedras preciosas.

Egipto y después Alejandría mantuvieron la hegemonía de la fabricación del vidrio
hasta la llegada del imperio romano que la difundió por todo el
Mediterráneo.

Parece lógico y se puede observar que el desarrollo de la industria del vidrio
acompaña a épocas de estabilidad política y auge económico.

El vidrio, por su relación con la luz, se entendió como metáfora de lo espiritual, que a
su vez hacía referencia a lo sublime, a lo divino, a lo inmaterial. Y ciertamente las
arquitecturas de vidrio son ligeras, evanescentes, frágiles e inmateriales.


ALEXANDRA CALZADO RODRIGUEZ                                                         Página 3
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



Pero al vidrio no solo se le han asignado metáforas relacionadas con lo sublime y
espiritual; en el siglo XIX pasó a expresar el optimismo tecnológico que subyacía en el
espíritu de la arquitectura racionalista: el Palacio de Cristal diseñado por Paxton en
1851. “Lo que Paxton construyó no solo fue la demostración de un interior nuevo, sino
también un símbolo de los nuevos tiempos”.



1.2. EL VIDRIO EN LA ARQUITECTURA MODERNA.
Al iniciarse el siglo XX, la experimentación con materiales y procedimientos
industriales comportó un desplazamiento significativo en la concepción del
cerramiento.

Entre 1914 y 1932 se asientan las bases de lo que va a ser un nuevo lenguaje
arquitectónico, en el cual el vidrio va a jugar un papel muy importante. Sin embargo
también van a manifestarse las dificultades inherentes a su uso.

Pronto se creó la conciencia de que este procedimiento significaba una profunda
modificación de la idea misma de cerramiento. Le Corbusier, Mies Van der Rohe,
Buckminster Fuller y Jean Prouve, entre otros, llevaran esta investigación a sus límites
experimentales individualizando distintas concepciones del cerramiento que aun hoy
son modelos obligados de referencia.

El cerramiento continuo de vidrio fue una de las propuestas más ambiciosas y
complejas; aportaba una visión profundamente distinta del espacio interior y de la
presencia formal del edificio, con una gran capacidad de sugestión emocional e
intelectual.

Pero el comportamiento energético del vidrio era ciertamente negativo, por lo que su
experimentación –ligada estrechamente a la investigación en torno a la oficina y al
rascacielos- debió cruzarse con varias formas de abordar el espacio interior en sus
aspectos ambientales, formas que determinaron las aplicaciones posibles del mismo a
la arquitectura moderna.

A continuación se va a mencionar el estudio realizado por Le Corbusier sobre
cerramientos de vidrio, para entender porqué es el precursor de soluciones actuales
con este material.




ALEXANDRA CALZADO RODRIGUEZ                                                     Página 4
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



1.2.1. LE CORBUSIER Y EL ESTADO DEL ARTE DE LA ARQUITECTURA
VIDRIADA EN 1935.

En 1935, Le Corbusier redactó su ensayo “le verre, materiau fundamental de la
architecture moderne”, donde planteó que el vidrio sería el material que caracterizaría
las construcciones de una “nueva era de la máquina”, la cual sucedería a una “primera
era de la maquina”, que había transcurrido entre 1830 y 1930. Su argumento se basó
en que la producción de acero y hormigón armado habían permitido la redefinición de
la fachada, ya que permitían que los muros de una construcción no se apoyaran en el
terreno. En esto radicaba la gran revolución arquitectónica, y era justo allí donde el
vidrio debería cumplir un papel inédito para el desarrollo de la disciplina, sin embargo
era necesario asumir los problemas inherentes al material, que resumió en los
siguientes puntos:



   a)   El problema del frio detrás del paño vidriado.
   b)   El problema del calor detrás del paño vidriado.
   c)   El deslumbramiento detrás del paño vidriado.
   d)   La limpieza del paño vidriado.
   e)   La reivindicación del confort en algunas horas del día.
   f)   Un problema general de estética.



Para el manejo de estas cuestiones, la arquitectura disponía de diversas soluciones:
vidrios transparentes; vidrios translúcidos; vidrios dobles; bloques de vidrio; vidrios
diamantados o catedral; y la posibilidad de templar y laminar las hojas para
incrementar su resistencia. Según explicó, un gran adelanto producido por la industria
fue poner a disposición de los arquitectos, a bajo costo, “vidrios gruesos estirados y
transparentes”, los que si bien no tenían la calidad del cristal, eran una excelente
alternativa para la construcción de paños transparentes.

En la línea de los nuevos productos ofrecidos por la industria, explicaba que en ese
momento se encontraba en estudio una propuesta hecha por él y su socio Pierre
Jeanneret para la fabricación de grandes planos de vidrio resistente, aislante térmico y
translucido, que permitiría reemplazar el uso de otros materiales para el cerramiento
de las habitaciones. Este producto seria fabricado por Saint-Gobain, una de las
principales industrias francesas productoras de vidrio plano.

Los primeros dos problemas asociados al uso del vidrio eran el frio y el calor debido a
su transparencia. Para enfrentarlos desarrollo un sistema que puede ser considerado
como una versión alternativa a los sistemas de aire acondicionado y que llamo
“respiración exacta” (figura nº 1)

Este sistema consistía en la utilización de paños transparentes herméticamente
cerrados que permitían el funcionamiento de un sistema de inyección y extracción de
aire artificial. De esta manera se lograría una situación que describió de la siguiente
manera:



ALEXANDRA CALZADO RODRIGUEZ                                                     Página 5
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA




                                                                               Figura 1




“…en pleno verano, ya sea en Moscú, en Paris o en Rio de Janeiro, el habitante de la
ciudad podrá encontrarse detrás de un paño de vidrio anegado de sol sin sufrir el mas
mínimo desagrado. Su pulmón respirara aire a 18 grados y será ubicado, ni más ni
menos, en las condiciones de un turista en alta montaña o de un bañista en las playas
de los océanos…”

Esta solución tuvo una evolución más compleja. Para el proyecto de Centrosoyuz
(Moscú, 1929), propuso la implementación de una central productora de aire limpio,
con humedad y temperaturas controladas, que debía ser inyectado al edificio por
medio de un sistema de redes que debía repartirlo de manera uniforme, en
condiciones similares a un sistema de aire acondicionado. En forma paralela otra red
de extracción debía evacuar la misma cantidad de aire que la central de aire limpio
inyectaba. Esto era la “respiración exacta”.

Para validar su utilización en cualquier latitud, la fachada debía ser un muro
“neutralizante”. (figura 2) Se trataba de una invención asociada al uso de cerramientos
livianos que consistía en una doble pared, en cuyo interior se hacía circular aire
controlado e inyectado por otra central. Este muro funcionaria como una barrera que
permitiría mantener los interiores en un régimen de respiración “exacta”. Esta idea ya
había sido evaluada por la American Blower Corporation en 1930, quienes emitieron
un lapidario informe que concluyó que el sistema consumía cuatro veces más energía
que los sistemas de climatización ya comercializados en ese momento.

A pesar de este fracaso de laboratorio, en el edificio para la “cite de Refuge” (Paris,
1933), aplicó un sistema de refrigeración exacta, construyendo el primer edificio
herméticamente cerrado por un muro enteramente de vidrio sobrepuesto a la


ALEXANDRA CALZADO RODRIGUEZ                                                     Página 6
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



estructura del edificio con un sistema mixto de calefacción a vapor con sistemas de
conducciones de aire.




                                                                                  Figura 2




El tercer problema asociado al uso del vidrio era el deslumbramiento. Para Le
Corbusier el uso de paños vidriados implicaba soluciones de diafragmas o pantallas
móviles por el interior. Explicó que el calentamiento de estos elementos era irrelevante
al controlar la temperatura interior por medio de un sistema de “respiración exacta”, sin
considerar que el sistema seria proporcionalmente mayor. Este grave error conceptual
llevó a que en la “cite de refuge” fueran posteriormente agregados, en 1952, un
sistema de brise-soleil que no es otra cosa que el diafragma puesto por el exterior.

El cuarto problema asociado al uso del vidrio era la limpieza de las grandes superficies
de fachada. Para esto propuso un sistema de carros deslizantes por un riel dispuesto
en el vértice del edificio, según un modelo desarrollado para el proyecto de la sociedad
de las Naciones (Ginebra, 1927), y también incorporado en la “Cite de Refuge”.

Finalmente el proyecto plantea el problema estético asociado a la utilización del vidrio,
a partir del radical cambio que su utilización permitía en la percepción de la luz,
verdadera revolución de la arquitectura de la “nueva era de la maquina”. Tanto la
iluminación natural producida por el sol, como especialmente este punto a partir de las
innovaciones estéticas asociadas a la posibilidad de obtener planos continuos
transparentes desde el interior y superficies reflectivas desde el exterior.


ALEXANDRA CALZADO RODRIGUEZ                                                      Página 7
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



Abalos y Herreros rescatan la brillante intuición de Le Corbusier acerca de los
problemas técnicos asociados a los cerramientos de vidrio, sin embargo, reconocen
que su limitado rigor científico les impide lograr la coherencia de sus propuestas.

Aunque el trabajo de Le Corbusier no tenga el valor técnico de aportar soluciones
efectivas al problema de las fachadas de vidrio, si identificó las claves arquitectónicas
que su utilización tiene asociadas, lo cual sirve para entender que ya en 1935
quedaron lanzadas las claves con las cuales la arquitectura trabajaría con gran vigor
especialmente a partir de la posguerra.



1.2.2. DEL CERRAMIENTO VIDRIADO AL MURO CORTINA (1959-1969).

Durante la década de los cincuenta el mismo anhelo de transparencia fue llevado a la
edificación en altura y también se inició la comercialización del vidrio tintado. Los Lake
Shore Drive Apartments (chicago, 1951) de Mies Van der Rohe son considerados
precursores de la imagen transparente de un volumen en altura. En este caso, la
coincidencia entre estructura y cerramiento hizo que, desde el punto de vista de la
utilización del vidrio, la solución pueda ser considerada todavía tradicional debido a
que cada paño soluciona de forma autónoma los problemas asociados a las
dilataciones y la estanqueidad.

El primer edificio que asumió la compleja problemática de adosar un paño de vidrio a
una estructura en altura fue el Lever House (1947-1952) construido por Gordon
Bunshaft junto a Skidmore, Owings y Merril. Se trataba de una piel de paneles fijos de
vidrio color verde semi-reflectante, sobre montantes de acero inoxidable fijados a la
estructura del edificio según se muestra en la siguiente figura:




                                                                         Figura 3


El uso del vidrio de color abrió las nuevas perspectivas puesto que absorbía una
mayor cantidad de la radiación proveniente del sol, colaborando a disminuir el

ALEXANDRA CALZADO RODRIGUEZ                                                         Página 8
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



consumo de energía del sistema de climatización. En consecuencia, el paño vidriado
es completamente hermético y la climatización funcionaba con ventilación mecánica y
aire acondicionado, apareciendo como una innovación tecnológica de proporciones en
la época, a pesar de que este objetivo había sido planteado y perseguido desde años
anteriores. En 1952 no había sido construido ningún edificio parecido, por lo que es
posible afirmar que inauguraba un elemento arquitectónico de radical importancia
hasta el día de hoy: el muro cortina.



2. PROPIEDADES DEL VIDRIO USADO EN ARQUITECTURA.


PROPIEDADES OPTICAS.

La transparencia es la capacidad de un cuerpo para transmitir la luz, calor radiante y
otros tipos de radiaciones específicas dentro del espectro electromagnético, propiedad
que el vidrio posee gracias a su estado vítreo. Desde el punto de vista de sus
aplicaciones en arquitectura esta es la propiedad principal y más útil puesto que el
espectro de radiaciones a los cuales es permeable puede ser seleccionado, por lo
tanto es susceptible de ser diseñado.




                                                                              Figura 4




La transparencia del vidrio se debe a que sus moléculas no forman una red cristalina,
de ahí que los rayos de luz puedan atravesarlo sin dispersarse. Una luna de cristal
solo trasmite radiaciones solares cuya longitud de onda se encuentre entre 315 y 2500
nm, aquellas de mayor o menor longitud son absorbidas totalmente por el vidrio. Este
hecho explica el efecto invernadero.



COMPORTAMIENTO DEL VIDRIO FRENTE AL CALOR.

El factor determinante para las pérdidas térmicas es el coeficiente de transmisión de
calor que presenta una lamina de vidrio. Aunque su grosor no influya en el intercambio

ALEXANDRA CALZADO RODRIGUEZ                                                    Página 9
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



térmico, la radiación puede modificarse con revestimientos y la convección mediante la
adicion de diferentes capas (como es el caso del vidrio aislante). La dilatación
depende de la composición química del material.




                                                                    Figura 5

El calor se transmite desde un medio de mayor temperatura hacia otro de menor
temperatura a una velocidad que depende del medio o del material a través del cual se
produzca el traspaso. Este tipo de transmisión se puede producir de tres maneras:

   -   CONVECCION: Es producto del movimiento ascendente de corrientes de aire
       cálido y ligero. Cuando una molécula de aire adquiere temperatura pierde
       densidad y se desplaza hacia una zona más fría. Este tipo de transmisión se
       produce a través de la masa del vidrio.
   -   CONDUCCION: Ocurre cuando el calor pasa a través de un sólido, desde las
       moléculas que se encuentran a mayor temperatura hacia las que se
       encuentran a menor temperatura. Este tipo de transmisión se produce a través
       de la masa del vidrio.
   -   RADIACION: Ocurre cuando el calor viaja a través del espacio alcanzando
       cuerpos a distancia, los cuales pueden nuevamente reflejarlo, absorberlo o
       transmitirlo. Este es el tipo de transmisión de calor producido por el sol.




ALEXANDRA CALZADO RODRIGUEZ                                                    Página 10
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



El vidrio es un buen transmisor lo cual obliga a controlar su comportamiento frente al
calor de onda larga producido por los cuerpos cuando se calientan. Para cuantificar su
desempeño frente a este fenómeno se ha creado una convección denominada factor
k., que es encargado de indicar la cantidad de calor que se transmite, de forma
perpendicular, a través de un elemento constructivo sujeto a una diferencia de
temperatura del aire a ambos lados de 1 º C, durante un cierto tiempo, en régimen
                                       estacionario. Es un índice que cada material
                                       posee de forma particular.



                                           Efecto invernadero: (figura 6)

                                                     -A: Radiación de onda corta

                                                     -B: Radiación de onda larga




                               Figura 6


El factor k de un vidrio depende de la diferencia de temperatura del aire en sus caras y
de la resistencia térmica de sus superficies, es decir de los movimientos conectivos del
calor que se producen en cada una de ellas. Es por esto que varía según los diversos
                                                    procesos      que    modifican   las
                                                    características de sus caras.




                                          Figura 7
                                           Desde el punto de vista arquitectónico
                                           son principalmente dos las variables
que harán buscar un mayor o menor factor k: el clima, puesto que determina la
necesidad de captar o eliminar calor, y la orientación, puesto que determina su
exposición a la radiación solar directa.



ALEXANDRA CALZADO RODRIGUEZ                                                        Página 11
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



COMPORTAMIENTO DEL VIDRIO FRENTE A LA RADIACION SOLAR.

La permeabilidad a la radiación que presentan una o varias capas de vidrio, se define
según el porcentaje de luz reflejada, absorbida y transmitida. Tres parámetros físicos
fundamentales determinan la incidencia de la luz y las ganancias y pérdidas de calor:
La transmisión de luz diurna, indica el porcentaje de radiación de luz directa que,
incidiendo perpendicularmente, atraviesa el vidrio. La transmisión secundaria, es el
calor que conduce el vidrio como consecuencia de la radiación, conducción y
convección térmica. El coeficiente global de transmisión g es la suma de ambas. El
coeficiente de transmisión de calor, k, es el flujo térmico que atraviesa un metro
cuadrado de superficie en una hora cuando la diferencia de temperatura entre la parte
interior y exterior del elemento es de 1 Kelvin.




                                                         Figura 8

La figura 8 muestra el comportamiento de un vidrio crudo incoloro de 4 mm de espesor
frente a la radiación solar incidente (A indica la onda corta, y B la onda larga.



En la actualidad, la tecnología del vidrio usado en arquitectura ha logrado importantes
avances para mejorar su comportamiento térmico a través de la modificación de su
masa, de sus caras o formando elementos compuestos que almacenan aire seco o
gas, cuyo factor K permite mejorar ostensiblemente su comportamiento frente al calor.




ALEXANDRA CALZADO RODRIGUEZ                                                   Página 12
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



La luz proviene principalmente del sol y puede comportarse de las siguientes maneras
al alcanzar un vidrio:

   -   REFLEXION: consiste en devolver el rayo luminoso sin dejarlo atravesar la
       masa del vidrio. Las superficies lisas, como la del vidrio crudo, reflejan la luz de
       forma regular, en una dirección, mientras que las superficies rugosas, como la
       del vidrio pulido o impreso, lo hacen irregularmente en distintas direcciones, o
       difundiéndola.
   -   REFRACCION: cuando la luz incide sobre un vidrio, parte de ella se refracta,
       es decir, toma una dirección cercana a la normal de sus caras, para después,
       al salir, retomar la dirección primitiva después de haber experimentado una
       ligera translación proporcional al espesor del vidrio atravesado.




                                                                                    Figura 9

(De izquierda a derecha). La primera figura indica el comportamiento de la luz
incidente en un vidrio con superficie lisa en el que se produce la reflexión; la segunda
figura indica la reflexión que se produce al incidir la luz en una superficie rugosa; y la
tercera figura indica la refracción de la luz a través de un vidrio.

La proporción entre la luz incidente en un vidrio y la que lo traspasa, se denomina
transmisión lumínica, se expresa en porcentaje y depende de su espesor y de su
capacidad para reflejarla. La industria también utiliza este índice para compara el
comportamiento que tienen frente a la luz los distintos vidrios que produce.

RESISTENCIA A FLEXION.

Un alto contenido de dióxido de silicio determina la dureza y resistencia a flexión del
vidrio y, lamentablemente, también su fragilidad haciendo que el cristal se rompa
apenas sea sobrepasado su límite de deformación plástica. Aunque el vidrio presenta
normalmente una resistencia a tracción de 104 N/mm², el limite desciende a 30-80
N/mm² cuando el material presenta algún desperfecto o imperceptibles grietas
superficiales.



ALEXANDRA CALZADO RODRIGUEZ                                                       Página 13
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



3. VIDRIO COMPUESTO                      CON        CAPAS        CON       MODULOS
FOTOVOLTAICOS.



El vidrio compuesto, también llamado vidrio de seguridad, se compone por dos o mas
hojas conectadas mediante una lamina intermedia elástica que, en caso de rotura,
impide el desprendimiento de los añicos. El vidrio de seguridad compuesto esta
formado por hojas simples de vidrio pretensado o parcialmente pretensado, pues la
resistencia de cualquiera de ellas es mayor que las del vidrio float.

Mediante la combinación de diferentes cristales y espesores de laminas es posible
cumplir todas las exigencias requeridas para casos de rotura, disparo o explosión.
Como capa intermedia puede emplearse el butiro de polivinilio (PVB), resina vertida o
distintos tipos de laminas plásticas; transparentes, coloreadas, estampadas,
absorbentes, reflectantes e incluso laminas con n sistema de cables conectados a la
alarma o a la calefacción.

CAPAS FUNCIONALES:

Especialmente interesante es la investigación de las capas fncionales que pueden
emplearse para difractar la luz o como protección solar térmica. En este apartado del
trabajo se va a investigar el tema de las capas funcionales, pero con modulos
fotovoltaicos.

3.1. CAPAS CON MODULOS FOTOVOLTAICOS.

Los vidrios compuestos que integran módulos fotovoltaicos (PV) pueden transformar la
energía solar en eléctrica y, al mismo tiempo, evitar el paso de los rayos del sol. Por lo
general estos módulos se componen de células solares de silicio monocristalinas,
policristalinas o amorfas. Las monocristalinas son opacas, azules, gris oscuras o
negras y su eficiencia varía entre un 14-16%. Las policristalinas también suelen ser
azules y opacas. Su fabricación con bloques de silicio resulta más económica pero la
eficiencia que presentan es menor; 11-12%. El espesor habitual de las células solares
cristalinas es de 0,4 mm y sus dimensiones de 10 x10 o 15 x15 cm. Para formar el
módulo, se ensamblan las células y se introducen, embebidas en resina, entre dos
hojas de cristal.

Las células solares amorfas semitransparentes no son cristalinas. Para su fabricación,
se retira parte de la capa colocada sobre el cristal por medio de rayos laser, de modo
que aparezcan canales transparentes entre la superficie activa.



3.2. MARCAS COMERCIALES.




ALEXANDRA CALZADO RODRIGUEZ                                                      Página 14
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA




COENER SYSTEMS.

Coener Systems lleva a cabo estudios en los cuales, paneles, colectores y otros
accesorios necesarios están perfectamente integrados en las estructuras del edificio,
optimizando no solo el uso de la energía sino de los materiales de construcción.

Paneles acristalados Optisol de Scheuten Solartec Hnology

Lo que caracteriza a esta solución de paneles fotovoltaicos es que las células
fotovoltaicas tienen como soporte un doble cristal, siendo el panel semitransparente.

La producción de este tipo de panel se realiza a medida del proyecto, siendo posible
trabajar con cristales fotovoltaicos de hasta 6 m², en doble cristal con cámara de
aislamiento o sin ella.

Los vidrios pueden ser templados o termoendurecidos, en función de la aplicación y la
resistencia mecánica necesaria. También es posible seleccionar el índice de
transparencia del cristal creando zonas de distinta luminosidad nicamente con el cristal
y la célula fotovoltaica.

Los cables de conexión de este tipo de instalaciones van totalmente ocultos por la
periferia, dando un acabado al cristal muy cuidado.




                                                                                   Figura 10




ALEXANDRA CALZADO RODRIGUEZ                                                    Página 15
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA




EDIFICIO DE OFICINAS CON ESTE SISTEMA DE PANELES.




ALEXANDRA CALZADO RODRIGUEZ                                            Página 16
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



PRODUCTOS CONTROL GLASS

Active. Lite, vidrio fotovoltaico



Mediante esta línea de producto aportamos al concepto de Edificios Eficientes una
nueva gama de vidrios fotovoltaicos, Active Lite son idóneos para la Integración
Arquitectónica (fachadas, lucernarios, mobiliario urbano, etc.)

Se trata de composiciones especiales de Unidades de Doble Acristalamiento o Vidrios
Laminados, dónde uno de los elementos de la composición es un Módulo Solar
Fotovoltaico. De esta forma el compuesto resultante es un vidrio “activo” el cual tiene
las propiedades eléctricas de un Módulo Fotovoltaico, y propiedades ópticas y de
seguridad propias de un compuesto de vidrio. La orientación óptima de los vidrios
Active.Lite es la orientación sur, pero su tecnología permite instalarlos en diferentes
orientaciones, incluso horizontales, sin apenas pérdida de eficiencia.

        iGlass: Vidrio laminado con película de cristal líquido que permite el paso
        instantáneo de transparente a traslúcido y viceversa., permitiendo con ello el
        control de la privacidad en cualquier momento.
        Ledglass. Vidrio que transmite luz consiguiendo iluminar y dar color a toda la
        superficie de forma uniforme aportando efectos de gran calidad gráfica.
        Vidrio calefactable: Vidrio que emite calor para poder ofrecer al mercado una
        alternativa a los radiadores convencionales con la elegancia, estética y la
        transparencia del vidrio.
        Vidrio termocrómico: vidrios que cuando le da el sol directamente, calentando
        la capa, cambian de una alta transmisión de luz a un alto oscurecimiento.
        Vidrio anti-fuego: Las principales características de este vidrio de seguridad
        anti- fuego se basan en su aplicación tanto para interior como para exterior ya
        que resiste los rayos UV, su inmunidad al agua y a la humedad, y su fácil
        transformación ( se puede curvar )
        Vidrio con alabastro: Producto formado al laminar vidrio y alabastro, cuyo
        resultado tienen todas las propiedades del vidrio sin perder la belleza, color y la
        traslucidez del alabastro, cualidad única de este material tan apreciado.
        Vidrio Defender, Antibala: Producto formado por vidrios y plásticos multi-
        laminares que aportan unos resultados espectaculares en la retención de las
        balas y cuya característica principal es su peso aligerado.
        Vidrio para automoción: vidrio templado y laminado que cumple con la
        normativa europea Economic Commission of Europe Regulatin 43 (EC R-43)
        para instalación en vehículos a motor.
        Vidrio difusor de luz: Inclusión de celdas de policarbonato de diferentes
        espesores y texturas dentro de varios vidrios, que hacen que la luz se difumine

ALEXANDRA CALZADO RODRIGUEZ                                                       Página 17
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



       a través de él, siendo muy adecuado para usos donde se evita la concentración
       de luz y calor en un punto, como pueden ser museos.
       Laminado – inserciones: Cualquier envolvente de vidrio de un edificio puede
       tener un aspecto exclusivo así como crear ambientes personalizados en
       interiores, combinando la serigrafía, las laminas de color Vanceva, así como
       inclusiones metálicas, fotos, telas, leds o cualquier producto que el prescriptor
       proponga sin límites para la imaginación.




4. VIDRIO AISLANTE.



Los vidrios aislantes se componen de dos o más hojas de cristal, sujetas en sus
extremos por uno o más soportes estancos a los gases. Estos mantienen fija la
distancia entre las hojas. De este modo se forma una cámara intermedia que, con su
relleno interior de aire seco, actúa como un amortiguador térmico. Mediante el empleo
de vidrios aislantes pueden reducirse las pérdidas de calor hasta la mitad o incluso
más. Sin embargo, en ocasiones aparecen problemas como la radiación entre las
superficies del vidrio, convección en la capa intermedia o conducción de calor a través
de su relleno o de los bordes. Estos pueden combatirse con medidas
correspondientes.




                                                                              Figura11

La radiación entre las dos superficies de vidrio se reduce al introducir un recubrimiento
de baja emisión. El coeficiente de transmisión de calor, K, de un vidrio aislante con

ALEXANDRA CALZADO RODRIGUEZ                                                     Página 18
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



Low-E es de 2 W/m²K en vez de los 3 W/m²K que presenta un vidrio aislante normal.
Aunque tanto la convección como la radiación en la cámara de aire intermedia sean
pequeñas, ambas pueden reducirse con el empleo de gases nobles. El valor de K
cuando la cámara contiene argón, por ejemplo, es de 1,1 W/m²K, y de 0,8 W/m²K si
esta rellena de criptón. Las perdidas térmicas en el soporte pueden disminuirse con el
empleo de sistemas con el empleo de sistemas combinados de acero inoxidable o de
aluminio.



Otras posibilidades de reducir el coeficiente K consisten en el vaciado de la cámara
intermedia o su división mediante una tercera hoja de vidrio o una lámina tensada.




Vidrio aislante triple:                              Vidrio aislante triple:

Silverstar®                                          Superglass®



Un vidrio aislante triple con dos recubrimientos de baja emisión y un relleno de criptón
presenta un K de 0,5 W/m²K. El empleo de láminas de baja emisión permite prescindir
del peso y el espesor de una tercera hoja de vidrio. Además del coste del relleno con
gases nobles, su uso conlleva otros problemas. Los primeros prototipos de vidrios con
cámara intermedia al vacio consiguen una transmisión de calor de 0,6 W/m²K, mas,
habrá que esperar algunos años para su fabricación industrial.

Para la solución de vidrios aislantes se pueden emplear todos los tipos de cristales
comercializados. El empleo de hojas coloreadas, reflectantes o esmaltadas no ofrece
suficiente protección solar en verano. Para alcanzar los valores g permitidos es
necesario combinar este tipo de cristales con otras medidas de protección solar. En los
vidrios esmaltados, el valor g resulta de la relación entre la superficie transparente y la
opaca.


ALEXANDRA CALZADO RODRIGUEZ                                                       Página 19
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



4.1. RELLENOS EN LA CAMARA INTERMEDIA.

Los aislantes transparentes permiten simultáneamente la disminución de las perdidas
térmicas y el aprovechamiento del calor proveniente de la radiación solar. A tal uso
pueden emplearse cristales, vidrio acrílico, policarbonato y espuma de cuarzo. Por su
colocación en el interior de las hojas de vidrio, estos materiales se encuentran
protegidos tanto de la intemperie como de posibles solicitaciones mecánicas.



Su clasificación se hace en función de cuatro principios geométricos de ordenación:



   -   Las estructuras paralelas al cristal, como el vidrio aislante simple, reducen las
       pérdidas de calor pero producen grandes pérdidas de reflexión.




       Ç




   -   Las estructuras perpendiculares al cristal se componen de células o capilares
       que dividen la cámara intermedia en pequeñas celdas. De este modo se
       reducen las perdidas por reflexión ya que la luz incidente se conduce al interior
       mediante una reflexión múltiple en las paredes paralelas. Un panel capilar de
       policarbonato con 100 mm de espesor alcanza un valor de K de 0,89 W/m²K
       mientras que el conseguido con un panel capilar de cristal del mismo espesor
                                  es de 1 W/m²K.




ALEXANDRA CALZADO RODRIGUEZ                                                    Página 20
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA




   -   Las estructuras celulares resultan de la combinación de elementos paralelos y
       perpendiculares a la superficie de las hojas de vidrio, como en la espuma
       acrílica.




   -   Las estructuras casi homogéneas, como aerogeles, se componen de células
       microscópicas. Su fabricación es complicada y el producto es, por tanto, caro
                              (Airglass® AB, Suecia).




Mas económicas son las bolitas de aerogel que se introducen sueltas en la cámara
intermedia. Con 16 mm de relleno con este granulado se consigue un valor de K
inferior a 0,8 W/m²K (Basogel®)

En un estudio comparativo de cuatro grupos de aislantes térmicos transparentes se ha
observado que los vidrios aislantes y los sistemas de laminas plásticas son los más
apropiados para conseguir transparencia allí donde se necesita. Además, hoy en día
presentan un K bajo. En lucernarios y claraboyas conviene emplear otro tipo de
estructuras que dispersan la luz. Todos los aislantes térmicos transparentes necesitan
una protección solar eficaz en verano.




ALEXANDRA CALZADO RODRIGUEZ                                                  Página 21
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



4.2. RELLENOS CON PROPIEDADES PARA LA PROTECCION SOLAR.

En la cámara intermedia también puede colocarse protección solar en forma de
láminas, tejidos y lamas. De este modo, los sistemas de protección no sufren las
agresiones de la contaminación ni las climatológicas. Los sistemas regulables, como
estores o persianas de lamas, pueden colocarse en la cámara intermedia y ser
activados con motores eléctricos. Los estores vienen equipados con laminas de
reflexión (Agero®) o con tejidos poliéster (Trisolux®). Las persianas de lamas se
controlan mecánica o eléctricamente (Luxaclair®, Velthec®). En el sistema Zebra® se
emplean dos vidrios esmaltados. Uno de ellos puede desplazarse dentro de la cámara
intermedia.



4.3. MARCAS COMERCIALES.

ATEX®

La noción de vidrio aislante se refiere al vidrio aislante con mas cristales, una unidad
vidriera formada por lo menos por dos laminas que están separadas por una cámara
intermedia (llamada SZR o también LZR), normalmente teniendo la dimensión de 8 -
16 milímetros y pegadas entre si mediante travesaños. Los vidrios aislantes se usan
para el aislamiento térmico y fónico o para la protección solar.

El vidrio Float es el vidrio mas utilizado para construcciones en nuestros días. El
cristal corre en un ambiente de protección a aproximadamente 1100°C sobre un baño
liquido de estaño. Gracias al peso especifico mas reducido, el cristal liquido flota sobre
la superficie del baño de estaño. El vidrio se fabrica con una anchura de 3,50 m y se
corta en paneles entregables con las dimensiones máximas de 3,21 m x 6,00 m. El
grosor usual de las láminas es de 2, 3, 4, 5, 6, 8, 10, 12, 15 y 19 milímetros.

Los travesaños se realizan con la ayuda de un distanciador relleno con un agento de
secar (silicato de aluminio, zeolita) y se pega con poliisobutileno (butil).

El distanciador es de aluminio perforado, acero cincado o acero inox. Para mayor
mejoría del valor K de las ventanas aislantes, actualmente se utilizan también
distanciadores termoplásticos. („margen caliente”).

Para la estanquidad de la ventana aislante, el espacio vacio de fuera del marco con
distanciador se rellena hasta el margen del vidrio con polímero polisulfurico (thiocol) o -
raramente - con poliuretano. Para las vidrieras sobre el nivel de la cabeza o los vidrios
aislantes Structural-Glazing se usa como material de estanquidad también la silicona
negra, que tiene una durabilidad a UV considerablemente mas alta, pero presenta un
porcentaje de difusión considerablemente mas alto para el gas de relleno.

La cámara intermedia (SZR) cerrada y muy estanca a vapores se rellena bien con aire,
o con gas.

Mediante el uso de los gases inertes, como por ejemplo el argón, el xenón o el kriptón,
que son considerablemente más pesados que el aire, se puede disminuir el porcentaje
de las perdidas de calor producidas mediante la conversión de los gases de la cámara
intermedia.


ALEXANDRA CALZADO RODRIGUEZ                                                       Página 22
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



       Los vidrios aislantes son llamados vidrios termoaislantes si por lo menos uno de los
       vidrios está recubierto. Con el recubrimiento se puede disminuir considerablemente la
       perdida de la capacidad de aislamiento térmico de la cuota de radiación térmica. En
       caso de los vidrios aislantes, el recubrimiento con metales u óxidos metálicos está
       dispuesto por lo general hacia la cámara intermedia, para evitar el deterioro durante el
       uso y la limpieza. Normalmente, el recubrimiento de las ventanas aislantes está
       dispuesto en la posición 3, es decir sobre la parte exterior del vidrio aislante situado
       hacia el interior de la cámara intermedia.




                                             Vidrio termoaislante
                                                                            Índex   Factor
                                Cubertura                       Reflexión                        Valor K EN
                                                Transmisión                   de     Solar
    tipo                          sobre                         de la luz                         673 (15K)
                                                de la luz [%]               color   EN 410
                                superficie                         [%]                           [W/(m2K)]
                                                                              Ra      [%]
                   G4-
    Vidrio      16(Argon)-          3                80             12        98      66               1,1
termoaislante       G4
    low-e           G4-
                                    3                80             12        98      66               1,4
                16(Aire)-G4
                   G4-
    Vidrio      16(Argon)-          2               66.9            26.6     96.1    42.5              1,1
termoaislante       G4
   Control         G4-
  Solar(4S)     16(Argon)-          2               66.9            26.6     96.1    42.5              1,3
                    G4




       ALEXANDRA CALZADO RODRIGUEZ                                                         Página 23
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



   Tipo vidrio termoaislante 24 mm            Configuración        Valor K EN 673 (15K) [W/(m2K)]
         Low-e + Clar, 24 mm                 G4-16(Argón)-G4                      1,1
             Low-e + Clar                     G4-16(Aire)-G4                      1,4
              Clar + Clar                     G4-16(Aire)-G4                      2,7
           Solar 4S + Clar                   G4-16(Argón)-G4                      1,1
          4Anotimpuri + Clar                 G4-16(Argón)-G4                      1,1
          Fumuriu + Low-e                     G4-16(Aire)-G4                      1,4
          Krizet (Mat) + Clar                 G4-16(Aire)-G4                      2,7
 Ornamento (cualquier modelo) + Clar          G4-16(Aire)-G4                      2,7
Ornamento (cualquier modelo l) + Low-e       G4-16(Argón)-G4                      1,2
       Reflexiv Bronze + Low-e               G4-16(Argón)-G4                      1,2



   VIDRIO TRIPLEX (TRES LAMINAS DE VIDRIO)



   El vidrio triplex se consigue mediante el mismo procedimiento que el vidrio aislante con
   la diferencia que se utilizan tres laminas de vidrio separadas por dos travesaños de
   aluminio.

   Igual que en el caso del vidrio aislante, en las dos cámaras intermedias se puede
   introducir algun tipo de gas noble como el argón. Este gas es muy importante porque
   ayuda a la mejora del coeficiente de transferencia térmico "K".

   El grosor total mas utilizado de un vidrio triplex es de 32 milímetros y se monta
   principalmente sobre un perfil con una profundidad constructiva de 70 milímetros, pero
   para GENEO es posible también triplex de 44 milímetros de grosor.



   Tipos usuales de vidrio triplex

   Triplex: Clar + Clar + Low-e

   El vidrio triplex Clar + Clar + Low-e con gas Argon, con un grosor de 32 milímetros del
   paquete representa la elección ideal cuando se persigue la menor perdida del calor del
   interior hacia el exterior pero también un aislamiento fónico superior.

   El montaje del paquete en la carpintería se hace según el próximo diseño con la
   cubertura "soft" sobre la cara 5, es decir con el vidrio low-e en el interior. Para el vidrio
   de 32 milímetros, con láminas de 4 milímetros, el grosor del travesaño será de 10
   milímetros.

   En la tabla de más abajo se pueden seguir las propiedades del vidrio triplex en función
   del grosor de cada vidrio utilizado, cámara intermedia y el gas utilizado:

   Muy importante es el valor "K" que tiene que ser cuanto mas pequeño si queremos un
   buen aislamiento térmico, pero también la distancia entre laminas.


   ALEXANDRA CALZADO RODRIGUEZ                                                          Página 24
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



                                               Vidrio termoaislante
                                                                            Índex
                     Cubertura                             Reflexión                    Factor        Valor K EN
      Vidrio                           Transmisión                            de
                       sobre                               de la luz                   Solar EN        673 (15K)
  triplexLow-e                         de la luz [%]                        color
                     superficie                               [%]                      410 [%]        [W/(m2K)]
                                                                              Ra
 G4-10-G4-10-
  G4 (Argón-                5               73.4               16.9          97.5         60.7                1,2
   Argón)
 G4-10-G4-10-
                            5               73.4               16.9          97.5         60.7                1,4
 G4 (Aire-Aire)
 G4-16-G4-16-
 G4 (Argón -                5               73.4               16.9          97.5         60.7                0,9
   Argón )
  G6-8-G6-8-G4
 (Argón -Argón              5               73.4                18           96.6         59.1                1,3
        )



       Nota: Todos los valores tienen carácter informativo. En las condiciones de relleno con gas Argón en
       proporción de 90%.

       Triplex: Solar4S + Clar + Clar
       (denominaciones similares: 4Anotimpuri, SunGuard, DualProtect)

       El vidrio triplex con control solar guarda las calidades del vidrio de tipo low-e, pero
       tiene un grado mas alto de protección contra los rayos solares del exterior hacia el
       interior. Representa la elección adecuada cuando se desea la eliminación del efecto
       de invernadero de las viviendas debido al aporte de energía natural provenida del sol y
       ofrece también una protección fónica suplementaria. De esa manera se pueden reducir
       los costes con la climatización durante el verano.

       El montaje del paquete en la carpintería se hace según el próximo diseño con la
       cubertura magnetronica "soft" sobre la cara 2, es decir con la lamina de vidrio
       protectora hacia exterior.

       En la tabla de más abajo se pueden seguir las propiedades de esa combinación de
       vidrio en función del grosor, cámara intermedia y el gas utilizado:

       Muy importante es el valor de la reflexión de la luz pero también el valor del coeficiente
       "K".

                                              Vidrio termoaislante
Vidrio triplex    Cobertura                                              Índex        Factor         Valor K EN
                                     Transmisión         Reflexión
   Control         sobre la                                             de color     Solar EN         673 (15K)
                                     de la luz [%]      de la luz [%]
    Solar         superficie                                               Ra        410 [%]         [W/(m2K)]
 G4-10-G4-
   10-G4
                        5                 73.4              16.9           97.5         60.7                 1,2
  (Argón-
   Argón)
 G4-10-G4-
10-G4 (Aire-            5                 73.4              16.9           97.5         60.7                 1,4
   Aire)


       ALEXANDRA CALZADO RODRIGUEZ                                                                   Página 25
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



G4-16-G4-
   16-G4
                   5              73.4            16.9         97.5          60.7       0,9
 (Argón -
  Argón )




    AISLAGLAS

    Entre estos dos vidrios existe una cámara de aire que se consigue gracias al empleo
    de un perfil hueco de aluminio anodizado, cerrado en sus esquinas, que contiene en
    su interior un absorbente de humedad (silicagel) para disminuir el riesgo de
    condensaciones en el interior de la cámara.

    Los vidrios van adheridos al perfil separador por sendos cordones de butilo que
                                constituyen una primera barrera de estanqueidad.

                                   Una segunda barrera sellante, está constituida por
                                   polisulfuro inyectado a presión sobre el borde exterior
                                   del marco separador y los dos bordes de los vidrios,
                                   cuya función es formar un bloque compacto y plástico
                                   del conjunto de los vidrios, obteniendo así una barrera
                                   hermética que proporciona la total estanqueidad de la
                                   cámara.

                                   El vidrio de cámara AISLAGLAS está fabricado según
                                   los procesos productivos y de calidad final exigidos. El
                                   sello Applus lo avala y certifica.



    Propiedades de AISLAGLAS

    Cuando comparamos el doble acristalamiento aislante AISLAGLAS con un vidrio
    común monolítico es cuando se ponen de manifiesto sus excelentes propiedades y las
    ventajas que ofrece su instalación con respecto a aquel:

            Reduce los ruidos exteriores que se puede mejorar con el empleo en su
            estructura de vidrios laminares o variando el espesor de los vidrios y cámara
            que lo conforman.
            Disminuye la probabilidad de aparición de condensación ya que salvo en
            condiciones extremas de diferencia de temperatura entre el interior y el exterior
            de un recinto, junto a un elevado grado de humedad relativa en el interior, no
            se producirán condensaciones en la superficie de la luna orientada hacia el
            interior.
            Controla y regula el paso de la luz.
            Protege tanto del frío como del calor, regulando su entrada y/o pérdidas
            (reduce, como mínimo un 40 % las pérdidas de calor y minimiza ese efecto de
            pared fría que se siente cuando nos acercamos a una ventana en invierno).




    ALEXANDRA CALZADO RODRIGUEZ                                                     Página 26
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



Además AISLAGLAS:

       Propicia un importante ahorro económico en consumos de energía.
       No requiere complejas maniobras de colocación y se adapta a cualquier
       necesidad.

AISLAGLAS se fabrica en una amplia gama de vidrios, por lo que con su
acristalamiento, además del realce estético se pueden conseguir diferentes grados de
reflexión y transmisión, tanto luminosa como energética.

En función de las necesidades requeridas en una construcción y de los tipos de vidrios
que se le incorporen a su estructura, AISLAGLAS mejora sus prestaciones ya que
posibilita infinidad de combinaciones óptimas de diseño, aislamiento, protección física
y/o acústica, control solar, etc.

                                      AISLAGLAS está garantizado por Vitralba como
                                      fabricante por un período de 10 años contados a
                                      partir de la fecha de elaboración, contra todo
                                      defecto de fabricación que pueda disminuir la
                                      visibilidad a causa de condensación o
                                      deposición de polvo o suciedad en las caras
                                      internas de la cámara del doble acristalamiento.

                                      Todo lo anterior se entiende, siempre que las
                                      condiciones de utilización del vidrio aislante
                                      hayan sido las normales para este tipo de
                                      producto     y    se   hayan    respetado  las
                                      especificaciones de fabricación así como las
                                      normas de colocación contempladas en la
                                      normativa oficial (norma de colocación UNE-85-
222-85).

AISLAGLAS fue el primer doble acristalamiento aislante térmico fabricado en España y
el primero que obtuvo el SELLO INCE, referente de calidad expedido durante casi un
cuarto de siglo por el Ministerio de Fomento.



zTELLIGLASS

La Universidad Politécnica de Madrid ha desarrollado una tecnología denominada
Intelliglass, con la que se pueden hacer construcciones acristaladas ideales para el
ahorro energético. Son varias las ventajas obtenidas en un edificio con una fachada
acristalada con el nuevo sistema: amplitud, iluminación, protección del 99% frente a la
acción de los rayos ultravioletas, un alto aislamiento acústico y por supuesto una
eficaz aclimatación.

El nuevo acristalamiento presenta una cámara de agua que se encuentra entre dos
cristales, donde el agua se encuentra en continua circulación, atrapa la energía solar y
la transporta fuera, con lo que se puede esquivar el exceso de calor resultante de la
acción directa del sol, y a su vez dejar el paso de la luz solar.




ALEXANDRA CALZADO RODRIGUEZ                                                    Página 27
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA




El nuevo sistema permitiría olvidarse un poco de las instalaciones de aire
acondicionado para aclimatar el edificio, con lo que el ahorro energético sería notable.
También deberíamos sumar mayor luminosidad natural como ahorro energético y una
mejora del confort, ya sea en verano o en invierno. Claro que si se necesita más
oscuridad, se puede obtener a través de una lámina electrocrómica adherida a la
superficie interior del cristal, con la que gracias a un potenciómetro lograremos regular
la transmisión luminosa del exterior.




ALEXANDRA CALZADO RODRIGUEZ                                                     Página 28
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



Se pueden realizar paneles aislantes de este tipo de cualquier color, mediante un
sistema muy sencillo: se coloca un plástico tintado entre dos vidrios laminados. Esta
lámina plástica puede ser de cualquier color, cosa que aportara personalidad y
singularidad a la fachada. Una vez realizado el “sándwich”, estas placas se introducen
en un horno para hacer desaparecer el aire que pueda quedar entre las dos laminas
de vidrio .Se somete al vidrio a una temperatura y una presión controlada de 120 ºC y
una presión de 10-14 atm. El proceso dura unas cuatro horas, y se hace para
conseguir el vidrio de seguridad. Una vez realizados estos paneles de vidrio, se le
colocan unos marcos metálicos que llevan incorporados un circuito para permitir el
paso del agua.

El sistema de montaje e instalación de este circuito es prácticamente igual a un
circuito de radiadores convencional. Lo que se trata es de tener una tubería por la que
se distribuye el agua a las ventanas, y otra tubería por la que se recoge el agua una
vez se ha realizado el circuito marcado. El ciclo de funcionamiento de este sistema
sería el siguiente:




         Circuito primario        Circuito secundario           ventanas

    Produccion de energía            Circulador

El circuito primario (generador de calor o frio) y el secundario se comunican mediante
un intercambiador de calor, que cede el calor o el frio a nuestras ventanas por medio
del circulador y una bomba de impulsión. Este sistema se podría conectar a un
sistema de placas solares o fotovoltaicas, para aprovechar ese circuito de agua
caliente para generar energía o servir de calentador de agua para el edificio.

El agua que circula continuamente por el interior del circuito aporta el estado bienestar
térmico a todo el espacio interior del edificio ya sea a la hora de calefactar como de
refrigerar los espacios, es decir, en invierno el lado norte es deficitario de radiación
solar, al contrario que la fachada sur, pues será este circuito de agua el encargado de
transmitir el calor del sur al norte para proteger el interior del edificio de las
condiciones térmicas del exterior.

Se utilizan vidrios laminados de seguridad, por si existiese algún tipo de rotura o de
improviso en el sistema, que no se vaciase el circuito interior de agua.

"Lo que hemos hecho con este sistema y sabiendo que el agua tiene la propiedad de
ser impermeable a las radiaciones infrarrojas del sol" explican desde IntelliGlass®, "es
llenar las ventanas con agua para gestionar así la energía y dotar así al vidrio de la
inercia térmica que éste no tiene de forma natural". Así se evita el sobrecalentamiento
del edificio. "Básicamente, dejamos pasar la luz, pero no el calor".

El resultado es una mejora del confort interior y una reducción de hasta un 70% en los
costes de climatización. Hay que entender RadiaGlass como un sistema de
climatización y no solo como una solución de cerramiento. Por eso, afirman desde
IntelliGlass, "al ser un sistema activo, debe de ir acompañado de una estrategia
energética del edificio coherente. Puede ser muy eficiente pero si el proyecto
energético no está bien concebido también puede ser un desastre energético".



ALEXANDRA CALZADO RODRIGUEZ                                                     Página 29
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



Sin duda, una interesante opción a tener en cuenta en las próximas construcciones
que permitirá proporcionar mejor calidad de vida, belleza a la ciudad y lo más
importante, ahorro energético. Esta última condición es fundamental en la época en la
que nos encontramos, donde el cambio climático, los recursos energéticos y el
cuidado del medio ambiente son temas de continua cartelera.




5. CONCLUSION FINAL

Todo este mercado del vidrio parece un sorprendente salto en la evolución de estos
productos, aunque habiendo estudiado la evolución de la utilización del vidrio en la
arquitectura, se puede ver que los sistemas más innovadores de la actualidad tienen
aspectos y temas ya tratados por arquitectos de principios del siglo XX.

Es difícil conseguir financiación para investigar nuevos sistemas tecnológicos, ya que
las probabilidades de éxitos no están aseguradas.

Ya Le Corbusier en 1934 investigó la posibilidad de incorporar una cámara de agua en
las fachadas de vidrio para filtrar los rayos de luz, idea rescatada por la cadena de
Intelliglass, que gracias al desarrollo tecnológico del momento, les ha permitido
desarrollar un sistema de fachada “inteligente” capaz de aportar el “bienestar total” en
estos espacios interiores acristalados, consiguiendo resolver el problema térmico que
el vidrio aporta. Al ser un producto de I+D, es difícil encontrar información técnica del
sistema de funcionamiento, ya que sería interesante investigar el porqué estas
“peceras” mantienen el agua totalmente transparente. Se trata de un sistema de
impulsión de agua normal, pero tratándose del mismo liquido que circula
continuamente por la instalación, debe llevar un sistema de filtrado o depuración
agregado para tratar ese agua (que deberá llevar en la toma de agua un descalificador
para que el agua no deje sedimentos en la instalación). Se entiende que esa cámara
de agua esta herméticamente sellada, y no va a haber puntos de acceso a agentes
externos, pero deberá haber algún sistema o sustancia que se agregue al agua para
garantizar la limpieza absoluta de esa cámara intermedia. Todas estas cuestiones ya
están resueltas por la empresa puesto que ya se han hecho prototipos y se están
empezando a instalar en edificios de nueva construcción en varias provincias de la
comunidad de Castilla y León, solo habrá que esperarse a que toda la información
esté disponible en la página web oficial de la empresa.




ALEXANDRA CALZADO RODRIGUEZ                                                     Página 30
EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA



6. BIBLIOGRAFIA.



- Monografías de arquitectura, tecnología y construcción. Tectónica 10, el vidrio

- Detail, revista de Arquitectura y detalles constructivos. 4 Vidrio año 2002

- El vidrio, arquitectura y técnica, Claudia Vásquez. ARQ ediciones



REFERENCIAS INTERNET

   - www.atex.ro
   - Videos youtube:
        o http://www.youtube.com/watch?v=fRFP7CdNyCo&featur
          e=related
        o http://www.youtube.com/watch?v=FSfDk5ByTwE&featur
          e=related




ALEXANDRA CALZADO RODRIGUEZ                                                Página 31

Mais conteúdo relacionado

Mais procurados

Miembros en estructuras de madera
Miembros en estructuras de maderaMiembros en estructuras de madera
Miembros en estructuras de maderatefebueno
 
Firmes, relleno y pisos. edificación
Firmes, relleno y pisos. edificaciónFirmes, relleno y pisos. edificación
Firmes, relleno y pisos. edificaciónCharlsarq
 
construccion de cabañas de madera 9/31
construccion de cabañas de madera 9/31construccion de cabañas de madera 9/31
construccion de cabañas de madera 9/31Arq Blue
 
Albanileria confinada-y-armada
Albanileria confinada-y-armadaAlbanileria confinada-y-armada
Albanileria confinada-y-armadaJavier DV
 
Criterios Básicos del Diseño Estructural
Criterios Básicos del Diseño EstructuralCriterios Básicos del Diseño Estructural
Criterios Básicos del Diseño EstructuralEstefania Valbuena
 
Muros de contención (2da ed.)
Muros de contención (2da ed.)Muros de contención (2da ed.)
Muros de contención (2da ed.)COLPOS
 
Losas unidireccional y bidireccional estructura3
Losas unidireccional y bidireccional estructura3Losas unidireccional y bidireccional estructura3
Losas unidireccional y bidireccional estructura3JuliaDiaz_14
 
Programa arquitectonico.
Programa arquitectonico.Programa arquitectonico.
Programa arquitectonico.ku lavadores
 
sistema Prefabricado outinord
sistema Prefabricado outinordsistema Prefabricado outinord
sistema Prefabricado outinordUGC / ULSA / UA
 
S.05 técnicas de analisis de asoleamiento
S.05 técnicas de analisis de asoleamientoS.05 técnicas de analisis de asoleamiento
S.05 técnicas de analisis de asoleamientoCelia R. Gastélum
 

Mais procurados (20)

Miembros en estructuras de madera
Miembros en estructuras de maderaMiembros en estructuras de madera
Miembros en estructuras de madera
 
Cafeteria.docx
Cafeteria.docxCafeteria.docx
Cafeteria.docx
 
cubiertas planas
cubiertas planascubiertas planas
cubiertas planas
 
Firmes, relleno y pisos. edificación
Firmes, relleno y pisos. edificaciónFirmes, relleno y pisos. edificación
Firmes, relleno y pisos. edificación
 
Sistemas estructurales
Sistemas estructuralesSistemas estructurales
Sistemas estructurales
 
construccion de cabañas de madera 9/31
construccion de cabañas de madera 9/31construccion de cabañas de madera 9/31
construccion de cabañas de madera 9/31
 
Sistemas estructurales
Sistemas estructuralesSistemas estructurales
Sistemas estructurales
 
Albanileria confinada-y-armada
Albanileria confinada-y-armadaAlbanileria confinada-y-armada
Albanileria confinada-y-armada
 
Criterios Básicos del Diseño Estructural
Criterios Básicos del Diseño EstructuralCriterios Básicos del Diseño Estructural
Criterios Básicos del Diseño Estructural
 
Grout en albañileria
Grout en albañileriaGrout en albañileria
Grout en albañileria
 
Losas macizas
Losas macizasLosas macizas
Losas macizas
 
Muros de contención (2da ed.)
Muros de contención (2da ed.)Muros de contención (2da ed.)
Muros de contención (2da ed.)
 
Losa cajón
Losa cajónLosa cajón
Losa cajón
 
Planta de techos
Planta de techosPlanta de techos
Planta de techos
 
TIPOS de Falso cielo Raso
TIPOS de Falso cielo RasoTIPOS de Falso cielo Raso
TIPOS de Falso cielo Raso
 
Losas unidireccional y bidireccional estructura3
Losas unidireccional y bidireccional estructura3Losas unidireccional y bidireccional estructura3
Losas unidireccional y bidireccional estructura3
 
Programa arquitectonico.
Programa arquitectonico.Programa arquitectonico.
Programa arquitectonico.
 
sistema Prefabricado outinord
sistema Prefabricado outinordsistema Prefabricado outinord
sistema Prefabricado outinord
 
Plegaduras
PlegadurasPlegaduras
Plegaduras
 
S.05 técnicas de analisis de asoleamiento
S.05 técnicas de analisis de asoleamientoS.05 técnicas de analisis de asoleamiento
S.05 técnicas de analisis de asoleamiento
 

Destaque

Detalle constructivo y formas de instalar vidrios para fachadas
Detalle constructivo y formas de instalar vidrios para fachadasDetalle constructivo y formas de instalar vidrios para fachadas
Detalle constructivo y formas de instalar vidrios para fachadasNATALIA SALDAÑA FÉLIX
 
Fachada piel doble ventilada
Fachada piel doble ventiladaFachada piel doble ventilada
Fachada piel doble ventiladaMagui Sanelli
 
Guía de construcción ilustrada
Guía de construcción ilustradaGuía de construcción ilustrada
Guía de construcción ilustradanefe18
 
Conductores, Semiconductores y aislantes
Conductores, Semiconductores y aislantesConductores, Semiconductores y aislantes
Conductores, Semiconductores y aislantesiscped
 
Sistemas de Sujeción para Cristal Templado Kinetic 2012
Sistemas de Sujeción para Cristal Templado Kinetic 2012Sistemas de Sujeción para Cristal Templado Kinetic 2012
Sistemas de Sujeción para Cristal Templado Kinetic 2012Raul Briano
 
Arañas para fachada de vidrio Templado
Arañas para fachada de vidrio TempladoArañas para fachada de vidrio Templado
Arañas para fachada de vidrio TempladoMarlonCastaneda
 
Vidrios 2016
Vidrios 2016Vidrios 2016
Vidrios 2016ramirix
 
Reflexión transmisión absorcion refraccion
Reflexión transmisión absorcion refraccionReflexión transmisión absorcion refraccion
Reflexión transmisión absorcion refraccionArturo Iglesias Castro
 
Semiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y DopadosSemiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y DopadosJavier Ruiz G
 
Los plásticos
Los plásticosLos plásticos
Los plásticosmaria1610
 
En nuestra vida diaria es común ver el uso del vidrio en sus diferentes formas
En nuestra vida diaria es común ver el uso del vidrio en sus diferentes formasEn nuestra vida diaria es común ver el uso del vidrio en sus diferentes formas
En nuestra vida diaria es común ver el uso del vidrio en sus diferentes formasZitlally Garcia
 
81908999 proceso-constructivo-de-una-casa
81908999 proceso-constructivo-de-una-casa81908999 proceso-constructivo-de-una-casa
81908999 proceso-constructivo-de-una-casaDeiby Requena Marcelo
 

Destaque (20)

Detalle constructivo y formas de instalar vidrios para fachadas
Detalle constructivo y formas de instalar vidrios para fachadasDetalle constructivo y formas de instalar vidrios para fachadas
Detalle constructivo y formas de instalar vidrios para fachadas
 
F vidrios 2011
F vidrios 2011F vidrios 2011
F vidrios 2011
 
Fachada piel doble ventilada
Fachada piel doble ventiladaFachada piel doble ventilada
Fachada piel doble ventilada
 
vidrio en construccion
vidrio en construccionvidrio en construccion
vidrio en construccion
 
Guía de construcción ilustrada
Guía de construcción ilustradaGuía de construcción ilustrada
Guía de construcción ilustrada
 
Vidrio
VidrioVidrio
Vidrio
 
Conductores, Semiconductores y aislantes
Conductores, Semiconductores y aislantesConductores, Semiconductores y aislantes
Conductores, Semiconductores y aislantes
 
Un muro cortina
Un muro cortinaUn muro cortina
Un muro cortina
 
04 sistema spider
04 sistema spider04 sistema spider
04 sistema spider
 
Sistemas de Sujeción para Cristal Templado Kinetic 2012
Sistemas de Sujeción para Cristal Templado Kinetic 2012Sistemas de Sujeción para Cristal Templado Kinetic 2012
Sistemas de Sujeción para Cristal Templado Kinetic 2012
 
Arañas para fachada de vidrio Templado
Arañas para fachada de vidrio TempladoArañas para fachada de vidrio Templado
Arañas para fachada de vidrio Templado
 
Muros trabajo[1]
Muros trabajo[1]Muros trabajo[1]
Muros trabajo[1]
 
Vidrios 2016
Vidrios 2016Vidrios 2016
Vidrios 2016
 
Reflexión transmisión absorcion refraccion
Reflexión transmisión absorcion refraccionReflexión transmisión absorcion refraccion
Reflexión transmisión absorcion refraccion
 
10 hormigón bombeado
10 hormigón bombeado10 hormigón bombeado
10 hormigón bombeado
 
Semiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y DopadosSemiconductores Intrínsecos y Dopados
Semiconductores Intrínsecos y Dopados
 
Los plásticos
Los plásticosLos plásticos
Los plásticos
 
En nuestra vida diaria es común ver el uso del vidrio en sus diferentes formas
En nuestra vida diaria es común ver el uso del vidrio en sus diferentes formasEn nuestra vida diaria es común ver el uso del vidrio en sus diferentes formas
En nuestra vida diaria es común ver el uso del vidrio en sus diferentes formas
 
81908999 proceso-constructivo-de-una-casa
81908999 proceso-constructivo-de-una-casa81908999 proceso-constructivo-de-una-casa
81908999 proceso-constructivo-de-una-casa
 
Aislantes y union entre conductores
Aislantes y union entre conductoresAislantes y union entre conductores
Aislantes y union entre conductores
 

Semelhante a El vidrio aislante y su aplicacion en la construccion

Vidrios en la construcción
Vidrios en la construcción  Vidrios en la construcción
Vidrios en la construcción Carlos Tkm
 
4 L A S A R T E S E U R O P E A S D U R A N T E E L S
4 L A S  A R T E S  E U R O P E A S  D U R A N T E  E L  S4 L A S  A R T E S  E U R O P E A S  D U R A N T E  E L  S
4 L A S A R T E S E U R O P E A S D U R A N T E E L Sjesus ortiz
 
Seducción en la piel, ¡comienza el espectáculo!
Seducción en la piel, ¡comienza el espectáculo!Seducción en la piel, ¡comienza el espectáculo!
Seducción en la piel, ¡comienza el espectáculo!Monica Daluz
 
Clasicismo historia de la arquitectura iii
Clasicismo historia de la arquitectura iii Clasicismo historia de la arquitectura iii
Clasicismo historia de la arquitectura iii joseita montilla
 
Clasicismo, Concreto Amado y La Bauhaus
Clasicismo, Concreto Amado y La BauhausClasicismo, Concreto Amado y La Bauhaus
Clasicismo, Concreto Amado y La BauhausBryan Reyes
 
Aislamiento por Isover
Aislamiento por IsoverAislamiento por Isover
Aislamiento por IsoverPerro Viejo
 
14 TENDENCIAS ARQUITECTÓNICAS QUE DEFINIRÁN LA PRÓXIMA DÉCADA
14 TENDENCIAS ARQUITECTÓNICAS QUE DEFINIRÁN LA PRÓXIMA DÉCADA14 TENDENCIAS ARQUITECTÓNICAS QUE DEFINIRÁN LA PRÓXIMA DÉCADA
14 TENDENCIAS ARQUITECTÓNICAS QUE DEFINIRÁN LA PRÓXIMA DÉCADAKaroljaelis
 
Historia de la energía solar 1
Historia de la energía solar 1Historia de la energía solar 1
Historia de la energía solar 1geopaloma
 
El vidrio y su uso
El vidrio y su usoEl vidrio y su uso
El vidrio y su usoELISA2601
 
Vidrio aitor mauricio
Vidrio aitor mauricioVidrio aitor mauricio
Vidrio aitor mauricioLeyre_prof
 
Arquitectura sostenible-3-3
Arquitectura sostenible-3-3Arquitectura sostenible-3-3
Arquitectura sostenible-3-3Yerry Santiago
 
Vidrio Y Ceramica
Vidrio Y CeramicaVidrio Y Ceramica
Vidrio Y Ceramicaguest076065
 
Vidrio Y Ceramica
Vidrio Y CeramicaVidrio Y Ceramica
Vidrio Y Ceramicaguest076065
 

Semelhante a El vidrio aislante y su aplicacion en la construccion (20)

Vidrios en la construcción
Vidrios en la construcción  Vidrios en la construcción
Vidrios en la construcción
 
Tema vitreos
Tema vitreosTema vitreos
Tema vitreos
 
4 L A S A R T E S E U R O P E A S D U R A N T E E L S
4 L A S  A R T E S  E U R O P E A S  D U R A N T E  E L  S4 L A S  A R T E S  E U R O P E A S  D U R A N T E  E L  S
4 L A S A R T E S E U R O P E A S D U R A N T E E L S
 
Revolucion industrial
Revolucion industrialRevolucion industrial
Revolucion industrial
 
Revolución industrial
Revolución industrialRevolución industrial
Revolución industrial
 
Seducción en la piel, ¡comienza el espectáculo!
Seducción en la piel, ¡comienza el espectáculo!Seducción en la piel, ¡comienza el espectáculo!
Seducción en la piel, ¡comienza el espectáculo!
 
Clasicismo historia de la arquitectura iii
Clasicismo historia de la arquitectura iii Clasicismo historia de la arquitectura iii
Clasicismo historia de la arquitectura iii
 
Clasicismo, Concreto Amado y La Bauhaus
Clasicismo, Concreto Amado y La BauhausClasicismo, Concreto Amado y La Bauhaus
Clasicismo, Concreto Amado y La Bauhaus
 
Vidiro
Vidiro Vidiro
Vidiro
 
Expo historia est reflejante
Expo historia est reflejanteExpo historia est reflejante
Expo historia est reflejante
 
Concreto
ConcretoConcreto
Concreto
 
Aislamiento por Isover
Aislamiento por IsoverAislamiento por Isover
Aislamiento por Isover
 
14 TENDENCIAS ARQUITECTÓNICAS QUE DEFINIRÁN LA PRÓXIMA DÉCADA
14 TENDENCIAS ARQUITECTÓNICAS QUE DEFINIRÁN LA PRÓXIMA DÉCADA14 TENDENCIAS ARQUITECTÓNICAS QUE DEFINIRÁN LA PRÓXIMA DÉCADA
14 TENDENCIAS ARQUITECTÓNICAS QUE DEFINIRÁN LA PRÓXIMA DÉCADA
 
Historia de la energía solar 1
Historia de la energía solar 1Historia de la energía solar 1
Historia de la energía solar 1
 
El vidrio y su uso
El vidrio y su usoEl vidrio y su uso
El vidrio y su uso
 
Vidrio aitor mauricio
Vidrio aitor mauricioVidrio aitor mauricio
Vidrio aitor mauricio
 
Prefabricados
PrefabricadosPrefabricados
Prefabricados
 
Arquitectura sostenible-3-3
Arquitectura sostenible-3-3Arquitectura sostenible-3-3
Arquitectura sostenible-3-3
 
Vidrio Y Ceramica
Vidrio Y CeramicaVidrio Y Ceramica
Vidrio Y Ceramica
 
Vidrio Y Ceramica
Vidrio Y CeramicaVidrio Y Ceramica
Vidrio Y Ceramica
 

Mais de Alexandra Rodriguez (19)

Tesis aeropuerto
Tesis aeropuertoTesis aeropuerto
Tesis aeropuerto
 
Presentacion final
Presentacion finalPresentacion final
Presentacion final
 
02.alzado ayto
02.alzado ayto02.alzado ayto
02.alzado ayto
 
01. planta ayto
01. planta ayto01. planta ayto
01. planta ayto
 
Pilotes prefabricados
Pilotes prefabricadosPilotes prefabricados
Pilotes prefabricados
 
Organizacion en la era de la informacion (intro)
Organizacion en la era de la informacion (intro)Organizacion en la era de la informacion (intro)
Organizacion en la era de la informacion (intro)
 
organización en la era de la información
organización en la era de la informaciónorganización en la era de la información
organización en la era de la información
 
Taiwan tower conceptual design
Taiwan tower conceptual designTaiwan tower conceptual design
Taiwan tower conceptual design
 
Tipos de vegetaciones manhattan
Tipos de vegetaciones manhattanTipos de vegetaciones manhattan
Tipos de vegetaciones manhattan
 
Analisis vegetación
Analisis vegetaciónAnalisis vegetación
Analisis vegetación
 
Tipos de vegetaciones manhattan
Tipos de vegetaciones manhattanTipos de vegetaciones manhattan
Tipos de vegetaciones manhattan
 
Analisis vegetación Manhattan
Analisis vegetación ManhattanAnalisis vegetación Manhattan
Analisis vegetación Manhattan
 
Sección conjunto y diagrama vistas
Sección conjunto y diagrama vistasSección conjunto y diagrama vistas
Sección conjunto y diagrama vistas
 
Preentrega 4
Preentrega 4Preentrega 4
Preentrega 4
 
3
33
3
 
Prentrega 2
Prentrega 2Prentrega 2
Prentrega 2
 
Preentrega 1
Preentrega 1Preentrega 1
Preentrega 1
 
Conexión
ConexiónConexión
Conexión
 
Analisis
AnalisisAnalisis
Analisis
 

El vidrio aislante y su aplicacion en la construccion

  • 1. ESAYT CONSTRUCCION IV ALEXANDRA CALZADO RODRIGUEZ [EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA] “El cerramiento continuo de vidrio (…) su comportamiento energético era ciertamente negativo, por lo que la experimentación – ligada estrechamente a la investigación en torno a la oficina y el rascacielos- debió cruzarse con varias formas de abordar el espacio interior en sus aspectos ambientales.” ÁBALOS Y HERREROS: Técnica y Arquitectura en la ciudad contemporánea,
  • 2. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA INDICE 1. INTRODUCCION. 1.1. HISTORIA. 1.2. EL VIDRIO EN LA ARQUITECTURA MODERNA. 1.2.1. LE CORBUSIER Y EL ESTADO DEL ARTE DE LA ARQUITECTURA VIDRIADA EN 1935. 1.2.2. DEL CERRAMIENTO VIDRIADO AL MURO CORTINA (1959-1969). 2. PROPIEDADES DEL VIDRIO USADO EN ARQUITECTURA. 3. VIDRIO COMPUESTO CON CAPAS CON MODULOS FOTOVOLTAICOS. 4. VIDRIO AISLANTE. 4.1. RELLENOS EN LA CAMARA INTERMEDIA. 4.2. RELLENOS CON PROPIEDADES PARA LA PROTECCION SOLAR. 4.3. MARCAS COMERCIALES. 5. CONCLUSION. 6. BIBLIOGRAFIA. ALEXANDRA CALZADO RODRIGUEZ Página 2
  • 3. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA 1. INTRODUCCION. Gracias a los numerosos avances conseguidos en la tecnología del vidrio, el material del que ahora disponemos es capaz de aunar ventajas arquitectónicas, económicas y ecológicas. El proceso de desarrollo de este material, iniciado con la crisis del petróleo, pretendía buscar nuevos caminos que posibilitaran una arquitectura de cristal de bajo consumo energético. En construcción, el vidrio puede aplicarse de muy diversas maneras. Dentro de las hojas planas, el vidrio float (o vidrio plano común), cuyo tamaño estándar varía entre unos 2,3 y 6 metros y su espesor entre 2 y 19 mm, es el empleado con mayor frecuencia. Las laminas de espesores mayores o menores se obtienen por estiramiento. 1.1. HISTORIA. El hombre ha utilizado el vidrio desde la más remota prehistoria. Los primeros utensilios que conocemos de la edad de piedra son piedras de sílex, cuarzo y obsidiana que son en realidad vidrios naturales. No tiene nada de particular si consideramos que el silicio, principal componente del vidrio, es el mineral más abundante en la naturaleza. Nada menos que el 25% de la corteza terrestre es oxido de silicio (sílice). No parece posible situar en el tiempo el inicio de la industria del vidrio. Se ha llegado a conjeturar que el hombre pudo descubrir el vidrio accidentalmente al hacer fuego sobre las arenas de las playas o de las orillas de algún río, pero no parece probable que una hoguera alcanzase las suficientes calorías para producir ese efecto. Más probable parece la idea de que la industria cerámica, investigando revestimientos vítreos, llegase a desarrollar la industria del vidrio. En todo caso la primera industria del vidrio que tenemos noticia se sitúa en Egipto hace 3.500 años. Se fabricaban pequeñas piezas de adorno personal que alcanzaban valores similares a las piedras preciosas. Egipto y después Alejandría mantuvieron la hegemonía de la fabricación del vidrio hasta la llegada del imperio romano que la difundió por todo el Mediterráneo. Parece lógico y se puede observar que el desarrollo de la industria del vidrio acompaña a épocas de estabilidad política y auge económico. El vidrio, por su relación con la luz, se entendió como metáfora de lo espiritual, que a su vez hacía referencia a lo sublime, a lo divino, a lo inmaterial. Y ciertamente las arquitecturas de vidrio son ligeras, evanescentes, frágiles e inmateriales. ALEXANDRA CALZADO RODRIGUEZ Página 3
  • 4. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA Pero al vidrio no solo se le han asignado metáforas relacionadas con lo sublime y espiritual; en el siglo XIX pasó a expresar el optimismo tecnológico que subyacía en el espíritu de la arquitectura racionalista: el Palacio de Cristal diseñado por Paxton en 1851. “Lo que Paxton construyó no solo fue la demostración de un interior nuevo, sino también un símbolo de los nuevos tiempos”. 1.2. EL VIDRIO EN LA ARQUITECTURA MODERNA. Al iniciarse el siglo XX, la experimentación con materiales y procedimientos industriales comportó un desplazamiento significativo en la concepción del cerramiento. Entre 1914 y 1932 se asientan las bases de lo que va a ser un nuevo lenguaje arquitectónico, en el cual el vidrio va a jugar un papel muy importante. Sin embargo también van a manifestarse las dificultades inherentes a su uso. Pronto se creó la conciencia de que este procedimiento significaba una profunda modificación de la idea misma de cerramiento. Le Corbusier, Mies Van der Rohe, Buckminster Fuller y Jean Prouve, entre otros, llevaran esta investigación a sus límites experimentales individualizando distintas concepciones del cerramiento que aun hoy son modelos obligados de referencia. El cerramiento continuo de vidrio fue una de las propuestas más ambiciosas y complejas; aportaba una visión profundamente distinta del espacio interior y de la presencia formal del edificio, con una gran capacidad de sugestión emocional e intelectual. Pero el comportamiento energético del vidrio era ciertamente negativo, por lo que su experimentación –ligada estrechamente a la investigación en torno a la oficina y al rascacielos- debió cruzarse con varias formas de abordar el espacio interior en sus aspectos ambientales, formas que determinaron las aplicaciones posibles del mismo a la arquitectura moderna. A continuación se va a mencionar el estudio realizado por Le Corbusier sobre cerramientos de vidrio, para entender porqué es el precursor de soluciones actuales con este material. ALEXANDRA CALZADO RODRIGUEZ Página 4
  • 5. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA 1.2.1. LE CORBUSIER Y EL ESTADO DEL ARTE DE LA ARQUITECTURA VIDRIADA EN 1935. En 1935, Le Corbusier redactó su ensayo “le verre, materiau fundamental de la architecture moderne”, donde planteó que el vidrio sería el material que caracterizaría las construcciones de una “nueva era de la máquina”, la cual sucedería a una “primera era de la maquina”, que había transcurrido entre 1830 y 1930. Su argumento se basó en que la producción de acero y hormigón armado habían permitido la redefinición de la fachada, ya que permitían que los muros de una construcción no se apoyaran en el terreno. En esto radicaba la gran revolución arquitectónica, y era justo allí donde el vidrio debería cumplir un papel inédito para el desarrollo de la disciplina, sin embargo era necesario asumir los problemas inherentes al material, que resumió en los siguientes puntos: a) El problema del frio detrás del paño vidriado. b) El problema del calor detrás del paño vidriado. c) El deslumbramiento detrás del paño vidriado. d) La limpieza del paño vidriado. e) La reivindicación del confort en algunas horas del día. f) Un problema general de estética. Para el manejo de estas cuestiones, la arquitectura disponía de diversas soluciones: vidrios transparentes; vidrios translúcidos; vidrios dobles; bloques de vidrio; vidrios diamantados o catedral; y la posibilidad de templar y laminar las hojas para incrementar su resistencia. Según explicó, un gran adelanto producido por la industria fue poner a disposición de los arquitectos, a bajo costo, “vidrios gruesos estirados y transparentes”, los que si bien no tenían la calidad del cristal, eran una excelente alternativa para la construcción de paños transparentes. En la línea de los nuevos productos ofrecidos por la industria, explicaba que en ese momento se encontraba en estudio una propuesta hecha por él y su socio Pierre Jeanneret para la fabricación de grandes planos de vidrio resistente, aislante térmico y translucido, que permitiría reemplazar el uso de otros materiales para el cerramiento de las habitaciones. Este producto seria fabricado por Saint-Gobain, una de las principales industrias francesas productoras de vidrio plano. Los primeros dos problemas asociados al uso del vidrio eran el frio y el calor debido a su transparencia. Para enfrentarlos desarrollo un sistema que puede ser considerado como una versión alternativa a los sistemas de aire acondicionado y que llamo “respiración exacta” (figura nº 1) Este sistema consistía en la utilización de paños transparentes herméticamente cerrados que permitían el funcionamiento de un sistema de inyección y extracción de aire artificial. De esta manera se lograría una situación que describió de la siguiente manera: ALEXANDRA CALZADO RODRIGUEZ Página 5
  • 6. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA Figura 1 “…en pleno verano, ya sea en Moscú, en Paris o en Rio de Janeiro, el habitante de la ciudad podrá encontrarse detrás de un paño de vidrio anegado de sol sin sufrir el mas mínimo desagrado. Su pulmón respirara aire a 18 grados y será ubicado, ni más ni menos, en las condiciones de un turista en alta montaña o de un bañista en las playas de los océanos…” Esta solución tuvo una evolución más compleja. Para el proyecto de Centrosoyuz (Moscú, 1929), propuso la implementación de una central productora de aire limpio, con humedad y temperaturas controladas, que debía ser inyectado al edificio por medio de un sistema de redes que debía repartirlo de manera uniforme, en condiciones similares a un sistema de aire acondicionado. En forma paralela otra red de extracción debía evacuar la misma cantidad de aire que la central de aire limpio inyectaba. Esto era la “respiración exacta”. Para validar su utilización en cualquier latitud, la fachada debía ser un muro “neutralizante”. (figura 2) Se trataba de una invención asociada al uso de cerramientos livianos que consistía en una doble pared, en cuyo interior se hacía circular aire controlado e inyectado por otra central. Este muro funcionaria como una barrera que permitiría mantener los interiores en un régimen de respiración “exacta”. Esta idea ya había sido evaluada por la American Blower Corporation en 1930, quienes emitieron un lapidario informe que concluyó que el sistema consumía cuatro veces más energía que los sistemas de climatización ya comercializados en ese momento. A pesar de este fracaso de laboratorio, en el edificio para la “cite de Refuge” (Paris, 1933), aplicó un sistema de refrigeración exacta, construyendo el primer edificio herméticamente cerrado por un muro enteramente de vidrio sobrepuesto a la ALEXANDRA CALZADO RODRIGUEZ Página 6
  • 7. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA estructura del edificio con un sistema mixto de calefacción a vapor con sistemas de conducciones de aire. Figura 2 El tercer problema asociado al uso del vidrio era el deslumbramiento. Para Le Corbusier el uso de paños vidriados implicaba soluciones de diafragmas o pantallas móviles por el interior. Explicó que el calentamiento de estos elementos era irrelevante al controlar la temperatura interior por medio de un sistema de “respiración exacta”, sin considerar que el sistema seria proporcionalmente mayor. Este grave error conceptual llevó a que en la “cite de refuge” fueran posteriormente agregados, en 1952, un sistema de brise-soleil que no es otra cosa que el diafragma puesto por el exterior. El cuarto problema asociado al uso del vidrio era la limpieza de las grandes superficies de fachada. Para esto propuso un sistema de carros deslizantes por un riel dispuesto en el vértice del edificio, según un modelo desarrollado para el proyecto de la sociedad de las Naciones (Ginebra, 1927), y también incorporado en la “Cite de Refuge”. Finalmente el proyecto plantea el problema estético asociado a la utilización del vidrio, a partir del radical cambio que su utilización permitía en la percepción de la luz, verdadera revolución de la arquitectura de la “nueva era de la maquina”. Tanto la iluminación natural producida por el sol, como especialmente este punto a partir de las innovaciones estéticas asociadas a la posibilidad de obtener planos continuos transparentes desde el interior y superficies reflectivas desde el exterior. ALEXANDRA CALZADO RODRIGUEZ Página 7
  • 8. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA Abalos y Herreros rescatan la brillante intuición de Le Corbusier acerca de los problemas técnicos asociados a los cerramientos de vidrio, sin embargo, reconocen que su limitado rigor científico les impide lograr la coherencia de sus propuestas. Aunque el trabajo de Le Corbusier no tenga el valor técnico de aportar soluciones efectivas al problema de las fachadas de vidrio, si identificó las claves arquitectónicas que su utilización tiene asociadas, lo cual sirve para entender que ya en 1935 quedaron lanzadas las claves con las cuales la arquitectura trabajaría con gran vigor especialmente a partir de la posguerra. 1.2.2. DEL CERRAMIENTO VIDRIADO AL MURO CORTINA (1959-1969). Durante la década de los cincuenta el mismo anhelo de transparencia fue llevado a la edificación en altura y también se inició la comercialización del vidrio tintado. Los Lake Shore Drive Apartments (chicago, 1951) de Mies Van der Rohe son considerados precursores de la imagen transparente de un volumen en altura. En este caso, la coincidencia entre estructura y cerramiento hizo que, desde el punto de vista de la utilización del vidrio, la solución pueda ser considerada todavía tradicional debido a que cada paño soluciona de forma autónoma los problemas asociados a las dilataciones y la estanqueidad. El primer edificio que asumió la compleja problemática de adosar un paño de vidrio a una estructura en altura fue el Lever House (1947-1952) construido por Gordon Bunshaft junto a Skidmore, Owings y Merril. Se trataba de una piel de paneles fijos de vidrio color verde semi-reflectante, sobre montantes de acero inoxidable fijados a la estructura del edificio según se muestra en la siguiente figura: Figura 3 El uso del vidrio de color abrió las nuevas perspectivas puesto que absorbía una mayor cantidad de la radiación proveniente del sol, colaborando a disminuir el ALEXANDRA CALZADO RODRIGUEZ Página 8
  • 9. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA consumo de energía del sistema de climatización. En consecuencia, el paño vidriado es completamente hermético y la climatización funcionaba con ventilación mecánica y aire acondicionado, apareciendo como una innovación tecnológica de proporciones en la época, a pesar de que este objetivo había sido planteado y perseguido desde años anteriores. En 1952 no había sido construido ningún edificio parecido, por lo que es posible afirmar que inauguraba un elemento arquitectónico de radical importancia hasta el día de hoy: el muro cortina. 2. PROPIEDADES DEL VIDRIO USADO EN ARQUITECTURA. PROPIEDADES OPTICAS. La transparencia es la capacidad de un cuerpo para transmitir la luz, calor radiante y otros tipos de radiaciones específicas dentro del espectro electromagnético, propiedad que el vidrio posee gracias a su estado vítreo. Desde el punto de vista de sus aplicaciones en arquitectura esta es la propiedad principal y más útil puesto que el espectro de radiaciones a los cuales es permeable puede ser seleccionado, por lo tanto es susceptible de ser diseñado. Figura 4 La transparencia del vidrio se debe a que sus moléculas no forman una red cristalina, de ahí que los rayos de luz puedan atravesarlo sin dispersarse. Una luna de cristal solo trasmite radiaciones solares cuya longitud de onda se encuentre entre 315 y 2500 nm, aquellas de mayor o menor longitud son absorbidas totalmente por el vidrio. Este hecho explica el efecto invernadero. COMPORTAMIENTO DEL VIDRIO FRENTE AL CALOR. El factor determinante para las pérdidas térmicas es el coeficiente de transmisión de calor que presenta una lamina de vidrio. Aunque su grosor no influya en el intercambio ALEXANDRA CALZADO RODRIGUEZ Página 9
  • 10. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA térmico, la radiación puede modificarse con revestimientos y la convección mediante la adicion de diferentes capas (como es el caso del vidrio aislante). La dilatación depende de la composición química del material. Figura 5 El calor se transmite desde un medio de mayor temperatura hacia otro de menor temperatura a una velocidad que depende del medio o del material a través del cual se produzca el traspaso. Este tipo de transmisión se puede producir de tres maneras: - CONVECCION: Es producto del movimiento ascendente de corrientes de aire cálido y ligero. Cuando una molécula de aire adquiere temperatura pierde densidad y se desplaza hacia una zona más fría. Este tipo de transmisión se produce a través de la masa del vidrio. - CONDUCCION: Ocurre cuando el calor pasa a través de un sólido, desde las moléculas que se encuentran a mayor temperatura hacia las que se encuentran a menor temperatura. Este tipo de transmisión se produce a través de la masa del vidrio. - RADIACION: Ocurre cuando el calor viaja a través del espacio alcanzando cuerpos a distancia, los cuales pueden nuevamente reflejarlo, absorberlo o transmitirlo. Este es el tipo de transmisión de calor producido por el sol. ALEXANDRA CALZADO RODRIGUEZ Página 10
  • 11. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA El vidrio es un buen transmisor lo cual obliga a controlar su comportamiento frente al calor de onda larga producido por los cuerpos cuando se calientan. Para cuantificar su desempeño frente a este fenómeno se ha creado una convección denominada factor k., que es encargado de indicar la cantidad de calor que se transmite, de forma perpendicular, a través de un elemento constructivo sujeto a una diferencia de temperatura del aire a ambos lados de 1 º C, durante un cierto tiempo, en régimen estacionario. Es un índice que cada material posee de forma particular. Efecto invernadero: (figura 6) -A: Radiación de onda corta -B: Radiación de onda larga Figura 6 El factor k de un vidrio depende de la diferencia de temperatura del aire en sus caras y de la resistencia térmica de sus superficies, es decir de los movimientos conectivos del calor que se producen en cada una de ellas. Es por esto que varía según los diversos procesos que modifican las características de sus caras. Figura 7 Desde el punto de vista arquitectónico son principalmente dos las variables que harán buscar un mayor o menor factor k: el clima, puesto que determina la necesidad de captar o eliminar calor, y la orientación, puesto que determina su exposición a la radiación solar directa. ALEXANDRA CALZADO RODRIGUEZ Página 11
  • 12. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA COMPORTAMIENTO DEL VIDRIO FRENTE A LA RADIACION SOLAR. La permeabilidad a la radiación que presentan una o varias capas de vidrio, se define según el porcentaje de luz reflejada, absorbida y transmitida. Tres parámetros físicos fundamentales determinan la incidencia de la luz y las ganancias y pérdidas de calor: La transmisión de luz diurna, indica el porcentaje de radiación de luz directa que, incidiendo perpendicularmente, atraviesa el vidrio. La transmisión secundaria, es el calor que conduce el vidrio como consecuencia de la radiación, conducción y convección térmica. El coeficiente global de transmisión g es la suma de ambas. El coeficiente de transmisión de calor, k, es el flujo térmico que atraviesa un metro cuadrado de superficie en una hora cuando la diferencia de temperatura entre la parte interior y exterior del elemento es de 1 Kelvin. Figura 8 La figura 8 muestra el comportamiento de un vidrio crudo incoloro de 4 mm de espesor frente a la radiación solar incidente (A indica la onda corta, y B la onda larga. En la actualidad, la tecnología del vidrio usado en arquitectura ha logrado importantes avances para mejorar su comportamiento térmico a través de la modificación de su masa, de sus caras o formando elementos compuestos que almacenan aire seco o gas, cuyo factor K permite mejorar ostensiblemente su comportamiento frente al calor. ALEXANDRA CALZADO RODRIGUEZ Página 12
  • 13. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA La luz proviene principalmente del sol y puede comportarse de las siguientes maneras al alcanzar un vidrio: - REFLEXION: consiste en devolver el rayo luminoso sin dejarlo atravesar la masa del vidrio. Las superficies lisas, como la del vidrio crudo, reflejan la luz de forma regular, en una dirección, mientras que las superficies rugosas, como la del vidrio pulido o impreso, lo hacen irregularmente en distintas direcciones, o difundiéndola. - REFRACCION: cuando la luz incide sobre un vidrio, parte de ella se refracta, es decir, toma una dirección cercana a la normal de sus caras, para después, al salir, retomar la dirección primitiva después de haber experimentado una ligera translación proporcional al espesor del vidrio atravesado. Figura 9 (De izquierda a derecha). La primera figura indica el comportamiento de la luz incidente en un vidrio con superficie lisa en el que se produce la reflexión; la segunda figura indica la reflexión que se produce al incidir la luz en una superficie rugosa; y la tercera figura indica la refracción de la luz a través de un vidrio. La proporción entre la luz incidente en un vidrio y la que lo traspasa, se denomina transmisión lumínica, se expresa en porcentaje y depende de su espesor y de su capacidad para reflejarla. La industria también utiliza este índice para compara el comportamiento que tienen frente a la luz los distintos vidrios que produce. RESISTENCIA A FLEXION. Un alto contenido de dióxido de silicio determina la dureza y resistencia a flexión del vidrio y, lamentablemente, también su fragilidad haciendo que el cristal se rompa apenas sea sobrepasado su límite de deformación plástica. Aunque el vidrio presenta normalmente una resistencia a tracción de 104 N/mm², el limite desciende a 30-80 N/mm² cuando el material presenta algún desperfecto o imperceptibles grietas superficiales. ALEXANDRA CALZADO RODRIGUEZ Página 13
  • 14. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA 3. VIDRIO COMPUESTO CON CAPAS CON MODULOS FOTOVOLTAICOS. El vidrio compuesto, también llamado vidrio de seguridad, se compone por dos o mas hojas conectadas mediante una lamina intermedia elástica que, en caso de rotura, impide el desprendimiento de los añicos. El vidrio de seguridad compuesto esta formado por hojas simples de vidrio pretensado o parcialmente pretensado, pues la resistencia de cualquiera de ellas es mayor que las del vidrio float. Mediante la combinación de diferentes cristales y espesores de laminas es posible cumplir todas las exigencias requeridas para casos de rotura, disparo o explosión. Como capa intermedia puede emplearse el butiro de polivinilio (PVB), resina vertida o distintos tipos de laminas plásticas; transparentes, coloreadas, estampadas, absorbentes, reflectantes e incluso laminas con n sistema de cables conectados a la alarma o a la calefacción. CAPAS FUNCIONALES: Especialmente interesante es la investigación de las capas fncionales que pueden emplearse para difractar la luz o como protección solar térmica. En este apartado del trabajo se va a investigar el tema de las capas funcionales, pero con modulos fotovoltaicos. 3.1. CAPAS CON MODULOS FOTOVOLTAICOS. Los vidrios compuestos que integran módulos fotovoltaicos (PV) pueden transformar la energía solar en eléctrica y, al mismo tiempo, evitar el paso de los rayos del sol. Por lo general estos módulos se componen de células solares de silicio monocristalinas, policristalinas o amorfas. Las monocristalinas son opacas, azules, gris oscuras o negras y su eficiencia varía entre un 14-16%. Las policristalinas también suelen ser azules y opacas. Su fabricación con bloques de silicio resulta más económica pero la eficiencia que presentan es menor; 11-12%. El espesor habitual de las células solares cristalinas es de 0,4 mm y sus dimensiones de 10 x10 o 15 x15 cm. Para formar el módulo, se ensamblan las células y se introducen, embebidas en resina, entre dos hojas de cristal. Las células solares amorfas semitransparentes no son cristalinas. Para su fabricación, se retira parte de la capa colocada sobre el cristal por medio de rayos laser, de modo que aparezcan canales transparentes entre la superficie activa. 3.2. MARCAS COMERCIALES. ALEXANDRA CALZADO RODRIGUEZ Página 14
  • 15. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA COENER SYSTEMS. Coener Systems lleva a cabo estudios en los cuales, paneles, colectores y otros accesorios necesarios están perfectamente integrados en las estructuras del edificio, optimizando no solo el uso de la energía sino de los materiales de construcción. Paneles acristalados Optisol de Scheuten Solartec Hnology Lo que caracteriza a esta solución de paneles fotovoltaicos es que las células fotovoltaicas tienen como soporte un doble cristal, siendo el panel semitransparente. La producción de este tipo de panel se realiza a medida del proyecto, siendo posible trabajar con cristales fotovoltaicos de hasta 6 m², en doble cristal con cámara de aislamiento o sin ella. Los vidrios pueden ser templados o termoendurecidos, en función de la aplicación y la resistencia mecánica necesaria. También es posible seleccionar el índice de transparencia del cristal creando zonas de distinta luminosidad nicamente con el cristal y la célula fotovoltaica. Los cables de conexión de este tipo de instalaciones van totalmente ocultos por la periferia, dando un acabado al cristal muy cuidado. Figura 10 ALEXANDRA CALZADO RODRIGUEZ Página 15
  • 16. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA EDIFICIO DE OFICINAS CON ESTE SISTEMA DE PANELES. ALEXANDRA CALZADO RODRIGUEZ Página 16
  • 17. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA PRODUCTOS CONTROL GLASS Active. Lite, vidrio fotovoltaico Mediante esta línea de producto aportamos al concepto de Edificios Eficientes una nueva gama de vidrios fotovoltaicos, Active Lite son idóneos para la Integración Arquitectónica (fachadas, lucernarios, mobiliario urbano, etc.) Se trata de composiciones especiales de Unidades de Doble Acristalamiento o Vidrios Laminados, dónde uno de los elementos de la composición es un Módulo Solar Fotovoltaico. De esta forma el compuesto resultante es un vidrio “activo” el cual tiene las propiedades eléctricas de un Módulo Fotovoltaico, y propiedades ópticas y de seguridad propias de un compuesto de vidrio. La orientación óptima de los vidrios Active.Lite es la orientación sur, pero su tecnología permite instalarlos en diferentes orientaciones, incluso horizontales, sin apenas pérdida de eficiencia. iGlass: Vidrio laminado con película de cristal líquido que permite el paso instantáneo de transparente a traslúcido y viceversa., permitiendo con ello el control de la privacidad en cualquier momento. Ledglass. Vidrio que transmite luz consiguiendo iluminar y dar color a toda la superficie de forma uniforme aportando efectos de gran calidad gráfica. Vidrio calefactable: Vidrio que emite calor para poder ofrecer al mercado una alternativa a los radiadores convencionales con la elegancia, estética y la transparencia del vidrio. Vidrio termocrómico: vidrios que cuando le da el sol directamente, calentando la capa, cambian de una alta transmisión de luz a un alto oscurecimiento. Vidrio anti-fuego: Las principales características de este vidrio de seguridad anti- fuego se basan en su aplicación tanto para interior como para exterior ya que resiste los rayos UV, su inmunidad al agua y a la humedad, y su fácil transformación ( se puede curvar ) Vidrio con alabastro: Producto formado al laminar vidrio y alabastro, cuyo resultado tienen todas las propiedades del vidrio sin perder la belleza, color y la traslucidez del alabastro, cualidad única de este material tan apreciado. Vidrio Defender, Antibala: Producto formado por vidrios y plásticos multi- laminares que aportan unos resultados espectaculares en la retención de las balas y cuya característica principal es su peso aligerado. Vidrio para automoción: vidrio templado y laminado que cumple con la normativa europea Economic Commission of Europe Regulatin 43 (EC R-43) para instalación en vehículos a motor. Vidrio difusor de luz: Inclusión de celdas de policarbonato de diferentes espesores y texturas dentro de varios vidrios, que hacen que la luz se difumine ALEXANDRA CALZADO RODRIGUEZ Página 17
  • 18. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA a través de él, siendo muy adecuado para usos donde se evita la concentración de luz y calor en un punto, como pueden ser museos. Laminado – inserciones: Cualquier envolvente de vidrio de un edificio puede tener un aspecto exclusivo así como crear ambientes personalizados en interiores, combinando la serigrafía, las laminas de color Vanceva, así como inclusiones metálicas, fotos, telas, leds o cualquier producto que el prescriptor proponga sin límites para la imaginación. 4. VIDRIO AISLANTE. Los vidrios aislantes se componen de dos o más hojas de cristal, sujetas en sus extremos por uno o más soportes estancos a los gases. Estos mantienen fija la distancia entre las hojas. De este modo se forma una cámara intermedia que, con su relleno interior de aire seco, actúa como un amortiguador térmico. Mediante el empleo de vidrios aislantes pueden reducirse las pérdidas de calor hasta la mitad o incluso más. Sin embargo, en ocasiones aparecen problemas como la radiación entre las superficies del vidrio, convección en la capa intermedia o conducción de calor a través de su relleno o de los bordes. Estos pueden combatirse con medidas correspondientes. Figura11 La radiación entre las dos superficies de vidrio se reduce al introducir un recubrimiento de baja emisión. El coeficiente de transmisión de calor, K, de un vidrio aislante con ALEXANDRA CALZADO RODRIGUEZ Página 18
  • 19. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA Low-E es de 2 W/m²K en vez de los 3 W/m²K que presenta un vidrio aislante normal. Aunque tanto la convección como la radiación en la cámara de aire intermedia sean pequeñas, ambas pueden reducirse con el empleo de gases nobles. El valor de K cuando la cámara contiene argón, por ejemplo, es de 1,1 W/m²K, y de 0,8 W/m²K si esta rellena de criptón. Las perdidas térmicas en el soporte pueden disminuirse con el empleo de sistemas con el empleo de sistemas combinados de acero inoxidable o de aluminio. Otras posibilidades de reducir el coeficiente K consisten en el vaciado de la cámara intermedia o su división mediante una tercera hoja de vidrio o una lámina tensada. Vidrio aislante triple: Vidrio aislante triple: Silverstar® Superglass® Un vidrio aislante triple con dos recubrimientos de baja emisión y un relleno de criptón presenta un K de 0,5 W/m²K. El empleo de láminas de baja emisión permite prescindir del peso y el espesor de una tercera hoja de vidrio. Además del coste del relleno con gases nobles, su uso conlleva otros problemas. Los primeros prototipos de vidrios con cámara intermedia al vacio consiguen una transmisión de calor de 0,6 W/m²K, mas, habrá que esperar algunos años para su fabricación industrial. Para la solución de vidrios aislantes se pueden emplear todos los tipos de cristales comercializados. El empleo de hojas coloreadas, reflectantes o esmaltadas no ofrece suficiente protección solar en verano. Para alcanzar los valores g permitidos es necesario combinar este tipo de cristales con otras medidas de protección solar. En los vidrios esmaltados, el valor g resulta de la relación entre la superficie transparente y la opaca. ALEXANDRA CALZADO RODRIGUEZ Página 19
  • 20. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA 4.1. RELLENOS EN LA CAMARA INTERMEDIA. Los aislantes transparentes permiten simultáneamente la disminución de las perdidas térmicas y el aprovechamiento del calor proveniente de la radiación solar. A tal uso pueden emplearse cristales, vidrio acrílico, policarbonato y espuma de cuarzo. Por su colocación en el interior de las hojas de vidrio, estos materiales se encuentran protegidos tanto de la intemperie como de posibles solicitaciones mecánicas. Su clasificación se hace en función de cuatro principios geométricos de ordenación: - Las estructuras paralelas al cristal, como el vidrio aislante simple, reducen las pérdidas de calor pero producen grandes pérdidas de reflexión. Ç - Las estructuras perpendiculares al cristal se componen de células o capilares que dividen la cámara intermedia en pequeñas celdas. De este modo se reducen las perdidas por reflexión ya que la luz incidente se conduce al interior mediante una reflexión múltiple en las paredes paralelas. Un panel capilar de policarbonato con 100 mm de espesor alcanza un valor de K de 0,89 W/m²K mientras que el conseguido con un panel capilar de cristal del mismo espesor es de 1 W/m²K. ALEXANDRA CALZADO RODRIGUEZ Página 20
  • 21. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA - Las estructuras celulares resultan de la combinación de elementos paralelos y perpendiculares a la superficie de las hojas de vidrio, como en la espuma acrílica. - Las estructuras casi homogéneas, como aerogeles, se componen de células microscópicas. Su fabricación es complicada y el producto es, por tanto, caro (Airglass® AB, Suecia). Mas económicas son las bolitas de aerogel que se introducen sueltas en la cámara intermedia. Con 16 mm de relleno con este granulado se consigue un valor de K inferior a 0,8 W/m²K (Basogel®) En un estudio comparativo de cuatro grupos de aislantes térmicos transparentes se ha observado que los vidrios aislantes y los sistemas de laminas plásticas son los más apropiados para conseguir transparencia allí donde se necesita. Además, hoy en día presentan un K bajo. En lucernarios y claraboyas conviene emplear otro tipo de estructuras que dispersan la luz. Todos los aislantes térmicos transparentes necesitan una protección solar eficaz en verano. ALEXANDRA CALZADO RODRIGUEZ Página 21
  • 22. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA 4.2. RELLENOS CON PROPIEDADES PARA LA PROTECCION SOLAR. En la cámara intermedia también puede colocarse protección solar en forma de láminas, tejidos y lamas. De este modo, los sistemas de protección no sufren las agresiones de la contaminación ni las climatológicas. Los sistemas regulables, como estores o persianas de lamas, pueden colocarse en la cámara intermedia y ser activados con motores eléctricos. Los estores vienen equipados con laminas de reflexión (Agero®) o con tejidos poliéster (Trisolux®). Las persianas de lamas se controlan mecánica o eléctricamente (Luxaclair®, Velthec®). En el sistema Zebra® se emplean dos vidrios esmaltados. Uno de ellos puede desplazarse dentro de la cámara intermedia. 4.3. MARCAS COMERCIALES. ATEX® La noción de vidrio aislante se refiere al vidrio aislante con mas cristales, una unidad vidriera formada por lo menos por dos laminas que están separadas por una cámara intermedia (llamada SZR o también LZR), normalmente teniendo la dimensión de 8 - 16 milímetros y pegadas entre si mediante travesaños. Los vidrios aislantes se usan para el aislamiento térmico y fónico o para la protección solar. El vidrio Float es el vidrio mas utilizado para construcciones en nuestros días. El cristal corre en un ambiente de protección a aproximadamente 1100°C sobre un baño liquido de estaño. Gracias al peso especifico mas reducido, el cristal liquido flota sobre la superficie del baño de estaño. El vidrio se fabrica con una anchura de 3,50 m y se corta en paneles entregables con las dimensiones máximas de 3,21 m x 6,00 m. El grosor usual de las láminas es de 2, 3, 4, 5, 6, 8, 10, 12, 15 y 19 milímetros. Los travesaños se realizan con la ayuda de un distanciador relleno con un agento de secar (silicato de aluminio, zeolita) y se pega con poliisobutileno (butil). El distanciador es de aluminio perforado, acero cincado o acero inox. Para mayor mejoría del valor K de las ventanas aislantes, actualmente se utilizan también distanciadores termoplásticos. („margen caliente”). Para la estanquidad de la ventana aislante, el espacio vacio de fuera del marco con distanciador se rellena hasta el margen del vidrio con polímero polisulfurico (thiocol) o - raramente - con poliuretano. Para las vidrieras sobre el nivel de la cabeza o los vidrios aislantes Structural-Glazing se usa como material de estanquidad también la silicona negra, que tiene una durabilidad a UV considerablemente mas alta, pero presenta un porcentaje de difusión considerablemente mas alto para el gas de relleno. La cámara intermedia (SZR) cerrada y muy estanca a vapores se rellena bien con aire, o con gas. Mediante el uso de los gases inertes, como por ejemplo el argón, el xenón o el kriptón, que son considerablemente más pesados que el aire, se puede disminuir el porcentaje de las perdidas de calor producidas mediante la conversión de los gases de la cámara intermedia. ALEXANDRA CALZADO RODRIGUEZ Página 22
  • 23. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA Los vidrios aislantes son llamados vidrios termoaislantes si por lo menos uno de los vidrios está recubierto. Con el recubrimiento se puede disminuir considerablemente la perdida de la capacidad de aislamiento térmico de la cuota de radiación térmica. En caso de los vidrios aislantes, el recubrimiento con metales u óxidos metálicos está dispuesto por lo general hacia la cámara intermedia, para evitar el deterioro durante el uso y la limpieza. Normalmente, el recubrimiento de las ventanas aislantes está dispuesto en la posición 3, es decir sobre la parte exterior del vidrio aislante situado hacia el interior de la cámara intermedia. Vidrio termoaislante Índex Factor Cubertura Reflexión Valor K EN Transmisión de Solar tipo sobre de la luz 673 (15K) de la luz [%] color EN 410 superficie [%] [W/(m2K)] Ra [%] G4- Vidrio 16(Argon)- 3 80 12 98 66 1,1 termoaislante G4 low-e G4- 3 80 12 98 66 1,4 16(Aire)-G4 G4- Vidrio 16(Argon)- 2 66.9 26.6 96.1 42.5 1,1 termoaislante G4 Control G4- Solar(4S) 16(Argon)- 2 66.9 26.6 96.1 42.5 1,3 G4 ALEXANDRA CALZADO RODRIGUEZ Página 23
  • 24. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA Tipo vidrio termoaislante 24 mm Configuración Valor K EN 673 (15K) [W/(m2K)] Low-e + Clar, 24 mm G4-16(Argón)-G4 1,1 Low-e + Clar G4-16(Aire)-G4 1,4 Clar + Clar G4-16(Aire)-G4 2,7 Solar 4S + Clar G4-16(Argón)-G4 1,1 4Anotimpuri + Clar G4-16(Argón)-G4 1,1 Fumuriu + Low-e G4-16(Aire)-G4 1,4 Krizet (Mat) + Clar G4-16(Aire)-G4 2,7 Ornamento (cualquier modelo) + Clar G4-16(Aire)-G4 2,7 Ornamento (cualquier modelo l) + Low-e G4-16(Argón)-G4 1,2 Reflexiv Bronze + Low-e G4-16(Argón)-G4 1,2 VIDRIO TRIPLEX (TRES LAMINAS DE VIDRIO) El vidrio triplex se consigue mediante el mismo procedimiento que el vidrio aislante con la diferencia que se utilizan tres laminas de vidrio separadas por dos travesaños de aluminio. Igual que en el caso del vidrio aislante, en las dos cámaras intermedias se puede introducir algun tipo de gas noble como el argón. Este gas es muy importante porque ayuda a la mejora del coeficiente de transferencia térmico "K". El grosor total mas utilizado de un vidrio triplex es de 32 milímetros y se monta principalmente sobre un perfil con una profundidad constructiva de 70 milímetros, pero para GENEO es posible también triplex de 44 milímetros de grosor. Tipos usuales de vidrio triplex Triplex: Clar + Clar + Low-e El vidrio triplex Clar + Clar + Low-e con gas Argon, con un grosor de 32 milímetros del paquete representa la elección ideal cuando se persigue la menor perdida del calor del interior hacia el exterior pero también un aislamiento fónico superior. El montaje del paquete en la carpintería se hace según el próximo diseño con la cubertura "soft" sobre la cara 5, es decir con el vidrio low-e en el interior. Para el vidrio de 32 milímetros, con láminas de 4 milímetros, el grosor del travesaño será de 10 milímetros. En la tabla de más abajo se pueden seguir las propiedades del vidrio triplex en función del grosor de cada vidrio utilizado, cámara intermedia y el gas utilizado: Muy importante es el valor "K" que tiene que ser cuanto mas pequeño si queremos un buen aislamiento térmico, pero también la distancia entre laminas. ALEXANDRA CALZADO RODRIGUEZ Página 24
  • 25. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA Vidrio termoaislante Índex Cubertura Reflexión Factor Valor K EN Vidrio Transmisión de sobre de la luz Solar EN 673 (15K) triplexLow-e de la luz [%] color superficie [%] 410 [%] [W/(m2K)] Ra G4-10-G4-10- G4 (Argón- 5 73.4 16.9 97.5 60.7 1,2 Argón) G4-10-G4-10- 5 73.4 16.9 97.5 60.7 1,4 G4 (Aire-Aire) G4-16-G4-16- G4 (Argón - 5 73.4 16.9 97.5 60.7 0,9 Argón ) G6-8-G6-8-G4 (Argón -Argón 5 73.4 18 96.6 59.1 1,3 ) Nota: Todos los valores tienen carácter informativo. En las condiciones de relleno con gas Argón en proporción de 90%. Triplex: Solar4S + Clar + Clar (denominaciones similares: 4Anotimpuri, SunGuard, DualProtect) El vidrio triplex con control solar guarda las calidades del vidrio de tipo low-e, pero tiene un grado mas alto de protección contra los rayos solares del exterior hacia el interior. Representa la elección adecuada cuando se desea la eliminación del efecto de invernadero de las viviendas debido al aporte de energía natural provenida del sol y ofrece también una protección fónica suplementaria. De esa manera se pueden reducir los costes con la climatización durante el verano. El montaje del paquete en la carpintería se hace según el próximo diseño con la cubertura magnetronica "soft" sobre la cara 2, es decir con la lamina de vidrio protectora hacia exterior. En la tabla de más abajo se pueden seguir las propiedades de esa combinación de vidrio en función del grosor, cámara intermedia y el gas utilizado: Muy importante es el valor de la reflexión de la luz pero también el valor del coeficiente "K". Vidrio termoaislante Vidrio triplex Cobertura Índex Factor Valor K EN Transmisión Reflexión Control sobre la de color Solar EN 673 (15K) de la luz [%] de la luz [%] Solar superficie Ra 410 [%] [W/(m2K)] G4-10-G4- 10-G4 5 73.4 16.9 97.5 60.7 1,2 (Argón- Argón) G4-10-G4- 10-G4 (Aire- 5 73.4 16.9 97.5 60.7 1,4 Aire) ALEXANDRA CALZADO RODRIGUEZ Página 25
  • 26. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA G4-16-G4- 16-G4 5 73.4 16.9 97.5 60.7 0,9 (Argón - Argón ) AISLAGLAS Entre estos dos vidrios existe una cámara de aire que se consigue gracias al empleo de un perfil hueco de aluminio anodizado, cerrado en sus esquinas, que contiene en su interior un absorbente de humedad (silicagel) para disminuir el riesgo de condensaciones en el interior de la cámara. Los vidrios van adheridos al perfil separador por sendos cordones de butilo que constituyen una primera barrera de estanqueidad. Una segunda barrera sellante, está constituida por polisulfuro inyectado a presión sobre el borde exterior del marco separador y los dos bordes de los vidrios, cuya función es formar un bloque compacto y plástico del conjunto de los vidrios, obteniendo así una barrera hermética que proporciona la total estanqueidad de la cámara. El vidrio de cámara AISLAGLAS está fabricado según los procesos productivos y de calidad final exigidos. El sello Applus lo avala y certifica. Propiedades de AISLAGLAS Cuando comparamos el doble acristalamiento aislante AISLAGLAS con un vidrio común monolítico es cuando se ponen de manifiesto sus excelentes propiedades y las ventajas que ofrece su instalación con respecto a aquel: Reduce los ruidos exteriores que se puede mejorar con el empleo en su estructura de vidrios laminares o variando el espesor de los vidrios y cámara que lo conforman. Disminuye la probabilidad de aparición de condensación ya que salvo en condiciones extremas de diferencia de temperatura entre el interior y el exterior de un recinto, junto a un elevado grado de humedad relativa en el interior, no se producirán condensaciones en la superficie de la luna orientada hacia el interior. Controla y regula el paso de la luz. Protege tanto del frío como del calor, regulando su entrada y/o pérdidas (reduce, como mínimo un 40 % las pérdidas de calor y minimiza ese efecto de pared fría que se siente cuando nos acercamos a una ventana en invierno). ALEXANDRA CALZADO RODRIGUEZ Página 26
  • 27. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA Además AISLAGLAS: Propicia un importante ahorro económico en consumos de energía. No requiere complejas maniobras de colocación y se adapta a cualquier necesidad. AISLAGLAS se fabrica en una amplia gama de vidrios, por lo que con su acristalamiento, además del realce estético se pueden conseguir diferentes grados de reflexión y transmisión, tanto luminosa como energética. En función de las necesidades requeridas en una construcción y de los tipos de vidrios que se le incorporen a su estructura, AISLAGLAS mejora sus prestaciones ya que posibilita infinidad de combinaciones óptimas de diseño, aislamiento, protección física y/o acústica, control solar, etc. AISLAGLAS está garantizado por Vitralba como fabricante por un período de 10 años contados a partir de la fecha de elaboración, contra todo defecto de fabricación que pueda disminuir la visibilidad a causa de condensación o deposición de polvo o suciedad en las caras internas de la cámara del doble acristalamiento. Todo lo anterior se entiende, siempre que las condiciones de utilización del vidrio aislante hayan sido las normales para este tipo de producto y se hayan respetado las especificaciones de fabricación así como las normas de colocación contempladas en la normativa oficial (norma de colocación UNE-85- 222-85). AISLAGLAS fue el primer doble acristalamiento aislante térmico fabricado en España y el primero que obtuvo el SELLO INCE, referente de calidad expedido durante casi un cuarto de siglo por el Ministerio de Fomento. zTELLIGLASS La Universidad Politécnica de Madrid ha desarrollado una tecnología denominada Intelliglass, con la que se pueden hacer construcciones acristaladas ideales para el ahorro energético. Son varias las ventajas obtenidas en un edificio con una fachada acristalada con el nuevo sistema: amplitud, iluminación, protección del 99% frente a la acción de los rayos ultravioletas, un alto aislamiento acústico y por supuesto una eficaz aclimatación. El nuevo acristalamiento presenta una cámara de agua que se encuentra entre dos cristales, donde el agua se encuentra en continua circulación, atrapa la energía solar y la transporta fuera, con lo que se puede esquivar el exceso de calor resultante de la acción directa del sol, y a su vez dejar el paso de la luz solar. ALEXANDRA CALZADO RODRIGUEZ Página 27
  • 28. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA El nuevo sistema permitiría olvidarse un poco de las instalaciones de aire acondicionado para aclimatar el edificio, con lo que el ahorro energético sería notable. También deberíamos sumar mayor luminosidad natural como ahorro energético y una mejora del confort, ya sea en verano o en invierno. Claro que si se necesita más oscuridad, se puede obtener a través de una lámina electrocrómica adherida a la superficie interior del cristal, con la que gracias a un potenciómetro lograremos regular la transmisión luminosa del exterior. ALEXANDRA CALZADO RODRIGUEZ Página 28
  • 29. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA Se pueden realizar paneles aislantes de este tipo de cualquier color, mediante un sistema muy sencillo: se coloca un plástico tintado entre dos vidrios laminados. Esta lámina plástica puede ser de cualquier color, cosa que aportara personalidad y singularidad a la fachada. Una vez realizado el “sándwich”, estas placas se introducen en un horno para hacer desaparecer el aire que pueda quedar entre las dos laminas de vidrio .Se somete al vidrio a una temperatura y una presión controlada de 120 ºC y una presión de 10-14 atm. El proceso dura unas cuatro horas, y se hace para conseguir el vidrio de seguridad. Una vez realizados estos paneles de vidrio, se le colocan unos marcos metálicos que llevan incorporados un circuito para permitir el paso del agua. El sistema de montaje e instalación de este circuito es prácticamente igual a un circuito de radiadores convencional. Lo que se trata es de tener una tubería por la que se distribuye el agua a las ventanas, y otra tubería por la que se recoge el agua una vez se ha realizado el circuito marcado. El ciclo de funcionamiento de este sistema sería el siguiente: Circuito primario Circuito secundario ventanas Produccion de energía Circulador El circuito primario (generador de calor o frio) y el secundario se comunican mediante un intercambiador de calor, que cede el calor o el frio a nuestras ventanas por medio del circulador y una bomba de impulsión. Este sistema se podría conectar a un sistema de placas solares o fotovoltaicas, para aprovechar ese circuito de agua caliente para generar energía o servir de calentador de agua para el edificio. El agua que circula continuamente por el interior del circuito aporta el estado bienestar térmico a todo el espacio interior del edificio ya sea a la hora de calefactar como de refrigerar los espacios, es decir, en invierno el lado norte es deficitario de radiación solar, al contrario que la fachada sur, pues será este circuito de agua el encargado de transmitir el calor del sur al norte para proteger el interior del edificio de las condiciones térmicas del exterior. Se utilizan vidrios laminados de seguridad, por si existiese algún tipo de rotura o de improviso en el sistema, que no se vaciase el circuito interior de agua. "Lo que hemos hecho con este sistema y sabiendo que el agua tiene la propiedad de ser impermeable a las radiaciones infrarrojas del sol" explican desde IntelliGlass®, "es llenar las ventanas con agua para gestionar así la energía y dotar así al vidrio de la inercia térmica que éste no tiene de forma natural". Así se evita el sobrecalentamiento del edificio. "Básicamente, dejamos pasar la luz, pero no el calor". El resultado es una mejora del confort interior y una reducción de hasta un 70% en los costes de climatización. Hay que entender RadiaGlass como un sistema de climatización y no solo como una solución de cerramiento. Por eso, afirman desde IntelliGlass, "al ser un sistema activo, debe de ir acompañado de una estrategia energética del edificio coherente. Puede ser muy eficiente pero si el proyecto energético no está bien concebido también puede ser un desastre energético". ALEXANDRA CALZADO RODRIGUEZ Página 29
  • 30. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA Sin duda, una interesante opción a tener en cuenta en las próximas construcciones que permitirá proporcionar mejor calidad de vida, belleza a la ciudad y lo más importante, ahorro energético. Esta última condición es fundamental en la época en la que nos encontramos, donde el cambio climático, los recursos energéticos y el cuidado del medio ambiente son temas de continua cartelera. 5. CONCLUSION FINAL Todo este mercado del vidrio parece un sorprendente salto en la evolución de estos productos, aunque habiendo estudiado la evolución de la utilización del vidrio en la arquitectura, se puede ver que los sistemas más innovadores de la actualidad tienen aspectos y temas ya tratados por arquitectos de principios del siglo XX. Es difícil conseguir financiación para investigar nuevos sistemas tecnológicos, ya que las probabilidades de éxitos no están aseguradas. Ya Le Corbusier en 1934 investigó la posibilidad de incorporar una cámara de agua en las fachadas de vidrio para filtrar los rayos de luz, idea rescatada por la cadena de Intelliglass, que gracias al desarrollo tecnológico del momento, les ha permitido desarrollar un sistema de fachada “inteligente” capaz de aportar el “bienestar total” en estos espacios interiores acristalados, consiguiendo resolver el problema térmico que el vidrio aporta. Al ser un producto de I+D, es difícil encontrar información técnica del sistema de funcionamiento, ya que sería interesante investigar el porqué estas “peceras” mantienen el agua totalmente transparente. Se trata de un sistema de impulsión de agua normal, pero tratándose del mismo liquido que circula continuamente por la instalación, debe llevar un sistema de filtrado o depuración agregado para tratar ese agua (que deberá llevar en la toma de agua un descalificador para que el agua no deje sedimentos en la instalación). Se entiende que esa cámara de agua esta herméticamente sellada, y no va a haber puntos de acceso a agentes externos, pero deberá haber algún sistema o sustancia que se agregue al agua para garantizar la limpieza absoluta de esa cámara intermedia. Todas estas cuestiones ya están resueltas por la empresa puesto que ya se han hecho prototipos y se están empezando a instalar en edificios de nueva construcción en varias provincias de la comunidad de Castilla y León, solo habrá que esperarse a que toda la información esté disponible en la página web oficial de la empresa. ALEXANDRA CALZADO RODRIGUEZ Página 30
  • 31. EL VIDRIO AISLANTE Y SU APLICACIÓN EN ARQUITECTURA 6. BIBLIOGRAFIA. - Monografías de arquitectura, tecnología y construcción. Tectónica 10, el vidrio - Detail, revista de Arquitectura y detalles constructivos. 4 Vidrio año 2002 - El vidrio, arquitectura y técnica, Claudia Vásquez. ARQ ediciones REFERENCIAS INTERNET - www.atex.ro - Videos youtube: o http://www.youtube.com/watch?v=fRFP7CdNyCo&featur e=related o http://www.youtube.com/watch?v=FSfDk5ByTwE&featur e=related ALEXANDRA CALZADO RODRIGUEZ Página 31