SlideShare uma empresa Scribd logo
1 de 17
Baixar para ler offline
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Dr.C.Sachpazis 23/05/2013

Chk'd by

Date

1
App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

RETAINING WALL ANALYSIS
In accordance with EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values
Retaining wall details
Stem type;
Stem height;

Propped cantilever
hstem = 5500 mm

Prop height;

hprop = 4500 mm

Stem thickness;

tstem = 500 mm

Angle to rear face of stem;

α = 90 deg

Stem density;

γstem = 25 kN/m

Toe length;

ltoe = 1000 mm

Heel length;

lheel = 3000 mm

Base thickness;

tbase = 500 mm

Key position;

pkey = 4150 mm

Key depth;

dkey = 500 mm

Key thickness;

tkey = 350 mm

Base density;

γbase = 25 kN/m

Height of retained soil;

3

hret = 5000 mm

3

Angle of soil surface;

β = 0 deg

Depth of cover;

dcover = 500 mm

Height of water;

hwater = 150 mm

Water density;

γw = 9.8 kN/m

3
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Dr.C.Sachpazis 23/05/2013

Chk'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Retained soil properties
Soil type;

Very loose gravel

Moist density;

γmr = 16 kN/m

Saturated density;

γsr = 20 kN/m

3

3

1
App'd by

Date
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Dr.C.Sachpazis 23/05/2013

Chk'd by

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Characteristic effective shear resistance angle;

φ'r.k = 26 deg

Characteristic wall friction angle;

δr.k = 13 deg

Base soil properties
Soil type;

Firm clay

Moist density;

γmb = 18 kN/m

Characteristic cohesion;

c'b.k = 25 kN/m

Characteristic adhesion;

ab.k = 20 kN/m

Characteristic effective shear resistance angle;

2

δb.k = 9 deg

Characteristic base friction angle;

2

φ'b.k = 18 deg

Characteristic wall friction angle;

3

δbb.k = 12 deg

Loading details
Variable surcharge load;

SurchargeQ = 50 kN/m

2

Calculate retaining wall geometry
Base length;

lbase = ltoe + tstem + lheel = 4500 mm

Base height;

hbase = tbase + dkey = 1000 mm

Saturated soil height;

hsat = hwater + dcover = 650 mm

Moist soil height;

hmoist = hret - hwater = 4850 mm

Length of surcharge load;

lsur = lheel = 3000 mm

- Distance to vertical component;

xsur_v = lbase - lheel / 2 = 3000 mm

Effective height of wall;

heff = hbase + dcover + hret = 6500 mm

- Distance to horizontal component;

xsur_h = heff / 2 - dkey = 2750 mm

Area of wall stem;

Astem = hstem × tstem = 2.75 m

- Distance to vertical component;

xstem = ltoe + tstem / 2 = 1250 mm

Area of wall base;

Abase = lbase × tbase + dkey × tkey = 2.425 m

- Distance to vertical component;

xbase = (lbase × tbase / 2 + dkey × tkey × (pkey + tkey / 2))

Area of saturated soil;

Asat = hsat × lheel = 1.95 m

- Distance to vertical component;

xsat_v = lbase - (hsat × lheel / 2) / Asat = 3000 mm

- Distance to horizontal component;

xsat_h = (hsat + hbase) / 3 - dkey = 50 mm

Area of water;

Awater = hsat × lheel = 1.95 m

- Distance to vertical component;

xwater_v = lbase - (hsat × lheel / 2) / Asat = 3000 mm

- Distance to horizontal component;

xwater_h = (hsat + hbase) / 3 - dkey = 50 mm

Area of moist soil;

Amoist = hmoist × lheel = 14.55 m

2

2

2

/ Abase = 2400 mm
2

2

2

2

2

2

- Distance to vertical component;

xmoist_v = lbase - (hmoist × lheel / 2) / Amoist = 3000 mm

- Distance to horizontal component;

xmoist_h = (hmoist × (tbase + hsat + hmoist / 3) / 2 + (hsat +
hbase) × ((hsat + hbase)/2 - dkey)) / (hsat + hbase + hmoist /
2) = 1778 mm
2

Area of base soil;

Apass = dcover × ltoe = 0.5 m

- Distance to vertical component;

xpass_v = lbase - (dcover × ltoe× (lbase - ltoe / 2)) / Apass =
500 mm
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Dr.C.Sachpazis 23/05/2013

Chk'd by

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

- Distance to horizontal component;

xpass_h = (dcover + hbase) / 3- dkey = 0 mm

Area of excavated base soil;

Aexc = hpass × ltoe = 0.5 m

- Distance to vertical component;

xexc_v = lbase - (hpass × ltoe× (lbase - ltoe / 2)) / Aexc = 500

- Distance to horizontal component;

xexc_h = (hpass + hbase) / 3- dkey = 0 mm

2

mm

Partial factors on actions - Table A.3 - Combination 1
Permanent unfavourable action;

γG = 1.35

Permanent favourable action;

γGf = 1.00

Variable unfavourable action;

γQ = 1.50

Variable favourable action;

γQf = 0.00

Partial factors for soil parameters – Table A.4 - Combination 1
Angle of shearing resistance;

γφ' = 1.00

Effective cohesion;

γc' = 1.00

Weight density;

γγ = 1.00

Retained soil properties
Design effective shear resistance angle;

φ'r.d = atan(tan(φ'r.k) / γφ') = 26 deg

Design wall friction angle;

δr.d = atan(tan(δr.k) / γφ') = 13 deg

Base soil properties
Design effective shear resistance angle;

φ'b.d = atan(tan(φ'b.k) / γφ') = 18 deg

Design wall friction angle;

δb.d = atan(tan(δb.k) / γφ') = 9 deg

Design base friction angle;

δbb.d = atan(tan(δbb.k) / γφ') = 12 deg

Design effective cohesion;

c'b.d = c'b.k / γc' = 25 kN/m

Design adhesion;

ab.d = ab.k / γc' = 20 kN/m

2

2

Using Coulomb theory
Active pressure coefficient;

2

2

KA = sin(α + φ'r.d) / (sin(α) × sin(α - δr.d) × [1 +
√[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α +
2

β))]] ) = 0.353
Passive pressure coefficient;

2

KP = sin(90 - φ'b.d) / (sin(90 + δb.d) × [1 - √[sin(φ'b.d +
2

δb.d) × sin(φ'b.d) / (sin(90 + δb.d))]] ) = 2.359
Bearing pressure check
Vertical forces on wall
Wall stem;

Fstem = γG × Astem × γstem = 92.8 kN/m

Wall base;

Fbase = γG × Abase × γbase = 81.8 kN/m

Surcharge load;

Fsur_v = γQ × SurchargeQ × lheel = 225 kN/m

Saturated retained soil;

Fsat_v = γG × Asat × (γsr - γw) = 26.8 kN/m

Water;

Fwater_v = γG × Awater × γw = 25.8 kN/m

Moist retained soil;

Fmoist_v = γG × Amoist × γmr = 314.3 kN/m

Base soil;

Fpass_v = γG × Apass × γmb = 12.2 kN/m
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Dr.C.Sachpazis 23/05/2013

Chk'd by

Date

1
App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Total;

Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fpass_v +
Fwater_v + Fsur_v = 778.7 kN/m

Horizontal forces on wall
Surcharge load;

Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff =

Saturated retained soil;

Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase)

167.8 kN/m
2

/ 2 = 6.4 kN/m
Water;

2

Fwater_h = γG × γw × (hwater + dcover + hbase) / 2 = 18
kN/m

Moist retained soil;

Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat 2

hbase) / 2 + (heff - hsat - hbase) × (hsat + hbase)) = 146.9
kN/m
Total;

Ftotal_h = Fsat_h + Fmoist_h + Fwater_h + Fsur_h = 339.2
kN/m

Moments on wall
Wall stem;

Mstem = Fstem × xstem = 116 kNm/m

Wall base;

Mbase = Fbase × xbase = 196.4 kNm/m

Surcharge load;

Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 213.6 kNm/m

Saturated retained soil;

Msat = Fsat_v × xsat_v - Fsat_h × xsat_h = 80.2 kNm/m

Water;

Mwater = Fwater_v × xwater_v - Fwater_h × xwater_h = 76.6

Moist retained soil;

Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 681.6

kNm/m
kNm/m
Base soil;
Total;

Mpass = Fpass_v × xpass_v = 6.1 kNm/m
Mtotal = Mstem + Mbase + Msat + Mmoist + Mpass + Mwater
+ Msur = 1370.5 kNm/m

Check bearing pressure
Maximum friction force;

Ffriction_max = Ftotal_v × tan(δbb.d) = 165.5 kN/m

Maximum base soil resistance;

Fpass_h_max = γGf × KP × cos(δb.d) × γmb × (dcover +
2

hbase) / 2 = 47.2 kN/m
Base soil resistance;

Fpass_h = min(max((Mtotal + Ftotal_h × (hprop + tbase) +
Ffriction_max × (hprop + tbase) - Ftotal_v × lbase / 2) / (xpass_h
- hprop - tbase), 0 kN/m), Fpass_h_max) = 0 kN/m

Propping force;

Fprop_stem = min((Ftotal_v × lbase / 2 - Mtotal) / (hprop +
tbase), Ftotal_h) = 76.3 kN/m

Friction force;

Ffriction = Ftotal_h - Fpass_h - Fprop_stem = 262.8 kN/m

Moment from propping force;

Mprop = Fprop_stem × (hprop + tbase) = 381.7 kNm/m

Distance to reaction;

x = (Mtotal + Mprop) / Ftotal_v = 2250 mm

Eccentricity of reaction;

e = x - lbase / 2 = 0 mm

Loaded length of base;

lload = lbase = 4500 mm
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Dr.C.Sachpazis 23/05/2013

Chk'd by

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

2

Bearing pressure at toe;

qtoe = Ftotal_v / lbase = 173.1 kN/m

Bearing pressure at heel;

qheel = Ftotal_v / lbase = 173.1 kN/m

Effective overburden pressure;

q = (tbase + dcover) × γmb - (tbase + dcover + hwater) × γw =
6.7 kN/m

2

2
2

Design effective overburden pressure;

q' = q / γγ = 6.7 kN/m

Bearing resistance factors;

Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2)) =

2

5.258
Nc = (Nq - 1) × cot(φ'b.d) = 13.104
Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 2.767
Foundation shape factors;

sq = 1
sγ = 1
sc = 1

Load inclination factors;

H = Ftotal_h - Fprop_stem - Ffriction = 0 kN/m
V = Ftotal_v = 778.7 kN/m
m=2
m

iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] = 1
iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))]

(m + 1)

=1

ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1
Net ultimate bearing capacity;

nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × (γmb
2

- γw) × lload × Nγ × sγ × iγ = 413.9 kN/m
Factor of safety;

FoSbp = nf / max(qtoe, qheel) = 2.392
PASS - Allowable bearing pressure exceeds maximum applied bearing pressure

Partial factors on actions - Table A.3 - Combination 2
Permanent unfavourable action;

γG = 1.00

Permanent favourable action;

γGf = 1.00

Variable unfavourable action;

γQ = 1.30

Variable favourable action;

γQf = 0.00

Partial factors for soil parameters – Table A.4 - Combination 2
Angle of shearing resistance;

γφ' = 1.25

Effective cohesion;

γc' = 1.25

Weight density;

γγ = 1.00

Retained soil properties
Design effective shear resistance angle;

φ'r.d = atan(tan(φ'r.k) / γφ') = 21.3 deg

Design wall friction angle;

δr.d = atan(tan(δr.k) / γφ') = 10.5 deg

Base soil properties
Design effective shear resistance angle;

φ'b.d = atan(tan(φ'b.k) / γφ') = 14.6 deg

Design wall friction angle;

δb.d = atan(tan(δb.k) / γφ') = 7.2 deg

Design base friction angle;

δbb.d = atan(tan(δbb.k) / γφ') = 9.7 deg

Design effective cohesion;

c'b.d = c'b.k / γc' = 20 kN/m

Design adhesion;

ab.d = ab.k / γc' = 16 kN/m

2

2
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Dr.C.Sachpazis 23/05/2013

Chk'd by

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Using Coulomb theory
Active pressure coefficient;

2

2

KA = sin(α + φ'r.d) / (sin(α) × sin(α - δr.d) × [1 +
√[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α +
2

β))]] ) = 0.425
Passive pressure coefficient;

2

KP = sin(90 - φ'b.d) / (sin(90 + δb.d) × [1 - √[sin(φ'b.d +
2

δb.d) × sin(φ'b.d) / (sin(90 + δb.d))]] ) = 1.965
Bearing pressure check
Vertical forces on wall
Wall stem;

Fstem = γG × Astem × γstem = 68.8 kN/m

Wall base;

Fbase = γG × Abase × γbase = 60.6 kN/m

Surcharge load;

Fsur_v = γQ × SurchargeQ × lheel = 195 kN/m

Saturated retained soil;

Fsat_v = γG × Asat × (γsr - γw) = 19.9 kN/m

Water;

Fwater_v = γG × Awater × γw = 19.1 kN/m

Moist retained soil;

Fmoist_v = γG × Amoist × γmr = 232.8 kN/m

Base soil;

Fpass_v = γG × Apass × γmb = 9 kN/m

Total;

Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fpass_v +
Fwater_v + Fsur_v = 605.2 kN/m

Horizontal forces on wall
Surcharge load;

Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff =
176.5 kN/m

Saturated retained soil;

Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase)

2

/ 2 = 5.8 kN/m
Water;

2

Fwater_h = γG × γw × (hwater + dcover + hbase) / 2 = 13.4
kN/m

Moist retained soil;

Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat 2

hbase) / 2 + (heff - hsat - hbase) × (hsat + hbase)) = 132.1
kN/m
Total;

Ftotal_h = Fsat_h + Fmoist_h + Fwater_h + Fsur_h = 327.8
kN/m

Moments on wall
Wall stem;

Mstem = Fstem × xstem = 85.9 kNm/m

Wall base;

Mbase = Fbase × xbase = 145.5 kNm/m

Surcharge load;

Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 99.5 kNm/m

Saturated retained soil;

Msat = Fsat_v × xsat_v - Fsat_h × xsat_h = 59.3 kNm/m

Water;

Mwater = Fwater_v × xwater_v - Fwater_h × xwater_h = 56.7
kNm/m

Moist retained soil;

Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 463.5
kNm/m

Base soil;

Mpass = Fpass_v × xpass_v = 4.5 kNm/m
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Dr.C.Sachpazis 23/05/2013

Chk'd by

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Total;

Mtotal = Mstem + Mbase + Msat + Mmoist + Mpass + Mwater
+ Msur = 915 kNm/m

Check bearing pressure
Maximum friction force;

Ffriction_max = Ftotal_v × tan(δbb.d) = 102.9 kN/m

Maximum base soil resistance;

Fpass_h_max = γGf × KP × cos(δb.d) × γmb × (dcover +
2

hbase) / 2 = 39.5 kN/m
Base soil resistance;

Fpass_h = min(max((Mtotal + Ftotal_h × (hprop + tbase) +
Ffriction_max × (hprop + tbase) - Ftotal_v × lbase / 2) / (xpass_h
- hprop - tbase), 0 kN/m), Fpass_h_max) = 0 kN/m
Fprop_stem = min((Ftotal_v × lbase / 2 - Mtotal) / (hprop +

Propping force;

tbase), Ftotal_h) = 89.3 kN/m
Friction force;

Ffriction = Ftotal_h - Fpass_h - Fprop_stem = 238.5 kN/m

Moment from propping force;

Mprop = Fprop_stem × (hprop + tbase) = 446.7 kNm/m

Distance to reaction;

x = (Mtotal + Mprop) / Ftotal_v = 2250 mm

Eccentricity of reaction;

e = x - lbase / 2 = 0 mm

Loaded length of base;

lload = lbase = 4500 mm

Bearing pressure at toe;

qtoe = Ftotal_v / lbase = 134.5 kN/m

Bearing pressure at heel;

qheel = Ftotal_v / lbase = 134.5 kN/m

Effective overburden pressure;

q = (tbase + dcover) × γmb - (tbase + dcover + hwater) × γw =
6.7 kN/m

2
2

2
2

Design effective overburden pressure;

q' = q / γγ = 6.7 kN/m

Bearing resistance factors;

Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2)) =

2

3.784
Nc = (Nq - 1) × cot(φ'b.d) = 10.711
Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 1.447
Foundation shape factors;

sq = 1
sγ = 1

Load inclination factors;

sc = 1
H = Ftotal_h - Fprop_stem - Ffriction = 0 kN/m
V = Ftotal_v = 605.2 kN/m
m=2
m

iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] = 1
iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))]

(m + 1)

=1

ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1
Net ultimate bearing capacity;

nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × (γmb
2

- γw) × lload × Nγ × sγ × iγ = 266.3 kN/m
Factor of safety;

FoSbp = nf / max(qtoe, qheel) = 1.98
PASS - Allowable bearing pressure exceeds maximum applied bearing pressure
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Chk'd by

Dr.C.Sachpazis 23/05/2013

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

RETAINING WALL DESIGN
In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the
recommended values
Concrete details - Table 3.1 - Strength and deformation characteristics for concrete
Concrete strength class;
Characteristic compressive cylinder strength;

C30/37
2
fck = 30 N/mm

Characteristic compressive cube strength;

fck,cube = 37 N/mm

Mean value of compressive cylinder strength;

fcm = fck + 8 N/mm = 38 N/mm

2
2

2

2

2 2/3

Mean value of axial tensile strength;

fctm = 0.3 N/mm × (fck / 1 N/mm )

5% fractile of axial tensile strength;

fctk,0.05 = 0.7 × fctm = 2.0 N/mm

Secant modulus of elasticity of concrete;

Ecm = 22 kN/mm × (fcm / 10 N/mm )

N/mm

= 2.9 N/mm

2

2

2

2 0.3

= 32837

2

Partial factor for concrete - Table 2.1N;

γC = 1.50

Compressive strength coefficient - cl.3.1.6(1);

αcc = 1.00

Design compressive concrete strength - exp.3.15;

fcd = αcc × fck / γC = 20.0 N/mm

Maximum aggregate size;

hagg = 20 mm

2

Reinforcement details
2

Characteristic yield strength of reinforcement;

fyk = 500 N/mm

Modulus of elasticity of reinforcement;

Es = 210000 N/mm

2

Partial factor for reinforcing steel - Table 2.1N;

γS = 1.15

Design yield strength of reinforcement;

fyd = fyk / γS = 435 N/mm

2

Cover to reinforcement
Front face of stem;

csf = 40 mm

Rear face of stem;

csr = 50 mm

Top face of base;

cbt = 50 mm

Bottom face of base;

cbb = 75 mm

Check stem design for maximum moment
Depth of section;

h = 500 mm

Rectangular section in flexure - Section 6.1
Design bending moment;

M = 94.6 kNm/m

Depth to tension reinforcement;

d = h - csr - φsr / 2 = 442 mm
2

K = M / (d × fck) = 0.016
K' = 0.196
K' > K - No compression reinforcement is required
Lever arm;

0.5

z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d =

420 mm
Depth of neutral axis;

x = 2.5 × (d – z) = 55 mm

Area of tension reinforcement required;

Asr.req = M / (fyd × z) = 518 mm /m

Tension reinforcement provided;

16 dia.bars @ 200 c/c

Area of tension reinforcement provided;

Asr.prov = π × φsr / (4 × ssr) = 1005 mm /m

2

2

2
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Dr.C.Sachpazis 23/05/2013

Chk'd by

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Minimum area of reinforcement - exp.9.1N;

Asr.min = max(0.26 × fctm / fyk, 0.0013) × d = 666

2

mm /m
Maximum area of reinforcement - cl.9.2.1.1(3);

2

Asr.max = 0.04 × h = 20000 mm /m
max(Asr.req, Asr.min) / Asr.prov = 0.662

PASS - Area of reinforcement provided is greater than area of reinforcement required
Crack control - Section 7.3
Limiting crack width;

wmax = 0.3 mm

Variable load factor - EN1990 – Table A1.1;

ψ2 = 0.3

Serviceability bending moment;

Msls = 44.8 kNm/m

Tensile stress in reinforcement;

σs = Msls / (Asr.prov × z) = 106.2 N/mm

2

Load duration;

Long term

Load duration factor;

kt = 0.4

Effective area of concrete in tension;

Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 145000

2

mm /m
Mean value of concrete tensile strength;

2

fct.eff = fctm = 2.9 N/mm

Reinforcement ratio;

ρp.eff = Asr.prov / Ac.eff = 0.007

Modular ratio;

αe = Es / Ecm = 6.395

Bond property coefficient;

k1 = 0.8

Strain distribution coefficient;

k2 = 0.5
k3 = 3.4
k4 = 0.425

Maximum crack spacing - exp.7.11;

sr.max = k3 × csr + k1 × k2 × k4 × φsr / ρp.eff = 562 mm

Maximum crack width - exp.7.8;

wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe ×
ρp.eff), 0.6 × σs) / Es
wk = 0.171 mm
wk / wmax = 0.569
PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2
Design shear force;

V = 151.5 kN/m
CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 1.673
ρl = min(Asr.prov / d, 0.02) = 0.002

Longitudinal reinforcement ratio;

1/2

vmin = 0.035 N /mm × k
Design shear resistance - exp.6.2a & 6.2b;

3/2

× fck
2

0.5

= 0.415 N/mm
4

2

1/3

VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) ,

vmin) × d
VRd.c = 183.3 kN/m
V / VRd.c = 0.827
PASS - Design shear resistance exceeds design shear force
Rectangular section in flexure - Section 6.1
Design bending moment;

M = 63.7 kNm/m
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Chk'd by

Dr.C.Sachpazis 23/05/2013

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

d = h - csf - φsx - φsf / 2 = 440 mm

Depth to tension reinforcement;

2

K = M / (d × fck) = 0.011
K' = 0.196
K' > K - No compression reinforcement is required
0.5

z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d =

Lever arm;
418 mm
Depth of neutral axis;

x = 2.5 × (d – z) = 55 mm

Area of tension reinforcement required;

Asf.req = M / (fyd × z) = 351 mm /m

Tension reinforcement provided;

16 dia.bars @ 200 c/c

Area of tension reinforcement provided;

Asf.prov = π × φsf / (4 × ssf) = 1005 mm /m

Minimum area of reinforcement - exp.9.1N;

Asf.min = max(0.26 × fctm / fyk, 0.0013) × d = 663

2

2

2

2

mm /m
Maximum area of reinforcement - cl.9.2.1.1(3);

2

Asf.max = 0.04 × h = 20000 mm /m
max(Asf.req, Asf.min) / Asf.prov = 0.659

PASS - Area of reinforcement provided is greater than area of reinforcement required
Crack control - Section 7.3
Limiting crack width;

wmax = 0.3 mm

Variable load factor - EN1990 – Table A1.1;

ψ2 = 0.3

Serviceability bending moment;

Msls = 29.6 kNm/m

Tensile stress in reinforcement;

σs = Msls / (Asf.prov × z) = 70.4 N/mm

2

Load duration;

Long term

Load duration factor;

kt = 0.4

Effective area of concrete in tension;

Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 148333

2

mm /m
Mean value of concrete tensile strength;

fct.eff = fctm = 2.9 N/mm

Reinforcement ratio;

ρp.eff = Asf.prov / Ac.eff = 0.007

2

Modular ratio;

αe = Es / Ecm = 6.395

Bond property coefficient;

k1 = 0.8

Strain distribution coefficient;

k2 = 0.5
k3 = 3.4
k4 = 0.425

Maximum crack spacing - exp.7.11;

sr.max = k3 × csf + k1 × k2 × k4 × φsf / ρp.eff = 537 mm

Maximum crack width - exp.7.8;

wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe ×
ρp.eff), 0.6 × σs) / Es
wk = 0.108 mm
wk / wmax = 0.36
PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2
Design shear force;

V = 151.5 kN/m
CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 1.674
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Chk'd by

Dr.C.Sachpazis 23/05/2013

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

ρl = min(Asf.prov / d, 0.02) = 0.002

Longitudinal reinforcement ratio;

1/2

vmin = 0.035 N /mm × k
Design shear resistance - exp.6.2a & 6.2b;

3/2

× fck

0.5

= 0.415 N/mm

2

4

2

1/3

VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) ,

vmin) × d
VRd.c = 182.7 kN/m
V / VRd.c = 0.829
PASS - Design shear resistance exceeds design shear force
Horizontal reinforcement parallel to face of stem - Section 9.6
Minimum area of reinforcement – cl.9.6.3(1);

Asx.req = max(0.25 × Asr.prov, 0.001 × tstem) = 500

2

mm /m
Maximum spacing of reinforcement – cl.9.6.3(2);

ssx_max = 400 mm

Transverse reinforcement provided;

12 dia.bars @ 200 c/c

Area of transverse reinforcement provided;

Asx.prov = π × φsx / (4 × ssx) = 565 mm /m

2

2

PASS - Area of reinforcement provided is greater than area of reinforcement required
Check base design
Depth of section;

h = 500 mm

Rectangular section in flexure - Section 6.1
Design bending moment at toe;

M = 72 kNm/m

Depth to tension reinforcement;

d = h - cbb - φbb / 2 = 417 mm
2

K = M / (d × fck) = 0.014
K' = 0.196
K' > K - No compression reinforcement is required
0.5

z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d =

Lever arm;
396 mm
Depth of neutral axis;

x = 2.5 × (d – z) = 52 mm

Area of tension reinforcement required;

Abb.req = M / (fyd × z) = 418 mm /m

2

Tension reinforcement provided;

16 dia.bars @ 200 c/c

Area of tension reinforcement provided;

Abb.prov = π × φbb / (4 × sbb) = 1005 mm /m

Minimum area of reinforcement - exp.9.1N;

Abb.min = max(0.26 × fctm / fyk, 0.0013) × d = 628

2

2

2

mm /m
Maximum area of reinforcement - cl.9.2.1.1(3);

2

Abb.max = 0.04 × h = 20000 mm /m
max(Abb.req, Abb.min) / Abb.prov = 0.625

PASS - Area of reinforcement provided is greater than area of reinforcement required
Crack control - Section 7.3
Limiting crack width;

wmax = 0.3 mm

Variable load factor - EN1990 – Table A1.1;

ψ2 = 0.3

Serviceability bending moment;

Msls = 39.8 kNm/m

Tensile stress in reinforcement;

σs = Msls / (Abb.prov × z) = 100 N/mm

Load duration;

Long term

Load duration factor;

kt = 0.4

2
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Chk'd by

Dr.C.Sachpazis 23/05/2013

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 149292

Effective area of concrete in tension;
2

mm /m
Mean value of concrete tensile strength;

fct.eff = fctm = 2.9 N/mm

Reinforcement ratio;

ρp.eff = Abb.prov / Ac.eff = 0.007

Modular ratio;

αe = Es / Ecm = 6.395

2

Bond property coefficient;

k1 = 0.8

Strain distribution coefficient;

k2 = 0.5
k3 = 3.4
k4 = 0.425

Maximum crack spacing - exp.7.11;

sr.max = k3 × cbb + k1 × k2 × k4 × φbb / ρp.eff = 659 mm

Maximum crack width - exp.7.8;

wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe ×
ρp.eff), 0.6 × σs) / Es
wk = 0.188 mm
wk / wmax = 0.628
PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2
V = 144 kN/m

Design shear force;

CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 1.693
ρl = min(Abb.prov / d, 0.02) = 0.002

Longitudinal reinforcement ratio;

1/2

vmin = 0.035 N /mm × k
Design shear resistance - exp.6.2a & 6.2b;

3/2

× fck

0.5

= 0.422 N/mm

2

4

2

1/3

VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) ,

vmin) × d
VRd.c = 176 kN/m
V / VRd.c = 0.818
PASS - Design shear resistance exceeds design shear force
Rectangular section in flexure - Section 6.1
Design bending moment at heel;

M = 186.4 kNm/m

Depth to tension reinforcement;

d = h - cbt - φbt / 2 = 442 mm
2

K = M / (d × fck) = 0.032
K' = 0.196
K' > K - No compression reinforcement is required
Lever arm;

0.5

z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d =

420 mm
Depth of neutral axis;

x = 2.5 × (d – z) = 55 mm

Area of tension reinforcement required;

Abt.req = M / (fyd × z) = 1021 mm /m

Tension reinforcement provided;

16 dia.bars @ 175 c/c

Area of tension reinforcement provided;

Abt.prov = π × φbt / (4 × sbt) = 1149 mm /m

Minimum area of reinforcement - exp.9.1N;

Abt.min = max(0.26 × fctm / fyk, 0.0013) × d = 666

2

2

2

2

mm /m
Maximum area of reinforcement - cl.9.2.1.1(3);

2

Abt.max = 0.04 × h = 20000 mm /m
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Dr.C.Sachpazis 23/05/2013

Chk'd by

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

max(Abt.req, Abt.min) / Abt.prov = 0.888
PASS - Area of reinforcement provided is greater than area of reinforcement required
Crack control - Section 7.3
Limiting crack width;

wmax = 0.3 mm

Variable load factor - EN1990 – Table A1.1;

ψ2 = 0.3

Serviceability bending moment;

Msls = 81.2 kNm/m

Tensile stress in reinforcement;

σs = Msls / (Abt.prov × z) = 168.2 N/mm

Load duration;

Long term

2

Load duration factor;

kt = 0.4

Effective area of concrete in tension;

Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 145000

2

mm /m
Mean value of concrete tensile strength;

2

fct.eff = fctm = 2.9 N/mm

Reinforcement ratio;

ρp.eff = Abt.prov / Ac.eff = 0.008

Modular ratio;

αe = Es / Ecm = 6.395

Bond property coefficient;

k1 = 0.8

Strain distribution coefficient;

k2 = 0.5
k3 = 3.4
k4 = 0.425

Maximum crack spacing - exp.7.11;

sr.max = k3 × cbt + k1 × k2 × k4 × φbt / ρp.eff = 513 mm

Maximum crack width - exp.7.8;

wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe ×
ρp.eff), 0.6 × σs) / Es
wk = 0.247 mm
wk / wmax = 0.822
PASS - Maximum crack width is less than limiting crack width

Rectangular section in shear - Section 6.2
Design shear force;

V = 129.3 kN/m
CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 1.673
ρl = min(Abt.prov / d, 0.02) = 0.003

Longitudinal reinforcement ratio;

1/2

vmin = 0.035 N /mm × k
Design shear resistance - exp.6.2a & 6.2b;

3/2

× fck

0.5

= 0.415 N/mm

2

4

2

1/3

VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) ,

vmin) × d
VRd.c = 183.3 kN/m
V / VRd.c = 0.705
PASS - Design shear resistance exceeds design shear force
Secondary transverse reinforcement to base - Section 9.3
Minimum area of reinforcement – cl.9.3.1.1(2);

2

Abx.req = 0.2 × Abt.prov = 230 mm /m

Maximum spacing of reinforcement – cl.9.3.1.1(3); sbx_max = 450 mm
Transverse reinforcement provided;

8 dia.bars @ 200 c/c

Area of transverse reinforcement provided;

Abx.prov = π × φbx / (4 × sbx) = 251 mm /m

2

2

PASS - Area of reinforcement provided is greater than area of reinforcement required
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Chk'd by

Dr.C.Sachpazis 23/05/2013

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Check key design
Depth of section;

h = 350 mm

Rectangular section in flexure - Section 6.1
Design bending moment at key;

M = 1.3 kNm/m

Depth to tension reinforcement;

d = h - cbb - φk / 2 = 269 mm
2

K = M / (d × fck) = 0.001
K' = 0.196
K' > K - No compression reinforcement is required
0.5

z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d =

Lever arm;
256 mm
Depth of neutral axis;

x = 2.5 × (d – z) = 34 mm

Area of tension reinforcement required;

Ak.req = M / (fyd × z) = 12 mm /m

Tension reinforcement provided;

12 dia.bars @ 200 c/c

Area of tension reinforcement provided;

Ak.prov = π × φk / (4 × sk) = 565 mm /m

Minimum area of reinforcement - exp.9.1N;

Ak.min = max(0.26 × fctm / fyk, 0.0013) × d = 405

2

2

2

2

mm /m
Maximum area of reinforcement - cl.9.2.1.1(3);

2

Ak.max = 0.04 × h = 14000 mm /m
max(Ak.req, Ak.min) / Ak.prov = 0.716

PASS - Area of reinforcement provided is greater than area of reinforcement required
Crack control - Section 7.3
wmax = 0.3 mm

Limiting crack width;
Variable load factor - EN1990 – Table A1.1;

ψ2 = 0.3

Serviceability bending moment;

Msls = 3.3 kNm/m

Tensile stress in reinforcement;

σs = Msls / (Ak.prov × z) = 23 N/mm

2

Load duration;

Long term

Load duration factor;

kt = 0.4

Effective area of concrete in tension;

Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 105458

2

mm /m
Mean value of concrete tensile strength;

fct.eff = fctm = 2.9 N/mm

Reinforcement ratio;

ρp.eff = Ak.prov / Ac.eff = 0.005

2

Modular ratio;

αe = Es / Ecm = 6.395

Bond property coefficient;

k1 = 0.8

Strain distribution coefficient;

k2 = 0.5
k3 = 3.4
k4 = 0.425

Maximum crack spacing - exp.7.11;

sr.max = k3 × cbb + k1 × k2 × k4 × φk / ρp.eff = 635 mm

Maximum crack width - exp.7.8;

wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe ×
ρp.eff), 0.6 × σs) / Es
wk = 0.042 mm
wk / wmax = 0.139
PASS - Maximum crack width is less than limiting crack width
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Dr.C.Sachpazis 23/05/2013

Chk'd by

1

Date

App'd by

Date

-

Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Rectangular section in shear - Section 6.2
Design shear force;

V = 4 kN/m
CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 1.862
ρl = min(Ak.prov / d, 0.02) = 0.002

Longitudinal reinforcement ratio;

1/2

vmin = 0.035 N /mm × k
Design shear resistance - exp.6.2a & 6.2b;

3/2

× fck
2

0.5

= 0.487 N/mm
4

2

1/3

VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) ,

vmin) × d
VRd.c = 131.1 kN/m
V / VRd.c = 0.030
PASS - Design shear resistance exceeds design shear force
Project

Job Ref.

Retaining wall Analysis & Design (EN1997-1:2004
incorporating Corrigendum dated February 2009)
Section
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics,
Foundation Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info

Sheet no./rev.

Civil & Geotechnical Engineering
Calc. by

Date

Dr.C.Sachpazis 23/05/2013

Chk'd by

-

Date

1
App'd by

Date

Mais conteúdo relacionado

Mais procurados

Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacityDr.Costas Sachpazis
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Dr.Costas Sachpazis
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Dr.Costas Sachpazis
 
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Dr.Costas Sachpazis
 
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENSachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENDr.Costas Sachpazis
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Dr.Costas Sachpazis
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Dr.Costas Sachpazis
 
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Dr.Costas Sachpazis
 
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Dr.Costas Sachpazis
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Dr.Costas Sachpazis
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Dr.Costas Sachpazis
 
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Dr.Costas Sachpazis
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleDr.Costas Sachpazis
 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missSHAMJITH KM
 
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Dr.Costas Sachpazis
 
Load carrying capacity of piles
Load carrying capacity of pilesLoad carrying capacity of piles
Load carrying capacity of pilesLatif Hyder Wadho
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Dr.Costas Sachpazis
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Dr.Costas Sachpazis
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Dr.Costas Sachpazis
 
Geodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisGeodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisDr.Costas Sachpazis
 

Mais procurados (20)

Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
 
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
Sachpazis_Trapezoid Foundation Analysis & Design. Calculation according to EN...
 
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
Sachpazis_Foundation Analysis & Design. Calculation according to EN 1997-1-2008
 
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CENSachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
Sachpazis_CHS Column base plate to EC3 1993-1 with NA CEN
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
 
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
 
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
 
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
 
Bearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana missBearing capasity ofsoil vandana miss
Bearing capasity ofsoil vandana miss
 
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
 
Load carrying capacity of piles
Load carrying capacity of pilesLoad carrying capacity of piles
Load carrying capacity of piles
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
 
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
Sachpazis: Wind Loading Analysis & Design for a Hipped Roof Example According...
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
 
Geodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazisGeodomisi cantilever retaining_wall_analysis_sachpazis
Geodomisi cantilever retaining_wall_analysis_sachpazis
 

Semelhante a RETAINING WALL ANALYSIS

Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Dr.Costas Sachpazis
 
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Dr.Costas Sachpazis
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Dr.Costas Sachpazis
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Dr.Costas Sachpazis
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Dr.Costas Sachpazis
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Dr.Costas Sachpazis
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Dr.Costas Sachpazis
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleDr.Costas Sachpazis
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Dr.Costas Sachpazis
 
Experimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptxExperimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptxSamirsinh Parmar
 
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7Dr.Costas Sachpazis
 
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMNOPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMNIAEME Publication
 
Geo Technical Engineering (Compaction)
Geo Technical Engineering (Compaction)Geo Technical Engineering (Compaction)
Geo Technical Engineering (Compaction)Latif Hyder Wadho
 
Sachpazis: Design of a surface water drain
Sachpazis: Design of a surface water drainSachpazis: Design of a surface water drain
Sachpazis: Design of a surface water drainDr.Costas Sachpazis
 
The design of earth-retaining structures - Lecture 2
The design of earth-retaining structures - Lecture 2The design of earth-retaining structures - Lecture 2
The design of earth-retaining structures - Lecture 2Chris Bridges
 
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Make Mannan
 

Semelhante a RETAINING WALL ANALYSIS (17)

Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
Sachpazis Pad Footing Analysis & Design (EN1997-1-2004)
 
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
 
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
Sachpazis: Reinforced Concrete Beam Analysis & Design Example (EN1992-1-3)
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
 
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
Sachpazis_Pile Analysis & Design example According to EN 1997-1_2004_March-2017
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
 
Experimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptxExperimental Study on Soil Nailing.pptx
Experimental Study on Soil Nailing.pptx
 
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
Sachpazis Cantilever Pile Retaining Wall Embedded, In accordance Eurocode 7
 
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMNOPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
OPTIMUM DESIGN FOR HIGHWAY EMBANKMENT WITH STONE COLUMN
 
Presentation
PresentationPresentation
Presentation
 
Geo Technical Engineering (Compaction)
Geo Technical Engineering (Compaction)Geo Technical Engineering (Compaction)
Geo Technical Engineering (Compaction)
 
Sachpazis: Design of a surface water drain
Sachpazis: Design of a surface water drainSachpazis: Design of a surface water drain
Sachpazis: Design of a surface water drain
 
The design of earth-retaining structures - Lecture 2
The design of earth-retaining structures - Lecture 2The design of earth-retaining structures - Lecture 2
The design of earth-retaining structures - Lecture 2
 
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
Question and Answers on Terzaghi’s Bearing Capacity Theory (usefulsearch.org)...
 

Mais de Dr.Costas Sachpazis

Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Dr.Costas Sachpazis
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Dr.Costas Sachpazis
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptDr.Costas Sachpazis
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςDr.Costas Sachpazis
 
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisDr.Costas Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsDr.Costas Sachpazis
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςDr.Costas Sachpazis
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Dr.Costas Sachpazis
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Dr.Costas Sachpazis
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Dr.Costas Sachpazis
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Dr.Costas Sachpazis
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsDr.Costas Sachpazis
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisDr.Costas Sachpazis
 
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Dr.Costas Sachpazis
 
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Dr.Costas Sachpazis
 
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...Dr.Costas Sachpazis
 

Mais de Dr.Costas Sachpazis (20)

Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
 
Chapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.pptChapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.ppt
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
 
MBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptxMBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptx
 
Marketing.ppt
Marketing.pptMarketing.ppt
Marketing.ppt
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
 
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About Dams
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability Analysis
 
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
Sachpazis_Wind Loading (EN1991-1-4) for a Duopitch roof example_Apr-2017
 
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
 
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
 

Último

group_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfgroup_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfneelspinoy
 
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degreeyuu sss
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdfvaibhavkanaujia
 
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
PORTAFOLIO   2024_  ANASTASIYA  KUDINOVAPORTAFOLIO   2024_  ANASTASIYA  KUDINOVA
PORTAFOLIO 2024_ ANASTASIYA KUDINOVAAnastasiya Kudinova
 
Cosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable BricksCosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable Bricksabhishekparmar618
 
Design Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William VickeryDesign Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William VickeryWilliamVickery6
 
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Service
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts ServiceCall Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Service
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Servicejennyeacort
 
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`dajasot375
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一Fi L
 
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024CristobalHeraud
 
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)jennyeacort
 
西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造kbdhl05e
 
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档208367051
 
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档208367051
 
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services DubaiDubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubaikojalkojal131
 
Architecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfArchitecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfSumit Lathwal
 
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证nhjeo1gg
 
Call Girls Meghani Nagar 7397865700 Independent Call Girls
Call Girls Meghani Nagar 7397865700  Independent Call GirlsCall Girls Meghani Nagar 7397865700  Independent Call Girls
Call Girls Meghani Nagar 7397865700 Independent Call Girlsssuser7cb4ff
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Rndexperts
 
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一z xss
 

Último (20)

group_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdfgroup_15_empirya_p1projectIndustrial.pdf
group_15_empirya_p1projectIndustrial.pdf
 
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdf
 
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
PORTAFOLIO   2024_  ANASTASIYA  KUDINOVAPORTAFOLIO   2024_  ANASTASIYA  KUDINOVA
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
 
Cosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable BricksCosumer Willingness to Pay for Sustainable Bricks
Cosumer Willingness to Pay for Sustainable Bricks
 
Design Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William VickeryDesign Portfolio - 2024 - William Vickery
Design Portfolio - 2024 - William Vickery
 
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Service
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts ServiceCall Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Service
Call Girls in Ashok Nagar Delhi ✡️9711147426✡️ Escorts Service
 
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
Abu Dhabi Call Girls O58993O4O2 Call Girls in Abu Dhabi`
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
 
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
PORTFOLIO DE ARQUITECTURA CRISTOBAL HERAUD 2024
 
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
Call Us ✡️97111⇛47426⇛Call In girls Vasant Vihar༒(Delhi)
 
西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造西北大学毕业证学位证成绩单-怎么样办伪造
西北大学毕业证学位证成绩单-怎么样办伪造
 
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
原版1:1定制堪培拉大学毕业证(UC毕业证)#文凭成绩单#真实留信学历认证永久存档
 
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
昆士兰大学毕业证(UQ毕业证)#文凭成绩单#真实留信学历认证永久存档
 
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services DubaiDubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
Dubai Calls Girl Tapes O525547819 Real Tapes Escort Services Dubai
 
Architecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfArchitecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdf
 
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
 
Call Girls Meghani Nagar 7397865700 Independent Call Girls
Call Girls Meghani Nagar 7397865700  Independent Call GirlsCall Girls Meghani Nagar 7397865700  Independent Call Girls
Call Girls Meghani Nagar 7397865700 Independent Call Girls
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025
 
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一
办理(UC毕业证书)查尔斯顿大学毕业证成绩单原版一比一
 

RETAINING WALL ANALYSIS

  • 1. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Dr.C.Sachpazis 23/05/2013 Chk'd by Date 1 App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info RETAINING WALL ANALYSIS In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Retaining wall details Stem type; Stem height; Propped cantilever hstem = 5500 mm Prop height; hprop = 4500 mm Stem thickness; tstem = 500 mm Angle to rear face of stem; α = 90 deg Stem density; γstem = 25 kN/m Toe length; ltoe = 1000 mm Heel length; lheel = 3000 mm Base thickness; tbase = 500 mm Key position; pkey = 4150 mm Key depth; dkey = 500 mm Key thickness; tkey = 350 mm Base density; γbase = 25 kN/m Height of retained soil; 3 hret = 5000 mm 3 Angle of soil surface; β = 0 deg Depth of cover; dcover = 500 mm Height of water; hwater = 150 mm Water density; γw = 9.8 kN/m 3
  • 2. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Dr.C.Sachpazis 23/05/2013 Chk'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Retained soil properties Soil type; Very loose gravel Moist density; γmr = 16 kN/m Saturated density; γsr = 20 kN/m 3 3 1 App'd by Date
  • 3. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Dr.C.Sachpazis 23/05/2013 Chk'd by 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Characteristic effective shear resistance angle; φ'r.k = 26 deg Characteristic wall friction angle; δr.k = 13 deg Base soil properties Soil type; Firm clay Moist density; γmb = 18 kN/m Characteristic cohesion; c'b.k = 25 kN/m Characteristic adhesion; ab.k = 20 kN/m Characteristic effective shear resistance angle; 2 δb.k = 9 deg Characteristic base friction angle; 2 φ'b.k = 18 deg Characteristic wall friction angle; 3 δbb.k = 12 deg Loading details Variable surcharge load; SurchargeQ = 50 kN/m 2 Calculate retaining wall geometry Base length; lbase = ltoe + tstem + lheel = 4500 mm Base height; hbase = tbase + dkey = 1000 mm Saturated soil height; hsat = hwater + dcover = 650 mm Moist soil height; hmoist = hret - hwater = 4850 mm Length of surcharge load; lsur = lheel = 3000 mm - Distance to vertical component; xsur_v = lbase - lheel / 2 = 3000 mm Effective height of wall; heff = hbase + dcover + hret = 6500 mm - Distance to horizontal component; xsur_h = heff / 2 - dkey = 2750 mm Area of wall stem; Astem = hstem × tstem = 2.75 m - Distance to vertical component; xstem = ltoe + tstem / 2 = 1250 mm Area of wall base; Abase = lbase × tbase + dkey × tkey = 2.425 m - Distance to vertical component; xbase = (lbase × tbase / 2 + dkey × tkey × (pkey + tkey / 2)) Area of saturated soil; Asat = hsat × lheel = 1.95 m - Distance to vertical component; xsat_v = lbase - (hsat × lheel / 2) / Asat = 3000 mm - Distance to horizontal component; xsat_h = (hsat + hbase) / 3 - dkey = 50 mm Area of water; Awater = hsat × lheel = 1.95 m - Distance to vertical component; xwater_v = lbase - (hsat × lheel / 2) / Asat = 3000 mm - Distance to horizontal component; xwater_h = (hsat + hbase) / 3 - dkey = 50 mm Area of moist soil; Amoist = hmoist × lheel = 14.55 m 2 2 2 / Abase = 2400 mm 2 2 2 2 2 2 - Distance to vertical component; xmoist_v = lbase - (hmoist × lheel / 2) / Amoist = 3000 mm - Distance to horizontal component; xmoist_h = (hmoist × (tbase + hsat + hmoist / 3) / 2 + (hsat + hbase) × ((hsat + hbase)/2 - dkey)) / (hsat + hbase + hmoist / 2) = 1778 mm 2 Area of base soil; Apass = dcover × ltoe = 0.5 m - Distance to vertical component; xpass_v = lbase - (dcover × ltoe× (lbase - ltoe / 2)) / Apass = 500 mm
  • 4. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Dr.C.Sachpazis 23/05/2013 Chk'd by 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info - Distance to horizontal component; xpass_h = (dcover + hbase) / 3- dkey = 0 mm Area of excavated base soil; Aexc = hpass × ltoe = 0.5 m - Distance to vertical component; xexc_v = lbase - (hpass × ltoe× (lbase - ltoe / 2)) / Aexc = 500 - Distance to horizontal component; xexc_h = (hpass + hbase) / 3- dkey = 0 mm 2 mm Partial factors on actions - Table A.3 - Combination 1 Permanent unfavourable action; γG = 1.35 Permanent favourable action; γGf = 1.00 Variable unfavourable action; γQ = 1.50 Variable favourable action; γQf = 0.00 Partial factors for soil parameters – Table A.4 - Combination 1 Angle of shearing resistance; γφ' = 1.00 Effective cohesion; γc' = 1.00 Weight density; γγ = 1.00 Retained soil properties Design effective shear resistance angle; φ'r.d = atan(tan(φ'r.k) / γφ') = 26 deg Design wall friction angle; δr.d = atan(tan(δr.k) / γφ') = 13 deg Base soil properties Design effective shear resistance angle; φ'b.d = atan(tan(φ'b.k) / γφ') = 18 deg Design wall friction angle; δb.d = atan(tan(δb.k) / γφ') = 9 deg Design base friction angle; δbb.d = atan(tan(δbb.k) / γφ') = 12 deg Design effective cohesion; c'b.d = c'b.k / γc' = 25 kN/m Design adhesion; ab.d = ab.k / γc' = 20 kN/m 2 2 Using Coulomb theory Active pressure coefficient; 2 2 KA = sin(α + φ'r.d) / (sin(α) × sin(α - δr.d) × [1 + √[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α + 2 β))]] ) = 0.353 Passive pressure coefficient; 2 KP = sin(90 - φ'b.d) / (sin(90 + δb.d) × [1 - √[sin(φ'b.d + 2 δb.d) × sin(φ'b.d) / (sin(90 + δb.d))]] ) = 2.359 Bearing pressure check Vertical forces on wall Wall stem; Fstem = γG × Astem × γstem = 92.8 kN/m Wall base; Fbase = γG × Abase × γbase = 81.8 kN/m Surcharge load; Fsur_v = γQ × SurchargeQ × lheel = 225 kN/m Saturated retained soil; Fsat_v = γG × Asat × (γsr - γw) = 26.8 kN/m Water; Fwater_v = γG × Awater × γw = 25.8 kN/m Moist retained soil; Fmoist_v = γG × Amoist × γmr = 314.3 kN/m Base soil; Fpass_v = γG × Apass × γmb = 12.2 kN/m
  • 5. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Dr.C.Sachpazis 23/05/2013 Chk'd by Date 1 App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fpass_v + Fwater_v + Fsur_v = 778.7 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff = Saturated retained soil; Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase) 167.8 kN/m 2 / 2 = 6.4 kN/m Water; 2 Fwater_h = γG × γw × (hwater + dcover + hbase) / 2 = 18 kN/m Moist retained soil; Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat 2 hbase) / 2 + (heff - hsat - hbase) × (hsat + hbase)) = 146.9 kN/m Total; Ftotal_h = Fsat_h + Fmoist_h + Fwater_h + Fsur_h = 339.2 kN/m Moments on wall Wall stem; Mstem = Fstem × xstem = 116 kNm/m Wall base; Mbase = Fbase × xbase = 196.4 kNm/m Surcharge load; Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 213.6 kNm/m Saturated retained soil; Msat = Fsat_v × xsat_v - Fsat_h × xsat_h = 80.2 kNm/m Water; Mwater = Fwater_v × xwater_v - Fwater_h × xwater_h = 76.6 Moist retained soil; Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 681.6 kNm/m kNm/m Base soil; Total; Mpass = Fpass_v × xpass_v = 6.1 kNm/m Mtotal = Mstem + Mbase + Msat + Mmoist + Mpass + Mwater + Msur = 1370.5 kNm/m Check bearing pressure Maximum friction force; Ffriction_max = Ftotal_v × tan(δbb.d) = 165.5 kN/m Maximum base soil resistance; Fpass_h_max = γGf × KP × cos(δb.d) × γmb × (dcover + 2 hbase) / 2 = 47.2 kN/m Base soil resistance; Fpass_h = min(max((Mtotal + Ftotal_h × (hprop + tbase) + Ffriction_max × (hprop + tbase) - Ftotal_v × lbase / 2) / (xpass_h - hprop - tbase), 0 kN/m), Fpass_h_max) = 0 kN/m Propping force; Fprop_stem = min((Ftotal_v × lbase / 2 - Mtotal) / (hprop + tbase), Ftotal_h) = 76.3 kN/m Friction force; Ffriction = Ftotal_h - Fpass_h - Fprop_stem = 262.8 kN/m Moment from propping force; Mprop = Fprop_stem × (hprop + tbase) = 381.7 kNm/m Distance to reaction; x = (Mtotal + Mprop) / Ftotal_v = 2250 mm Eccentricity of reaction; e = x - lbase / 2 = 0 mm Loaded length of base; lload = lbase = 4500 mm
  • 6. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Dr.C.Sachpazis 23/05/2013 Chk'd by 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info 2 Bearing pressure at toe; qtoe = Ftotal_v / lbase = 173.1 kN/m Bearing pressure at heel; qheel = Ftotal_v / lbase = 173.1 kN/m Effective overburden pressure; q = (tbase + dcover) × γmb - (tbase + dcover + hwater) × γw = 6.7 kN/m 2 2 2 Design effective overburden pressure; q' = q / γγ = 6.7 kN/m Bearing resistance factors; Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2)) = 2 5.258 Nc = (Nq - 1) × cot(φ'b.d) = 13.104 Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 2.767 Foundation shape factors; sq = 1 sγ = 1 sc = 1 Load inclination factors; H = Ftotal_h - Fprop_stem - Ffriction = 0 kN/m V = Ftotal_v = 778.7 kN/m m=2 m iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] = 1 iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] (m + 1) =1 ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1 Net ultimate bearing capacity; nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × (γmb 2 - γw) × lload × Nγ × sγ × iγ = 413.9 kN/m Factor of safety; FoSbp = nf / max(qtoe, qheel) = 2.392 PASS - Allowable bearing pressure exceeds maximum applied bearing pressure Partial factors on actions - Table A.3 - Combination 2 Permanent unfavourable action; γG = 1.00 Permanent favourable action; γGf = 1.00 Variable unfavourable action; γQ = 1.30 Variable favourable action; γQf = 0.00 Partial factors for soil parameters – Table A.4 - Combination 2 Angle of shearing resistance; γφ' = 1.25 Effective cohesion; γc' = 1.25 Weight density; γγ = 1.00 Retained soil properties Design effective shear resistance angle; φ'r.d = atan(tan(φ'r.k) / γφ') = 21.3 deg Design wall friction angle; δr.d = atan(tan(δr.k) / γφ') = 10.5 deg Base soil properties Design effective shear resistance angle; φ'b.d = atan(tan(φ'b.k) / γφ') = 14.6 deg Design wall friction angle; δb.d = atan(tan(δb.k) / γφ') = 7.2 deg Design base friction angle; δbb.d = atan(tan(δbb.k) / γφ') = 9.7 deg Design effective cohesion; c'b.d = c'b.k / γc' = 20 kN/m Design adhesion; ab.d = ab.k / γc' = 16 kN/m 2 2
  • 7. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Dr.C.Sachpazis 23/05/2013 Chk'd by 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Using Coulomb theory Active pressure coefficient; 2 2 KA = sin(α + φ'r.d) / (sin(α) × sin(α - δr.d) × [1 + √[sin(φ'r.d + δr.d) × sin(φ'r.d - β) / (sin(α - δr.d) × sin(α + 2 β))]] ) = 0.425 Passive pressure coefficient; 2 KP = sin(90 - φ'b.d) / (sin(90 + δb.d) × [1 - √[sin(φ'b.d + 2 δb.d) × sin(φ'b.d) / (sin(90 + δb.d))]] ) = 1.965 Bearing pressure check Vertical forces on wall Wall stem; Fstem = γG × Astem × γstem = 68.8 kN/m Wall base; Fbase = γG × Abase × γbase = 60.6 kN/m Surcharge load; Fsur_v = γQ × SurchargeQ × lheel = 195 kN/m Saturated retained soil; Fsat_v = γG × Asat × (γsr - γw) = 19.9 kN/m Water; Fwater_v = γG × Awater × γw = 19.1 kN/m Moist retained soil; Fmoist_v = γG × Amoist × γmr = 232.8 kN/m Base soil; Fpass_v = γG × Apass × γmb = 9 kN/m Total; Ftotal_v = Fstem + Fbase + Fsat_v + Fmoist_v + Fpass_v + Fwater_v + Fsur_v = 605.2 kN/m Horizontal forces on wall Surcharge load; Fsur_h = KA × cos(δr.d) × γQ × SurchargeQ × heff = 176.5 kN/m Saturated retained soil; Fsat_h = γG × KA × cos(δr.d) × (γsr - γw) × (hsat + hbase) 2 / 2 = 5.8 kN/m Water; 2 Fwater_h = γG × γw × (hwater + dcover + hbase) / 2 = 13.4 kN/m Moist retained soil; Fmoist_h = γG × KA × cos(δr.d) × γmr × ((heff - hsat 2 hbase) / 2 + (heff - hsat - hbase) × (hsat + hbase)) = 132.1 kN/m Total; Ftotal_h = Fsat_h + Fmoist_h + Fwater_h + Fsur_h = 327.8 kN/m Moments on wall Wall stem; Mstem = Fstem × xstem = 85.9 kNm/m Wall base; Mbase = Fbase × xbase = 145.5 kNm/m Surcharge load; Msur = Fsur_v × xsur_v - Fsur_h × xsur_h = 99.5 kNm/m Saturated retained soil; Msat = Fsat_v × xsat_v - Fsat_h × xsat_h = 59.3 kNm/m Water; Mwater = Fwater_v × xwater_v - Fwater_h × xwater_h = 56.7 kNm/m Moist retained soil; Mmoist = Fmoist_v × xmoist_v - Fmoist_h × xmoist_h = 463.5 kNm/m Base soil; Mpass = Fpass_v × xpass_v = 4.5 kNm/m
  • 8. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Dr.C.Sachpazis 23/05/2013 Chk'd by 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Total; Mtotal = Mstem + Mbase + Msat + Mmoist + Mpass + Mwater + Msur = 915 kNm/m Check bearing pressure Maximum friction force; Ffriction_max = Ftotal_v × tan(δbb.d) = 102.9 kN/m Maximum base soil resistance; Fpass_h_max = γGf × KP × cos(δb.d) × γmb × (dcover + 2 hbase) / 2 = 39.5 kN/m Base soil resistance; Fpass_h = min(max((Mtotal + Ftotal_h × (hprop + tbase) + Ffriction_max × (hprop + tbase) - Ftotal_v × lbase / 2) / (xpass_h - hprop - tbase), 0 kN/m), Fpass_h_max) = 0 kN/m Fprop_stem = min((Ftotal_v × lbase / 2 - Mtotal) / (hprop + Propping force; tbase), Ftotal_h) = 89.3 kN/m Friction force; Ffriction = Ftotal_h - Fpass_h - Fprop_stem = 238.5 kN/m Moment from propping force; Mprop = Fprop_stem × (hprop + tbase) = 446.7 kNm/m Distance to reaction; x = (Mtotal + Mprop) / Ftotal_v = 2250 mm Eccentricity of reaction; e = x - lbase / 2 = 0 mm Loaded length of base; lload = lbase = 4500 mm Bearing pressure at toe; qtoe = Ftotal_v / lbase = 134.5 kN/m Bearing pressure at heel; qheel = Ftotal_v / lbase = 134.5 kN/m Effective overburden pressure; q = (tbase + dcover) × γmb - (tbase + dcover + hwater) × γw = 6.7 kN/m 2 2 2 2 Design effective overburden pressure; q' = q / γγ = 6.7 kN/m Bearing resistance factors; Nq = Exp(π × tan(φ'b.d)) × (tan(45 deg + φ'b.d / 2)) = 2 3.784 Nc = (Nq - 1) × cot(φ'b.d) = 10.711 Nγ = 2 × (Nq - 1) × tan(φ'b.d) = 1.447 Foundation shape factors; sq = 1 sγ = 1 Load inclination factors; sc = 1 H = Ftotal_h - Fprop_stem - Ffriction = 0 kN/m V = Ftotal_v = 605.2 kN/m m=2 m iq = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] = 1 iγ = [1 - H / (V + lload × c'b.d × cot(φ'b.d))] (m + 1) =1 ic = iq - (1 - iq) / (Nc × tan(φ'b.d)) = 1 Net ultimate bearing capacity; nf = c'b.d × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × (γmb 2 - γw) × lload × Nγ × sγ × iγ = 266.3 kN/m Factor of safety; FoSbp = nf / max(qtoe, qheel) = 1.98 PASS - Allowable bearing pressure exceeds maximum applied bearing pressure
  • 9. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Chk'd by Dr.C.Sachpazis 23/05/2013 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info RETAINING WALL DESIGN In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the recommended values Concrete details - Table 3.1 - Strength and deformation characteristics for concrete Concrete strength class; Characteristic compressive cylinder strength; C30/37 2 fck = 30 N/mm Characteristic compressive cube strength; fck,cube = 37 N/mm Mean value of compressive cylinder strength; fcm = fck + 8 N/mm = 38 N/mm 2 2 2 2 2 2/3 Mean value of axial tensile strength; fctm = 0.3 N/mm × (fck / 1 N/mm ) 5% fractile of axial tensile strength; fctk,0.05 = 0.7 × fctm = 2.0 N/mm Secant modulus of elasticity of concrete; Ecm = 22 kN/mm × (fcm / 10 N/mm ) N/mm = 2.9 N/mm 2 2 2 2 0.3 = 32837 2 Partial factor for concrete - Table 2.1N; γC = 1.50 Compressive strength coefficient - cl.3.1.6(1); αcc = 1.00 Design compressive concrete strength - exp.3.15; fcd = αcc × fck / γC = 20.0 N/mm Maximum aggregate size; hagg = 20 mm 2 Reinforcement details 2 Characteristic yield strength of reinforcement; fyk = 500 N/mm Modulus of elasticity of reinforcement; Es = 210000 N/mm 2 Partial factor for reinforcing steel - Table 2.1N; γS = 1.15 Design yield strength of reinforcement; fyd = fyk / γS = 435 N/mm 2 Cover to reinforcement Front face of stem; csf = 40 mm Rear face of stem; csr = 50 mm Top face of base; cbt = 50 mm Bottom face of base; cbb = 75 mm Check stem design for maximum moment Depth of section; h = 500 mm Rectangular section in flexure - Section 6.1 Design bending moment; M = 94.6 kNm/m Depth to tension reinforcement; d = h - csr - φsr / 2 = 442 mm 2 K = M / (d × fck) = 0.016 K' = 0.196 K' > K - No compression reinforcement is required Lever arm; 0.5 z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d = 420 mm Depth of neutral axis; x = 2.5 × (d – z) = 55 mm Area of tension reinforcement required; Asr.req = M / (fyd × z) = 518 mm /m Tension reinforcement provided; 16 dia.bars @ 200 c/c Area of tension reinforcement provided; Asr.prov = π × φsr / (4 × ssr) = 1005 mm /m 2 2 2
  • 10. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Dr.C.Sachpazis 23/05/2013 Chk'd by 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Minimum area of reinforcement - exp.9.1N; Asr.min = max(0.26 × fctm / fyk, 0.0013) × d = 666 2 mm /m Maximum area of reinforcement - cl.9.2.1.1(3); 2 Asr.max = 0.04 × h = 20000 mm /m max(Asr.req, Asr.min) / Asr.prov = 0.662 PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control - Section 7.3 Limiting crack width; wmax = 0.3 mm Variable load factor - EN1990 – Table A1.1; ψ2 = 0.3 Serviceability bending moment; Msls = 44.8 kNm/m Tensile stress in reinforcement; σs = Msls / (Asr.prov × z) = 106.2 N/mm 2 Load duration; Long term Load duration factor; kt = 0.4 Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 145000 2 mm /m Mean value of concrete tensile strength; 2 fct.eff = fctm = 2.9 N/mm Reinforcement ratio; ρp.eff = Asr.prov / Ac.eff = 0.007 Modular ratio; αe = Es / Ecm = 6.395 Bond property coefficient; k1 = 0.8 Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing - exp.7.11; sr.max = k3 × csr + k1 × k2 × k4 × φsr / ρp.eff = 562 mm Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es wk = 0.171 mm wk / wmax = 0.569 PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 151.5 kN/m CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 1.673 ρl = min(Asr.prov / d, 0.02) = 0.002 Longitudinal reinforcement ratio; 1/2 vmin = 0.035 N /mm × k Design shear resistance - exp.6.2a & 6.2b; 3/2 × fck 2 0.5 = 0.415 N/mm 4 2 1/3 VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) , vmin) × d VRd.c = 183.3 kN/m V / VRd.c = 0.827 PASS - Design shear resistance exceeds design shear force Rectangular section in flexure - Section 6.1 Design bending moment; M = 63.7 kNm/m
  • 11. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Chk'd by Dr.C.Sachpazis 23/05/2013 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info d = h - csf - φsx - φsf / 2 = 440 mm Depth to tension reinforcement; 2 K = M / (d × fck) = 0.011 K' = 0.196 K' > K - No compression reinforcement is required 0.5 z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d = Lever arm; 418 mm Depth of neutral axis; x = 2.5 × (d – z) = 55 mm Area of tension reinforcement required; Asf.req = M / (fyd × z) = 351 mm /m Tension reinforcement provided; 16 dia.bars @ 200 c/c Area of tension reinforcement provided; Asf.prov = π × φsf / (4 × ssf) = 1005 mm /m Minimum area of reinforcement - exp.9.1N; Asf.min = max(0.26 × fctm / fyk, 0.0013) × d = 663 2 2 2 2 mm /m Maximum area of reinforcement - cl.9.2.1.1(3); 2 Asf.max = 0.04 × h = 20000 mm /m max(Asf.req, Asf.min) / Asf.prov = 0.659 PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control - Section 7.3 Limiting crack width; wmax = 0.3 mm Variable load factor - EN1990 – Table A1.1; ψ2 = 0.3 Serviceability bending moment; Msls = 29.6 kNm/m Tensile stress in reinforcement; σs = Msls / (Asf.prov × z) = 70.4 N/mm 2 Load duration; Long term Load duration factor; kt = 0.4 Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 148333 2 mm /m Mean value of concrete tensile strength; fct.eff = fctm = 2.9 N/mm Reinforcement ratio; ρp.eff = Asf.prov / Ac.eff = 0.007 2 Modular ratio; αe = Es / Ecm = 6.395 Bond property coefficient; k1 = 0.8 Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing - exp.7.11; sr.max = k3 × csf + k1 × k2 × k4 × φsf / ρp.eff = 537 mm Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es wk = 0.108 mm wk / wmax = 0.36 PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 151.5 kN/m CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 1.674
  • 12. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Chk'd by Dr.C.Sachpazis 23/05/2013 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info ρl = min(Asf.prov / d, 0.02) = 0.002 Longitudinal reinforcement ratio; 1/2 vmin = 0.035 N /mm × k Design shear resistance - exp.6.2a & 6.2b; 3/2 × fck 0.5 = 0.415 N/mm 2 4 2 1/3 VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) , vmin) × d VRd.c = 182.7 kN/m V / VRd.c = 0.829 PASS - Design shear resistance exceeds design shear force Horizontal reinforcement parallel to face of stem - Section 9.6 Minimum area of reinforcement – cl.9.6.3(1); Asx.req = max(0.25 × Asr.prov, 0.001 × tstem) = 500 2 mm /m Maximum spacing of reinforcement – cl.9.6.3(2); ssx_max = 400 mm Transverse reinforcement provided; 12 dia.bars @ 200 c/c Area of transverse reinforcement provided; Asx.prov = π × φsx / (4 × ssx) = 565 mm /m 2 2 PASS - Area of reinforcement provided is greater than area of reinforcement required Check base design Depth of section; h = 500 mm Rectangular section in flexure - Section 6.1 Design bending moment at toe; M = 72 kNm/m Depth to tension reinforcement; d = h - cbb - φbb / 2 = 417 mm 2 K = M / (d × fck) = 0.014 K' = 0.196 K' > K - No compression reinforcement is required 0.5 z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d = Lever arm; 396 mm Depth of neutral axis; x = 2.5 × (d – z) = 52 mm Area of tension reinforcement required; Abb.req = M / (fyd × z) = 418 mm /m 2 Tension reinforcement provided; 16 dia.bars @ 200 c/c Area of tension reinforcement provided; Abb.prov = π × φbb / (4 × sbb) = 1005 mm /m Minimum area of reinforcement - exp.9.1N; Abb.min = max(0.26 × fctm / fyk, 0.0013) × d = 628 2 2 2 mm /m Maximum area of reinforcement - cl.9.2.1.1(3); 2 Abb.max = 0.04 × h = 20000 mm /m max(Abb.req, Abb.min) / Abb.prov = 0.625 PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control - Section 7.3 Limiting crack width; wmax = 0.3 mm Variable load factor - EN1990 – Table A1.1; ψ2 = 0.3 Serviceability bending moment; Msls = 39.8 kNm/m Tensile stress in reinforcement; σs = Msls / (Abb.prov × z) = 100 N/mm Load duration; Long term Load duration factor; kt = 0.4 2
  • 13. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Chk'd by Dr.C.Sachpazis 23/05/2013 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 149292 Effective area of concrete in tension; 2 mm /m Mean value of concrete tensile strength; fct.eff = fctm = 2.9 N/mm Reinforcement ratio; ρp.eff = Abb.prov / Ac.eff = 0.007 Modular ratio; αe = Es / Ecm = 6.395 2 Bond property coefficient; k1 = 0.8 Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing - exp.7.11; sr.max = k3 × cbb + k1 × k2 × k4 × φbb / ρp.eff = 659 mm Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es wk = 0.188 mm wk / wmax = 0.628 PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 V = 144 kN/m Design shear force; CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 1.693 ρl = min(Abb.prov / d, 0.02) = 0.002 Longitudinal reinforcement ratio; 1/2 vmin = 0.035 N /mm × k Design shear resistance - exp.6.2a & 6.2b; 3/2 × fck 0.5 = 0.422 N/mm 2 4 2 1/3 VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) , vmin) × d VRd.c = 176 kN/m V / VRd.c = 0.818 PASS - Design shear resistance exceeds design shear force Rectangular section in flexure - Section 6.1 Design bending moment at heel; M = 186.4 kNm/m Depth to tension reinforcement; d = h - cbt - φbt / 2 = 442 mm 2 K = M / (d × fck) = 0.032 K' = 0.196 K' > K - No compression reinforcement is required Lever arm; 0.5 z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d = 420 mm Depth of neutral axis; x = 2.5 × (d – z) = 55 mm Area of tension reinforcement required; Abt.req = M / (fyd × z) = 1021 mm /m Tension reinforcement provided; 16 dia.bars @ 175 c/c Area of tension reinforcement provided; Abt.prov = π × φbt / (4 × sbt) = 1149 mm /m Minimum area of reinforcement - exp.9.1N; Abt.min = max(0.26 × fctm / fyk, 0.0013) × d = 666 2 2 2 2 mm /m Maximum area of reinforcement - cl.9.2.1.1(3); 2 Abt.max = 0.04 × h = 20000 mm /m
  • 14. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Dr.C.Sachpazis 23/05/2013 Chk'd by 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info max(Abt.req, Abt.min) / Abt.prov = 0.888 PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control - Section 7.3 Limiting crack width; wmax = 0.3 mm Variable load factor - EN1990 – Table A1.1; ψ2 = 0.3 Serviceability bending moment; Msls = 81.2 kNm/m Tensile stress in reinforcement; σs = Msls / (Abt.prov × z) = 168.2 N/mm Load duration; Long term 2 Load duration factor; kt = 0.4 Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 145000 2 mm /m Mean value of concrete tensile strength; 2 fct.eff = fctm = 2.9 N/mm Reinforcement ratio; ρp.eff = Abt.prov / Ac.eff = 0.008 Modular ratio; αe = Es / Ecm = 6.395 Bond property coefficient; k1 = 0.8 Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing - exp.7.11; sr.max = k3 × cbt + k1 × k2 × k4 × φbt / ρp.eff = 513 mm Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es wk = 0.247 mm wk / wmax = 0.822 PASS - Maximum crack width is less than limiting crack width Rectangular section in shear - Section 6.2 Design shear force; V = 129.3 kN/m CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 1.673 ρl = min(Abt.prov / d, 0.02) = 0.003 Longitudinal reinforcement ratio; 1/2 vmin = 0.035 N /mm × k Design shear resistance - exp.6.2a & 6.2b; 3/2 × fck 0.5 = 0.415 N/mm 2 4 2 1/3 VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) , vmin) × d VRd.c = 183.3 kN/m V / VRd.c = 0.705 PASS - Design shear resistance exceeds design shear force Secondary transverse reinforcement to base - Section 9.3 Minimum area of reinforcement – cl.9.3.1.1(2); 2 Abx.req = 0.2 × Abt.prov = 230 mm /m Maximum spacing of reinforcement – cl.9.3.1.1(3); sbx_max = 450 mm Transverse reinforcement provided; 8 dia.bars @ 200 c/c Area of transverse reinforcement provided; Abx.prov = π × φbx / (4 × sbx) = 251 mm /m 2 2 PASS - Area of reinforcement provided is greater than area of reinforcement required
  • 15. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Chk'd by Dr.C.Sachpazis 23/05/2013 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Check key design Depth of section; h = 350 mm Rectangular section in flexure - Section 6.1 Design bending moment at key; M = 1.3 kNm/m Depth to tension reinforcement; d = h - cbb - φk / 2 = 269 mm 2 K = M / (d × fck) = 0.001 K' = 0.196 K' > K - No compression reinforcement is required 0.5 z = min(0.5 + 0.5 × (1 – 3.53 × K) , 0.95) × d = Lever arm; 256 mm Depth of neutral axis; x = 2.5 × (d – z) = 34 mm Area of tension reinforcement required; Ak.req = M / (fyd × z) = 12 mm /m Tension reinforcement provided; 12 dia.bars @ 200 c/c Area of tension reinforcement provided; Ak.prov = π × φk / (4 × sk) = 565 mm /m Minimum area of reinforcement - exp.9.1N; Ak.min = max(0.26 × fctm / fyk, 0.0013) × d = 405 2 2 2 2 mm /m Maximum area of reinforcement - cl.9.2.1.1(3); 2 Ak.max = 0.04 × h = 14000 mm /m max(Ak.req, Ak.min) / Ak.prov = 0.716 PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control - Section 7.3 wmax = 0.3 mm Limiting crack width; Variable load factor - EN1990 – Table A1.1; ψ2 = 0.3 Serviceability bending moment; Msls = 3.3 kNm/m Tensile stress in reinforcement; σs = Msls / (Ak.prov × z) = 23 N/mm 2 Load duration; Long term Load duration factor; kt = 0.4 Effective area of concrete in tension; Ac.eff = min(2.5 × (h - d), (h – x) / 3, h / 2) = 105458 2 mm /m Mean value of concrete tensile strength; fct.eff = fctm = 2.9 N/mm Reinforcement ratio; ρp.eff = Ak.prov / Ac.eff = 0.005 2 Modular ratio; αe = Es / Ecm = 6.395 Bond property coefficient; k1 = 0.8 Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing - exp.7.11; sr.max = k3 × cbb + k1 × k2 × k4 × φk / ρp.eff = 635 mm Maximum crack width - exp.7.8; wk = sr.max × max(σs – kt × (fct.eff / ρp.eff) × (1 + αe × ρp.eff), 0.6 × σs) / Es wk = 0.042 mm wk / wmax = 0.139 PASS - Maximum crack width is less than limiting crack width
  • 16. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Dr.C.Sachpazis 23/05/2013 Chk'd by 1 Date App'd by Date - Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Rectangular section in shear - Section 6.2 Design shear force; V = 4 kN/m CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 1.862 ρl = min(Ak.prov / d, 0.02) = 0.002 Longitudinal reinforcement ratio; 1/2 vmin = 0.035 N /mm × k Design shear resistance - exp.6.2a & 6.2b; 3/2 × fck 2 0.5 = 0.487 N/mm 4 2 1/3 VRd.c = max(CRd.c × k × (100 N /mm × ρl × fck) , vmin) × d VRd.c = 131.1 kN/m V / VRd.c = 0.030 PASS - Design shear resistance exceeds design shear force
  • 17. Project Job Ref. Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corrigendum dated February 2009) Section GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Sheet no./rev. Civil & Geotechnical Engineering Calc. by Date Dr.C.Sachpazis 23/05/2013 Chk'd by - Date 1 App'd by Date