SlideShare uma empresa Scribd logo
1 de 9
Baixar para ler offline
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Foundation Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
15/04/2014
Chk'd by
Date App'd by Date
FOUNDATION ANALYSIS (EN1997-1:2004)
In accordance with EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values
Pad foundation details
Length of foundation; Lx = 2500 mm
Width of foundation; Ly = 1500 mm
Foundation area; A = Lx × Ly = 3.750 m
2
Depth of foundation; h = 400 mm
Depth of soil over foundation; hsoil = 200 mm
Level of water; hwater = 0 mm
Density of water; γwater = 9.8 kN/m
3
Density of concrete; γconc = 24.5 kN/m
3
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Foundation Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
15/04/2014
Chk'd by
Date App'd by Date
Column no.1 details
Length of column; lx1 = 300 mm
Width of column; ly1 = 300 mm
position in x-axis; x1 = 1250 mm
position in y-axis; y1 = 750 mm
Soil properties
Density of soil; γsoil = 20.0 kN/m
3
Characteristic cohesion; c'k = 25 kN/m
2
Characteristic effective shear resistance angle; φ'k = 25 deg
Characteristic friction angle; δk = 19.3 deg
Foundation loads
Self weight; Fswt = h × γconc = 9.8 kN/m
2
Soil weight; Fsoil = hsoil × γsoil = 4.0 kN/m
2
Column no.1 loads
Permanent load in z; FGz1 = 200.0 kN
Variable load in z; FQz1 = 165.0 kN
Permanent moment in x; MGx1 = 15.0 kNm
Variable moment in x; MQx1 = 10.0 kNm
Partial factors on actions - Combination1
Permanent unfavourable action - Table A.3; γG = 1.35
Permanent favourable action - Table A.3; γGf = 1.00
Variable unfavourable action - Table A.3; γQ = 1.50
Variable favourable action - Table A.3; γQf = 0.00
Partial factors for soil parameters - Combination1
Angle of shearing resistance - Table A.4; γφ' = 1.00
Effective cohesion - Table A.4; γc' = 1.00
Weight density - Table A.4; γγ = 1.00
Partial factors for spread foundations - Combination1
Bearing - Table A.5; γR.v = 1.00
Sliding - Table A.5; γR.h = 1.00
Bearing resistance (Section 6.5.2)
Forces on foundation
Force in z-axis; Fdz = γG × (A × (Fswt + Fsoil) + FGz1) + γQ × FQz1 =
587.4 kN
Moments on foundation
Moment in x-axis; Mdx = γG × (A × (Fswt + Fsoil) × Lx / 2 + FGz1 × x1) + γG
× MGx1 + γQ × FQz1 × x1 + γQ × MQx1 = 769.5 kNm
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Foundation Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
15/04/2014
Chk'd by
Date App'd by Date
Moment in y-axis; Mdy = γG × (A × (Fswt + Fsoil) × Ly / 2 + FGz1 × y1) + γQ
× FQz1 × y1 = 440.5 kNm
Eccentricity of base reaction
Eccentricity of base reaction in x-axis; ex = Mdx / Fdz - Lx / 2 = 60 mm
Eccentricity of base reaction in y-axis; ey = Mdy / Fdz - Ly / 2 = 0 mm
Effective area of base
Effective length; L'x = Lx - 2 × ex = 2380 mm
Effective width; L'y = Ly - 2 × ey = 1500 mm
Effective area; A' = L'x × L'y = 3.570 m
2
Pad base pressure
Design base pressure; fdz = Fdz / A' = 164.5 kN/m
2
Net ultimate bearing capacity under drained conditions (Annex D.4)
Design angle of shearing resistance; φ'd = atan(tan(φ'k) / γφ') = 25.000 deg
Design effective cohesion; c'd = c'k / γc' = 25.000 kN/m
2
Effective overburden pressure; q = (h + hsoil) × γsoil - hwater × γwater = 12.000 kN/m
2
Design effective overburden pressure; q' = q / γγ = 12.000 kN/m
2
Bearing resistance factors; Nq = Exp(π × tan(φ'd)) × (tan(45 deg + φ'd / 2))
2
=
10.662
Nc = (Nq - 1) × cot(φ'd) = 20.721
Nγ = 2 × (Nq - 1) × tan(φ'd) = 9.011
Foundation shape factors; sq = 1 + (L'y / L'x) × sin(φ'd) = 1.266
sγ = 1 - 0.3 × (L'y / L'x) = 0.811
sc = (sq × Nq - 1) / (Nq - 1) = 1.294
Load inclination factors; H = 0.0 kN
my = [2 + (L'y / L'x)] / [1 + (L'y / L'x)] = 1.613
mx = [2 + (L'x / L'y)] / [1 + (L'x / L'y)] = 1.387
m = mx = 1.387
iq = [1 - H / (Fdz + A' × c'd × cot(φ'd))]
m
= 1.000
iγ = [1 - H / (Fdz + A' × c'd × cot(φ'd))]
m + 1
= 1.000
ic = iq - (1 - iq) / (Nc × tan(φ'd)) = 1.000
Net ultimate bearing capacity; nf = c'd × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × γsoil ×
L'y × Nγ × sγ × iγ = 941.9 kN/m
2
PASS - Net ultimate bearing capacity exceeds design base pressure
Partial factors on actions - Combination2
Permanent unfavourable action - Table A.3; γG = 1.00
Permanent favourable action - Table A.3; γGf = 1.00
Variable unfavourable action - Table A.3; γQ = 1.30
Variable favourable action - Table A.3; γQf = 0.00
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Foundation Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
15/04/2014
Chk'd by
Date App'd by Date
Partial factors for soil parameters - Combination2
Angle of shearing resistance - Table A.4; γφ' = 1.25
Effective cohesion - Table A.4; γc' = 1.25
Weight density - Table A.4; γγ = 1.00
Partial factors for spread foundations - Combination2
Bearing - Table A.5; γR.v = 1.00
Sliding - Table A.5; γR.h = 1.00
Bearing resistance (Section 6.5.2)
Forces on foundation
Force in z-axis; Fdz = γG × (A × (Fswt + Fsoil) + FGz1) + γQ × FQz1 =
466.3 kN
Moments on foundation
Moment in x-axis; Mdx = γG × (A × (Fswt + Fsoil) × Lx / 2 + FGz1 × x1) + γG
× MGx1 + γQ × FQz1 × x1 + γQ × MQx1 = 610.8 kNm
Moment in y-axis; Mdy = γG × (A × (Fswt + Fsoil) × Ly / 2 + FGz1 × y1) + γQ
× FQz1 × y1 = 349.7 kNm
Eccentricity of base reaction
Eccentricity of base reaction in x-axis; ex = Mdx / Fdz - Lx / 2 = 60 mm
Eccentricity of base reaction in y-axis; ey = Mdy / Fdz - Ly / 2 = 0 mm
Effective area of base
Effective length; L'x = Lx - 2 × ex = 2380 mm
Effective width; L'y = Ly - 2 × ey = 1500 mm
Effective area; A' = L'x × L'y = 3.570 m
2
Pad base pressure
Design base pressure; fdz = Fdz / A' = 130.6 kN/m
2
Net ultimate bearing capacity under drained conditions (Annex D.4)
Design angle of shearing resistance; φ'd = atan(tan(φ'k) / γφ') = 20.458 deg
Design effective cohesion; c'd = c'k / γc' = 20.000 kN/m
2
Effective overburden pressure; q = (h + hsoil) × γsoil - hwater × γwater = 12.000 kN/m
2
Design effective overburden pressure; q' = q / γγ = 12.000 kN/m
2
Bearing resistance factors; Nq = Exp(π × tan(φ'd)) × (tan(45 deg + φ'd / 2))
2
=
6.698
Nc = (Nq - 1) × cot(φ'd) = 15.273
Nγ = 2 × (Nq - 1) × tan(φ'd) = 4.251
Foundation shape factors; sq = 1 + (L'y / L'x) × sin(φ'd) = 1.220
sγ = 1 - 0.3 × (L'y / L'x) = 0.811
sc = (sq × Nq - 1) / (Nq - 1) = 1.259
Load inclination factors; H = 0.0 kN
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Foundation Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
15/04/2014
Chk'd by
Date App'd by Date
my = [2 + (L'y / L'x)] / [1 + (L'y / L'x)] = 1.613
mx = [2 + (L'x / L'y)] / [1 + (L'x / L'y)] = 1.387
m = mx = 1.387
iq = [1 - H / (Fdz + A' × c'd × cot(φ'd))]
m
= 1.000
iγ = [1 - H / (Fdz + A' × c'd × cot(φ'd))]
m + 1
= 1.000
ic = iq - (1 - iq) / (Nc × tan(φ'd)) = 1.000
Net ultimate bearing capacity; nf = c'd × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × γsoil ×
L'y × Nγ × sγ × iγ = 534.3 kN/m
2
PASS - Net ultimate bearing capacity exceeds design base pressure
FOUNDATION DESIGN (EN1992-1-1:2004)
In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the
recommended values
Concrete details (Table 3.1 - Strength and deformation characteristics for concrete)
Concrete strength class; C30/37
Characteristic compressive cylinder strength; fck = 30 N/mm2
Characteristic compressive cube strength; fck,cube = 37 N/mm
2
Mean value of compressive cylinder strength; fcm = fck + 8 N/mm
2
= 38 N/mm
2
Mean value of axial tensile strength; fctm = 0.3 N/mm
2
× (fck/ 1 N/mm
2
)
2/3
= 2.9 N/mm
2
5% fractile of axial tensile strength; fctk,0.05 = 0.7 × fctm = 2.0 N/mm
2
Secant modulus of elasticity of concrete; Ecm = 22 kN/mm
2
× [fcm/10 N/mm
2
]
0.3
= 32837
N/mm
2
Partial factor for concrete (Table 2.1N); γC = 1.50
Compressive strength coefficient (cl.3.1.6(1)); αcc = 1.00
Design compressive concrete strength (exp.3.15); fcd = αcc × fck / γC = 20.0 N/mm
2
Tens.strength coeff.for plain concrete (cl.12.3.1(1)); αct,pl = 0.80
Des.tens.strength for plain concrete (exp.12.1); fctd,pl = αct,pl × fctk,0.05 / γC = 1.1 N/mm
2
Maximum aggregate size; hagg = 20 mm
Reinforcement details
Characteristic yield strength of reinforcement; fyk = 500 N/mm
2
Modulus of elasticity of reinforcement; Es = 210000 N/mm
2
Partial factor for reinforcing steel (Table 2.1N); γS = 1.15
Design yield strength of reinforcement; fyd = fyk / γS = 435 N/mm
2
Nominal cover to reinforcement; cnom = 30 mm
Rectangular section in flexure (Section 6.1)
Design bending moment; MEd.x.max = 132.4 kNm
Depth to tension reinforcement; d = h - cnom - φx.bot / 2 = 364 mm
K = MEd.x.max / (Ly × d
2
× fck) = 0.022
K' = 0.207
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Foundation Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
15/04/2014
Chk'd by
Date App'd by Date
K' > K - No compression reinforcement is required
Lever arm; z = min((d / 2) × [1 + (1 - 3.53 × K)
0.5
], 0.95 × d) =
346 mm
Depth of neutral axis; x = 2.5 × (d - z) = 45 mm
Area of tension reinforcement required; Asx.bot.req = MEd.x.max / (fyd × z) = 881 mm
2
Tension reinforcement provided; 8 No.12 dia.bars bottom (225 c/c)
Area of tension reinforcement provided; Asx.bot.prov = 905 mm
2
Minimum area of reinforcement (exp.9.1N); As.min = max(0.26 × fctm / fyk, 0.0013) × Ly × d = 822
mm
2
Maximum area of reinforcement (cl.9.2.1.1(3)); As.max = 0.04 × Ly × d = 21840 mm2
PASS - Area of reinforcement provided is greater than area of reinforcement required
Crack control (Section 7.3)
Limiting crack width; wmax = 0.3 mm
Variable load factor (EN1990 – Table A1.1); ψ2 = 0.3
Serviceability bending moment; Msls.x.max = 64 kNm
Tensile stress in reinforcement; σs = Msls.x.max / (Asx.bot.prov × z) = 204.7 N/mm
2
Load duration factor; kt = 0.4
Effective depth of concrete in tension; hc.ef = min(2.5 × (h - d), (h - x) / 3, h / 2) = 90 mm
Effective area of concrete in tension; Ac.eff = hc.ef × Ly = 135000 mm
2
Mean value of concrete tensile strength; fct.eff = fctm = 2.9 N/mm
2
Reinforcement ratio; ρp.eff = Asx.bot.prov / Ac.eff = 0.007
Modular ratio; αe = Es / Ecm = 6.395
Bond property coefficient; k1 = 0.8
Strain distribution coefficient; k2 = 0.5
k3 = 3.4
k4 = 0.425
Maximum crack spacing (exp.7.11); sr.max = k3 × cnom + k1 × k2 × k4 × φx.bot / ρp.eff = 406
mm
Maximum crack width (exp.7.8); wk = sr.max × max([σs – kt × (fct.eff / ρp.eff) ×(1 + αe ×
ρp.eff)] / Es,
0.6 × σs / Es) = 0.238 mm
PASS - Maximum crack width is less than limiting crack widthRectangular section in shear
(Section 6.2)
Design shear force; abs(VEd.x.min) = 165.2 kN
CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 1.767
Longitudinal reinforcement ratio; ρl = min(Asx.bot.prov / (Ly × d), 0.02) = 0.002
vmin = 0.035 N
1/2
/mm × k
3/2
× fck
0.5
= 0.450 N/mm
2
Design shear resistance (exp.6.2a & 6.2b); VRd.c = max(CRd.c × k × (100 N
2
/mm
4
× ρl × fck)
1/3
,
vmin) × Ly × d
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Foundation Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
15/04/2014
Chk'd by
Date App'd by Date
VRd.c = 229.6 kN
PASS - Design shear resistance exceeds design shear force
Rectangular section in flexure (Section 6.1)
Design bending moment; MEd.y.max = 62.1 kNm
Depth to tension reinforcement; d = h - cnom - φx.bot - φy.bot / 2 = 352 mm
K = MEd.y.max / (Lx × d
2
× fck) = 0.007
K' = 0.207
K' > K - No compression reinforcement is required
Lever arm; z = min((d / 2) × [1 + (1 - 3.53 × K)
0.5
], 0.95 × d) =
334 mm
Depth of neutral axis; x = 2.5 × (d - z) = 44 mm
Area of tension reinforcement required; Asy.bot.req = MEd.y.max / (fyd × z) = 427 mm
2
Tension reinforcement provided; 12 No.12 dia.bars bottom (225 c/c)
Area of tension reinforcement provided; Asy.bot.prov = 1357 mm
2
Minimum area of reinforcement (exp.9.1N); As.min = max(0.26 × fctm / fyk, 0.0013) × Lx × d = 1325
mm
2
Maximum area of reinforcement (cl.9.2.1.1(3)); As.max = 0.04 × Lx × d = 35200 mm
2
PASS - Area of reinforcement provided is greater than area of reinforcement required
Crack control (Section 7.3)
Limiting crack width; wmax = 0.3 mm
Variable load factor (EN1990 – Table A1.1); ψ2 = 0.3
Serviceability bending moment; Msls.y.max = 29.9 kNm
Tensile stress in reinforcement; σs = Msls.y.max / (Asy.bot.prov × z) = 66 N/mm
2
Load duration factor; kt = 0.4
Effective depth of concrete in tension; hc.ef = min(2.5 × (h - d), (h - x) / 3, h / 2) = 119 mm
Effective area of concrete in tension; Ac.eff = hc.ef × Lx = 296667 mm2
Mean value of concrete tensile strength; fct.eff = fctm = 2.9 N/mm
2
Reinforcement ratio; ρp.eff = Asy.bot.prov / Ac.eff = 0.005
Modular ratio; αe = Es / Ecm = 6.395
Bond property coefficient; k1 = 0.8
Strain distribution coefficient; k2 = 0.5
k3 = 3.4
k4 = 0.425
Maximum crack spacing (exp.7.11); sr.max = k3 × (cnom + φx.bot) + k1 × k2 × k4 × φy.bot / ρp.eff
= 589 mm
Maximum crack width (exp.7.8); wk = sr.max × max([σs – kt × (fct.eff / ρp.eff) ×(1 + αe ×
ρp.eff)] / Es,
0.6 × σs / Es) = 0.111 mm
PASS - Maximum crack width is less than limiting crack widthRectangular section in shear
(Section 6.2)
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Foundation Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
15/04/2014
Chk'd by
Date App'd by Date
Design shear force; VEd.y.max = 88 kN
CRd,c = 0.18 / γC = 0.120
k = min(1 + √(200 mm / d), 2) = 1.745
Longitudinal reinforcement ratio; ρl = min(Asy.bot.prov / (Lx × d), 0.02) = 0.002
vmin = 0.035 N
1/2
/mm × k
3/2
× fck
0.5
= 0.442 N/mm
2
Design shear resistance (exp.6.2a & 6.2b); VRd.c = max(CRd.c × k × (100 N
2
/mm
4
× ρl × fck)
1/3
,
vmin) × Lx × d
VRd.c = 397.8 kN
PASS - Design shear resistance exceeds design shear force
Punching shear (Section 6.4)
Strength reduction factor (exp 6.6N); v = 0.6 × [1 - fck / 250 N/mm
2
] = 0.528
Average depth to reinforcement; d = 358 mm
Maximum punching shear resistance (cl.6.4.5(3)); vRd.max = 0.5 × v × fcd = 5.280 N/mm
2
k = min(1 + √(200 mm / d), 2) = 1.747
Longitudinal reinforcement ratio (cl.6.4.4(1)); ρlx = Asx.bot.prov / (Ly × d) = 0.002
ρly = Asy.bot.prov / (Lx × d) = 0.002
ρl = min(√(ρlx × ρly), 0.02) = 0.002
vmin = 0.035 N
1/2
/mm × k
3/2
× fck
0.5
= 0.443 N/mm
2
Design punching shear resistance (exp.6.47); vRd.c = max(CRd.c × k × (100 N
2
/mm
4
× ρl × fck)
1/3
,
vmin) = 0.443 N/mm
2
Column No.1 - Punching shear perimeter at column face
Punching shear perimeter; u0 = 1200 mm
Area within punching shear perimeter; A0 = 0.090 m
2
Maximum punching shear force; VEd.max = 504.4 kN
Punching shear stress factor (fig 6.21N); β = 1.500
Maximum punching shear stress (exp 6.38); vEd.max = β × VEd.max / (u0 × d) = 1.761 N/mm
2
PASS - Maximum punching shear resistance exceeds maximum punching shear stress
Column No.1 - Punching shear perimeter at 2d from column face
Punching shear perimeter; u2 = 3446 mm
Area within punching shear perimeter; A2 = 2.367 m
2
Design punching shear force; VEd.2 = 172.1 kN
Punching shear stress factor (fig 6.21N); β = 1.500
Design punching shear stress (exp 6.38); vEd.2 = β × VEd.2 / (u2 × d) = 0.209 N/mm
2
PASS - Design punching shear resistance exceeds design punching shear stress
GEODOMISI Ltd. - Dr. Costas Sachpazis
Civil & Geotechnical Engineering Consulting Company for
Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation
Engineering & Retaining Structures.
Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30)
6936425722 & (+44) 7585939944, costas@sachpazis.info
Project: Foundation Analysis & Design, In accordance with
EN1997-1:2004 incorporating Corrigendum dated February
2009 and the recommended values.
Job Ref.
Section
Civil & Geotechnical Engineering
Sheet no./rev. 1
Calc. by
Dr. C. Sachpazis
Date
15/04/2014
Chk'd by
Date App'd by Date
 
 

Mais conteúdo relacionado

Mais procurados

Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Dr.Costas Sachpazis
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleDr.Costas Sachpazis
 
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Dr.Costas Sachpazis
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Dr.Costas Sachpazis
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Dr.Costas Sachpazis
 
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...Dr.Costas Sachpazis
 
Sachpazis gabion retaining wall analysis & design bs8002-1994
Sachpazis gabion retaining wall analysis & design bs8002-1994Sachpazis gabion retaining wall analysis & design bs8002-1994
Sachpazis gabion retaining wall analysis & design bs8002-1994Dr.Costas Sachpazis
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...Dr.Costas Sachpazis
 
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Dr.Costas Sachpazis
 
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Dr.Costas Sachpazis
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Dr.Costas Sachpazis
 
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2Dr.Costas Sachpazis
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Dr.Costas Sachpazis
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Dr.Costas Sachpazis
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacityDr.Costas Sachpazis
 
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Dr.Costas Sachpazis
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Dr.Costas Sachpazis
 
Sachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleSachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleDr.Costas Sachpazis
 
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation exampleSachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation exampleDr.Costas Sachpazis
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Dr.Costas Sachpazis
 

Mais procurados (20)

Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
Sachpazis Cantilever Retaining Wall, In accordance to IBC 2012 and ASCE 7-10 ...
 
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof exampleSachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
Sachpazis: Wind loading to EN 1991 1-4- for a hipped roof example
 
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
Sachpazis reinforced masonry retaining wall analysis & design, in accordance ...
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_for MultiStor...
 
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
Sachpazis Foundation Pad with Two Columns Analysis & Design According to EC2 ...
 
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
Sachpazis Cantilever Steel SheetPile Retaining Wall Analysis & Design, Free E...
 
Sachpazis gabion retaining wall analysis & design bs8002-1994
Sachpazis gabion retaining wall analysis & design bs8002-1994Sachpazis gabion retaining wall analysis & design bs8002-1994
Sachpazis gabion retaining wall analysis & design bs8002-1994
 
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...Sachpazis: Raft Foundation Analysis & Design  BS8110:part 1-1997_plain slab w...
Sachpazis: Raft Foundation Analysis & Design BS8110:part 1-1997_plain slab w...
 
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...Sachpazis masonry column with eccentric vertical and wind loading in accordan...
Sachpazis masonry column with eccentric vertical and wind loading in accordan...
 
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
Sachpazis verification of the ultimate punching shear resistance to ec2 1992 ...
 
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
Sachpazis RC Slab Analysis and Design in accordance with EN 1992 1-1 2004-Two...
 
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
 
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004Sachpazis pile analysis & design, in accordance with en 1997 1-2004
Sachpazis pile analysis & design, in accordance with en 1997 1-2004
 
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004Sachpazis pile analysis & design. calculation according to en 1997 1-2004
Sachpazis pile analysis & design. calculation according to en 1997 1-2004
 
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & CapacitySachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
Sachpazis" Analysis of Geogrid Reinforced Earth Slope Stability & Capacity
 
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
Sachpazis_CANTILEVER RETAINING WALL Analysis & DESIGN Example According to IB...
 
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
Sachpazis Steel Member Analysis & Design (EN1993 1-1 2005)
 
Sachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall exampleSachpazis: Sloped rear face retaining wall example
Sachpazis: Sloped rear face retaining wall example
 
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation exampleSachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
Sachpazis_Concrete Specification _BS 8500_1-2006_For Designed foundation example
 
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
Sachpazis Masonry Column with eccentric vertical Loading Analysis & Design (E...
 

Semelhante a GEODOMISI Ltd. Foundation Analysis & Design

Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Dr.Costas Sachpazis
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Dr.Costas Sachpazis
 
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Dr.Costas Sachpazis
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Dr.Costas Sachpazis
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleDr.Costas Sachpazis
 
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Dr.Costas Sachpazis
 
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Dr.Costas Sachpazis
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Dr.Costas Sachpazis
 
Sachpazis pad footing example
Sachpazis pad footing exampleSachpazis pad footing example
Sachpazis pad footing exampleabdullahmohideen
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Dr.Costas Sachpazis
 
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Dr.Costas Sachpazis
 
Steel Warehouse Project
Steel Warehouse ProjectSteel Warehouse Project
Steel Warehouse ProjectJawad Shaukat
 
96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatasWalther Castro
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Dr.Costas Sachpazis
 
RC member analysis and design
RC member analysis and designRC member analysis and design
RC member analysis and designKingsley Aboagye
 
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODECOMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODEIRJET Journal
 
Analysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptxAnalysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptxDP NITHIN
 

Semelhante a GEODOMISI Ltd. Foundation Analysis & Design (19)

Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...Sachpazis: Steel member design in biaxial bending and axial compression examp...
Sachpazis: Steel member design in biaxial bending and axial compression examp...
 
Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997Sachpazis: Flat slab design to bs8110 part 1-1997
Sachpazis: Flat slab design to bs8110 part 1-1997
 
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
Sachpazis_Circular Section Column Design & Analysis, Calculations according t...
 
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
Sachpazis: Masonry wall panel design example (EN1996 1-1-2005)
 
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) exampleSachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
Sachpazis: Two-way RC Slab Slab Analysis & Design (EN1992-1-1:2004) example
 
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
Sachpazis cantilever retaining wall analysis & design (en1997-1-2004)
 
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
Sachpazis: Retaining wall Analysis & Design (EN1997-1:2004 incorporating Corr...
 
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
Masonry Wall Panel Analysis & Design, In accordance with EN1996-1-1:2005
 
Sachpazis pad footing example
Sachpazis pad footing exampleSachpazis pad footing example
Sachpazis pad footing example
 
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
Sachpazis: 4 rc piles cap design with eccentricity example (bs8110 part1-1997)
 
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
Sachpazis steel sheet piling analysis & design, fixed earth support in ac...
 
Steel Warehouse Project
Steel Warehouse ProjectSteel Warehouse Project
Steel Warehouse Project
 
96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas96729556 hoja-de-calculo-para-zapatas
96729556 hoja-de-calculo-para-zapatas
 
KUY Limeng,e20190482(I4GCI-B).pdf
KUY Limeng,e20190482(I4GCI-B).pdfKUY Limeng,e20190482(I4GCI-B).pdf
KUY Limeng,e20190482(I4GCI-B).pdf
 
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
Sachpazis: Steel member fire resistance design to Eurocode 3 / Σαχπάζης: Σχεδ...
 
PERBAKOM
PERBAKOMPERBAKOM
PERBAKOM
 
RC member analysis and design
RC member analysis and designRC member analysis and design
RC member analysis and design
 
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODECOMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
COMPARISON BETWEEN VARIOUS STEEL SECTION BY USING IS CODE AND EURO CODE
 
Analysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptxAnalysis and Design of Residential building.pptx
Analysis and Design of Residential building.pptx
 

Mais de Dr.Costas Sachpazis

Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Dr.Costas Sachpazis
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptDr.Costas Sachpazis
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςDr.Costas Sachpazis
 
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisDr.Costas Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsDr.Costas Sachpazis
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςDr.Costas Sachpazis
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Dr.Costas Sachpazis
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Dr.Costas Sachpazis
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Dr.Costas Sachpazis
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Dr.Costas Sachpazis
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Dr.Costas Sachpazis
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsDr.Costas Sachpazis
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisDr.Costas Sachpazis
 
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Dr.Costas Sachpazis
 
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...Dr.Costas Sachpazis
 
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...Dr.Costas Sachpazis
 

Mais de Dr.Costas Sachpazis (20)

Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
Sachpazis_Retaining Structures-Ground Anchors and Anchored Systems_C_Sachpazi...
 
Chapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.pptChapter9Lec16Jan03.ppt
Chapter9Lec16Jan03.ppt
 
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.pptΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
ΓΕΩΛΟΓΙΚΟΙ ΧΑΡΤΕΣ IntroToMaps_v2_PART1.ppt
 
MBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptxMBA-EMarketing-Lecture.pptx
MBA-EMarketing-Lecture.pptx
 
Marketing.ppt
Marketing.pptMarketing.ppt
Marketing.ppt
 
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκαςSachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
Sachpazis σαχπάζης φορέας αμφιέρειστης πλάκας
 
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.SachpazisSingle pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
Single pile analysis & design, l=18,00m d=1,10m, by C.Sachpazis
 
Pile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundationsPile configuration optimization on the design of combined piled raft foundations
Pile configuration optimization on the design of combined piled raft foundations
 
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής ΕνέργειαςΣαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
Σαχπάζης Πλεονεκτήματα και Προκλήσεις της Αιολικής Ενέργειας
 
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
Sachpazis: Raft Foundation Analysis and Design for a two Storey House Project...
 
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
Sachpazis_Pile Analysis and Design for Acropolis Project According to EN 1997...
 
Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021Sachpazis truss analysis and design example_28-02-2021
Sachpazis truss analysis and design example_28-02-2021
 
Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654Sachpazis what is differential settlement 4654
Sachpazis what is differential settlement 4654
 
Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_Sachpazis: Retaining Walls - Know How Basics_
Sachpazis: Retaining Walls - Know How Basics_
 
Sachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About DamsSachpazis: Hydraulic Structures / About Dams
Sachpazis: Hydraulic Structures / About Dams
 
Sachpazis: Slope Stability Analysis
Sachpazis: Slope Stability AnalysisSachpazis: Slope Stability Analysis
Sachpazis: Slope Stability Analysis
 
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
Slope Stability Evaluation for the New Railway Embankment using Stochastic & ...
 
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
Dr. Costas Sachpazis. 3-D Soil Layer Model from Geotechnical Borehole Data (B...
 
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...
C. Sachpazis & Eleyas A - Probabilistic Slope Stability evaluation for the ne...
 

Último

(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一Fi sss
 
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degreeyuu sss
 
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...mrchrns005
 
How to Be Famous in your Field just visit our Site
How to Be Famous in your Field just visit our SiteHow to Be Famous in your Field just visit our Site
How to Be Famous in your Field just visit our Sitegalleryaagency
 
韩国SKKU学位证,成均馆大学毕业证书1:1制作
韩国SKKU学位证,成均馆大学毕业证书1:1制作韩国SKKU学位证,成均馆大学毕业证书1:1制作
韩国SKKU学位证,成均馆大学毕业证书1:1制作7tz4rjpd
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdfvaibhavkanaujia
 
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCRdollysharma2066
 
How to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIHow to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIyuj
 
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
PORTAFOLIO   2024_  ANASTASIYA  KUDINOVAPORTAFOLIO   2024_  ANASTASIYA  KUDINOVA
PORTAFOLIO 2024_ ANASTASIYA KUDINOVAAnastasiya Kudinova
 
Architecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfArchitecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfSumit Lathwal
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一Fi L
 
306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social Media306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social MediaD SSS
 
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证nhjeo1gg
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Rndexperts
 
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...Rishabh Aryan
 
Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.Mookuthi
 
cda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptcda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptMaryamAfzal41
 
Design principles on typography in design
Design principles on typography in designDesign principles on typography in design
Design principles on typography in designnooreen17
 
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书zdzoqco
 
shot list for my tv series two steps back
shot list for my tv series two steps backshot list for my tv series two steps back
shot list for my tv series two steps back17lcow074
 

Último (20)

(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
(办理学位证)埃迪斯科文大学毕业证成绩单原版一比一
 
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
2024新版美国旧金山州立大学毕业证成绩单pdf电子版制作修改#毕业文凭制作#回国入职#diploma#degree
 
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...
Business research proposal mcdo.pptxBusiness research proposal mcdo.pptxBusin...
 
How to Be Famous in your Field just visit our Site
How to Be Famous in your Field just visit our SiteHow to Be Famous in your Field just visit our Site
How to Be Famous in your Field just visit our Site
 
韩国SKKU学位证,成均馆大学毕业证书1:1制作
韩国SKKU学位证,成均馆大学毕业证书1:1制作韩国SKKU学位证,成均馆大学毕业证书1:1制作
韩国SKKU学位证,成均馆大学毕业证书1:1制作
 
Passbook project document_april_21__.pdf
Passbook project document_april_21__.pdfPassbook project document_april_21__.pdf
Passbook project document_april_21__.pdf
 
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
8377877756 Full Enjoy @24/7 Call Girls in Nirman Vihar Delhi NCR
 
How to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AIHow to Empower the future of UX Design with Gen AI
How to Empower the future of UX Design with Gen AI
 
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
PORTAFOLIO   2024_  ANASTASIYA  KUDINOVAPORTAFOLIO   2024_  ANASTASIYA  KUDINOVA
PORTAFOLIO 2024_ ANASTASIYA KUDINOVA
 
Architecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdfArchitecture case study India Habitat Centre, Delhi.pdf
Architecture case study India Habitat Centre, Delhi.pdf
 
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
办理学位证(TheAuckland证书)新西兰奥克兰大学毕业证成绩单原版一比一
 
306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social Media306MTAMount UCLA University Bachelor's Diploma in Social Media
306MTAMount UCLA University Bachelor's Diploma in Social Media
 
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
在线办理ohio毕业证俄亥俄大学毕业证成绩单留信学历认证
 
Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025Top 10 Modern Web Design Trends for 2025
Top 10 Modern Web Design Trends for 2025
 
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
DAKSHIN BIHAR GRAMIN BANK: REDEFINING THE DIGITAL BANKING EXPERIENCE WITH A U...
 
Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.Mookuthi is an artisanal nose ornament brand based in Madras.
Mookuthi is an artisanal nose ornament brand based in Madras.
 
cda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis pptcda.pptx critical discourse analysis ppt
cda.pptx critical discourse analysis ppt
 
Design principles on typography in design
Design principles on typography in designDesign principles on typography in design
Design principles on typography in design
 
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
办理卡尔顿大学毕业证成绩单|购买加拿大文凭证书
 
shot list for my tv series two steps back
shot list for my tv series two steps backshot list for my tv series two steps back
shot list for my tv series two steps back
 

GEODOMISI Ltd. Foundation Analysis & Design

  • 1. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Foundation Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 15/04/2014 Chk'd by Date App'd by Date FOUNDATION ANALYSIS (EN1997-1:2004) In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values Pad foundation details Length of foundation; Lx = 2500 mm Width of foundation; Ly = 1500 mm Foundation area; A = Lx × Ly = 3.750 m 2 Depth of foundation; h = 400 mm Depth of soil over foundation; hsoil = 200 mm Level of water; hwater = 0 mm Density of water; γwater = 9.8 kN/m 3 Density of concrete; γconc = 24.5 kN/m 3
  • 2. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Foundation Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 15/04/2014 Chk'd by Date App'd by Date Column no.1 details Length of column; lx1 = 300 mm Width of column; ly1 = 300 mm position in x-axis; x1 = 1250 mm position in y-axis; y1 = 750 mm Soil properties Density of soil; γsoil = 20.0 kN/m 3 Characteristic cohesion; c'k = 25 kN/m 2 Characteristic effective shear resistance angle; φ'k = 25 deg Characteristic friction angle; δk = 19.3 deg Foundation loads Self weight; Fswt = h × γconc = 9.8 kN/m 2 Soil weight; Fsoil = hsoil × γsoil = 4.0 kN/m 2 Column no.1 loads Permanent load in z; FGz1 = 200.0 kN Variable load in z; FQz1 = 165.0 kN Permanent moment in x; MGx1 = 15.0 kNm Variable moment in x; MQx1 = 10.0 kNm Partial factors on actions - Combination1 Permanent unfavourable action - Table A.3; γG = 1.35 Permanent favourable action - Table A.3; γGf = 1.00 Variable unfavourable action - Table A.3; γQ = 1.50 Variable favourable action - Table A.3; γQf = 0.00 Partial factors for soil parameters - Combination1 Angle of shearing resistance - Table A.4; γφ' = 1.00 Effective cohesion - Table A.4; γc' = 1.00 Weight density - Table A.4; γγ = 1.00 Partial factors for spread foundations - Combination1 Bearing - Table A.5; γR.v = 1.00 Sliding - Table A.5; γR.h = 1.00 Bearing resistance (Section 6.5.2) Forces on foundation Force in z-axis; Fdz = γG × (A × (Fswt + Fsoil) + FGz1) + γQ × FQz1 = 587.4 kN Moments on foundation Moment in x-axis; Mdx = γG × (A × (Fswt + Fsoil) × Lx / 2 + FGz1 × x1) + γG × MGx1 + γQ × FQz1 × x1 + γQ × MQx1 = 769.5 kNm
  • 3. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Foundation Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 15/04/2014 Chk'd by Date App'd by Date Moment in y-axis; Mdy = γG × (A × (Fswt + Fsoil) × Ly / 2 + FGz1 × y1) + γQ × FQz1 × y1 = 440.5 kNm Eccentricity of base reaction Eccentricity of base reaction in x-axis; ex = Mdx / Fdz - Lx / 2 = 60 mm Eccentricity of base reaction in y-axis; ey = Mdy / Fdz - Ly / 2 = 0 mm Effective area of base Effective length; L'x = Lx - 2 × ex = 2380 mm Effective width; L'y = Ly - 2 × ey = 1500 mm Effective area; A' = L'x × L'y = 3.570 m 2 Pad base pressure Design base pressure; fdz = Fdz / A' = 164.5 kN/m 2 Net ultimate bearing capacity under drained conditions (Annex D.4) Design angle of shearing resistance; φ'd = atan(tan(φ'k) / γφ') = 25.000 deg Design effective cohesion; c'd = c'k / γc' = 25.000 kN/m 2 Effective overburden pressure; q = (h + hsoil) × γsoil - hwater × γwater = 12.000 kN/m 2 Design effective overburden pressure; q' = q / γγ = 12.000 kN/m 2 Bearing resistance factors; Nq = Exp(π × tan(φ'd)) × (tan(45 deg + φ'd / 2)) 2 = 10.662 Nc = (Nq - 1) × cot(φ'd) = 20.721 Nγ = 2 × (Nq - 1) × tan(φ'd) = 9.011 Foundation shape factors; sq = 1 + (L'y / L'x) × sin(φ'd) = 1.266 sγ = 1 - 0.3 × (L'y / L'x) = 0.811 sc = (sq × Nq - 1) / (Nq - 1) = 1.294 Load inclination factors; H = 0.0 kN my = [2 + (L'y / L'x)] / [1 + (L'y / L'x)] = 1.613 mx = [2 + (L'x / L'y)] / [1 + (L'x / L'y)] = 1.387 m = mx = 1.387 iq = [1 - H / (Fdz + A' × c'd × cot(φ'd))] m = 1.000 iγ = [1 - H / (Fdz + A' × c'd × cot(φ'd))] m + 1 = 1.000 ic = iq - (1 - iq) / (Nc × tan(φ'd)) = 1.000 Net ultimate bearing capacity; nf = c'd × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × γsoil × L'y × Nγ × sγ × iγ = 941.9 kN/m 2 PASS - Net ultimate bearing capacity exceeds design base pressure Partial factors on actions - Combination2 Permanent unfavourable action - Table A.3; γG = 1.00 Permanent favourable action - Table A.3; γGf = 1.00 Variable unfavourable action - Table A.3; γQ = 1.30 Variable favourable action - Table A.3; γQf = 0.00
  • 4. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Foundation Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 15/04/2014 Chk'd by Date App'd by Date Partial factors for soil parameters - Combination2 Angle of shearing resistance - Table A.4; γφ' = 1.25 Effective cohesion - Table A.4; γc' = 1.25 Weight density - Table A.4; γγ = 1.00 Partial factors for spread foundations - Combination2 Bearing - Table A.5; γR.v = 1.00 Sliding - Table A.5; γR.h = 1.00 Bearing resistance (Section 6.5.2) Forces on foundation Force in z-axis; Fdz = γG × (A × (Fswt + Fsoil) + FGz1) + γQ × FQz1 = 466.3 kN Moments on foundation Moment in x-axis; Mdx = γG × (A × (Fswt + Fsoil) × Lx / 2 + FGz1 × x1) + γG × MGx1 + γQ × FQz1 × x1 + γQ × MQx1 = 610.8 kNm Moment in y-axis; Mdy = γG × (A × (Fswt + Fsoil) × Ly / 2 + FGz1 × y1) + γQ × FQz1 × y1 = 349.7 kNm Eccentricity of base reaction Eccentricity of base reaction in x-axis; ex = Mdx / Fdz - Lx / 2 = 60 mm Eccentricity of base reaction in y-axis; ey = Mdy / Fdz - Ly / 2 = 0 mm Effective area of base Effective length; L'x = Lx - 2 × ex = 2380 mm Effective width; L'y = Ly - 2 × ey = 1500 mm Effective area; A' = L'x × L'y = 3.570 m 2 Pad base pressure Design base pressure; fdz = Fdz / A' = 130.6 kN/m 2 Net ultimate bearing capacity under drained conditions (Annex D.4) Design angle of shearing resistance; φ'd = atan(tan(φ'k) / γφ') = 20.458 deg Design effective cohesion; c'd = c'k / γc' = 20.000 kN/m 2 Effective overburden pressure; q = (h + hsoil) × γsoil - hwater × γwater = 12.000 kN/m 2 Design effective overburden pressure; q' = q / γγ = 12.000 kN/m 2 Bearing resistance factors; Nq = Exp(π × tan(φ'd)) × (tan(45 deg + φ'd / 2)) 2 = 6.698 Nc = (Nq - 1) × cot(φ'd) = 15.273 Nγ = 2 × (Nq - 1) × tan(φ'd) = 4.251 Foundation shape factors; sq = 1 + (L'y / L'x) × sin(φ'd) = 1.220 sγ = 1 - 0.3 × (L'y / L'x) = 0.811 sc = (sq × Nq - 1) / (Nq - 1) = 1.259 Load inclination factors; H = 0.0 kN
  • 5. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Foundation Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 15/04/2014 Chk'd by Date App'd by Date my = [2 + (L'y / L'x)] / [1 + (L'y / L'x)] = 1.613 mx = [2 + (L'x / L'y)] / [1 + (L'x / L'y)] = 1.387 m = mx = 1.387 iq = [1 - H / (Fdz + A' × c'd × cot(φ'd))] m = 1.000 iγ = [1 - H / (Fdz + A' × c'd × cot(φ'd))] m + 1 = 1.000 ic = iq - (1 - iq) / (Nc × tan(φ'd)) = 1.000 Net ultimate bearing capacity; nf = c'd × Nc × sc × ic + q' × Nq × sq × iq + 0.5 × γsoil × L'y × Nγ × sγ × iγ = 534.3 kN/m 2 PASS - Net ultimate bearing capacity exceeds design base pressure FOUNDATION DESIGN (EN1992-1-1:2004) In accordance with EN1992-1-1:2004 incorporating Corrigendum dated January 2008 and the recommended values Concrete details (Table 3.1 - Strength and deformation characteristics for concrete) Concrete strength class; C30/37 Characteristic compressive cylinder strength; fck = 30 N/mm2 Characteristic compressive cube strength; fck,cube = 37 N/mm 2 Mean value of compressive cylinder strength; fcm = fck + 8 N/mm 2 = 38 N/mm 2 Mean value of axial tensile strength; fctm = 0.3 N/mm 2 × (fck/ 1 N/mm 2 ) 2/3 = 2.9 N/mm 2 5% fractile of axial tensile strength; fctk,0.05 = 0.7 × fctm = 2.0 N/mm 2 Secant modulus of elasticity of concrete; Ecm = 22 kN/mm 2 × [fcm/10 N/mm 2 ] 0.3 = 32837 N/mm 2 Partial factor for concrete (Table 2.1N); γC = 1.50 Compressive strength coefficient (cl.3.1.6(1)); αcc = 1.00 Design compressive concrete strength (exp.3.15); fcd = αcc × fck / γC = 20.0 N/mm 2 Tens.strength coeff.for plain concrete (cl.12.3.1(1)); αct,pl = 0.80 Des.tens.strength for plain concrete (exp.12.1); fctd,pl = αct,pl × fctk,0.05 / γC = 1.1 N/mm 2 Maximum aggregate size; hagg = 20 mm Reinforcement details Characteristic yield strength of reinforcement; fyk = 500 N/mm 2 Modulus of elasticity of reinforcement; Es = 210000 N/mm 2 Partial factor for reinforcing steel (Table 2.1N); γS = 1.15 Design yield strength of reinforcement; fyd = fyk / γS = 435 N/mm 2 Nominal cover to reinforcement; cnom = 30 mm Rectangular section in flexure (Section 6.1) Design bending moment; MEd.x.max = 132.4 kNm Depth to tension reinforcement; d = h - cnom - φx.bot / 2 = 364 mm K = MEd.x.max / (Ly × d 2 × fck) = 0.022 K' = 0.207
  • 6. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Foundation Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 15/04/2014 Chk'd by Date App'd by Date K' > K - No compression reinforcement is required Lever arm; z = min((d / 2) × [1 + (1 - 3.53 × K) 0.5 ], 0.95 × d) = 346 mm Depth of neutral axis; x = 2.5 × (d - z) = 45 mm Area of tension reinforcement required; Asx.bot.req = MEd.x.max / (fyd × z) = 881 mm 2 Tension reinforcement provided; 8 No.12 dia.bars bottom (225 c/c) Area of tension reinforcement provided; Asx.bot.prov = 905 mm 2 Minimum area of reinforcement (exp.9.1N); As.min = max(0.26 × fctm / fyk, 0.0013) × Ly × d = 822 mm 2 Maximum area of reinforcement (cl.9.2.1.1(3)); As.max = 0.04 × Ly × d = 21840 mm2 PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control (Section 7.3) Limiting crack width; wmax = 0.3 mm Variable load factor (EN1990 – Table A1.1); ψ2 = 0.3 Serviceability bending moment; Msls.x.max = 64 kNm Tensile stress in reinforcement; σs = Msls.x.max / (Asx.bot.prov × z) = 204.7 N/mm 2 Load duration factor; kt = 0.4 Effective depth of concrete in tension; hc.ef = min(2.5 × (h - d), (h - x) / 3, h / 2) = 90 mm Effective area of concrete in tension; Ac.eff = hc.ef × Ly = 135000 mm 2 Mean value of concrete tensile strength; fct.eff = fctm = 2.9 N/mm 2 Reinforcement ratio; ρp.eff = Asx.bot.prov / Ac.eff = 0.007 Modular ratio; αe = Es / Ecm = 6.395 Bond property coefficient; k1 = 0.8 Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing (exp.7.11); sr.max = k3 × cnom + k1 × k2 × k4 × φx.bot / ρp.eff = 406 mm Maximum crack width (exp.7.8); wk = sr.max × max([σs – kt × (fct.eff / ρp.eff) ×(1 + αe × ρp.eff)] / Es, 0.6 × σs / Es) = 0.238 mm PASS - Maximum crack width is less than limiting crack widthRectangular section in shear (Section 6.2) Design shear force; abs(VEd.x.min) = 165.2 kN CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 1.767 Longitudinal reinforcement ratio; ρl = min(Asx.bot.prov / (Ly × d), 0.02) = 0.002 vmin = 0.035 N 1/2 /mm × k 3/2 × fck 0.5 = 0.450 N/mm 2 Design shear resistance (exp.6.2a & 6.2b); VRd.c = max(CRd.c × k × (100 N 2 /mm 4 × ρl × fck) 1/3 , vmin) × Ly × d
  • 7. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Foundation Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 15/04/2014 Chk'd by Date App'd by Date VRd.c = 229.6 kN PASS - Design shear resistance exceeds design shear force Rectangular section in flexure (Section 6.1) Design bending moment; MEd.y.max = 62.1 kNm Depth to tension reinforcement; d = h - cnom - φx.bot - φy.bot / 2 = 352 mm K = MEd.y.max / (Lx × d 2 × fck) = 0.007 K' = 0.207 K' > K - No compression reinforcement is required Lever arm; z = min((d / 2) × [1 + (1 - 3.53 × K) 0.5 ], 0.95 × d) = 334 mm Depth of neutral axis; x = 2.5 × (d - z) = 44 mm Area of tension reinforcement required; Asy.bot.req = MEd.y.max / (fyd × z) = 427 mm 2 Tension reinforcement provided; 12 No.12 dia.bars bottom (225 c/c) Area of tension reinforcement provided; Asy.bot.prov = 1357 mm 2 Minimum area of reinforcement (exp.9.1N); As.min = max(0.26 × fctm / fyk, 0.0013) × Lx × d = 1325 mm 2 Maximum area of reinforcement (cl.9.2.1.1(3)); As.max = 0.04 × Lx × d = 35200 mm 2 PASS - Area of reinforcement provided is greater than area of reinforcement required Crack control (Section 7.3) Limiting crack width; wmax = 0.3 mm Variable load factor (EN1990 – Table A1.1); ψ2 = 0.3 Serviceability bending moment; Msls.y.max = 29.9 kNm Tensile stress in reinforcement; σs = Msls.y.max / (Asy.bot.prov × z) = 66 N/mm 2 Load duration factor; kt = 0.4 Effective depth of concrete in tension; hc.ef = min(2.5 × (h - d), (h - x) / 3, h / 2) = 119 mm Effective area of concrete in tension; Ac.eff = hc.ef × Lx = 296667 mm2 Mean value of concrete tensile strength; fct.eff = fctm = 2.9 N/mm 2 Reinforcement ratio; ρp.eff = Asy.bot.prov / Ac.eff = 0.005 Modular ratio; αe = Es / Ecm = 6.395 Bond property coefficient; k1 = 0.8 Strain distribution coefficient; k2 = 0.5 k3 = 3.4 k4 = 0.425 Maximum crack spacing (exp.7.11); sr.max = k3 × (cnom + φx.bot) + k1 × k2 × k4 × φy.bot / ρp.eff = 589 mm Maximum crack width (exp.7.8); wk = sr.max × max([σs – kt × (fct.eff / ρp.eff) ×(1 + αe × ρp.eff)] / Es, 0.6 × σs / Es) = 0.111 mm PASS - Maximum crack width is less than limiting crack widthRectangular section in shear (Section 6.2)
  • 8. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Foundation Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 15/04/2014 Chk'd by Date App'd by Date Design shear force; VEd.y.max = 88 kN CRd,c = 0.18 / γC = 0.120 k = min(1 + √(200 mm / d), 2) = 1.745 Longitudinal reinforcement ratio; ρl = min(Asy.bot.prov / (Lx × d), 0.02) = 0.002 vmin = 0.035 N 1/2 /mm × k 3/2 × fck 0.5 = 0.442 N/mm 2 Design shear resistance (exp.6.2a & 6.2b); VRd.c = max(CRd.c × k × (100 N 2 /mm 4 × ρl × fck) 1/3 , vmin) × Lx × d VRd.c = 397.8 kN PASS - Design shear resistance exceeds design shear force Punching shear (Section 6.4) Strength reduction factor (exp 6.6N); v = 0.6 × [1 - fck / 250 N/mm 2 ] = 0.528 Average depth to reinforcement; d = 358 mm Maximum punching shear resistance (cl.6.4.5(3)); vRd.max = 0.5 × v × fcd = 5.280 N/mm 2 k = min(1 + √(200 mm / d), 2) = 1.747 Longitudinal reinforcement ratio (cl.6.4.4(1)); ρlx = Asx.bot.prov / (Ly × d) = 0.002 ρly = Asy.bot.prov / (Lx × d) = 0.002 ρl = min(√(ρlx × ρly), 0.02) = 0.002 vmin = 0.035 N 1/2 /mm × k 3/2 × fck 0.5 = 0.443 N/mm 2 Design punching shear resistance (exp.6.47); vRd.c = max(CRd.c × k × (100 N 2 /mm 4 × ρl × fck) 1/3 , vmin) = 0.443 N/mm 2 Column No.1 - Punching shear perimeter at column face Punching shear perimeter; u0 = 1200 mm Area within punching shear perimeter; A0 = 0.090 m 2 Maximum punching shear force; VEd.max = 504.4 kN Punching shear stress factor (fig 6.21N); β = 1.500 Maximum punching shear stress (exp 6.38); vEd.max = β × VEd.max / (u0 × d) = 1.761 N/mm 2 PASS - Maximum punching shear resistance exceeds maximum punching shear stress Column No.1 - Punching shear perimeter at 2d from column face Punching shear perimeter; u2 = 3446 mm Area within punching shear perimeter; A2 = 2.367 m 2 Design punching shear force; VEd.2 = 172.1 kN Punching shear stress factor (fig 6.21N); β = 1.500 Design punching shear stress (exp 6.38); vEd.2 = β × VEd.2 / (u2 × d) = 0.209 N/mm 2 PASS - Design punching shear resistance exceeds design punching shear stress
  • 9. GEODOMISI Ltd. - Dr. Costas Sachpazis Civil & Geotechnical Engineering Consulting Company for Structural Engineering, Soil Mechanics, Rock Mechanics, Foundation Engineering & Retaining Structures. Tel.: (+30) 210 5238127, 210 5711263 - Fax.:+30 210 5711461 - Mobile: (+30) 6936425722 & (+44) 7585939944, costas@sachpazis.info Project: Foundation Analysis & Design, In accordance with EN1997-1:2004 incorporating Corrigendum dated February 2009 and the recommended values. Job Ref. Section Civil & Geotechnical Engineering Sheet no./rev. 1 Calc. by Dr. C. Sachpazis Date 15/04/2014 Chk'd by Date App'd by Date