SlideShare uma empresa Scribd logo
1 de 7
Baixar para ler offline
TALAT Lecture 2301

                        Design of Members

                           Bending Moment


   Example 4.1 : Bending moment resistance of open
            cross section with closed part

                                   7 pages

                               Advanced Level

    prepared by Torsten Höglund, Royal Institute of Technology, Stockholm




Date of Issue: 1999
 EAA - European Aluminium Association


TALAT 2301 – Example 4.1                1
Example 4.1. Bending moment resistance of open cross section
with closed part
                     fo     300 . MPa                     γ M1 1.1

                     Half flange width                    b        150
                     Half section depth                   h        240
                     Half closed part                     c        75
                     Flange thickness                     t        8
                     Web thickness                        d        4
                     Zero                                 o        0
                     Type of element
                     - Internal element: T = 0
                     - Outstand: T > 0
                     Comment: Node 8 is added
                     to indicate shift in neutral axis


Nodes, co-ordinates (y, z), thickness (t) and types (T)


     0           b                          h                          o              o
     1           c                          h                           t             2
     2           c                          h                           t             o
                                                                                                                MPa 10 . Pa
                                                                                                                      6
     3           b                          h                           t             1
     4           c                          h                          o              o                         kN 1000 . newton

     5           o                      h       c                      d              o
i          y          . mm z                        . mm t                  . mm T
     6           c                          h                          o              o
     7           o                      h       c                      d              o
     8           o                      o       1                      d              o             300
     9           o                          h                          d              o
    10           b                          h                          o              o             200
    11           b                          h                           t             1

                                                                                                    100
The beam is composed by two extrusions. The weld is
close to the neutral axis why HAZ softening does not                                                                                     0
                                                                                                z
influence the moment resistance.                                                                      0
                                                                                            mm


                                                                                                    100
Nodes            i     1 .. rows ( y )          1         rows ( y ) = 12


Area of cross                                                                                       200
                            ti .
section                                               2                      2
                 dAi               yi       yi 1              zi   zi 1
elements
                                                                                                    300
                                                                                                          200      100     0       100       200
Cross                     rows ( y )        1
                                                                                                                           y
                                                                            A = 7.269 . 10 mm
section                                                                                3        2
                 A                              dAi                                                                       mm
area
                               i =1

TALAT 2301 – Example 4.1                                                         2
First                     rows ( y )         1
                                                                  dAi                                                                                                Sy
moment            Sy                              zi       zi 1 .                                                                                          z gc
of area                                                            2                                                                                                  A
Gravity centre                   i =1
                                                                                                                                                           z gc = 15.282 mm

                                                                                                                                                           z gc.gr        z gc
Second                    rows ( y )        1
                                                                                             dAi
                                                                                 zi . zi 1 .                                                                              A . z gc
moment                                                     2             2                                                                                                               2
                  Iy                               zi           zi 1                                                                                       Iy     Iy
of area                                                                                       3
                               i =1
                                                                                                                                                           I y = 3.344 . 10 mm
                                                                                                                                                                                 8               4
                                                                                                                    I y.gr            Iy


Elastic section                                                                                     Iy                                 Iy
modulus           W el     if max z              z gc > min z            z gc ,                                          ,
                                                                                          max z            z gc              min z             z gc

                                                                                                                                                           W el = 1.31 . 10 mm
                                                                                                                                                                                 6               3

Torsion                    rows ( y )        1                 2
                                                       ti
                                                 dAi .                                                                                                     I tu = 1.156 . 10 mm
constant for                                                                                                                                                                     5               4
                  I tu
open parts                                              3
                                 i =1

Hollow part in top flange
                          y1                                                              z1                                                                         t1
                                                   75                                                                   240                                                                      8
                          y2                      75                                      z2                            240                                          t2                          8
                  yh                  yh=                      mm            zh                        zh =                           mm                   th                    th=                     mm
                          y5                       0                                      z5                            165                                          t5                          4

                          y6                       75                                     z6                            240                                          t7                          4


                               rows y h                1
Area within
                                                           0.5 . y h                       . z                                                             A tu = 5.625 . 10 mm
                                                                                                                                                                                     3               2
mid-line           A tu                                                      yh                hi          zh
                                                                     i            i   1                         i       1
                                          i =1


Sum of l/t                  rows y h              1                                                2                                       2
                                                                         yh           yh                    zh               zh
                                                                             i             i   1                    i             i    1              22
                   Dn                                   if t i > 0 ,                                                                           , 10                        Dn = 71.783
                                                                                                   th
                                      i =1                                                             i
                          4 .A
                                      2
Torsion constant                 tu
                                                                                                                                                           I t = 1.763 . 10 mm
                                                                                                                                                                             6               4
for closed part  It
                               Dn

Torsion constant
                                                                                                                                                           I t = 1.879 . 10 mm
                                                                                                                                                                             6               4
whole section    It       It     I tu

Torsion
                            2 . A tu . min t h                                                                                                             W v = 4.5 . 10 mm
                                                                                                                                                                             4               3
resistance         Wv                                                                 min t h = 4 mm




TALAT 2301 – Example 4.1                                                         3
Effective cross section.                                           First iteration
                                                                                              zi 1                 z gc        zi    z gc                              zd               zi           z gc
5.4.3 (1)             ψi      if zi 1             z gc < zi                z gc ,                                         ,                                                  i
                                                                                                  zi           z gc           zi 1       z gc                          max z              max z d

                                                                                             0.8
(5.7 or 5.8)          gi      if ψ i > 1 , 0.7                 0.30 . ψ i ,
                                                                                     1            ψ    i

Outstand
Figure 5.2            gi      if Ti > 0 , 1 , gi


                                                                            2                                       2
                                                      yi           yi 1                      zi       zi 1                                                                 250 . MPa
5.4.3 (1) c)          βi      if t i > 0 , gi .                                                                         ,1                                  ε o                                          ε o 0.913
                                                                                                                                                                                                           =
                                                                                ti                                                                                                fo


                                                                                                                                                        max z                                        max z
5.4.4 (5)       εi   if zi z gc . zi 1 z gc , if zi 1                                             z gc < zi                   z gc , ε o .                                 , ε o.                                        , 99
                                                                                                                                                       zi   z gc                             zi 1             z gc

5.4.5 (3)                                                                                                               2                                                                                2
a) or c)                                              β                         ε                              ε                          β                       ε                          ε
                                                                   > 6 , 10 .                     24 .                                              > 22 , 32 .                  220 .
                                                               i                         i                          i                           i                      i                             i
heat-treated,         ρ c if Ti > 0 , if                                                                                    , 1.0 , if                                                                       , 1.0
                        i                             ε                         β                              β                          ε                       β                          β
unwelded                                                       i                         i                          i                         i                        i                             i

Effective                                                                                                                                                                            βi                                  t eff
                      t eff       ρ .c
                                     t                                                                                                                                                           =                               i
thickness                                                                                                                                                                           ε                        ρ c=                    =
                                                                                                                    ψi =             gi =            βi =             εi =                i                    i         mm
                                                                                                                         1                1           9.375           0.973 9.635 0.779 6.235
                                                                                                                         1                1           18.75           0.973 19.271     1     8
                      Comment:                                                                                           1                1           9.375           0.973 9.635 0.779 6.235
                      εi was given a large value (99)                                                                    1                1               1           0.973 1.028      1     0
                      for elements entirely on                                                                       0.666              0.9          23.862           0.973 24.524 0.939 3.756
                      the tension side                                                                               0.666              0.9               1           0.973 1.028      1     0
                                                                                                                     0.666              0.9          23.862           0.973 24.524 0.939 3.756
                                                                                                                    -0.109           0.667           27.696              99   0.28     1     4
                                                                                                                     0.064           0.719           42.968              99 0.434      1     4
                                                                                                                         1                1               1              99   0.01     1     0
                                                                                                                         1                1            37.5              99 0.379      1     8


Area of effective
thickness
                               t eff .
elements                                                             2                                     2
                  dAi                      yi         yi 1                  zi           zi 1
                                     i


Cross                            rows ( y )           1
                                                                                                                                                                            A = 7.269 . 10 mm
                                                                                                                                                                                                         3           2
section              A eff                                 dAi
area
                                                                                                                                                                            A eff = 6.952 . 10 mm
                                                                                                                                                                                                                3        2
                                         i =1

First moment                  rows ( y )          1
                                                                           dAi                                                                                                                Sy
of area              Sy                                   zi        zi 1 .                                                                                                  z gc
                                                                            2                                                                                                            A eff
Gravity centre                      i =1
                                                                                                                                                                            z gc = 5.329 mm




TALAT 2301 – Example 4.1                                                                              4
Effective cross section.                                       Second iteration
Node 8 is moved to the neutral axis                                   z8             z gc             0.01 . mm
from the first iteration

                                                                             zi 1                 z gc                zi     z gc                                      zd           zi          z gc
5.4.3 (1)             ψi      if zi 1         z gc < zi           z gc ,                                      ,                                                            i
                                                                                 zi           z gc                zi 1         z gc                                    max z            max z d

                                                                                         0.8                                                                           max z = 245.329 mm
(5.7 or 5.8)          gi      if ψ i > 1 , 0.7             0.30 . ψ i ,
                                                                                 1            ψ   i


Outstand              gi      if Ti > 0 , 1 , gi
element

                                                      yi       yi 1
                                                                        2
                                                                                         zi       zi 1
                                                                                                                  2                                z gc = 5.329 mm
5.4.3 (1) c)          βi      if t i > 0 , gi .                                                                       ,1
                                                                            ti                                                                     z8 = 5.339 mm                                z9 = 240 mm


                                                                                                                                                        max z                                   max z
5.4.4 (5)       εi   if zi z gc             zi 1 z gc , if zi 1                                   z gc < zi                    z gc , ε o .                              , ε o.                                  , 99
                                                                                                                                                     zi   z gc                           zi 1           z gc

5.4.5 (3)
a) or c)                                                                                                               2                                                                        2
                                                      β                     ε                             ε                             β                     ε                     ε
                                                               > 6 , 10 .                     24 .                                              > 22 , 32 .               220 .
                                                           i                         i                            i                         i                      i                        i
heat-treated,         ρ c if Ti > 0 , if                                                                                   , 1.0 , if                                                               , 1.0
unwelded                i                             ε    i
                                                                            β        i
                                                                                                          β       i
                                                                                                                                        ε   i
                                                                                                                                                              β    i
                                                                                                                                                                                    β       i


Effective                                                                                                                                                                      βi                              t eff
                      t eff       ρ .c
                                     t                                                                                                                                                  =                              i
thickness                                                                                                                                                                      ε                    ρ c=                   =
                                                                                                     ψ
                                                                                              i = Ti = i =                        gi =           βi =             εi =              i                 i        mm
                                                                                               1              2          1 1 9.375 0.933 10.044 0.758 6.062
                                                      β    i
Max slender-          β e if Ti > 0 , 0 ,                                                      2              0          1 1 18.75 0.933 20.088        1    8
ness                    i                             ε    i                                   3              1          1 1 9.375 0.933 10.044 0.758 6.062
 - Internal                                                                                    4              0          1 1        1 0.933 1.071      1    0
elements              β Imax max β e
                                                                                               5              0       0.68
                                                                                                                         0.904 23.974 0.933 25.686 0.912 3.65
                      β Imax = 25.686                                                          6              0       0.68
                                                                                                                         0.904      1 0.933 1.071      1    0
                                                                                               7              0       0.68
                                                                                                                         0.904 23.974 0.933 25.686 0.912 3.65
                                                β     i
                                                                                               8              06.263·10 -5 0.7 27.941 1.132 24.693 0.935 3.74
Max slender-          β e if Ti > 0 ,                     ,0                                   9              0    -1·10 30.01 0.613 0.913 0.672       1    4
ness                    i                         ε   i                                       10              0          1 1        1    99   0.01     1    0
 - Outstands
                      β Omax max β e                                                          11              1          1 1     37.5    99 0.379      1    8

                      β Omax = 10.044

Cross section         class I       if β Imax 11 , 1 , if β Imax 16 , 2 , if β Imax 22 , 3 , 4                                                                                 class I = 4
class
                      class O        if β Omax 3 , 1 , if β Omax 4.5 , 2 , if β Omax 6 , 3 , 4                                                                                 class O = 4
(5.15)
                      class       if class I > class O , class I , class O                                                                                                     class = 4


Area of effective
                               t eff .
thickness                                                        2                                    2
                  dAi                      yi         yi 1              zi           zi 1
elements                             i




TALAT 2301 – Example 4.1                                                                          5
rows ( y )             1
Area of
                         A eff                                         dAi
                                                                                                                                             A = 7.269 . 10 mm
effective                                                                                                                                                        3           2
cross section                                    i =1
                                                                                                                                             A eff = 6.862 . 10 mm
                                                                                                                                                                         3           2

First                                  rows ( y )            1
moment                                                                              dAi                                                                   Sy
of area.                 Sy                                        zi        zi 1 .                                                          z gc
                                                                                     2                                                                   A eff
Gravity centre                               i =1
                                                                                                                                             z gc = 3.31 mm
Second                                 rows ( y )        1
moment of                                                                                                        dAi
                                                                                                     zi . zi 1 .                                                 A eff . z gc
                                                                            2               2                                                                                    2
area of effective        Iy                                            zi           zi 1                                                     I eff       Iy
                                                                                                                  3
cross section                               i =1
                                                                                                                                             I eff = 3.158 . 10 mm
                                                                                                                                                                     8           4



Section                                                                                                                           I eff
                                                                                                                                             W eff = 1.298 . 10 mm
                                                                                                                                                                         6           3
modulus             zd            zi       z gc                   max z.eff            max z d                  W eff
                         i                                                                                                      max z.eff

Compare                                                                                                                          I y.gr
                                                                                                                                             W gr = 1.31 . 10 mm
                                                                                                                                                                     6           3
gross               zd            zi       z gc.gr                max z.gr            max z d                   W gr
                         i                                                                                                      max z.gr
section


Plastic section modulus
                                                                                                                                             A = 7.269 . 10 mm
                                                                                                                                                                 3           2

Cross section                          7
                                                  ti .                                                                                       A up = 3.249 . 10 mm
area of upper                                                                   2                           2                                                            3           2
                    A up                                     yi        yi 1            zi       zi 1
part
                                   i =1
                                       A
Move node 8                                     A up
                                       2
to plastic          z8       z7                                                                                                              z8 = 68.566 mm
neutral axis                                t8

                                   rows ( y )            1
Plastic section                                                   zi        zi 1
                    W pl                                                         . t.           yi     yi 1
                                                                                                                2
                                                                                                                       zi       zi 1
                                                                                                                                       2
                                                                                                                                             W pl = 1.475 . 10 mm
                                                                                                                                                                     6           3
modulus                                                                     2       i
                                           i =1                                                                                              W pl
                                                                                                                                                      = 1.126
                                                                                                                                             W el

Shape factor
                                           22     β Imax W pl                                                               6     β Omax W pl
(5.15)              α 3I 1                              .                             1                α 3O 1                           .            1
                                                22 16     W el                                                                   6 4.5    W el

                    α 3 if α 3I < α 3O , α 3I , α 3O                                                   α 3 0.661
                                                                                                         =

                                                   W pl                                          W eff
                    α        if class< 3 ,                    , if class< 4 , α 3 ,                                              class = 4       α = 0.991
                                                   W el                                              W el




TALAT 2301 – Example 4.1                                                                    6
Bending moment resistance                    300


                                       fo
(5.14)            M Rd    α . W el.
                                      γ M1   200


                  M Rd = 354 kN . m
                                             100
Cross section     class = 4
class


Elastic neutral axis:                            0
- first iteration dashed-dotted line
- second iteration dashed line
Plastic neutral axis dotted line
                                             100




                                             200




                                             300
                                                     200   100   0   100   200




TALAT 2301 – Example 4.1                     7

Mais conteúdo relacionado

Mais procurados

TALAT Lecture 2301: Design of Members Example 4.4: Bending moment resistance ...
TALAT Lecture 2301: Design of Members Example 4.4: Bending moment resistance ...TALAT Lecture 2301: Design of Members Example 4.4: Bending moment resistance ...
TALAT Lecture 2301: Design of Members Example 4.4: Bending moment resistance ...CORE-Materials
 
TALAT Lecture 2301: Design of Members Example 6.7: Shear force resistance of ...
TALAT Lecture 2301: Design of Members Example 6.7: Shear force resistance of ...TALAT Lecture 2301: Design of Members Example 6.7: Shear force resistance of ...
TALAT Lecture 2301: Design of Members Example 6.7: Shear force resistance of ...CORE-Materials
 
TALAT Lecture 2301: Design of Members Example 8.2: Torsion constants for holl...
TALAT Lecture 2301: Design of Members Example 8.2: Torsion constants for holl...TALAT Lecture 2301: Design of Members Example 8.2: Torsion constants for holl...
TALAT Lecture 2301: Design of Members Example 8.2: Torsion constants for holl...CORE-Materials
 
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance ...
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance ...TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance ...
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance ...CORE-Materials
 
TALAT Lecture 2301: Design of Members Example 6.8: Shear force resistance of ...
TALAT Lecture 2301: Design of Members Example 6.8: Shear force resistance of ...TALAT Lecture 2301: Design of Members Example 6.8: Shear force resistance of ...
TALAT Lecture 2301: Design of Members Example 6.8: Shear force resistance of ...CORE-Materials
 
TALAT Lecture 4703: Design and Calculation of Adhesive Joints
TALAT Lecture 4703: Design and Calculation of Adhesive JointsTALAT Lecture 4703: Design and Calculation of Adhesive Joints
TALAT Lecture 4703: Design and Calculation of Adhesive JointsCORE-Materials
 
2006 mrs spring emd v3 a
2006 mrs spring emd v3 a2006 mrs spring emd v3 a
2006 mrs spring emd v3 aJanos Veres
 
Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...
Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...
Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...Pello Uranga
 

Mais procurados (9)

TALAT Lecture 2301: Design of Members Example 4.4: Bending moment resistance ...
TALAT Lecture 2301: Design of Members Example 4.4: Bending moment resistance ...TALAT Lecture 2301: Design of Members Example 4.4: Bending moment resistance ...
TALAT Lecture 2301: Design of Members Example 4.4: Bending moment resistance ...
 
TALAT Lecture 2301: Design of Members Example 6.7: Shear force resistance of ...
TALAT Lecture 2301: Design of Members Example 6.7: Shear force resistance of ...TALAT Lecture 2301: Design of Members Example 6.7: Shear force resistance of ...
TALAT Lecture 2301: Design of Members Example 6.7: Shear force resistance of ...
 
TALAT Lecture 2301: Design of Members Example 8.2: Torsion constants for holl...
TALAT Lecture 2301: Design of Members Example 8.2: Torsion constants for holl...TALAT Lecture 2301: Design of Members Example 8.2: Torsion constants for holl...
TALAT Lecture 2301: Design of Members Example 8.2: Torsion constants for holl...
 
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance ...
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance ...TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance ...
TALAT Lecture 2301: Design of Members Example 4.3: Bending moment resistance ...
 
TALAT Lecture 2301: Design of Members Example 6.8: Shear force resistance of ...
TALAT Lecture 2301: Design of Members Example 6.8: Shear force resistance of ...TALAT Lecture 2301: Design of Members Example 6.8: Shear force resistance of ...
TALAT Lecture 2301: Design of Members Example 6.8: Shear force resistance of ...
 
MITU-KUPFERSCHIEFER
MITU-KUPFERSCHIEFERMITU-KUPFERSCHIEFER
MITU-KUPFERSCHIEFER
 
TALAT Lecture 4703: Design and Calculation of Adhesive Joints
TALAT Lecture 4703: Design and Calculation of Adhesive JointsTALAT Lecture 4703: Design and Calculation of Adhesive Joints
TALAT Lecture 4703: Design and Calculation of Adhesive Joints
 
2006 mrs spring emd v3 a
2006 mrs spring emd v3 a2006 mrs spring emd v3 a
2006 mrs spring emd v3 a
 
Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...
Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...
Avoidance of Microstructural Heterogeneities by Hot Rolling Design in Thin Sl...
 

Semelhante a TALAT Lecture 2301: Design of Members Example 4.1: Bending moment resistance of open cross section with closed part

TALAT Lecture 2301: Design of Members Example 4.2: Hollow cross section (poly...
TALAT Lecture 2301: Design of Members Example 4.2: Hollow cross section (poly...TALAT Lecture 2301: Design of Members Example 4.2: Hollow cross section (poly...
TALAT Lecture 2301: Design of Members Example 4.2: Hollow cross section (poly...CORE-Materials
 
TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...
TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...
TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...CORE-Materials
 
TALAT Lecture 2301: Design of Members Example 5.4: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.4: Axial force resistance of ...TALAT Lecture 2301: Design of Members Example 5.4: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.4: Axial force resistance of ...CORE-Materials
 
TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...
TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...
TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...CORE-Materials
 
TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...CORE-Materials
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...grssieee
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...grssieee
 
TALAT Lecture 2301: Design of Members Example 8.3: Torsion constants for deck...
TALAT Lecture 2301: Design of Members Example 8.3: Torsion constants for deck...TALAT Lecture 2301: Design of Members Example 8.3: Torsion constants for deck...
TALAT Lecture 2301: Design of Members Example 8.3: Torsion constants for deck...CORE-Materials
 
Expert Design & Empirical Test Strategies for Practical Transformer Development
Expert Design & Empirical Test Strategies for Practical Transformer DevelopmentExpert Design & Empirical Test Strategies for Practical Transformer Development
Expert Design & Empirical Test Strategies for Practical Transformer DevelopmentRAF Tabtronics LLC
 
TALAT Lecture 2205: Special Design Issues
TALAT Lecture 2205: Special Design IssuesTALAT Lecture 2205: Special Design Issues
TALAT Lecture 2205: Special Design IssuesCORE-Materials
 
TALAT Lecture 2301: Design of Members Example 5.3: Resistance of cross sectio...
TALAT Lecture 2301: Design of Members Example 5.3: Resistance of cross sectio...TALAT Lecture 2301: Design of Members Example 5.3: Resistance of cross sectio...
TALAT Lecture 2301: Design of Members Example 5.3: Resistance of cross sectio...CORE-Materials
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : WaveletsGabriel Peyré
 
Revited joints
Revited jointsRevited joints
Revited jointshotman1991
 
MET 304 Revited joints
MET 304 Revited jointsMET 304 Revited joints
MET 304 Revited jointshotman1991
 
J3010 Unit 6
J3010   Unit 6J3010   Unit 6
J3010 Unit 6mechestud
 

Semelhante a TALAT Lecture 2301: Design of Members Example 4.1: Bending moment resistance of open cross section with closed part (18)

TALAT Lecture 2301: Design of Members Example 4.2: Hollow cross section (poly...
TALAT Lecture 2301: Design of Members Example 4.2: Hollow cross section (poly...TALAT Lecture 2301: Design of Members Example 4.2: Hollow cross section (poly...
TALAT Lecture 2301: Design of Members Example 4.2: Hollow cross section (poly...
 
TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...
TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...
TALAT Lecture 2301: Design of Members Example 10.1: Transverse bending of uns...
 
TALAT Lecture 2301: Design of Members Example 5.4: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.4: Axial force resistance of ...TALAT Lecture 2301: Design of Members Example 5.4: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.4: Axial force resistance of ...
 
TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...
TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...
TALAT Lecture 2301: Design of Members Example 8.1: Torsion constants for open...
 
TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...
TALAT Lecture 2301: Design of Members Example 5.6: Axial force resistance of ...
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
 
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
TU4.L09 - FOUR-COMPONENT SCATTERING POWER DECOMPOSITION WITH ROTATION OF COHE...
 
TALAT Lecture 2301: Design of Members Example 8.3: Torsion constants for deck...
TALAT Lecture 2301: Design of Members Example 8.3: Torsion constants for deck...TALAT Lecture 2301: Design of Members Example 8.3: Torsion constants for deck...
TALAT Lecture 2301: Design of Members Example 8.3: Torsion constants for deck...
 
Expert Design & Empirical Test Strategies for Practical Transformer Development
Expert Design & Empirical Test Strategies for Practical Transformer DevelopmentExpert Design & Empirical Test Strategies for Practical Transformer Development
Expert Design & Empirical Test Strategies for Practical Transformer Development
 
TALAT Lecture 2205: Special Design Issues
TALAT Lecture 2205: Special Design IssuesTALAT Lecture 2205: Special Design Issues
TALAT Lecture 2205: Special Design Issues
 
TALAT Lecture 2301: Design of Members Example 5.3: Resistance of cross sectio...
TALAT Lecture 2301: Design of Members Example 5.3: Resistance of cross sectio...TALAT Lecture 2301: Design of Members Example 5.3: Resistance of cross sectio...
TALAT Lecture 2301: Design of Members Example 5.3: Resistance of cross sectio...
 
Signal Processing Course : Wavelets
Signal Processing Course : WaveletsSignal Processing Course : Wavelets
Signal Processing Course : Wavelets
 
Revited joints
Revited jointsRevited joints
Revited joints
 
MET 304 Revited joints
MET 304 Revited jointsMET 304 Revited joints
MET 304 Revited joints
 
108 ts
108 ts108 ts
108 ts
 
J3010 Unit 6
J3010   Unit 6J3010   Unit 6
J3010 Unit 6
 
1 d wave equation
1 d wave equation1 d wave equation
1 d wave equation
 
ETABS Modelling
ETABS ModellingETABS Modelling
ETABS Modelling
 

Mais de CORE-Materials

Testing Techniques for Composite Materials
Testing Techniques for Composite MaterialsTesting Techniques for Composite Materials
Testing Techniques for Composite MaterialsCORE-Materials
 
Composite Forming Techniques
Composite Forming TechniquesComposite Forming Techniques
Composite Forming TechniquesCORE-Materials
 
The role of technology in sporting performance
The role of technology in sporting performanceThe role of technology in sporting performance
The role of technology in sporting performanceCORE-Materials
 
Chemical analysis in the electron microscope
Chemical analysis in the electron microscopeChemical analysis in the electron microscope
Chemical analysis in the electron microscopeCORE-Materials
 
The scanning electron microscope
The scanning electron microscopeThe scanning electron microscope
The scanning electron microscopeCORE-Materials
 
The transmission electron microscope
The transmission electron microscopeThe transmission electron microscope
The transmission electron microscopeCORE-Materials
 
Electrons and their interaction with the specimen
Electrons and their interaction with the specimenElectrons and their interaction with the specimen
Electrons and their interaction with the specimenCORE-Materials
 
Electron microscopy and other techniques
Electron microscopy and other techniquesElectron microscopy and other techniques
Electron microscopy and other techniquesCORE-Materials
 
Microscopy with light and electrons
Microscopy with light and electronsMicroscopy with light and electrons
Microscopy with light and electronsCORE-Materials
 
TALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
TALAT Lecture 5301: The Surface Treatment and Coil Coating of AluminiumTALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
TALAT Lecture 5301: The Surface Treatment and Coil Coating of AluminiumCORE-Materials
 
TALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on AluminiumTALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on AluminiumCORE-Materials
 
TALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of AluminiumTALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of AluminiumCORE-Materials
 
TALAT Lecture 5202: Conversion Coatings
TALAT Lecture 5202: Conversion CoatingsTALAT Lecture 5202: Conversion Coatings
TALAT Lecture 5202: Conversion CoatingsCORE-Materials
 
TALAT Lecture 5105: Surface Treatment of Aluminium
TALAT Lecture 5105: Surface Treatment of AluminiumTALAT Lecture 5105: Surface Treatment of Aluminium
TALAT Lecture 5105: Surface Treatment of AluminiumCORE-Materials
 
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of AluminiumTALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of AluminiumCORE-Materials
 
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...CORE-Materials
 
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous SolutionsTALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous SolutionsCORE-Materials
 

Mais de CORE-Materials (20)

Drawing Processes
Drawing ProcessesDrawing Processes
Drawing Processes
 
Testing Techniques for Composite Materials
Testing Techniques for Composite MaterialsTesting Techniques for Composite Materials
Testing Techniques for Composite Materials
 
Composite Forming Techniques
Composite Forming TechniquesComposite Forming Techniques
Composite Forming Techniques
 
The role of technology in sporting performance
The role of technology in sporting performanceThe role of technology in sporting performance
The role of technology in sporting performance
 
Chemical analysis in the electron microscope
Chemical analysis in the electron microscopeChemical analysis in the electron microscope
Chemical analysis in the electron microscope
 
The scanning electron microscope
The scanning electron microscopeThe scanning electron microscope
The scanning electron microscope
 
The transmission electron microscope
The transmission electron microscopeThe transmission electron microscope
The transmission electron microscope
 
Electron diffraction
Electron diffractionElectron diffraction
Electron diffraction
 
Electrons and their interaction with the specimen
Electrons and their interaction with the specimenElectrons and their interaction with the specimen
Electrons and their interaction with the specimen
 
Electron microscopy and other techniques
Electron microscopy and other techniquesElectron microscopy and other techniques
Electron microscopy and other techniques
 
Microscopy with light and electrons
Microscopy with light and electronsMicroscopy with light and electrons
Microscopy with light and electrons
 
Durability of Materials
Durability of MaterialsDurability of Materials
Durability of Materials
 
TALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
TALAT Lecture 5301: The Surface Treatment and Coil Coating of AluminiumTALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
TALAT Lecture 5301: The Surface Treatment and Coil Coating of Aluminium
 
TALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on AluminiumTALAT Lecture 5205: Plating on Aluminium
TALAT Lecture 5205: Plating on Aluminium
 
TALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of AluminiumTALAT Lecture 5203: Anodizing of Aluminium
TALAT Lecture 5203: Anodizing of Aluminium
 
TALAT Lecture 5202: Conversion Coatings
TALAT Lecture 5202: Conversion CoatingsTALAT Lecture 5202: Conversion Coatings
TALAT Lecture 5202: Conversion Coatings
 
TALAT Lecture 5105: Surface Treatment of Aluminium
TALAT Lecture 5105: Surface Treatment of AluminiumTALAT Lecture 5105: Surface Treatment of Aluminium
TALAT Lecture 5105: Surface Treatment of Aluminium
 
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of AluminiumTALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
TALAT Lecture 5104: Basic Approaches to Prevent Corrosion of Aluminium
 
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
TALAT Lecture 5103: Corrosion Control of Aluminium - Forms of Corrosion and P...
 
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous SolutionsTALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
TALAT Lecture 5102: Reactivity of the Aluminium Surface in Aqueous Solutions
 

Último

An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfSanaAli374401
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.christianmathematics
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfChris Hunter
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactPECB
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...EduSkills OECD
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsTechSoup
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docxPoojaSen20
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...christianmathematics
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdfQucHHunhnh
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxnegromaestrong
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxDenish Jangid
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...KokoStevan
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityGeoBlogs
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxVishalSingh1417
 

Último (20)

An Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdfAn Overview of Mutual Funds Bcom Project.pdf
An Overview of Mutual Funds Bcom Project.pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.This PowerPoint helps students to consider the concept of infinity.
This PowerPoint helps students to consider the concept of infinity.
 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1Código Creativo y Arte de Software | Unidad 1
Código Creativo y Arte de Software | Unidad 1
 
Beyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global ImpactBeyond the EU: DORA and NIS 2 Directive's Global Impact
Beyond the EU: DORA and NIS 2 Directive's Global Impact
 
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
Presentation by Andreas Schleicher Tackling the School Absenteeism Crisis 30 ...
 
Introduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The BasicsIntroduction to Nonprofit Accounting: The Basics
Introduction to Nonprofit Accounting: The Basics
 
Advance Mobile Application Development class 07
Advance Mobile Application Development class 07Advance Mobile Application Development class 07
Advance Mobile Application Development class 07
 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
1029 - Danh muc Sach Giao Khoa 10 . pdf
1029 -  Danh muc Sach Giao Khoa 10 . pdf1029 -  Danh muc Sach Giao Khoa 10 . pdf
1029 - Danh muc Sach Giao Khoa 10 . pdf
 
Seal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptxSeal of Good Local Governance (SGLG) 2024Final.pptx
Seal of Good Local Governance (SGLG) 2024Final.pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptxBasic Civil Engineering first year Notes- Chapter 4 Building.pptx
Basic Civil Engineering first year Notes- Chapter 4 Building.pptx
 
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
SECOND SEMESTER TOPIC COVERAGE SY 2023-2024 Trends, Networks, and Critical Th...
 
Paris 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activityParis 2024 Olympic Geographies - an activity
Paris 2024 Olympic Geographies - an activity
 
Unit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptxUnit-IV; Professional Sales Representative (PSR).pptx
Unit-IV; Professional Sales Representative (PSR).pptx
 

TALAT Lecture 2301: Design of Members Example 4.1: Bending moment resistance of open cross section with closed part

  • 1. TALAT Lecture 2301 Design of Members Bending Moment Example 4.1 : Bending moment resistance of open cross section with closed part 7 pages Advanced Level prepared by Torsten Höglund, Royal Institute of Technology, Stockholm Date of Issue: 1999  EAA - European Aluminium Association TALAT 2301 – Example 4.1 1
  • 2. Example 4.1. Bending moment resistance of open cross section with closed part fo 300 . MPa γ M1 1.1 Half flange width b 150 Half section depth h 240 Half closed part c 75 Flange thickness t 8 Web thickness d 4 Zero o 0 Type of element - Internal element: T = 0 - Outstand: T > 0 Comment: Node 8 is added to indicate shift in neutral axis Nodes, co-ordinates (y, z), thickness (t) and types (T) 0 b h o o 1 c h t 2 2 c h t o MPa 10 . Pa 6 3 b h t 1 4 c h o o kN 1000 . newton 5 o h c d o i y . mm z . mm t . mm T 6 c h o o 7 o h c d o 8 o o 1 d o 300 9 o h d o 10 b h o o 200 11 b h t 1 100 The beam is composed by two extrusions. The weld is close to the neutral axis why HAZ softening does not 0 z influence the moment resistance. 0 mm 100 Nodes i 1 .. rows ( y ) 1 rows ( y ) = 12 Area of cross 200 ti . section 2 2 dAi yi yi 1 zi zi 1 elements 300 200 100 0 100 200 Cross rows ( y ) 1 y A = 7.269 . 10 mm section 3 2 A dAi mm area i =1 TALAT 2301 – Example 4.1 2
  • 3. First rows ( y ) 1 dAi Sy moment Sy zi zi 1 . z gc of area 2 A Gravity centre i =1 z gc = 15.282 mm z gc.gr z gc Second rows ( y ) 1 dAi zi . zi 1 . A . z gc moment 2 2 2 Iy zi zi 1 Iy Iy of area 3 i =1 I y = 3.344 . 10 mm 8 4 I y.gr Iy Elastic section Iy Iy modulus W el if max z z gc > min z z gc , , max z z gc min z z gc W el = 1.31 . 10 mm 6 3 Torsion rows ( y ) 1 2 ti dAi . I tu = 1.156 . 10 mm constant for 5 4 I tu open parts 3 i =1 Hollow part in top flange y1 z1 t1 75 240 8 y2 75 z2 240 t2 8 yh yh= mm zh zh = mm th th= mm y5 0 z5 165 t5 4 y6 75 z6 240 t7 4 rows y h 1 Area within 0.5 . y h . z A tu = 5.625 . 10 mm 3 2 mid-line A tu yh hi zh i i 1 i 1 i =1 Sum of l/t rows y h 1 2 2 yh yh zh zh i i 1 i i 1 22 Dn if t i > 0 , , 10 Dn = 71.783 th i =1 i 4 .A 2 Torsion constant tu I t = 1.763 . 10 mm 6 4 for closed part It Dn Torsion constant I t = 1.879 . 10 mm 6 4 whole section It It I tu Torsion 2 . A tu . min t h W v = 4.5 . 10 mm 4 3 resistance Wv min t h = 4 mm TALAT 2301 – Example 4.1 3
  • 4. Effective cross section. First iteration zi 1 z gc zi z gc zd zi z gc 5.4.3 (1) ψi if zi 1 z gc < zi z gc , , i zi z gc zi 1 z gc max z max z d 0.8 (5.7 or 5.8) gi if ψ i > 1 , 0.7 0.30 . ψ i , 1 ψ i Outstand Figure 5.2 gi if Ti > 0 , 1 , gi 2 2 yi yi 1 zi zi 1 250 . MPa 5.4.3 (1) c) βi if t i > 0 , gi . ,1 ε o ε o 0.913 = ti fo max z max z 5.4.4 (5) εi if zi z gc . zi 1 z gc , if zi 1 z gc < zi z gc , ε o . , ε o. , 99 zi z gc zi 1 z gc 5.4.5 (3) 2 2 a) or c) β ε ε β ε ε > 6 , 10 . 24 . > 22 , 32 . 220 . i i i i i i heat-treated, ρ c if Ti > 0 , if , 1.0 , if , 1.0 i ε β β ε β β unwelded i i i i i i Effective βi t eff t eff ρ .c t = i thickness ε ρ c= = ψi = gi = βi = εi = i i mm 1 1 9.375 0.973 9.635 0.779 6.235 1 1 18.75 0.973 19.271 1 8 Comment: 1 1 9.375 0.973 9.635 0.779 6.235 εi was given a large value (99) 1 1 1 0.973 1.028 1 0 for elements entirely on 0.666 0.9 23.862 0.973 24.524 0.939 3.756 the tension side 0.666 0.9 1 0.973 1.028 1 0 0.666 0.9 23.862 0.973 24.524 0.939 3.756 -0.109 0.667 27.696 99 0.28 1 4 0.064 0.719 42.968 99 0.434 1 4 1 1 1 99 0.01 1 0 1 1 37.5 99 0.379 1 8 Area of effective thickness t eff . elements 2 2 dAi yi yi 1 zi zi 1 i Cross rows ( y ) 1 A = 7.269 . 10 mm 3 2 section A eff dAi area A eff = 6.952 . 10 mm 3 2 i =1 First moment rows ( y ) 1 dAi Sy of area Sy zi zi 1 . z gc 2 A eff Gravity centre i =1 z gc = 5.329 mm TALAT 2301 – Example 4.1 4
  • 5. Effective cross section. Second iteration Node 8 is moved to the neutral axis z8 z gc 0.01 . mm from the first iteration zi 1 z gc zi z gc zd zi z gc 5.4.3 (1) ψi if zi 1 z gc < zi z gc , , i zi z gc zi 1 z gc max z max z d 0.8 max z = 245.329 mm (5.7 or 5.8) gi if ψ i > 1 , 0.7 0.30 . ψ i , 1 ψ i Outstand gi if Ti > 0 , 1 , gi element yi yi 1 2 zi zi 1 2 z gc = 5.329 mm 5.4.3 (1) c) βi if t i > 0 , gi . ,1 ti z8 = 5.339 mm z9 = 240 mm max z max z 5.4.4 (5) εi if zi z gc zi 1 z gc , if zi 1 z gc < zi z gc , ε o . , ε o. , 99 zi z gc zi 1 z gc 5.4.5 (3) a) or c) 2 2 β ε ε β ε ε > 6 , 10 . 24 . > 22 , 32 . 220 . i i i i i i heat-treated, ρ c if Ti > 0 , if , 1.0 , if , 1.0 unwelded i ε i β i β i ε i β i β i Effective βi t eff t eff ρ .c t = i thickness ε ρ c= = ψ i = Ti = i = gi = βi = εi = i i mm 1 2 1 1 9.375 0.933 10.044 0.758 6.062 β i Max slender- β e if Ti > 0 , 0 , 2 0 1 1 18.75 0.933 20.088 1 8 ness i ε i 3 1 1 1 9.375 0.933 10.044 0.758 6.062 - Internal 4 0 1 1 1 0.933 1.071 1 0 elements β Imax max β e 5 0 0.68 0.904 23.974 0.933 25.686 0.912 3.65 β Imax = 25.686 6 0 0.68 0.904 1 0.933 1.071 1 0 7 0 0.68 0.904 23.974 0.933 25.686 0.912 3.65 β i 8 06.263·10 -5 0.7 27.941 1.132 24.693 0.935 3.74 Max slender- β e if Ti > 0 , ,0 9 0 -1·10 30.01 0.613 0.913 0.672 1 4 ness i ε i 10 0 1 1 1 99 0.01 1 0 - Outstands β Omax max β e 11 1 1 1 37.5 99 0.379 1 8 β Omax = 10.044 Cross section class I if β Imax 11 , 1 , if β Imax 16 , 2 , if β Imax 22 , 3 , 4 class I = 4 class class O if β Omax 3 , 1 , if β Omax 4.5 , 2 , if β Omax 6 , 3 , 4 class O = 4 (5.15) class if class I > class O , class I , class O class = 4 Area of effective t eff . thickness 2 2 dAi yi yi 1 zi zi 1 elements i TALAT 2301 – Example 4.1 5
  • 6. rows ( y ) 1 Area of A eff dAi A = 7.269 . 10 mm effective 3 2 cross section i =1 A eff = 6.862 . 10 mm 3 2 First rows ( y ) 1 moment dAi Sy of area. Sy zi zi 1 . z gc 2 A eff Gravity centre i =1 z gc = 3.31 mm Second rows ( y ) 1 moment of dAi zi . zi 1 . A eff . z gc 2 2 2 area of effective Iy zi zi 1 I eff Iy 3 cross section i =1 I eff = 3.158 . 10 mm 8 4 Section I eff W eff = 1.298 . 10 mm 6 3 modulus zd zi z gc max z.eff max z d W eff i max z.eff Compare I y.gr W gr = 1.31 . 10 mm 6 3 gross zd zi z gc.gr max z.gr max z d W gr i max z.gr section Plastic section modulus A = 7.269 . 10 mm 3 2 Cross section 7 ti . A up = 3.249 . 10 mm area of upper 2 2 3 2 A up yi yi 1 zi zi 1 part i =1 A Move node 8 A up 2 to plastic z8 z7 z8 = 68.566 mm neutral axis t8 rows ( y ) 1 Plastic section zi zi 1 W pl . t. yi yi 1 2 zi zi 1 2 W pl = 1.475 . 10 mm 6 3 modulus 2 i i =1 W pl = 1.126 W el Shape factor 22 β Imax W pl 6 β Omax W pl (5.15) α 3I 1 . 1 α 3O 1 . 1 22 16 W el 6 4.5 W el α 3 if α 3I < α 3O , α 3I , α 3O α 3 0.661 = W pl W eff α if class< 3 , , if class< 4 , α 3 , class = 4 α = 0.991 W el W el TALAT 2301 – Example 4.1 6
  • 7. Bending moment resistance 300 fo (5.14) M Rd α . W el. γ M1 200 M Rd = 354 kN . m 100 Cross section class = 4 class Elastic neutral axis: 0 - first iteration dashed-dotted line - second iteration dashed line Plastic neutral axis dotted line 100 200 300 200 100 0 100 200 TALAT 2301 – Example 4.1 7